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ABSTRACT

Experimental structures are leveraged through multi-
ple sequence alignments, or more generally through
homology-based inference (HBI), facilitating the
transfer of information from a protein with known
annotation to a query without any annotation. A re-
cent alternative expands the concept of HBI from
sequence-distance lookup to embedding-based an-
notation transfer (EAT). These embeddings are de-
rived from protein Language Models (pLMs). Here,
we introduce using single protein representations
from pLMs for contrastive learning. This learning
procedure creates a new set of embeddings that
optimizes constraints captured by hierarchical clas-
sifications of protein 3D structures defined by the
CATH resource. The approach, dubbed ProtTucker,
has an improved ability to recognize distant homolo-
gous relationships than more traditional techniques
such as threading or fold recognition. Thus, these
embeddings have allowed sequence comparison to
step into the ‘midnight zone’ of protein similarity,
i.e. the region in which distantly related sequences
have a seemingly random pairwise sequence sim-
ilarity. The novelty of this work is in the particu-
lar combination of tools and sampling techniques
that ascertained good performance comparable or
better to existing state-of-the-art sequence compari-
son methods. Additionally, since this method does
not need to generate alignments it is also orders
of magnitudes faster. The code is available at https:
//github.com/Rostlab/EAT.

INTRODUCTION

Phase-transition from daylight through twilight into midnight
zone

Protein sequence determines structure which determines
function. This simple chain underlies the success of group-
ing proteins into families from sequence (1–4). Information
from experimental high-resolution three-dimensional (3D)
structures expands the perspective from families to super-
families (5,6) that often reveal evolutionary and functional
connections not recognizable from sequence alone (7,8).
Thus, 3D information helps us to penetrate through the twi-
light zone of sequence alignments (9,10) into the midnight
zone of distant evolutionary relationships (11).

The transition from daylight, through twilight and into
the midnight zone is characterized by a phase-transition,
i.e. a sigmoid function describing an order of magnitude in-
crease in recall (relations identified) at the expense of a de-
crease in precision (relations identified correctly) over a nar-
row range of sequence similarity. Measuring sequence sim-
ilarity by the HSSP-value (HVAL) (10,12) for the daylight
zone at HVAL > 5 (>25% PIDE - pairwise sequence iden-
tity over >250 aligned residues) over 90% of all protein pairs
have similar 3D structures, while at the beginning of the
midnight zone for HVAL<-5 (<15% PIDE for > 250 aligned
residues), over 90% have different 3D structures. Thus, the
transition from daylight to midnight zone is described by a
phase-transition in which over about ten percentage points
in PIDE precision drops from 90% to 10%, i.e. from almost
all correct to almost all incorrect within ±5 points PIDE.
The particular point at which the twilight zone begins and
how extreme the transition is, depends on the phenotype:
steeper at lower PIDE for structure (10) and flatter at higher
PIDE for function (13,14).
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If two proteins have highly similar structures, it is still
possible for their sequences to be found in this midnight
zone, i.e. have seemingly random sequence similarity (11).
Thus, if we could safely lower the threshold just a little, we
would gain many annotations of structural and functional
similarity. In fact, any push a little lower reveals many pro-
teins with similar phenotype, e.g. structure or function. Un-
fortunately, without improving the search method, such a
lowering usually comes at the expense of even more proteins
with dissimilar phenotype.

This simple reality has been driving the advance of meth-
ods using sequence similarity to establish relations: from ad-
vanced pairwise comparisons (15,16) over sequence-profile
(17–20) to profile-profile comparisons (8,21,22,23,24,25,26)
or efficient shortcuts to the latter (27,28). All those meth-
ods share one simple idea, namely, to use evolutionary
information (EI) to create families of related proteins.
These are summarized in multiple sequence alignments
(MSAs). Using such information as input to machine learn-
ing methods has been generating essentially all state-of-the-
art (SOTA) prediction methods for almost three decades
(29–31). Using MSAs has also been one major key behind
the breakthrough in protein structure prediction through
AlphaFold2 (32), and subsequently of RoseTTAFold (33)
which builds on ideas introduced by AlphaFold2, i.e. al-
lowing for communication between different sequence-
and structure modules within the network. Transfer- or
representation-learning offer a novel route toward compar-
isons of and predictions for single sequences without MSAs.

Embeddings capture language of life written in proteins

The introduction of LSTM- or attention-based Language
Models (LMs) such as ELMo (34) or BERT (35) enabled
a better use of large, unlabeled text corpora which ar-
guably improved all tasks in natural language processing
(NLP) (36). These advances have been transferred to pro-
teins through protein Language Models (pLMs) equating
amino acids with words in NLP and the sequence of en-
tire proteins with sentences. Such pLMs learn to predict
masked or missing amino acids using large databases of
raw protein sequences as input (37–43), or by refining the
pLM through another supervised task (44,45). Processing
the information learned by the pLM, e.g. by using the out-
put of the last hidden layers of the networks forming the
pLMs, yields a representation of protein sequences referred
to as embeddings (Figure 1 in (37)). Embeddings have been
used successfully as exclusive input to predicting secondary
structure and subcellular localization at performance levels
almost reaching (38–40) or even exceeding (37,46,47) the
SOTA using evolutionary information from MSAs as in-
put. Embeddings can even substitute sequence similarity for
homology-based annotation transfer (48,49). The power of
such embeddings has been increasing with the advance of
algorithms and the growth of data (37). The recent advances
have shown that a limit to such improvements has not nearly
been reached when writing this (22.02.2022).

Embeddings from pLMs capture a diversity of higher-
level features of proteins, including various aspects of pro-
tein function and structure (37,38,40,48,49,50,51). In fact,
pLMs such as ProtT5 (37) or ESM-1b (38) capture aspects

about protein structure so impressively that inter-residue
distances – and consequently 3D structure – can be pre-
dicted without using MSAs, even with relatively small (few
free parameters) Deep Learning (DL) architectures (52).

Supervised learning directly maps the input to the class
output. Instead, contrastive learning (53), optimizes a new
embedding space in which similar samples are pushed
closer, dissimilar samples farther apart. Contrastive learn-
ing relies only on the similarity between pairs (or triplets) of
samples instead of on class label. The definition of similarity
in embedding rather than sequence space, combined with
contrastive learning, offered an alternative to sequence-
based protein comparisons. This led us to hypothesize that
we might find structurally and functionally consistent sub-
groups within protein families from raw sequences. As a
proof-of-principle, a rudimentary precursor of this work
helped to cluster FunFams (54,49). The benefit of optimiz-
ing embeddings specifically for SCOPe fold recognition (55)
has recently been shown (44,50,56). Other approaches to-
ward fold recognition deep learn fold-specific motifs (57),
pairwise similarity scores (58) or sequence alignments (59).
However, most of the top-performing solutions rely on in-
formation extracted from MSAs (60) and do not utilize the
transfer-learning capabilities offered by recent pLMs.

Here, we expand on the hypothesis that replacing super-
vised learning by contrastive learning intrinsically fits the
hierarchy of CATH (5,54). We propose an approach that
marries both, self-supervised pretraining and contrastive
learning, by representing protein sequences as embeddings,
and using increasing overlap in the CATH hierarchy as a
notion of increasing structural similarity to contrastively
learn a new embedding space. We used the pLM ProtT5
(37) as static feature encoder (no fine-tuning of the pLM)
to retrieve initial embeddings that were then mapped by
a feed-forward neural network (FNN) to a new, learned
embedding space optimized on CATH through contrastive
learning. More specifically, the Soft Margin Loss was used
with triplets of proteins (anchor, positive, and negative)
to optimize the new embedding space toward maximizing
the distance between proteins from different CATH classes
(anchor-negative pairs) while minimizing the distance be-
tween proteins in the same CATH class (anchor-positive
pairs). Triplets of varying structural similarity were used si-
multaneously to optimize a single, shared network: all four
CATH-levels were simultaneously learned by one FNN.
The resulting model was called ProtTucker and its embed-
dings were established to identify more distant relations
than is possible from sequence alone. One important ob-
jective of ProtTucker is to study entire functional modules
through identifying more distant relations, as found to be
crucial for capturing mimicry and hijacking of SARS-CoV-
2 (61).

METHODS

CATH hierarchy

The CATH (6,54) hierarchy (v4.3) classifies three-
dimensional (3D) protein structures from the PDB
(Protein Data Bank (62)) at the four levels Class, Architec-
ture, Topology and Homologous superfamily. On average,
higher levels (further away from root: H > T > A > C) are
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Figure 1. Sketch of ProtTucker. Panel A illustrates how protein triplets were used to contrastively learn the CATH hierarchy (5,54). First, protein Language
Models (pLMs) were used as static feature encoders to derive embeddings for protein sequences (anchor, positive, negative). The embedding of each protein
was processed separately by the same, shared FNN with hard parameter sharing, called ProtTucker. During optimization, the Soft Margin Loss was used
to maximize the distance between proteins from different CATH classes (anchor-negative pairs) while minimizing the distance between proteins in the
same CATH class (anchor-positive pairs). All four CATH-levels were simultaneously learned by the same FNN. This resulted in a newly, learned CATH-
optimized embedding for each protein. Panel B sketches how the contrastive learning FNN is used for prediction of new proteins (inference). For all
proteins in a lookup set with experimental annotations (labeled proteins; here the CATH lookup set), as well as for a query protein without experimental
annotations (unlabeled proteins) all embeddings are extracted in two steps: (1) extract per-residue embeddings from original pLM and create per-protein
embeddings by averaging over protein length. (2) Input those embeddings into the pre-trained FNNs, i.e. ProtTucker. Similar to homology-based inference
(HBI), predictions are generated by transferring the annotation of the closest hit from the lookup set to the query protein. The embedding-based annotation
transfer (EAT) transferred annotations to the hit with the smallest Euclidean distance in ProtTucker embedding space.

more similar in their 3D structure or have more residues
for which the same level of 3D similarity is reached. We
used increasing overlap in this hierarchical classification as
a proxy to define increasing structural similarity between
protein pairs. For example, we assumed that any two
proteins with the same topology (T) are structurally more
similar than any two proteins with identical architecture
(A) but different topology (T). In more formal terms:
SIM3D(P1,P2)>SIM3D(P3,P4), where T(P1) = T(P2) &
T(P3) �=T(P4) & A(P3) = A(P4). This notion of similarity
was applied on all four levels of CATH.

Data set

The sequence-unique datasets provided by CATH (5,54)
v4.3 (123k proteins, CATH-S100) provided training and
evaluation data for ProtTucker. A test set (300 proteins,
dubbed test300 in the following) for final evaluation and a
validation set (200 proteins, dubbed val200) for early stop-
ping were randomly split off from CATH-S100 while ensur-
ing that (1) every homologous superfamily appeared max-
imally once in test300 ∩ val200 and (2) each protein in
test300 & val200 has a so called Structural Sub-group (SSG)
annotation, i.e. clusters of domain structure relatives that
superpose within 5Å (0.5 nm), in CATH. To create the
training set, we removed any protein from CATH-S100 that
shared more than 20% pairwise sequence identity (PIDE)
to any validation or test protein according to MMSeqs2
(27) applying its iterative profile-search (–num-iterations 3)
with highest sensitivity (-s 7.5) and bidirectional coverage
(–cov-mode 0). Additionally, large families (>100 members)
within CATH-S100 were clustered at 95% PIDE and length
coverage of 95% of both proteins using MMSeqs2 (bidi-

rectional coverage; –cov-mode 0). The cluster representa-
tives were used for training (66k proteins, dubbed train66k)
and as lookup set during early stopping on set val200. We
needed a lookup set from which to transfer annotations be-
cause contrastive learning outputs embeddings instead of
class predictions. For the final evaluation on test300, we cre-
ated another lookup set but ignored val200 proteins during
redundancy reduction (69k proteins, dubbed lookup69k).
This provided a set of proteins for validation which had sim-
ilar sequence properties to those during the final evaluation
while ‘hiding’ them during training and not using them for
any other optimization. To ensure strict non-redundancy
between lookup69k and test300, we further removed any
protein from test300 with HVAL > 0 (10) to any protein in
lookup69k (219 proteins, dubbed test219 in the following).
All performance measures were computed using test219.

Data augmentation can be crucial for contrastive learn-
ing to reach performance in other fields (63). However, no
straightforward way exists to augment protein sequences
as randomly changing sequences very likely alters or even
destroys protein structure and function. Therefore, we de-
cided to use homology-based inference (HBI) for data aug-
mentation during training, i.e. we created a new train-
ing set based on Gene3D (64) (v21.0.1) which uses Hid-
den Markov Models (HMMs) derived from CATH do-
main structures to transfer annotations from labeled CATH
to unlabeled UniProt. We first clustered the 61M pro-
tein sequences in Gene3D at 50% PIDE and 80% cov-
erage of both proteins (bidirectional coverage; –cov-mode
0) and then applied the same MMSeqs2 profile-search (–
num-iterations 3 –s 7.5) as outlined above to remove clus-
ter representatives with ≥ 20% PIDE to any protein in
test300 or val200 (PIDE(Ptrain,Ptest300|val200) ≤ 20%). This
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filtering yielded 11M sequences for an alternative training
set (dubbed train11M).

The CATH detection of ProtTucker was further analyzed
using a strictly non-redundant, high-quality dataset. This
set was created by first clustering CATH v4.3 at 30% using
HMM profiles from HMMER and additionally discarding
all proteins without equivalent entry in SCOPe, i.e. the do-
main boundaries and the domain-superfamily assignment
had to be nearly identical (3186 proteins, CATH-S30). We
used the highly sensitive structural alignment scoring tool
SSAP (65,66) to compute the structural similarity between
all protein pairs in this set.

We probed whether ProtTucker embeddings might also
help in solving tasks unrelated to protein structure/CATH,
using as proxy a dataset assessing subcellular location pre-
diction in ten states (46,67). We embedding-transferred an-
notations (EAT) from the standard DeepLocTrain set to
490 proteins in a recently proposed test set (setHard) that
was strictly non-redundant to DeepLocTrain. Datasets de-
scribed elsewhere in more detail (46,67). Finally, we show-
cased predictions for entire organisms using three UniProt
reference proteome: Escherichia coli (E. Coli; reviewed,
Swiss-Prot (68)), Armillaria ostoyae (A. ostoyae; unre-
viewed, TrEMBL (68)) and Megavirus Chilensis (M. Chilen-
sis; unreviewed TrEMBL (68)).

Data representation

Protein sequences were encoded through distributed vec-
tor representations (embeddings) derived from four differ-
ent pre-trained protein language models (pLM): (–) Prot-
BERT (37) based on the NLP (Natural Language Process-
ing) algorithm BERT (35) but trained on BFD (Big Fantas-
tic Database) with over 2.3 billion protein sequences (69).
(2) ESM-1b (38) is similar to (Prot)BERT but trained on
UniRef50 (68). (3) ProtT5-XL-U50 (37) (ProtT5 for sim-
plicity) based on the NLP sequence-to-sequence model T5
(70) trained on BFD and fine-tuned on Uniref50. (4) ProSE
(44) trained long short-term memory cells (LSTMs) ei-
ther solely on 76M unlabeled sequences from UniRef90
(ProSE-DLM) or on additionally predicting intra-residue
contacts and structural similarity from 28k SCOPe pro-
teins (55) (multi-task: ProSE-MT). While ProSE, Prot-
Bert and ESM-1b were trained on reconstructing corrupted
tokens/amino acids from non-corrupted (protein) sequence
context (masked language modeling), ProtT5 was trained
by teacher forcing, i.e. input and targets were fed to the
model with inputs being corrupted protein sequences and
targets being identical to inputs but shifted to the right
(span generation with span size of 1 for ProtT5). Except
for ProSE-MT, all pLMs were optimized only through self-
supervised learning exclusively using unlabeled sequences
for pre-training.

pLMs output a single vector for each residue yielding an
L × N-dimensional matrix (L: protein length, N: embedding
dimension; N = 1024 for ProtBERT/ProtT5; N = 1280 for
ESM-1b; N = 6165 for ProSE). From this L × N embed-
ding matrix, we derived a fixed-size N-dimensional vector
representing each protein by averaging over protein length
(Figure 1 (37)). The pLMs were used as static feature en-
coder only, i.e. no gradient was backpropagated for fine-

tuning. As recommended in the original publication (37),
for ProtT5, we only used the encoder part of ProtT5 in half-
precision to embed protein sequences. Similarly, ProtBERT
embeddings were derived in half-precision.

Contrastive learning: architecture

A two-layer feedforward neural network (FNN) projected
fixed-size per-protein (sentence-level) embed-dings from
1024-d (1280-d/6165-d for ESM-1b and ProSE respec-
tively) to 256 and further to 128 dimensions with the stan-
dard hyperbolic tangent (tanh) as non-linearity between
layers. We also experimented with deeper/more sophisti-
cated networks without any gain from more free parame-
ters (data not shown). This confirmed previous findings that
simple networks suffice when inputting advanced embed-
dings (37,38,52,71). As the network was trained using con-
trastive learning, no final classification layer was needed.
Instead, the 128-dimensional output space was optimized
directly.

Contrastive learning: training

During training, the new embedding space spanned by the
output of the FNN was optimized to capture structural
similarity using triplets of protein embeddings. Each triplet
had an anchor, a positive and a negative. In each epoch, all
train66k proteins were used once as anchor, while positives
and negatives were sampled randomly from train66k using
the following hierarchy-sampling. First, a random level �
(� = [1,2,3,4]) describing the increasing structural overlap
between triplets was picked. This defined a positive (same
CATH-number as anchor up to level �’≤�) and a negative
label (same CATH-number as anchor up to level �’< �). For
instance, assume the anchor has the CATH-label 1.25.10.60
(Rad61, Wapl domain) and we randomly picked � = 3
(topology-level), only proteins with the anchor’s topology
(1.25.10.x; Leucine-rich Repeat Variant) qualify as positives
while all negatives share the anchor’s architecture (1.25.y.z;
Alpha Horseshoe) with different topology (y �=10). Self-hits
of the anchor were excluded. From the training proteins ful-
filling those constraints, one positive and one negative were
picked at random. If no triplets could be formed (e.g. � =
4 with a single-member homologous superfamily had no
positive for this anchor/� combination), � was changed at
random until a valid triplet could be formed (eventually, all
proteins found a class-level partner). This flexibility in sam-
pling enabled training on all proteins, independent of family
size.

Unlike randomly sampling negatives, the hierarchical
sampling could be described as semi-hard sampling as
it zoomed into triplets that were neither too easy (lit-
tle signal) nor too hard (outliers) to classify by ensur-
ing a minimal overlap between the anchor and the chosen
negative/positive pair. Thereby, trivial triplets are under-
sampled (avoided), i.e. those with 3D structures so differ-
ent that the separation becomes trivial (daylight zone). As
the final triplet selection was still random, anchor-positive
pairs could still be too easy/similar which was shown to hin-
der the success of contrastive learning (72). To solve this is-
sue, we paired hierarchy-sampling with so called batch-hard
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sampling (72) which offers a computationally efficient solu-
tion for sampling semi-hard triplets within one mini-batch.
More specifically, we combined batch-hard sampling with
the triplets created using hierarchy-sampling by re-wiring
all proteins, irrespective of anchor, positive or negative,
within one mini-batch such that they satisfied the hierarchy-
sampling criterion and had maximum/minimal Euclidean
distance for anchor-positive/anchor-negative pairs. Sam-
pling hard triplets only within each mini-batch instead of
across the entire data set avoided extreme outliers (poten-
tially too hard/noisy) while increasing the rate of semi-
hard anchor-positive/anchor-negative pairs. Assume mul-
tiple proteins of the topology Leucine-rich Repeat Vari-
ant were within one mini-batch, the hardest positive for
each anchor would be picked by choosing the anchor-
positive pair with the largest Euclidean distance. Accord-
ingly, anchor-negative pairs would be picked based on the
smallest Euclidean distance. For each mini-batch, this sam-
pling was applied to all four levels of the CATH-hierarchy,
so triplets were re-wired on all four CATH levels resulting
in a total batch-size of about: batch size * 3 * 4. This was
an ‘about’ instead of ‘equal’ because for some mini-batches,
not all proteins had valid triplets for all four levels.

Finally, the same two-layer FNN was used (hard param-
eter sharing) to project the 1024-d (or 1280-d/6165-d for
ESM-1b or ProSE respectively) embeddings of all proteins,
irrespective of anchor, positive or negative, to a new 128-
d vector space. The Soft Margin Loss was used to opti-
mize this new embedding space such that anchor-positive
pairs were pulled together (reduction of Euclidean distance)
while pushing apart anchor-negative pairs (increase of Eu-
clidean distance). The efficiency of combining the Soft Mar-
gin Loss with batch-hard sampling was established before
(72), although without prior hierarchical triplet sampling.
Here, we used Soft Margin Loss as implemented in Py-
Torch:

Loss (d, y) =
∑

t

log
(
1 + e(−y[t]∗d[t])

)
|d| (1)

d =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ min
n ∈ B ∧ a �= n
Ci (a) �= Ci (n)

D( f (a), f (n)) − max
n ∈ B p �= a

Ci (a) �= Ci (p)

D( f (a), f (p))

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (2)

∀ a ∈ {B} ∧ ∀ i ∈ 1, 2, 3, 4 ∧ ∀ Ci ∈ {C ATH labels}
B represents one mini-batch created through hierarchical

sampling, f(a), f(p) and f(n) represent the ProtTucker em-
beddings of proteins a (anchor), n (negative), and p (pos-
itive) represented as pLM embeddings; Ci represents the
CATH annotation of a protein on the i’th hierarchy level
of CATH; finally, D(f(a),f(x)) represents the Euclidean dis-
tance between the embeddings for proteins a and x. We cre-
ated the mini-batch B used for training by choosing for each
protein or anchor a in B the hardest negative n and the hard-
est positive p by picking those proteins in B that have the
smallest | largest Euclidean distance D to a ProtTucker em-
bedding space while not sharing | sharing Ci, respectively.
Those semi-hard triplets are indexed by t and d[t] refer-
ring to the difference between D of anchor-negative and D

of anchor-positive. In our case, the label for the t’th triplet
y[t] is always 1 as the sign of x indicates training success,
i.e. whether the distance anchor-positive is smaller than that
between anchor-negative.

Consequently, triplets of varying structural similarity
were used simultaneously to optimize a single, shared net-
work, i.e. all four CATH-levels were learned by the same
network at the same time (Figure 1A). We used the Adam
optimizer (73) with a learning rate of 0.001, and a batch-
size of 256 to optimize the network. The effective batch-
size increased due to batch-hard sampling to a maximum
of 3072, depending on the number of valid triplets that
could be formed within the current mini-batch. Train-
ing terminated (early stopping) at the highest accuracy
in predicting the correct homologous superfamily for set
val200.

Evaluation and prediction (inference)

While supervised training directly outputs class predictions,
contrastive learning, outputs a new embedding space. Thus,
predictions (inferences) were generated as for homology-
based inference (HBI), i.e. given protein X with experimen-
tal annotation (CATH assignment) and a query protein Q
without, then HBI transfers the annotation from X to Q if
sequence similarity SIM(X,Q)> threshold. For contrastive
learning, we replaced SIM(X,Q) by D(f(X),f(Q)) with D as
the shortest Euclidean distance in embedding space (Figure
1B). In previous studies (37,48,49), we found the Euclidean
distance performed better than the cosine distance which
is more common in AI/NLP. The Euclidean distance also
optimized the ProtTucker embeddings. Set test219 with the
lookup69k as lookup set (set of all X) served as final evalua-
tion. If no protein in the lookup set shared the annotation of
the query protein at a certain CATH-level (more likely for
H than for C), the sample was excluded from the evaluation
of this CATH-level as no correct prediction was possible
(Supplementary Table S1).

During evaluation, we compared the performance of our
embedding-based annotation transfer (EAT) to HBI us-
ing the sequence comparisons from MMSeqs2 (27). While
transferring only the HBI hit with the lowest E-value, we
searched for hits up to an E-value of 10 to ensure that most
proteins had at least one hit while using the highest sensi-
tivity setting (-s 7.5). Additionally, we used publicly avail-
able CATH-Gene3D (54) hidden Markov Models (HMMs)
along with HMMER (74) to detect remote homologs up to
an E-value of 10.

For both approaches, EAT and HBI, we computed the
accuracy as the fraction of correct hits for each CATH-level.
A hit at lower CATH-levels could be correct if and only if
all previous levels were correctly predicted. Due to varying
number of samples at different CATH-levels (Supplemen-
tary Table S1), performance measures not normalized by
background numbers could be higher for lower levels. Pre-
dictions were counted as incorrect if a query did not have a
hit in the lookup set but a lookup protein of the same CATH
annotation existed. This not only affected the number of
proteins available at different CATH-levels (Supplementary
Table S2) but also the number of classes (Supplementary Ta-
ble S3). A random baseline was computed by transferring
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annotations from a randomly picked protein in lookup69k
to test219.

Performance measures

The four coarse-grained classes at the top CATH level (‘C’)
are defined by their secondary structure content. These four
branch into 5481 different superfamilies with distinct struc-
tural and functional aspects (CATH v4.3.0). However, most
standard metrics are defined for binary cases which requires
some grouping of predictions into four cases: 1) TP (true
positives): correctly predicted to be in the positive class, 2)
TN (true negatives): correctly predicted to be in the nega-
tive class, 3) FP (false positives): incorrectly predicted to be
positives, and 4) FN (false negatives): incorrectly predicted
to be in in the negative class. Here, we focused on perfor-
mance measures applicable for multiclass problems and are
implemented in scikit (75). These were in particular: accu-
racy (Acc, Equation 3) as the fraction of correct predictions

Accuracy (y, ŷ) = 1
n samples

n samples−1∑
i = 0

1 ( ŷi = yi ) (3)

with yi being the ground truth (experimental annotation)
and ŷi the prediction for protein i . In analogy, we defined
coverage as the proportion of the test219 proteins for which
a classifier made a prediction at a given prediction reliability
ŷr

i and reliability threshold θ :

Coverage (y, ŷ) = 1
n samples

n samples−1∑
i = 0

1(ŷr
i lt; θ ) (4)

In these definitions accuracy corresponds to precision,
and coverage to recall binarizing a multiclass problem
through micro-averaging, i.e. by counting the total TPs, FPs
and FNs globally, irrespective of the class. The multi-class
extension of Matthew’s correlation coefficient (MCC, (31))
was defined as:

MCC = c × s − ∑K
k pk × tk√(

s2 − ∑K
k p2

k

)
×

(
s2 − ∑K

k t2
k

) (5)

with tk =
K∑
i

Cik as the number of times class k truly oc-

curred, pk =
K∑
i

Cki as the number of times class k was pre-

dicted, c =
K∑
k

Ckk, the total number of samples correctly

predicted, and s =
K∑
i

K∑
j

Ci j , the total number of samples.

95% confidence intervals for accuracy and MCC were es-
timated over n = 1000 bootstrap sets; for each bootstrap
set we randomly sampled predictions from the original test
set with replacement. Standard deviation (or in the case of
bootstrapping: bootstrap standard error) was calculated as
the difference of each test set (xi ) from the average perfor-
mance 〈X〉 (Equation 6). 95% confidence intervals were esti-

mated by multiplying the bootstrap standard error by 1.96.

StdDev =
√

xi − 〈X〉2

n
(6)

RESULTS

Generalization of HBI to EAT

Homology-based inference (HBI) uses sequence similarity
to transfer annotations from experimentally characterized
(labelled) to uncharacterized (unlabeled) proteins. More
specifically, an unlabeled query protein Q is aligned against
a set of proteins X with experimental annotations (dubbed
lookup set) and the annotation of the best hit, e.g. mea-
sured as lowest E-value, is transferred if it is below a certain
threshold (e.g. E-value(Q,X)<10–3). This relates to infer-
ring the annotation of a query protein from the k-Nearest
Neighbors (k-NN) in sequence space. More recently, simi-
lar approaches expanded from distance in sequence to dis-
tance in embedding space (Figure 1B) as means for k-NN
based annotation transfer (48,50). Here, we refer to such
methods as embedding- based annotation transfer (EAT).
We used EAT as a proxy for the comparison of embed-
dings from five different pLMs: ProSE-DLM & ProSE-MT
(44), ProtBERT & ProtT5 (37), and ESM-1b (38). Next, we
used triplets of proteins (anchor, positive, negative) to learn
a new embedding space by pulling protein pairs from the
same CATH class (anchor-positive) closer together while
pushing apart pairs from different CATH classes (anchor-
negative; Figure 1A). We referred to this method as Prot-
Tucker. At this stage, we did not fine-tune the pre-trained
pLMs. Instead, we created a new embedding space using a
two-layer feed-forward neural network (FNN).

EAT with raw embeddings level with HBI

First, we transferred annotations from all proteins in
lookup69k to any protein in test219. All pLMs significantly
(at 95% CI––confidence interval) outperformed random an-
notation transfer (Table 1). Performance differed between
pLMs (Table 1), with ProtBERT (37) being consistently
worse than LSTM-based ProSE-DLM or more advanced
transformers (ESM-1b, ProtT5). ESM-1b and ProtT5 also
numerically outperformed ProSE-DLM and HBI using
MMseqs2 (27), especially on the most fine-grained and thus
hardest level of superfamilies. However, MMseqs2 had been
used for redundancy-reduction, i.e. the data set had been
optimized for minimal performance of MMseqs2. HBI us-
ing publicly available HMM-profiles from CATH-Gene3D
(54) along with the profile-based advanced HMMER (74)
designed for more remote homology detection, outper-
formed all raw embeddings for homologous superfamilies,
while embeddings from ESM-1b and ProtT5 appeared su-
perior on the class- and architecture-level (Table 1). In fact,
all HBI values, for MMseqs2 and HMMER, were high-
est for the H-level, and second highest for the C-level. In
contrast, raw pLM embeddings mirrored the random base-
line trend, with numbers being inversely proportional to the
rank in C, A, T, H (highest for C, lowest for H, Table 1).
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Table 1. Accuracy for annotation transfer to queries in test219 *

Method/Input C A T H Mean

Baseline Random 29 ± 6 9 ± 4 1 ± 2 0 ± 0 10 ± 3

HBI MMSeqs2 (sequence) 52 ± 7 36 ± 6 29 ± 6 35 ± 6 38 ± 6
HMMER (profile) 70 ± 6 60 ± 6 59 ± 7 77 ± 7 67 ± 6

EAT - unsupervised ProSE-DLM 74 ± 6 48 ± 7 28 ± 6 25 ± 7 44 ± 6
ESM-1b 79 ± 5 61 ± 6 50 ± 7 57 ± 8 62 ± 7
ProtBERT 67 ± 6 38 ± 6 22 ± 6 18 ± 6 36 ± 6
ProtT5 84 ± 5 67 ± 6 57 ± 6 64 ± 8 68 ± 6

EAT - supervised ProSE-MT 82 ± 5 65 ± 6 52 ± 7 56 ± 8 64 ± 7

EAT - contrastive ProSE-DLM 78 ± 4 53 ± 6 32 ± 6 29 ± 7 48 ± 6
learning––ProtTucker ProSE-MT 87 ± 4 68 ± 6 53 ± 7 55 ± 8 66 ± 6

ESM-1b 87 ± 4 68 ± 6 59 ± 7 70 ± 7 71 ± 6
ProtBERT 81 ± 5 52 ± 7 37 ± 6 39 ± 8 52 ± 7
ProtT5 89 ± 4 75 ± 6 64 ± 6 76 ± 6 76 ± 6
ProtT5 (train11M) 88 ± 4 77 ± 5 68 ± 5 79 ± 7 78 ± 6

*Accuracy (Equation 3) for predicting CATH (54,1) levels (C, A, T, H) by transferring annotations from Lookup69k (lookup set) to test219 (queries);
shown for each of the four levels from the most coarse-grained level class C to the most fine-grained level of homology H. The column Mean marked the
simple arithmetic average over the four performance values. Queries with at least one lookup protein of the same CATH classification but without any hit
at E-value < 10 for MMSeqs/HMMER were counted as incorrect predictions. Errors indicate bootstrapped 95% confidence intervals, i.e. 1.96 bootstrap
standard errors (Equation 6). Queries with at least one lookup protein of the same CATH annotation but without any hit (no hit with E-value < 10 for
MMSeqs/HMMER; irrelevant for EAT) were counted as wrong predictions. Bold letters mark the numerically highest values (averages over all test219
proteins) in each column irrespective of the confidence interval.
Methods: Baseline: Random transferred the label of a randomly picked protein; HBI: MMSeqs2 (27) used single sequence search to transfer the annotation
of the hit with the lowest E-value; HBI: HMMER used HMM-profiles (74); EAT-unsupervised: embedding-based transfer of annotations using the small-
est Euclidean distance measured in embedding space of unsupervised pLMs ProSE-DLM, ESM-1b (38), ProtBERT and ProtT5 (37); EAT-supervised:
annotation transfer using ProSE-MT trained on structural data in SCOPe; EAT: contrastive learning ProtTucker: contrastive learning trained on CATH
classifications in train66k using as input embeddings from ProSE-DLM, ProSE-MT, ESM-1b, ProtBERT and ProtT5; ProtTucker-ProtT5 (train11M)
trained on additional data from Gene3D (train11M).

EAT improved through supervised embeddings

ProSE-MT expands ProSE-DLM by additionally training
on intra-residue contacts and structural similarity using la-
beled data from SCOPe (44). This additional effort was re-
flected by the higher performance for all CATH levels (Table
1, ProSE-MT > ProSE-DLM). The supervision pushed the
LSTM-based ProSE-MT to reach performance levels close
to the unsupervised, raw embeddings from transformer-
based ProtT5. The performance gap increased with classi-
fication difficulty (Table 1, ProtT5 > ProSE-MT, especially
at the H-level).

EAT improved by contrastively learning embeddings

Contrastive learning tries to bring members from the same
class/CATH-level closer while pushing those from differ-
ent classes further apart. One success is the degree to
which these two distributions (same versus different) were
separated through training: the distribution of all pair-
wise Euclidean distances within (intra/same) and between
(inter/different) superfamilies in train66k changed substan-
tially through contrastive learning (Figure 2). Before ap-
plying contrastive learning, the distributions between (inter,
Figure 2: red) and within (intra, Figure 2: blue) overlapped
much more than after.

Displaying the information learned by the embeddings,
we compared t-SNE projections colored by the four main
CATH classes before (Figure 3A) and after (Figure 3C) con-
trastive learning. These two projections compared 1024 di-
mensions from ProtT5 (Figure 3A) with 128 dimensions

from ProtTucker (Figure 3C). To rule out visual effects
from higher dimensionality, we also compared the un-
trained, randomly initialized version of ProtTucker using
pre-trained ProtT5 embeddings as input (Figure 3B). For
all cases, the data set (train66k) and the parameters for di-
mensionality reduction were identical. T-SNE projections
of raw ProtT5 embeddings qualitatively suggested some
class separation (clustering). The information underlying
this separation was preserved when projecting ProtT5 em-
beddings through an untrained ProtTucker (Figure 3B).
Embeddings from ProtTucker(ProtT5), i.e. those resulting
through contrastive learning, separated the classes much
more clearly.

To further probe the extent to which contrastive learn-
ing captured remote homologs, we compared the Eu-
clidean distance between all protein pairs in a 30% non-
redundant dataset (CATH-S30) with the structural simi-
larity of those pairs computed via SSAP (65,66) (Figure
4). From the ∼10M possible pairs between the 3,186 pro-
teins in CATH-S30 (problem not fully symmetric, there-
fore N*(N - 1): 10.1M), 7.1M had to be discarded due
to low quality (SSAP-score < 50), leaving 2.9M pairs of
which only 1.8% (53k pairs) had the same homologous su-
perfamily (Figure 4: blue). Despite this imbalance, unsu-
pervised ProtT5 (Figure 4A) already to some extent sep-
arated the same from different superfamilies. Still, Prot-
Tucker(ProtT5) improved this separation, especially, for
pairs with low structural similarity (Figure 4B). This was
supported by the Spearman correlation coefficient between
the structural similarity and the Euclidean distance in-
creasing from 0.05 to 0.22 after contrastive learning. When
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Figure 2. Contrastive learning separated positives from negatives. The structural similarity defined by increasing overlap in CATH drove the contrastive
learning of a new embedding space. The new embeddings distanced protein pairs with different CATH classifications (red; same topology but different
superfamily) while focusing pairs with the same CATH classification (blue; same superfamily). These graphs compared the Euclidean distance for all such
pairs from the set train66k before (Panel A) and after (Panel B) contrastive training. Input to the FNN were the raw embeddings from ProtT5 (37), output
were the new ProtTucker(ProtT5) embeddings. The dashed line at Euclidean distance of 1.1 in B marked the threshold at which EAT performances started
to decrease (Figure 5).

considering only the subset of pairs that likely have sim-
ilar folds (SSAP-score > 70), this correlation increased
to 0.26 and 0.37 for ProtT5 and ProtTucker(ProtT5),
respectively.

The trend captured by the better separation of distri-
butions (Figure 2) and structural features (Figures 3 and
4) translated directly into performance increases: all em-
beddings optimized on the CATH hierarchy through con-
trastive learning yielded better EAT classifications than
the raw embeddings from pre-trained pLMs (Table 1).
As ProtTucker described the process of refining raw em-
beddings through contrastive learning, we used the an-
notation ProtTucker(X)––in this section also shortened to
PT(X)––to refer to the embeddings output by inputting the
pre-trained pLM X into the contrastive learning. The im-
provements were larger for more fine-grained CATH lev-
els: all models improved significantly for the H-level, while
only PT(ProtBERT) and PT(ESM-1b) improved from 4 to
14 or from 0 to 21 percentage points for the C-, and the H-
level, respectively. PT(ProtT5) consistently outperformed
all other pLMs on all four CATH-levels, with an increas-
ing performance gap toward the more fine-grained H-level
at which all pLMs except for PT(ESM-1b) performed sig-
nificantly worse. The improvements from contrastive learn-
ing for PT(ProSE-DLM) and PT(ProSE-MT) were mostly
consistent but largely insignificant. Especially, the model al-
ready optimized using labeled data (ProSE-MT) hardly im-
proved through another round of supervision by contrastive
learning and even worsened slightly at the H-level.

We augmented the training set for PT(ProtT5) by adding
HBI-hits from HMM-profiles provided by CATH-Gene3D
(if sequence dissimilar to test300/val200). This increased
the training set from 66k (66 × 103) to 11m (11 × 106) pro-

teins (15-fold increase) and raised performance, although
the higher values were neither statistically significant nor
consistent (Table 1: values in last row not always higher than
those in second to last row).

Ablation study

We studied the effect of batch-hard and hierarchical sam-
pling on performance by removing each component when
training PT(ProtT5) (Table 2). Benchmarking on EAT
from lookup69k to test219 established that removing ei-
ther component lowered performance for all CATH lev-
els. Dropping both sampling methods substantially low-
ered performance. While dropping batch-hard sampling still
reached high performance for the coarse-grained C- and A-
level, dropping hierarchy-sampling dropped performance
for both. Dropping both sampling technique, performed
worse for all CATH levels but the decrease for the more
fine-grained superfamily level was much larger than for the
C-level.

Embedding distance correlated with accuracy

The MCC, (Equation 5) of HBI inversely correlated with E-
value (Figure 6, HBI-methods): more significant hits (lower
E-values) more often shared the same CATH level than less
significant hits (higher E-values). In analogy, we explored
the corresponding relation for EAT, namely the correlation
between accuracy (Equation 3) and embedding distance for
ProtTucker(ProtT5). Indeed, accuracy correlated with em-
bedding distance (Figure 5: solid lines) while recall inversely
correlated (Figure 5: dashed lines) for all four classes. For in-
stance, when transferring only annotations for closest hits
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Table 2. Ablation study*

C A T H Mean

Baseline 89 ± 4 75 ± 6 64 ± 6 76 ± 6 76 ± 6
-batch-hard 88 ± 4 73 ± 6 62 ± 7 69 ± 7 73 ± 6
-hierarchy 83 ± 5 69 ± 6 62 ± 7 71 ± 7 71 ± 6
-both 83 ± 5 63 ± 6 51 ± 7 57 ± 8 64 ± 7

*Accuracy (Equation 3) and 95% CI (Equation 6) for predicting CATH-levels (54,1) through EAT from Lookup69k (lookup set) to test219 (queries). We
investigate the effect on performance when dropping either batch-hard sampling, hierarchy-sampling or both from the Baseline model (ProtTucker(ProtT5)).

Figure 3. Better CATH class-level clustering. Using t-SNE (86), we pro-
jected the high-dimensional ProtTucker(ProtT5) embedding space onto
2D before (Panel A; ProtT5) and after (Panel C; ProtTucker(ProtT5)) con-
trastive learning. Panel B visualized the same data embedded with an un-
trained version of ProtTucker to assess the impact of different embedding
dimensions (1024-d for ProtT5 versus 128-d for ProtTucker(ProtT5)). For
all plots, dimensionality was first reduced by Principal Component Analy-
sis (PCA) to 50 dimensions and parameters of the subsequent t-SNE were
identical (perplexity = 150, learning rate = 400, n iter = 1000, seed = 42).
The colors mark the major class level of CATH (C), distinguishing proteins
according to their major distinction in secondary structure content.

with Euclidean distances of 1.1 or less, predictions were
made for 57%, 57%, 59% or 75% of the test set (coverage,
Equation 4) of these 96%, 93%, 91% or 90% were correct
for levels C, A, T, H, respectively.

ProtTucker reached into the midnight zone

Annotation transfer by HBI crucially depends on the se-
quence similarity between query (unknown annotation)
and template (experimental annotation). Usually, the sig-
nificance of an inference is measured as the chance of find-
ing a hit at random for a given database size (E-value; the
lower the better). Here, we compared the effect of gradually
removing hits depending on their E-values. Essentially, this
approach measured how sensitive performance was to the
degree of redundancy reduction between query and lookup
set. For instance, at a value of 10–3 (dashed vertical lines in
Figure 6), all pairs with E-values ≤10–3 were removed. HBI
based on sequence alone performed much better with than
without residual redundancy (Figure 6). The trend was sim-
ilar for EAT, but much less pronounced: EAT succeeded for
pairs with very different sequences (Figure 6 toward right)
almost as well as for proteins with more sequence similar
matches in the set (Figure 6 toward left: EAT almost as high
as toward right).

ProtTucker not a generalist

We evaluated the generality of ProtTucker embeddings by
(mis)-using them as exclusive input to predict subcellular
location in ten states. To this end, we EAT transferred
annotations from an established data set (Supplementary
Table S5) to a strictly non-redundant test set (setHard,
Supplementary Table S5). ProtTucker(ProtT5) embeddings
outperformed the raw ProtT5 embeddings in the CATH
classification for which they were optimized (structural
similarity; Table 1), there appeared no performance gain
in predicting location. Conversely, performance also did
not decrease significantly, indicating that the new embed-
dings retained some of the information available in ProtT5
embeddings.

Family size mattered

By clustering very large protein families (>100 members af-
ter redundancy reduction) at 95% PIDE, we constrained
the redundancy in set train66k. Nevertheless, when split-
ting test219 into three bins of varying family sizes, we still
observed a trend towards higher accuracy (Equation 3) for
larger families at the H-level (Supplementary Figure S1).
We chose the three bins such that they contained about
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Figure 4. ProtTucker captured fine-grained structural similarity. 3186 non-redundant proteins (CATH-S30) probed the remote homology detection of
embeddings before (Panel A) and after contrastive learning (Panel B). The Euclidean distance between ProtTucker embeddings (Panel B) correlated better
with structural similarity computed by SSAP (65,66) than unsupervised embeddings (Panel A): Spearman � = 0.22 and � = 0.05 (black dashed lines). This
correlation increased to � = 0.37 and � = 0.26 for structurally more similar protein pairs (SSAP-score > 70). Only 1.8% (53k) of all structurally similar
pairs were in the same homologous superfamily (blue). The unsupervised ProtT5 already separated homologous pairs from others, but ProtTucker(ProtT5)
improved, especially, for hard cases with low structural similarity. The gray dashed line at Euclidean distance = 1.1 in Panel B marked the threshold at
which EAT performances started to decrease (Figure 5).

Figure 5. Embedding distance correlated with reliability. Similar to vary-
ing E-value cut-offs for HBI, we examined whether the fraction of correct
predictions (accuracy; left axis; Equation 3) depended on embedding dis-
tance (x-axis) for EAT. This was shown by transferring annotations for all
four CATH levels (Class: blue; Architecture: orange; Topology: green; Ho-
mologous superfamily: red) from lookup69k to the queries in set test219
(Panel B in Figure 1) using the hit with lowest Euclidean distance. The
fraction of test219 proteins having a hit below a certain distance threshold
(coverage, right axis, dashed lines; Equation 4) was evaluated separately
for each CATH level. For example, at an Euclidean distance of 1.1 (ver-
tical dotted line), 75% of the proteins found a hit at the H-level (Cov(H)
= 75%) and 90% were correctly predicted (Acc(H) = 90%; SOM Tables
S3 and S4 for more details). Thus, decreasing embedding distance corre-
lated with EAT performance. This correlation enables users to select only
the, e.g. 10% top hits, or as many hits to a certain CATH level as possible,
depending on the objectives.

the same number of samples (small families: ≤10 members,
medium: 11–70, and large: ≥70 members). Especially, un-
supervised EAT using the raw ProtT5 embeddings exhib-

ited a clear trend towards higher accuracy with increas-
ing family size. In contrast, the two HBI-methods (MM-
seqs2, HMMER), as well as EAT using the optimized Prot-
Tucker(ProtT5) embeddings performed similarly for small
and medium-sized families and much better for large fami-
lies.

EAT complements HBI

As previously shown (49), ProtTucker can improve clus-
tering functional families (76). Here, we showed how EAT
can be used to detect outliers. Firstly, we computed pair-
wise Euclidean distances between the embeddings of all
protein pairs in set train66k and analyzed the five pairs
(10 proteins) with the highest Euclidean distance in the
same homologous superfamily (Supplementary Table S6).
High distance within the same homologous superfamily in-
dicates potentially wrong annotations. Secondly, we com-
puted the nearest neighbors of those ten proteins to find
an alternative, potentially more suitable annotation. For
instance, the proteins in the Phosphorylase Kinase super-
family with the largest embedding distance (4pdyA01, bac-
terial aminoglycoside phosphotrans-ferase) to any other
protein within this family (3skjF00, human Galactose-
binding domain-like (77)) linked to different UniProt en-
tries (C8WS74 ALIAD and EPHA2 HUMAN). In con-
trast, the nearest neighbor (3heiA00, human phosphorylase
kinase (78)) of 3skjF00 linked to the same UniProt entry
(EPHA2 HUMAN (68)) with the same enzymatic activity
(EC number 2.7.10.1 (79)). Such analyses may indicate im-
pure homologous superfamilies along with suggesting al-
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Figure 6. Performance decreasing with lower residual sequence similarity. We analyzed the change of performance in MCC (Equation 3) through removing
proteins from lookup69k based on their E-value with respect to test219 for two HBI-based (green: HMMER (74); red: MMSeqs2 (27)) and two EAT-based
methods (orange: raw ProtT5 (37); blue: contrastive learning optimized ProtTucker(ProtT5)). The E-values were derived by searching sequences in test219
against lookup69k using (i) HMM-profiles from CATH-Gene3D (54) through HMMer and (ii) MMSeqs2 sequence search with highest sensitivity (-s 7.5,
-cov 0). ‘None’ referred to the performance without applying any threshold, i.e. all proteins in lookup69k were used for annotation transfer; all other
thresholds referred to removing proteins below this E-value from lookup69k. Predictions were considered as false positives when no hit was found; pairs
without CATH class matches were ignored. While the performance of EAT using raw ProtT5 and refined ProtTucker(ProtT5) embeddings decreased upon
removing sequence similar pairs (toward right), HBI-based methods dropped significantly more. The default threshold for most sequence searches (E-value
< 1e–3) was highlighted by vertical, gray, dashed lines.

ternative labels to be confirmed or rejected through manual
curation.

EAT predicts entire proteomes in minutes

Training ProtTucker(ProtT5) required generating ProtT5
embeddings for train66k. This took 23m and 11m, respec-
tively. Embeddings were generated using ProtT5 in half-
precision with batch processing. All times were measured
on a single Nvidia RTX A6000 with 48GB of vRAM and
an AMD EPYC ROME 7352.

When predicting for new queries, ProtTucker requires la-
beled lookup proteins from which annotations can be trans-
ferred to unlabeled query proteins. Embeddings for this
lookup set are pre-computed for the first query and can be
re-used for all subsequent queries at any future time. The
time required to labeled lookup proteins from which an-
notations can be transferred to unlabeled query proteins.
Embeddings for this lookup set are pre-computed for the
first query and can be re-used for all subsequent queries at
any future time. The time required to generate ProtTucker
embeddings from the embeddings of pLMs was negligi-
ble as its generation required only a single forward pass
through a two-layer FNN. This implied that the total time
for EAT with ProtTucker was largely determined by the
embedding generation speed. For instance, creating per-
protein embeddings from ProtT5 for the 123k proteins in
CATH-S100 required 23 min (m). The total time for creat-

Table 3. Runtime*

Methods Pre-processing (s) Inference (s)

MMSeqs2 (sequence) 0.2 × 103 2.5 × 10–2

HMMER (HMM) 114 × 103 150 × 10–2

ProtTucker(ProtT5) 1.4 × 103 1.4 × 10–2

* Runtime to transfer annotations from CATH-S100 (123k proteins) to a
single query. All times measured in seconds [s] on a single Nvidia RTX
A6000 with 48GB of vRAM and an AMD EPYC ROME. Methods:
two HBI-based methods (MMSeqs2 and HMMER) and one EAT-based
method (ProtTucker(ProtT5)). Pre-processing: measured the time required
for building datasets (indexed database for MMSeqs2; MSA for jackham-
mer plus HMM profiles (HMMER) or ProtT5 embeddings (ProtTucker);
Inference: the time for each new protein with a transfer.

ing ProtTucker(ProtT5) embeddings from ProtT5 embed-
dings for the same set on the same machine was 0.5 seconds
(s), i.e. ProtTucker added about 0.3%. Creating HMM pro-
files for the same set using either MSAs from MMSeqs2 (–
num-iterations 3, -s 7.5) or jackhmmer took 15 m or 30 h,
respectively (Table 3).

To predict using EAT, users have to embed only single
query proteins requiring, on average, 0.01 s per protein for
the CATH-S100 set. Using either single protein sequence
search (MMSeqs2), pre-computed HMM profiles (HM-
MER) or pre-computed embeddings (ProtTucker) to trans-
fer annotations from CATH-S100 to a single query protein
took on average 0.025, 1.5 or 0.0008 s, respectively. Proteins
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in the PDB and CATH are, on average, roughly half as long
(173 residues) as those from UniProt (343 residues). This is
relevant for runtime, because embedding generation scales
quadratically with sequence length (Figure 13 in SOM of
(37)).

This increase was also reflected for the proteome-wide
annotation transfer (Table 4), although these values in-
cluded computations required for all aspects of EAT (1:
load ProtT5 embeddings for pre-computed CATH-S100
lookup set; 2: load ProtT5 and embedding for query pro-
teome; 3: generate ProtTucker(ProtT5) embeddings for
queries and lookup; 4: compute pairwise Euclidean dis-
tances between query/lookup). We compared EAT using
ProtTucker(ProtT5) embeddings to HBI proxied by exist-
ing Gene3D annotations taken from UniProt for three dif-
ferent proteomes (Table 4). At an expected error rate of
5% (Euclidean distance ≤ 0.9, Supplementary Table S3),
EAT predicted substantially more proteins than Gene3D
at HMMER E-value < 10–3. For the subset of proteins for
which both methods transferred annotations, those largely
agreed (Agreement, Table 4; Supplementary Table S7 for
other thresholds). All values for coverage decreased for
multi-domain proteins, as proxied by ‘multiple Gene3D an-
notations’, while the agreement between Gene3D and Prot-
Tucker(ProtT5) increased for two of three proteomes (Table
4: multi).

DISCUSSION

Prototype for representation learning of hierarchies

We have presented a new solution for combining the infor-
mation implicitly contained in the embeddings from pro-
tein Language Models (pLMs) and contrastive learning to
learn directly from hierarchically sorted data. As proof-
of-concept, we applied the concept to the CATH hierar-
chy of protein structures (54,1,6,80). Hierarchies are diffi-
cult to handle by traditional supervised learning solutions.
One shortcut is to learn each level in the hierarchy indepen-
dently (81–83) at the price of having less information for
other levels and of not explicitly benefiting from the hierar-
chy. Instead, our solution of contrastively learning protein
triplets (anchor, positive, negative) to extract a new embed-
ding space by condensing positives and moving negatives
apart benefits from CATH’s hierarchical structure. Simul-
taneously training a single, shared feed-forward neural net-
work (FNN) on triplets from all four CATH classification
levels allowed the network to directly capture the hierar-
chy. Encoding protein sequences through previously trained
pLMs enabled ready information transfer from large but
unlabeled sequence databases such as BFD (69) to 10,000-
times smaller but experimentally annotated (labeled) pro-
teins of known 3D structure classified by CATH. In turn,
this allowed us to readily leverage aspects of protein struc-
ture captured by pLMs that are informative enough to pre-
dict structure from embeddings alone (52). Although the
raw, pre-trained, unoptimized embeddings captured some
aspects of the classification (Figures 2A–4A, Table 1), con-
trastive learning boosted this signal significantly (Figures
2B–4B, Table 1).

Crucial for this success was the novel combination of
hierarchy- and batch-hard sampling (Table 2). Presum-

ably, because those techniques enforce so-called semi-hard
triplets that are neither too simple nor too hard to learn
(72). This training setup learned different classifications
for the same protein pair, depending on the third protein
forming the triplet, thereby forcing the network to learn
the complex hierarchy. The ambivalence in the notion of
positive/negative pair facilitated training by allowing to in-
clude superfamilies with few members (otherwise to be
skipped) and it increased the number of possible triplets
manifold compared to only sampling on the level of super-
families. These advantages might partially explain the syn-
ergy of both sampling techniques (Table 2).

Raw embedding EAT matched profile alignments in hit detec-
tion

In technical analogy to homology-based inference (HBI),
we used embedding based annotation transfer (EAT, Fig-
ure 1B) to transfer annotations from labeled lookup pro-
teins (proteins with a known CATH classification) to unla-
beled query proteins (any protein of known sequence with-
out known structure). Instead of transferring annotations
from the closest hit in sequence space, EAT transferred an-
notations to the hit with smallest Euclidean distance in em-
bedding space. This relatively simple approach was shown
previously to predict protein function as defined by Gene
Ontology (GO) better than hand-crafted features (50) even
to levels competitive to much more complex approaches
(48).

The concept of EAT was so successful that raw em-
beddings from two different pre-trained pLMs (ESM-1b
(38), and ProtT5 (37)) already set the bar high for pre-
dicting CATH levels. The raw, general-purpose ESM-1b
and ProtT5 outperformed HBI based on advanced HMM-
profiles from HMMER (74) on the C- and A-level while
falling short on the H-level (Table 1). Furthermore, we
showed that ProtT5 already separated protein pairs with
the same from those with different homologous superfam-
ilies even when using a lookup set that consisted only of
proteins with maximally 30% pairwise sequence identity
(Figure 4A). Importantly, this competitive performance was
achieved at a much smaller cost in terms of runtime (Tables
3 and 4).

As the lookup embeddings or HMM profiles are com-
puted only once, we neglected this additional step. Such
preparations cost much more than single queries: pre-
computing HMM profiles using MMseqs2 took 15m, pre-
computing embeddings about 23m (Table 3) using the same
set and machine but utilizing CPUs in one (MMseqs2) and
GPUs in the other (ProtT5). Only MMSeqs2 generated
and indexed its database rapidly (19.5 s). However, pre-
processing is required only once, rapidly amortizing when
running many queries. The ability to pre-compute such
representations is also a crucial difference between Prot-
Tucker and other learned methods (44,59). For pairwise
protein comparisons, those methods typically require N
comparisons/forward-passes to search with a single query
against N proteins. Instead, ProtTucker only needs a single
forward pass to embed the new query; subsequent similarity
scoring simply and quickly computes an Euclidean distance.
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Table 4. CATH predictions for three model proteomes*

Proteome Size Gene3D ProtTucker(ProtT5)@0.9 Agreement Gene3D-multi
Agreement-
multi

Inference time
[s]

E. Coli (K12) 2033 59% (1193) 97% (1982) 81% (963) 23% (275) 86% (235) 113 (0.06)
A. Ostoyae 22 192 31% (6902) 79% (17 416) 75% (4707) 18% (1223) 65% (684) 1384 (0.06)
M. Chiliensis 1120 35% (392) 87% (974) 84% (320) 10% (40) 73% (29) 95 (0.09)

* Comparison of the annotation-transfer from 123k CATH-S100 proteins (5,54) through HBI (Gene3D (64)) and through EAT as introduced here (Prot-
Tucker(ProtT5), or PT(ProtT5)) for three entire reference proteomes: Escherichia coli (E. coli), Armillaria ostoyae (A. ostoyae) and Megavirus chilensis (M.
chilensis). In other words, all proteins in the three organisms were mapped to proteins of known structure using the CATH hierarchy. Gene3D predictions
were taken from UniProt; PT(ProtT5) predictions were derived from the single nearest neighbor in Euclidean space. Coverage-related numbers refer to
the percentage of proteins in the entire proteome (Size; in brackets: actual number of proteins), while those pertaining to the agreement are percentages
of the set with annotations. Size: number of proteins; Gene3D: fraction of proteins with Gene3D annotation (coverage); PT(ProT5)@0.9: coverage of
PT(ProtT5) at Euclidean distance < = 0.9 (5% error rate; Supplementary Table S3); Agreement: fraction of proteins for which Gene3D and PT(ProT5)
had a prediction and reported the same homologous CATH superfamily (for multi-domain proteins with multiple Gene3D annotations, matching any
domain by PT(ProtT5) was considered as correct); Gene3D Multi: fraction of Gene3D proteins with multi-domain annotation; Agreement Multi: fraction
of multi-domain proteins for which the homologous CATH superfamily predicted by PT5 agreed with one of the Gene3D domain annotations; Inference
time: the total time needed for proteome-wide embedding-based annotation transfer (EAT) measured in seconds [s] on a single Nvidia RTX A6000 with
48GB of vRAM and an AMD EPYC ROME (in brackets the average time per protein).

This makes ProtTucker search speed scale well with
database growth suggesting the tool as a fast but sensitive
pre-filter for other methods that in turn provide residue-
level information as showcased on three model organ-
isms (Table 4), including one of the largest organisms on
earth (fungus A. ostoyae, 22 192 proteins) and one of the
largest viruses (M. chilensis, 1120 proteins). In <27 min
on a single machine (Table 4), ProtTucker transferred sub-
stantially more CATH annotations mapping proteins from
their sequence to 3D structures through the CATH re-
source than Gene3D (64) at a similar level of expected error
(Table 4).

For the virus and the bacterium (E. coli) the annotations
agreed to over 80% with Gene3D, while this value dropped
to 75% for the fungus (Table 4). Although high, the agree-
ment was lower than expected: if ProtTucker and Gene3D
each had fewer than 5% errors, then both should agree for
over 90% of the proteins for which both transfer annota-
tions. Most likely, this discrepancy (�(90-77)) arose par-
tially from multi-domain proteins. Despite carefully cross-
validating ProtTucker, an alternative explanation for the
discrepancy is underestima-ting the expected error a dis-
tances ≤0.9 as 5% instead of up to 15%. The ‘functional
shape’ of the agreement between ProtTucker and Gene3D at
different distance thresholds (Supplementary Table S7) sug-
gested that the ‘errors’ (lack of agreement) did not only orig-
inate from ProtTucker. Carefully annotating the five pro-
teins with the lowest distance and a different CATH anno-
tation (Supplementary Table S4) supported this perspective.

The agreement for multi-domain proteins dropped less
than expected (11 percentage points drop for M. Chilensis, 5
percentage points increase for E. coli), possibly suggesting
that ProtTucker using averages over an entire protein for
comparison did not trip substantially more over the multi-
domain challenge than the local alignment-based Gene3D
using HMMER (74). This might suggest ProtTucker to have
added correct annotations over Gene3D in multi-domain
proteins, although developed exclusively on single domain
proteins. The substantial increase in coverage from the level
expected at distances ≥0.9 (Figure 5, Supplementary Table
S4) for the proteomes (Table 4) might be misleading: to es-
tablish performance coverage (Figure 5, Supplementary Ta-

ble S4), we used a highly non-redundant lookup set, pre-
sumably removing many easy hits. In contrast, analyzing
proteomes, we transferred annotations for all CATH-S100
proteins, leveraging ‘redundant annotation transfers’ to in-
crease coverage.

As for HBI, the accuracy of EAT also increased for larger
families (Supplementary Figure S1). One explanation is that
the larger the family, the higher the random hit rate, simply
because there are more possible hits. Another, more sub-
tle (and given the enormous compute time needed to train
ProtT5, more difficult to test) explanation is that the largest
CATH families represent most of the largest protein fami-
lies (54). In fact, a few hundred of the largest superfamilies
cover half of the entire sequence space (54,84). Simply due
to their immense size, these large families have been sam-
pled more during the pre-training of ProtT5.

ProtTucker embeddings intruded into midnight zone

The embedding space resulting from contrastive learning,
introduced here, improved performance consistently for all
four pLMs (Table 1). This was revealed through several
ways of looking at the results from embeddings with and
without contrastive learning: (i) the increased separation of
protein pairs within the same protein superfamily and be-
tween different superfamilies (Figure 2), (ii) the qualitative
improvement in the clustering of t-SNE projections (Fig-
ure 3), the better correlation of embedding distance and
structural similarity (Figure 4) and (iii) the quantitative im-
provement in the EAT benchmark (Table 1). On top, the
Euclidean distance correlated with accuracy (Figure 5, Sup-
plementary Table S3). Similar to an E-value in HBI, this lets
users gauge the reliability of a hit between query and anno-
tated protein.

While the accuracy of the best performing pLM (Prot-
Tucker(ProtT5)) was similar to HBI using HMM-profiles
on the most fine-grained level of homologous superfam-
ilies (CATH level H, Table 1), the relative advantage of
EAT increased, the more diverged the level of inference,
i.e. EAT outperformed HBI for more distant relations from
the midnight zone (CATH level C, Table 1). When further
reducing data redundancy, i.e. removing more similar se-
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quences, this trend became clearer (Figure 6). Despite in-
creasing difficulty, the performance of EAT decreased al-
most insignificantly where HBI approached random for in-
significant E-values. This trend was supported by the cor-
relation of structural similarity as defined by SSAP (65,66)
and the Euclidean distance between protein pairs in a 30%
non-redundant data set (Figure 4).

ProtTucker and tools such as HMMer have very different
resolution: ProtTucker considers only per-protein averages
to match query to template. In contrast, HMMer – or simi-
lar methods – align each residue between both proteins. The
coarse-grain yields the speedup (Table 4), and pitches Prot-
Tucker as a fast pre-filter. Once the hit is found by scan-
ning large data sets, the slower, fine-grained methods for
per-residue alignments and 3D prediction can be employed.
However, the per-protein average also implies limitations,
e.g. when Q and T have very different numbers of domains
or the number of domains for Q is not known (Table 3).

Ultimately, the coarse-grained ProtTucker can compete
at all because embeddings intrinsically abstract the con-
straints under which protein sequences evolve, including
constraints upon structure, function, and the environment.
The same constraints coin the evolutionary information
contained in profiles of protein families. Apparently, pLMs
such as ESM-1b (38), ProtBERT (70), or ProtT5 (70) are
successfully condense these constraints. In fact, pLMs are
arguably more successful than profile-based methods be-
cause a simple length-average over the position-specific
scoring metrices (PSSM) would not suffice to predict CATH
numbers very accurately.

ProtTucker builds upon this success to explicitly cap-
ture the constraints relevant for the CATH hierarchy. Thus,
the less a particular aspect of function depends on struc-
ture, the less likely the new ProtTucker embeddings will re-
flect this aspect. On the other hand, an approach similar
to ProtTucker focused on particular functional hierarchies,
e.g. EC numbers appears to work well (SM Akmese & M
Heinzinger, unpublished).

Taken together, these results indicated that contrastive
learning captured structural hierarchies and provides a
novel, powerful tool to uncover structural similarities
clearly beyond what has been achievable with 50 years of op-
timizing sequence-based alignment techniques. Using EAT
to complement HBI could become crucial for a variety of
applications, ranging from finding remote structural tem-
plates for protein 3D structure predictions over prioritiz-
ing new proteins without any similarity to an existing struc-
ture to filtering potentially wrong annotations. One partic-
ular example has recently been shown for the proteome of
SARS-CoV-2 to unravel entire functional components pos-
sibly relevant for fighting COVID-19 (61).

ProtTucker embeddings improved FunFams clustering

Previously (49), we showed that a simplistic predecessor of
ProtTucker helped to refine the clustering of FunFams (76).
By adding an additional, more fine-grained hierarchy level
in CATH, FunFams link the structure-function continuum
of proteins. The functional consistency within FunFams
was proxied through the enzymatic activity as defined by
the EC (Enzyme Commission (79)) number. Even the pre-

liminary ProtTucker improved the annotation transfer of
ligand binding and EC numbers (49) by removing outliers
from existing FunFams and by creating new, more func-
tionally coherent FunFams. As for CATH, the contrastively
trained ProtTucker(ProtBERT) also improved over its un-
supervised counterpart, ProtBERT, for FunFams. It im-
proved functional consistency especially for proteins in the
twilight zone (<35% PIDE, Figure 5 in (49)). Thus, Prot-
Tucker embeddings improved functional (FunFams) and
structural (CATH) consistency beyond sequence similarity.
Here, we expanded upon this analysis by showing how EAT
can be improved even more through contrastively learning
hierarchies. Using the proposed method, we could spot po-
tential outliers, i.e. samples with the same annotation but
large embedding distance. This might become essential to
clean up databases. Aside from outlier-spotting, we could
also obtain labels from the nearest neighbors of outliers
(Supplementary Table S6). Although we could not repro-
duce the same level of success when applying EAT to infer-
ring subcellular location in ten states (Table 3), the CATH-
optimized ProtTucker embeddings also did not perform
worse.

Generic advantages of contrastive learning

Contrastive learning benefits from hierarchies as opposed
to supervised training which usually flattens the hierarchy
thereby losing its intrinsic advantage. Other possible ad-
vantages of contrastive learning include the following three.
(i) Dynamic data update (online learning): While supervised
networks require re-training to benefit from new data, con-
trastively trained networks can benefit from new data by
simply updating the lookup set. This could even add com-
pletely new classes, such as proteins for which the classifi-
cation will become available only in the future. HBI shares
this advantage that originates from the difference between
classifying proteins into existing families versus classifying
by identifying the most similar proteins in that family. (ii)
Learn the access, not the data: Instead of forcing the su-
pervised network to memorize the training data, contrastive
learning teaches how to access the data stored in an exter-
nal lookup set. (iii) Compression: As many other learning
techniques, contrastive learning can act as a compression
technique. For instance, we reduced the disk space required
to store protein embeddings threefold by projecting 1024-
dimensional vectors onto 128 dimensions while improving
performance (Table 1). This renders new queries (inference)
more efficient and enables scaling up to very large lookup
sets. (iv) Interpretability: Knowing from which protein an
annotation was transferred might help users benefit more
from a certain prediction than just the prediction itself. For
instance, knowing that an unnamed query protein shares
all CATH levels with a particular glucocorticoid receptor
might suggest some functional implications helping to de-
sign future experiments.

CONCLUSIONS

Embeddings from protein Language Models (pLMs) ex-
tract the information learned by these models from un-
labeled protein sequences. Embedding-based Annotation
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Transfer (EAT) replacing the proximity in sequence space
used by homolog-based inference (HBI) through proxim-
ity in embedding space already reaches traditional align-
ment methods in transferring CATH annotations from a
template protein with experimental annotations to an un-
labeled query protein. Although not quite reaching the per-
formance of advanced profile-profile searches by HMMer
for all four CATH levels, the best embeddings surpassed
HMMer for two of the four levels (C and A). When optimiz-
ing embeddings through contrastive learning for the goal of
transferring CATH annotations, EAT using these new em-
beddings consistently outperformed all sequence compari-
son techniques tested. This higher performance was reached
at a fraction (three orders of magnitude) of the compu-
tational time. Although the new embeddings optimized
through contrastive learning for CATH did not improve
performance for a completely different task, namely the pre-
diction of subcellular location in ten classes, the CATH-
optimized solution did also not perform significantly worse.
Remarkably, just like HBI, the performance of EAT using
the optimized ProtTucker embeddings was proportional to
family size with increased accuracy for larger families.

DATA AVAILABILITY

Building on top of bio embeddings package (85) we have
made a script available that simplifies EAT https://github.
com/Rostlab/EAT.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.
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