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Abstract: The automotive sector’s transition to Battery Electric Vehicles (BEVs) requires extensive
deployment of additional charging infrastructure. To determine optimal new locations, planners
consider and rate a multitude of factors that influence the charging demand at candidate sites.
Researchers have proposed a variety of placement criteria and methods to automate site selection.
However, no common set of criteria has emerged. In addition, due to the lack of usage data, the
applicability of existing criteria remains unclear. Therefore, the goals of this article are to extract the
most relevant factors from literature and to evaluate their ability to characterize charging point usage.
First, we review the literature base to collect, analyze, and cluster existing influencing factors and to
analyze how they affect charging demand. Second, we conduct a case study using real-life charging
station data from Hamburg, Germany. Based on the extracted influencing factors, we identify four
clusters within Hamburg’s public charging infrastructure. While the mean performance indicators
duration, daily transactions, and connection ratio hardly differ among these clusters, the temporal
occupancy curves clearly show distinct charging behavior for each cluster. This work contributes to
the state of the art by structuring the diverse landscape of charging station location placement criteria,
by deriving a set of measurable influencing factors, and by analyzing their effect on a location’s
charging demand, yielding an open source data set of charging point usage.

Keywords: BEV; charging infrastructure; site selection; demand estimation; influencing factors;
real-life data; charging behavior

1. Introduction and Motivation

With the Paris Agreement of 2015, policy-makers all over the world have acknowl-
edged climate change as a phenomenon of global importance and committed themselves
to a reduction of greenhouse gas emissions in order to retain global warming to less than
2 °C in comparison to pre-industrial levels [1]. Especially the transportation sector, which
is a significant driver of CO2 emissions, experiences massive restructuring. One of the
most notable efforts is the phase out of fossil-fueled vehicles in new cars, which researchers
believe to be a key step in the decarbonization of the transport sector [2]. Alternative fuel
vehicles like BEV step up to replace conventional ones. Current research indicates that Pub-
lic Electric Vehicle Charging Infrastructure (PEVCI) is a means of enabling and promoting
BEV. Hence, it is an important factor to attract the majority of residents to BEV [3] and many
countries have put support programs for Public Electric Vehicle Charging Infrastructure
(PEVCI) in place.

In order to allocate resources efficiently during large scale deployment of PEVCI,
decision-makers rely on guidelines that help to determine optimal charging station sites,
numbers, and specifications. This is especially true for urban areas, in which public space
is a scarce resource that has to be shared between manifold interests. Thus, in Germany as
well as in many other countries, a number of hands-on guidelines issued by governmental
organizations propose important factors to consider when placing PEVCI [4–6]. In addition
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to these guidelines, the scientific community has contributed vastly to the topic of charging
infrastructure location planning [7,8]. Consequently, a diverse landscape of methods,
modeling styles, optimization techniques and design objectives has emerged.

Within the manifold publications on the topic, researchers consider a great variety
of aspects that impact the optimal roll-out of PEVCI. Therefore, a structured overview
of existing placement criteria is needed to identify the most relevant set of criteria and
reduce ambiguity and complexity of regarded factors. Hence, this article collects, groups,
and analyzes placement criteria identified in PEVCI technical guidelines and scientific
publications with the aim of supplying a comprehensive overview for researchers and
decision-makers.

For a clearer understanding of existing placement criteria, we distinguish between two
related terms: influencing factors and metrics. We define influencing factors as general factors
that affect the charging station location decision. Metrics are then used for the quantitative
assessment of influencing factors. Thus, a metric is a numerical variable that describes the
nature and extent of an influencing factor.

Employing this terminology, the main contributions of this article are:

• A detailed overview of existing influencing factors and associated metrics concerning
the demand-oriented placement of PEVCI.

• A list of 15 core aspects regarding the placement of PEVCI, representing the most
commonly addressed groups of influencing factors.

• A taxonomy of 9 lines of argumentation, describing the mechanisms by which charging
demand is influenced by the identified factors.

• A case study on the city of Hamburg’s 1023 public charging points to evaluate the
presumed link between influencing factors, metrics, and observed charging utilization.

• An pre-processed open source data set of the Hamburg’s public charging station usage
over the period of four weeks.

• The identification of further research directions.

The remainder of this article is structured as follows: Section 2 structures and char-
acterizes literature related to the design of PEVCI, presents a first overview of associated
placement criteria, derives a problem statement from existing research gaps, and describes
the concept that is used in this article to fill the identified gaps. In Section 3, influencing
factors known from the literature are assessed, grouped, and linked to available metrics.
Using the most prominent set of influencing factors and metrics, a case study for the city
of Hamburg is presented in Section 4. Herein, the presumed linkage between influencing
factors and actual charging station utilization is analyzed. The article is concluded by a
summary and discussion in Sections 5 and 6. Figure 1 depicts the presented outline of this
article and briefly summarizes its main content.
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Figure 1. Structure of this article.

2. Related Literature and Problem Statement

In recent years, an increasing number of scientific publications has addressed the issue
of charging station planning. The subsequent literature review describes representative
approaches for PEVCI location planning, but does not cover a holistic overview, due to the
quantity of publications. The focus lies on the criteria and factors for evaluating a suitable
PEVCI location, instead of a detailed outline of applied research methods.

2.1. Related Literature

During the review process, practical guidelines and scientific publications are con-
sidered. Among scientific publications, various source types can be distinguished. The
following sections are structured according to the taxonomy in Figure 2.

Figure 2. Types of literature considered in our review.

2.1.1. Practical Guidelines

Practical guidelines on the placement of PEVCI reflect the operative way PEVCI are
promoted and are therefore presumed to be most applicable to the real life case. It can be
assumed that they contain lessons learned from past deployment activities and that they
are designed to meet the administrative and regulatory requirements of the target area.

In Germany, for instance, both local and national authorities have issued such guide-
lines to steer the roll-out of PEVCI: the city of Hamburg presented their strategy for PEVCI
installation in 2014. They drafted an assessment matrix consisting of exclusion factors,
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operator related factors and user related factors [4]. As a result, planners can draw relative
comparisons of different locations. Kindl et al. [6] propose a top down, demand-oriented
planning methodology for cities based on traffic districts. The authors correlate four indi-
cators of charging demand to seven area types. This allows cities to distinguish charging
demand on district level without requiring traffic models. Subsequently, the specific site
selection within traffic districts is proposed to take ten criteria into account. The NOW
GmbH [5], a German organization which issues funding guidelines for electric mobility
and charging infrastructure, published a list of twelve, partly similar, criteria. Some of the
factors mentioned in practical guidelines, such as connectivity to public transport [4] or num-
ber of parking lots [6], are measurable with appropriate quantitative metrics. However, there
are also qualitative factors which evoke great fuzziness regarding the decision making, for
example attractiveness [4] and visibility [6].

2.1.2. User Surveys

Surveys are a user-centered way of exploring key influencing factors on the optimal
placement of PEVCI. Through interviews, Philipsen et al. [9] extracted eight main evaluation
criteria for fast-charging locations. In a second study, users stated their preferred location
and prioritized the prior study’s established criteria [10]. The factors reliability, dual use,
and accessibility were ranked as most important. However, most user opinions are of a
qualitative nature and cannot directly be transferred into a charging location decision.
Anderson et al. [11] proposed an approach which could solve this issue by enabling users
to directly select preferred locations for charging stations. The authors conducted an online
survey with 843 BEV users. This way, PEVCI could be installed, exactly where users
demand it. While surveys substantially help to understand user requirements, planning
PEVCI based on user opinions is impractical, because regional or even nationwide surveys
would be complex. Furthermore, users cannot be expected to grasp the full extent of
influencing factors from multiple areas and might thereby miss crucial aspects, leading to
partial advantages of strategic roll-out schemes over user-oriented pull strategies [12].

2.1.3. Expert Interviews

In contrast to users, experts deal with the topic of charging station planning more
frequently and can contribute in a broader way to site selection decisions. Expert interviews
often open up the considerations to various areas such as society or ecology and include
qualitative and quantitative factors that are often identified within elaborate collection,
weighting, and classification schemes (ISM, MICMAC) [13]. Due to the amount and
nature of the considered influencing factors, Multi Criteria Decision Making Models like
VIKOR and PROMETHEE help to condensate the identified factors into an applicable
ranking process [14,15]. Guo and Zhao [16] introduced eleven factors by building an
sustainability-based evaluation system from literature and expert opinions. In a second
step, the authors used a fuzzy method for ranking alternative PEVCI locations according
to experts’ views. Wu et al. [14] published a similar approach. Besides the factor groups
used by Guo et al. [16], economic, social, and environmental factors, Wu et al. [14] added the
areas engineering feasibility, service availability, and land factors. In total, the authors used
18 factors such as construction costs or attitude of local residents. The ratings of alternative
locations were determined with the fuzzy PROMETHEE method. Zhao et al. [15] derived
four factor groups with a total of 37 sub-factors. The authors reduced these to a vital set of
13 sub-criteria applying the fuzzy Delphi method. The location decision was conducted
by experts using a fuzzy VIKOR approach. Using experts’ contribution to select charging
station locations allows to include qualitative measures, but it also makes the comparison of
large numbers of possibilities impractical, since this would require every potential charging
site to be rated individually by the experts. Aside from ranking the location options itself,
expert knowledge has been harnessed by Tang et al. [17] and Erbaş et al. [18] to weight
factors against each other. According to Erbaş et al. [18], BEV ownership in the area, distance
to power cut, and service area population are the most important factors. Tang et al. [17] list
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total cost of construction, main roads, and power grid safety as top factors. Wu and Niu [13]
presented a methodology to examine underlying interrelationships of influencing factors.
Using ISM and fuzzy MICMAC, they evaluated 12 previously selected factors.

2.1.4. Optimization and Assessment

Adding to the pool of influencing factors from guidelines, user surveys, and expert
interviews are contributions aimed at the optimization and assessment of PEVCI [8,19–34].
They constitute the largest body of literature in this review. Assessments of PEVCI comprise
works in which simulations aid the analysis of existing or hypothetical infrastructures,
demand estimations as well as the analysis of real-life usage data. Manifold scholars have
dealt with the optimization of PEVCI, usually based on assessments or modelings of the
domain. Hence, depending on the scope of works in this type of literature, motives of
analysis and optimization are often intermingled and are thus referred to in one single
category for the scope of this article. Despite the relationship of contributions in this cate-
gory, the way influencing factors are considered varies widely among the literature. While
the analysis of studies focused on the explicit estimation of charging demand often yields
verbatim influencing factors, not all of the aforementioned publications formulate explicit
influencing factors on the charging demand. Instead, objective functions of mathematical
models, entities modeled in simulations, or the most promising predictors in utilization
regression studies provide insights into the sources of charging demand and were therefore
extracted as influencing factors by the authors of this contribution.

Independent of the specific type of publication, two prominent perspectives—flow-
based and node-based—form the basis for the modeling or simulation of charging demand.
Flow-based studies arrange PEVCI in a way which maximizes the flow of passing vehicles
at the charging sites. This idea builds upon the flow capturing location model outlined
by Hodgson [35]. Under the assumption that charging demand correlates with network
traffic, the main influencing factor considered in these approaches is the traffic volume at
or near candidate sites. Consequently, flow-based approaches have often been applied to
stop and charge situations like highway corridors and fast-charging infrastructure [22,23].
Nevertheless, flow-based approaches also consider additional influencing factors. For
instance, He et al. [36] formulate their objective function to minimize social costs, defined
as the total driving time, recharging time, and the inconvenience cost caused by missed trips.
Gkatzoflias et al. [25] plan infrastructure on regional and national level with the objective
to place charging sites within a required distance. Csonka et al. [20] consider traffic volume,
service level and a constraint for existing charging stations within range. Consequently, both
publications constrain candidate sites to gas and service stations to leverage existing
distribution structures. While flow-based models have also been applied to urban PEVCI
design [24,37], Upchurch and Kuby [38] find that node-based models are more suitable for
urban environments. In contrast to flow-based placement models, node-based approaches
model charging demand to be concentrated in demand nodes. These nodes constitute
locations of the planning domain for which charging demand can be estimated in an
absolute or relative fashion. Hence, node-based approaches assume a discrete planning
domain by associating charging demand with spatial locations that are representative
of their direct proximity. Depending on the perspective, demand nodes can be located
in predetermined candidate sites [27], regular evaluation grids [21] or in the centroids
of areas like administrative units and travel analysis zones [19]. Once a set of node
positions and demand estimates is available, charging station locations can be placed at the
highest demand nodes or, in case of high spatial resolutions, such that the charging station
catchment areas cover as much of the estimated demand as possible. Since the key to these
kinds of approaches is a precise node-based demand estimation, authors have identified a
large set of factors influencing the potential spatial charging demand. In addition, within
node-based contributions, non-demand focused influencing factors relevant to the overall
decision process have been identified as well.
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2.1.5. Reviews

The preceding literature comprises influencing factors of qualitative and quantitative
nature with a great quantity and variety. While we have considered a great number of
sources on the matter, a comprehensive review escapes the scope of this article. To mitigate
possible shortcomings, existing reviews are taken into consideration in addition to the
aforementioned primary literature sources. Although, to the best of our knowledge, no
previous review has explicitly addressed the question of demand influencing factors com-
prehensively, existing reviews serve as multiplicators for our literature survey. We include
referenced influencing factors, as well as contributions through the reviews themselves in
our analysis.

Shareef et al. [39] review optimization techniques for the placement and sizing of
PEVCI. Zhang et al. [40] describe influencing factors as “the basic premise of site selection
decision”. The authors divide influencing factors into charging station’s own factors, such
as construction cost, consumer factors, such as travel behavior or charging demand and supplier
factors, such as power grid distribution or grid loss. Deb et al. [7] introduce a categorization of
three approaches regarding the consideration of the transportation network, the distribution
network, or both. The authors outline that the majority of transportation network models
target cost reduction and EV flow improvement. Further objectives are distance, tour time,
and covered trips. Most distribution network models aim for costs and net optimization.
Furthermore, local constraints like voltage limits influence the PEVCI. Deb et al. summarize
the findings in a list of eleven objectives and six constraints. Pagany et al. [41] examine
a vast body of publications that uses empirical data and assigns those to one or multiple
target criteria in a list of eleven objectives. Their overview shows the variety of unique
target criteria combinations.

2.2. Problem Statement and Concept Description

Ideally, planning of new PEVCI installations would include knowledge of actual
future charging demand in kWh with a high spatial and temporal resolution. This would
require extensive knowledge of citizens’ mobility patterns, charging behavior, and BEV
adoption rates. Alternatively, usage data from existing PEVCI in close-by locations allows
assumptions on future charging demand. Nevertheless, especially in early stages of PEVCI
installation, cities cannot draw from past usage data. Therefore, planners and researchers
have come up with indicators for charging demand. Our literature review showed a great
diversity and fuzziness of proposed influencing factors in the current research landscape.
Furthermore, it is evident that no common set of influencing factors has emerged from the
literature base so far.

User surveys contribute to understanding qualitative influencing factors of BEV users.
Current research uses expert interviews and opens up the considerations to areas such
as social factors or engineering feasibility. Fuzzy methods are used to quantify qualitative
measures. However, evaluating large numbers of PEVCI options manually is impractical.
Hence, scientists propose optimization and assessment approaches to support planning
with automation. Multi-objective optimization models allow to include factors from vari-
ous perspectives such as transport and electricity. We focused our analysis on the area of
charging demand, as numerous publications evaluate PEVCI sites this way [41]. Demand
is estimated from a flow-based or node-based perspective. Often, Point of Interest (POI) is
included as an influencing factor for parking behavior and potential charging demand in
accordance with current user habits. Yet, even on this level of the analysis, POI groups and
considered POI differ. Clear metrics as quantifiers of influencing factors are still to be estab-
lished. Charging infrastructure planning will remain divergent until we take a step toward
a common set of target criteria. Only then will it be possible to extract the most influential
and suitable factors from the list of suggestions throughout scientific publications.

Hence, this paper collects, clusters, and visualizes existing influencing factors and
related metrics. We aim at providing a transparent base for further investigation and
discussion toward an effective evaluation framework of PEVCI.
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3. Toward a Charging Site Evaluation Framework

Based on the exploratory literature review presented in Section 2, we collected, ana-
lyzed, and structured influencing factors in a systematic literature analysis. A summary
and explanation of our approach is in presented in Section 3.1. The results in Section 3.2
are a list of influencing factors, which are clustered into core aspects and augmented by an
abstraction of their lines of argumentation by analyzing the underlying mechanisms affect-
ing the charging demand. Finally, Section 3.3 contains an overview of metrics describing
influencing factors quantitatively at a specific location. With these results at hand, Section 4
presents a case study which is used to reveal connections between the most prominent
influencing factors and observed PEVCI utilization.

3.1. General Approach

Figure 3 summarizes our approach. The first step (1) is collecting influencing factors
with a focus on static, charging demand related factors. Section 2 already addressed
a range of exemplary factors. Time-dependent factors, such as number of customers, or
non-demand-related factors, such as grid connection cost, are filtered out of the collection.
We categorize the extracted factors into two types (2): influencing factors themselves and
metrics as a measurable representation of a factor. Subsequently, we cluster the collected
factors into core aspects (3) by unifying the formulation and subject of similar factors. We
adopt the terms which are most often used by different authors and assigned divergent
formulations to a core aspect, when suitable. Although we try to follow the reasoning given
in the publications carefully, the results can be biased by our interpretation. To examine
the underlying mechanisms of the influencing factors’ effect on charging demand, we
identify lines of argumentation for all factors (4). Lastly, we structure the results by linking
influencing factors with core aspects, lines of argumentation, and metrics (5). In the next
section, the results of each step and the developed static, charging demand related site
evaluation framework are presented, analyzed, and illustrated (Section 3.2).

Figure 3. Approach for the static, charging demand related site evaluation framework.

3.2. Influencing Factors, Core Aspects, and Lines of Argumentation

This section presents the resulting influencing factor framework including its core
aspects, lines of argumentation for planning, and possible metrics. The whole table
containing all factors and their links can be accessed as a digital attachment at https:
//github.com/TUMFTM/Hamburg-Public-Charging-Station-Utilization (accessed on 20
February 2022). More condensed results are extracted from the table and are discussed in
this section following the logic of our approach.

3.2.1. Collection, Categorization, and Clustering of Factors—Steps 1–3

In total, 241 relevant items from 48 publications were collected from the literature base
(step (1)). Among these are 186 static, demand-related influencing factors and 55 metrics

https://github.com/TUMFTM/Hamburg-Public-Charging-Station-Utilization
https://github.com/TUMFTM/Hamburg-Public-Charging-Station-Utilization
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(step (2)). The clustering result from step (3) with 15 identified core aspects is shown in
Table 1. The aspects Residential Population, POI, and Parking Situation are mentioned most
frequently in our literature body, while Centrality, Safety, and Visibility are included the least.

Table 1. Core aspect frequency.

Core Aspect Frequency

Accessibility 8
Centrality 4
Connectivity to public transport 6
Coverage 10
Dwell Characteristics 11
Land Use 10
Other CIS 12
POI 23
Parking Situation 16
Residential Population 45
Safety 5
Surrounding Street Network 11
Traffic Flow 11
Visibility 5
Working Population 9

To analyze the variety of factors in the existing publications in more detail, Table 2
contains the analyzed papers with their respective mentioned factors. Forty-one out of forty-
eight publications consider a unique set of core aspects. In two instances, authors consider
influencing factors from the same single core aspect: Pallonetto et al. [42] mention presence
of shopping centers and commercial areas and Wagner et al. [43] mention presence of food, mu-
seum, and health POI, which were both assigned to the core aspect POI. The second example
is Surrounding Street Network mentioned by Tang et al. [17] and Guo and Zhao [16]. How-
ever, looking at the considered influencing factors, differences appear. Tang et al. [17] con-
sider main roads, lane crossings, and road conditions whereas Guo and Zhao [16] refer to traffic
convenience. Both works consider further non-static, non-demand-related factors. Further-
more, there are some publications with similar core aspect combinations and small differ-
ences. Bian et al. [44] and Wu et al. [14] mention three static, demand-related core aspects.
The authors consider factors from Other CIS and Land Use. Bian et al. [44] additionally refer
to Traffic Flow, while [14] employs factors belonging to the core aspect Surrounding Street
Network. Even within their shared core aspects, the authors do not apply the same termi-
nology for their influencing factors. Other examples of high similarity are the contributions
of Wirges [45] and Gkatzoflias et al. [25] as well as the “Masterplan Ladeinfrastruktur” [4],
Kindl et al. [6], and guidelines issued by the NOW Gmbh [5]. Table 3 contains all influenc-
ing factors clustered according to the matched core factors to analyze the denotation of
factors in the literature. The table shows that some aspects are used with more unanimous
terms than others. For example, six of eight mentions of the core aspect Accessibility use the
term accessibility, the other two denotations are unrestricted access and public access. Other
aspects, such as POI or Residential Population, include a variety of terms, shedding light
on the different nuances and sub-factors of these aspects. Some aspects are difficult to
assign and the associated influencing factors remain partly heterogeneous, because of a
high variety and ambiguity of the expressions. For example, this applies to the aspects
Dwell Characteristics and Parking Situation. Furthermore, some core aspects such as Coverage
and Other CIS or Dwell Characteristics and Parking Situation appear similar at first sight, but
are used in different connotations. Therefore, the established lines of argumentation in
step (4) help to distinguish influencing factors and core aspects more clearly and reveal the
mechanisms by which individual influencing factors and their associated core aspects may
influence the charging demand at a site in question.
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Table 2. Core aspects mentioned by author.
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Anderson et al. [11] x – – – – x – x – – – x – – –
Bi et al. [19] – – – – x – x – – – – – – – –
Bian et al. [44] – – – – – x x – – – – – x – –
Brost et al. [46] – – – – x – x x – – – – x – –
Chen et al. [29] – – – x x x x – x x – x – – x
Chung, Kwon [22] – – – – – – – – – – – – x – –
Csiszár et al. [21] – – – – x – x – x x – – – – –
Csonka, Csiszár [20] – – – – x – x – – x – – – – –
Deb et al. [7] – – – x – – – – – – – – x – –
Dong et al. [47] – – – – – – – x x – – – – – –
Efthymiou et al. [30] – – – x – – – x – x – – – – –
Erbaş et al. [18] – – – – – – x x – x – x – – –
Frade et al. [31] – – – x – – – – x x – – – – x
Friese et al. [48] – – – – – x – – – x – – – – –
Funke et al. [49] x – – – – – – – – – x – – x –
Gkatzoflias et al. [25] – – x – – – – x x x – – – – –
Guo, Zhao [16] – – – – – – – – – – – x – – –
He et al. [32] x – – – – – – – – x – – – x –
Helmus, van den
Hoed [50] – – – x – – x – – – – – – – –

Huang [51] – x – – – – – x – x – – – – –
Jordán et al. [52] – – – – x – – – – x – – x – –
Kindl et al. [6] x – x – – – – x x – x – x x –
Lam et al. [33] – – – x – – – – – x – – – – –
Luo et al. [53] – – – – – x – – – – – – – – –
Maase et al. [54] – – – – – – – – x – – – x – –
NOW GmbH [5] x x x – x – – – x – x – x x –
Namdeo et al. [26] – x x – – – – – – x – – – – x
Niels et al. [55] – – – – – – – x – x – – – – x
Pagani et al. [27] – – – – – – – – – x – – – – –
Pagany et al. [41] – – – x x – – – – – – – x – –
Pagany et al. [8] – – – x x – – x – – – – – – –
Pallonetto et al. [42] – – – – – – – x – – – – – – –
Pevec et al. [56] – – – – – – x x – – – – – – –
Phillipsen et al. [10] x – – – – – – x – – x – – – –
Raposo et al. [57] – – – – – x – – x x – – – – –
Shirmohammadly,
Vallée [58] – – – – – – x – x – – – – – –

Stadt Hamburg [4] x x x – – – – – x – – x – x –
Straka, Buzna [59] – – – – – – – x – x – – – – –
Straka et al. [60] – – – – – – x x – x – – – – x
Straka et al. [61] – – – – – – – – – x – – – – x
Tang et al. [17] – – – – – – – – – – – x – – –
Wagner et al. [43] – – – – – – – x – – – – – – –
Wirges [45] – – x – – – – x x x – – – – x
Wolbertus et al. [62] – – – – – – – – – x – – – – –
Wu et al. [14] – – – – – x x – – – – x – – –
Wu, Niu [13] – – – – – x – – – – – – x – –
Zhang et al. [34] – – – – – – – – – x – – – – –
Zhao, Li [15] – – – x – – – – – x – x – – –
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Table 3. Influencing factors mentioned per core aspect.

Core Aspect Influencing Factors

Accessibility accessibility, public access, unrestricted access

Centrality position within main road network, regional centers, centrality

Connectivity to
public transport

park-and-ride locations, relevance of public transportation, park and ride, connection to public transport,
connectivity to public transport, proximity to public transport

Coverage distance destination—charging station, coverage, POI distance from parking, charging station range, service
radius, walking distance

Dwell Characteristics
parking daytime, expected staying period, dwelling time, visiting frequency, destination type, dwell time,
natural parking locations, parking duration, average time spent in area by citizens, dwell time relevant for
charging

Land Use regional structure, area characterization, parking duration, area attribute, land use type

Other CIS
effect of nearby charging, other installed stations, coverage, other charging stations, charging capacity,
service radius, existing charging infrastructure, distance to other charging stations, number of charging
points, proximity to other charging sites

POI

number of wholesale, shops, hotels, restaurants and catering facilities, proximity to public access buildings,
proximity to shopping and food areas, shopping, candidate site at POI, destinations (POI), number of
business services, min. distance to financial related OSM amenity, POI quality of stay, POI, presence of food,
museum and health POI, number of culture, recreation and other services, proximity to petrol station,
sports and culture, hotels, possibility to spend charging time on other activities, places where people spend
time, presence of shopping centers and commercial areas, dual use

Parking Situation
parking places, parking lot availability, availability of parking space, parking pressure, parking demand,
charging post usage, parking spaces, available parking space, public parking demand, number of parking
lots, parking potential, parking areas, big car parks

Residential
Population

family size, residential area type, number of multi family houses, home places, residential dwelling type,
population in area, early adopters, vehicle ownership, number of households with a monthly income with
at most EUR 900, service area population, newly built houses, number of one person households, education
level, nighttime demand, residents, parking demand, general population, private charging spot possession
rate, residential location of early adopters, number of BEV, BEV ownership in service area, buying power
per inhabitant, residents professional habit, average income, age, number of persons in one-person
households from 45 to 65 years, percentage of working population working in the industry, population,
proportion of residential area, residents receiving social assistance, street parkers, income, residential
statistics, parking pressure, gender, share of residential BEV, number of cars per square kilometer, residents
with high income, residential population, number of persons in one-person households from 25 to 45 years,
parking nighttime

Safety safety, safety for me, safety for my car, safety and ease of use

Surrounding Street
Network

road conditions, reachability, proximity to main roads, traffic convenience, proximity to junctions, parking
demand, convenience of transportation, main roads, lane crossings, road type

Traffic Flow
average traffic in area, traffic volume of early adopters, flow captured, electric vehicle flow, traffic frequency
of individual mobility/private cars, traffic volume, average traffic flow, traffic flow, vehicle flow, traffic
volume relevant for charging, traffic density

Visibility visibility

Working Population businesses with high income, car commuter destinations, general working places, parking demand, daytime
demand, early adopter working places, proportion of business and industrial area, places of employment

3.2.2. Lines of Argumentation—Step 4

To investigate the underlying mechanisms of the influencing factors’ effect on charging
demand, step (4) establishes lines of argumentation from the literature base. These lines of
argumentation further specify the partly ambiguous ways in which influencing factors af-
fect charging demand, e.g., the Parking Situation at a candidate site may be tense, indicating
that a lot of activities happen in the area, which potentially increases the charging demand.
At the same time, parking pressure may reduce the quality of the potential charging site
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due to blocked PEVCI and quarrels between users of conventional vehicles and BEV users.
Even if the net effect of these influencing factors remains unclear and may be subject to
further investigation, transparency about these mechanisms add to the sole listing and
grouping of influencing factors and metrics.

Based on the literature analysis, we derive three main arguments for the site-specific
charging demand: the Availability of a charging point, the Quality of the charging point and
the Activities connected to the location. Additionally, we specify these main arguments
found in the literature by nine more detailed arguments. Figure 4 visualizes the results.
We assign an argumentation code to each argument to abbreviate and thus simplify the
references in the digital appendix and the following tables. In the following paragraphs,
the lines of argumentation are explained in more detail.

Figure 4. Lines of argumentation for the influencing factor’s effect on charging demand.

BEV users can only charge at locations, where charging points are available. Hence,
Availability includes the fundamental factor Coverage, which refers to the general existence
of charging points at or near a site. At some locations, charging points are not available 24 h
or are only open to a restricted clientele. Therefore, Access Restrictions at a location have
a significant influence on the availability of a charging point and, hence, on the charging
demand. BEV users can usually choose between multiple charging site options. Hence,
they will prefer locations that provide a high Quality charging experience. This includes the
Reachability of a site. People are more likely to select a charging point that can be reached
well and in a short amount of time. Reachability is similar to the aforementioned Access
Restrictions, but is related to easy access in contrast to general availability of access. The
second line of argumentation belonging to quality is Redundancy. Redundancy extends the
Coverage argument. For an individual BEV user, charging sites with multiple charging
points, or other charging stations in proximity, are more appealing, because they offer
back-up options in case of malfunctioning or occupied charging points. Finally, the At-
tractiveness of the location plays a role, as people are more likely to charge where it is safe
and where there is low parking pressure. Centrality and visibility are other aspects, which
can contribute to an attractive charging site. The integration of the charging process into
the daily habits of BEV users can be of an advantage, even in comparison to combustion
engine vehicles, because detours and waiting time for refueling can be avoided. Hence,
people will charge at locations where they spend time on other activities. A common case
for charging demand is charging at Home, for example overnight. BEV users will also
charge at Work, in particular commuters. Furthermore, people might want to charge during
other activities such as shopping, leisure or administrative activities. These locations are
generally summarized as POI. Finally, proximity to Public Transport influences the charging
demand, for example when people undertake a multi-modal journey.

3.2.3. Linking Argumentation Codes with Core Aspects—Step 5

The last step is linking lines of argumentation to influencing factors (step (5)). This
final step is required to visualize the underlying mechanism of each influencing factor’s
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effect on the charging demand of a location. It is possible to assign multiple lines of
argumentation to one influencing factor, because influencing factors can affect charging
demand in different ways. For example number of culture, recreation, and other services [59] is
linked to the core aspect POI. An increasing number of such services in an area leads to
higher POI related activity in an area. In addition, culture and recreation services usually
increase the attractiveness of an area, which can also affect the charging demand. Another
example with multiple effects on charging demand is the influencing factor effect of nearby
charging [20], which is part of the core aspect Other CIS. A lot of nearby charging indicates
that the location is covered well, at least in terms of spatial coverage. Furthermore, multiple
charging points in a small area can lead to redundancy, which is a benefit for the BEV
user, because of increased reliability to satisfy the charging demand. Table 4 shows the
occurrence of argumentation codes for each core aspect. It can be seen that some core
aspects such as Residential Population, Working Population, or Safety are mostly linked to
one line of argumentation. Other core aspects, such as Other CIS or Parking Situation, are
mostly assigned to multiple lines of argumentation. Activity is the only of the three main
arguments appearing in the table, because a lot of factors have a reference to activities of
BEV users without specifying the activity itself.

Table 4. Argumentation code frequency per core aspect.

Core Aspect Argumentation Code
Ac AcHo AcPOI AcPT AcWo AvAR AvCo Qu QuAt QuRe QuRed

Accessibility – – – – – 3 – 1 – 5 –
Centrality – – 4 – – – – – 4 4 –

Connectivity to public
transport – – – 6 – – – – – 1 –

Coverage – – 2 – – – 10 – – – 1

Dwell Characteristics 8 – 3 – – – – – – – –

Land Use 8 1 – – 1 – – – 6 – –
Other CIS – – – – – – 11 – – – 9
POI – – 23 – – – – – 5 – –

Parking Situation 16 – – – – – – – 16 – –

Residential Population – 45 – – – – – – 1 – –

Safety – – – – – – – – 5 – –

Surrounding Street
Network 4 – – 1 – – – – 4 11 –

Traffic Flow 11 – – – – – – – 6 – –
Visibility – – – – – – – – 5 – –

Working Population – – – – 9 – – – – – –

3.3. Metrics

A set of core aspects cannot be directly used for planning purposes. Quantitative
metrics are required for automatizing the evaluation of possible charging sites. In the
literature body, we detected 55 metrics for the 186 influencing factors. Table 5 displays the
mentioned metrics per core aspect. The distribution between the core aspects is highly
skewed. Accessibility, Centrality, Safety, and Visibility do not have any proposed metrics.
Coverage, Other CIS, and POI are more frequently mentioned together with metrics. The
Residential Population core aspect has been quantified with metrics most often. Although
metrics related to the same core aspect are similar to some extent, few publications use
the exact same metrics. For example, Chen et al. [29] evaluate the Parking Situation with
average parking prices for daily paid parking, while Gkatzoflias et al. [25] use availability at
candidate site and capacity of parking. Wirges [45] evaluates the number of parking lots. The
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core aspect Residential Population serves as an estimation of expected BEV owners. Often,
the respective metric is a population density, but authors apply different reference areas,
such as population in 250 m hexagon [21], sum of residents in 200 m radius [30], or population
density in 100 × 100 m cell.

A comprehensive catalog of metrics for each core aspect is out of the scope of this
paper. The availability of data is a challenge, because broad applicability would call for the
use of openly available data, but the acquisition of some data, such as the safety of a location
or the traffic flow, is difficult. Furthermore, each metric makes the overall evaluation of
a potential PEVCI site more complex and expensive. Therefore, it would be of interest to
extract the most relevant metrics, while still covering the most influential core aspects.

Table 5. Metrics mentioned per core aspect.

Mentioned Metrics Core Aspect

Accessibility –

Centrality –

Connectivity to public transport number of parking places

Coverage
euclidean distance between charger and POI, total area (sqm) in walking distance of a
charging point, census block center reachable from charger within willing/accepted to walk
distance, maximum distance between charging stations within range of EV

Dwell Characteristics parking duration at POI, parking duration depending on trip activity, sum of destination
type specific charging demand in 250 m hexagon

Land Use number of commercial buildings, parking duration depending on destination land use type,
number of detached or row houses, number of all buildings

Other CIS
mean walking distance between charging stations, neighboring charging infrastructure in
willing to walk distance, number of chargers weighted by hexagon distance, sum of other
charging points in 500 m radius

POI attractivity index, number of POI in 200 m radius, area of surface, sum of POI in 500 m
radius, number of visitors

Parking Situation
average parking prices for daily paid parking, candidate site is parking garage, capacity of
parking, number of cars parked during day/night at thoroughfare parking and in parking
lots, number of parking places, available at candidate site

Residential Population

population density, number of households without garages, number of vehicles per sqkm,
population in 250 m Hexagon, number of households with two cars, number of high income
households, population density in 100 × 100 m cell, number of resident BEV in census block,
population in 250 m hexagon, number of inhabitants, number of registered residents, main
residential building type in 250m hexagon, sum of residents in 200 m radius, average income
in 200m radius, number of cars, population in area × BEV penetration rate

Safety –

Surrounding Street Network transit access and network connectivity

Traffic Flow number of unique users

Visibility –

Working Population employment density, student density, number of employee-owned BEV in census block,
number of employees

3.4. Charging Site Evaluation Framework: Conclusions

Section 2 and Table 4 both demonstrate the variety of previous studies on PEVCI
planning. The analysis of this paper and the resulting proposal of core aspects and lines of
argumentation can serve as a basis toward a catalog of demand related influencing factors.
With respect to practical applicability, there are two required extensions. The list of core
aspects focuses on demand-related influencing factors. In the future, it should be expanded
with other important planning factors such as connectivity to the grid or economic viability.
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Furthermore, a set of core aspects cannot be directly used for planning purposes. Instead,
standardized, quantitative metrics for all influencing factors are required for automatizing
the evaluation of possible charging sites. Currently, there is little knowledge about the
correlation of core aspects and the actual usage of charging infrastructure, because BEV
charging is still ramping up and the previously built PEVCI was established considering
only a subset of mentioned core aspects. Consequently, Section 4 uses a set of metrics to
assess the applicability of influencing factors for PEVCI evaluation in a case study of the
city of Hamburg.

4. Hamburg Case Study
4.1. Introduction

A case study of the city of Hamburg serves to analyze the presumed correlation of the
identified influencing factors, represented by their core aspects from the literature review,
with observed charging station utilization based on a real-life example. Two components
are needed for this analysis: the actual utilization of existing chargers and an evaluation of
metrics associated with the demand influencing core aspects for each charging location in
the usage data set.

In the following, Section 4.2 provides a list of metrics used to estimate the charging
demand at charging sites, while Section 4.3 introduces the real life charging data set from
the city of Hamburg. Finally, Section 4.4 evaluates the character and degree of correlation
between metrics and usage data in order to arrive at a conclusion regarding the applicability
of the identified influencing factors, core aspects, and metrics to the estimation of charging
demand at candidate sites for public charging. The data sets used and described in
the following sections are available at https://github.com/TUMFTM/Hamburg-Public-
Charging-Station-Utilization (accessed on 20 February 2022).

4.2. Spatial Data and Metrics

In order to derive a set of evaluation metrics for the estimation of charging demand, we
build upon the presented literature review from Section 3. To this end, the most relevant and
potentially measurable core aspects constitute a starting point for the derivation of metrics.
Table 1 reflects the most prominent core aspects from the literature review. The most
frequently named core aspects are Residential Population, POI, Parking Situation, Surrounding
Street Network, Traffic Flow, Coverage, Dwell Characteristics, and Other CIS. Manifold factors
have been identified as possible influences on the local charging demand for each of these
core aspects as indicated in Table 3. Not all of these influencing factors appear to be
measurable within the scope of this paper and on the whole area of a city. Some because
required input data is not available, like on-street parking facilities or a comprehensive data
set on traffic flows, some because they are unavailable on a sufficient spatial resolution, like
detailed information on the extended socio-demographics of the residential population.
The latter could potentially be imputed by the disaggregation of available data on the
district level. Such imputations, however, escape the scope of this work due to the induced
complexity and the added uncertainties.

Table 6 lists the metrics used in this case study to evaluate charging station sites.
The metrics are chosen to reflect the most prominent core aspects and represent different
argumentation codes, depending on their design. All lines of argumentation except for
Access Restrictions and Public Transport are represented by the metrics. In this case study,
only public chargers with 24/7 availability are analyzed. Furthermore, possible access
restrictions are not a matter of candidate site location, but of the charge point operator’s
policies, which are outside the scope of this work. The consideration of public transport in
the assessment of a charging station’s presumed charging demand is mainly reflected in
the Connectivity to Public Transport core aspect. This aspect is of minor importance and has
thus been left out.

https://github.com/TUMFTM/Hamburg-Public-Charging-Station-Utilization
https://github.com/TUMFTM/Hamburg-Public-Charging-Station-Utilization
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Table 6. Derived metrics for the Hamburg case study. OSM: Open Street Maps; OSRM: Open Source
Routing Machine; OD HH: OpenData Hamburg.

Core Aspect Represented Metric Remark Data
Argumentation Codes Source

Residential Population AcHo
Population: No. of
residents (500 m

radius)
– Census [63]

POI AcPOI, QuAt POI: Type-specific POI
counts (300 m radius) – OSM [64]

Parking Situation – –

Location and
capacity of

on-street parking
unavailable

–

Surrounding Street Network QuRe
Reachability: Area of 3
min driving isochrone

around coordinate
– OSM [64]

Traffic Flow – – Traffic flow data
unavailable –

Coverage AvCo, QuRed
Catchment Area: Area
of associated Voronoi

cell
– OD HH [65]

Dwell Characteristics AcPOI, AcWo
Business Area Share:

Share of business area
(500 m radius)

– OD HH [66]

Other CIS AvCo, QuRed
Other CP: No. of

competing CP (500 m
radius)

– OD HH [65]

Three different kinds of metrics are employed: counts, area shares, and area sizes.
For most of them, accepted walking distances serve as thresholds to determine reference
values, as walking distances between the place of activity and available parking spots
determine the willingness of users to consider a parking spot (or charger) in question.
Acceptable walking distances are known to differ for different activities [67]. The majority
of people is willing to accept walking distances of up to 500 m. Within this bracket, longer
walking distances are acceptable for longer staying periods while shorter distances are
preferred for short term activities. Thus, we set two different analysis thresholds: 500 m for
residential parking as well as the consideration of alternative charging points, and 300 m for
general POI. Moreover, the 500 m threshold is also used for the calculation of the business
area share, around each charging site. Reachability of a charging site is determined by
measuring the area of a three minute driving isochrone around the charger. This isochrone
is large for dense street networks with many intersections and high-speed roads, and
shrinks for locations with a bad infrastructural connection. Finally, the catchment size of a
charger is defined as the area of the Voronoi Cell associated with the charging station in the
network of all charging stations. It measures the area for which the charger in question is
the closest charger. This measure increases as the density of chargers in an area decreases
and vice versa. Figure 5 visualizes the described metrics and input data sets to foster an
understanding of the calculation process. Each subfigure shows an orange circle, which has
a radius of 500 m as a size reference. One can see that the population data set, taken from
the German census 2011 [63], takes the form of a 100 m by 100 m lattice, indicating the sum
of inhabitants for each cell of the grid. To determine the amount of residents in the vicinity
of a charging station, the sum of all population points within a 500 m radius is considered.
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Similarly, POI, and competing chargers are counted in their respective catchments based
on data from Open Street Maps, taken from the Geofabrik download server [64], and the
charger locations from the open data portal of the city of Hamburg [65]. The share of
business area around each location is calculated within a 500 m radius using land use data
from the city of Hamburg [66]. Three minute driving isochrones are calculated using the
Open Source Routing Machine (OSRM—[68]) and OSM as input data.

Figure 5. Visualization of metrics used in the case study. Orange circles serve as a size reference
(500 m radius each).

4.3. Charging Data Set

This section introduces and describes a real-world charging data set from the city of
Hamburg. It includes connection data from 1023 public chargers at 475 individual locations,
including normal and fast chargers. All chargers are operated by the local energy grid
operator "Stromnetz Hamburg", the largest provider of public charging infrastructure in
Hamburg. Hence, we consider the charging data set at hand to be representative of the
general charging behavior at public charging stations in Hamburg. Furthermore, due to
the relatively advanced development of electromobility and public charging infrastructure
in Hamburg, we also consider the data set to be exemplary for larger European cities in
general. A continuous data feed of Hamburg’s charging infrastructure is publicly available
at [65]. To build a basis for the following analysis, the data feed is retrieved from the
internet and stored in a local data base.

Figure 6 depicts a map of the city of Hamburg, consisting of 104 city districts. The
locations of the analyzed charging stations are marked on the map. A majority of the
charging stations is located in the center-most parts of the city, which can be identified by a
gray background color. A considerable proportion also focuses around two local centers to
the west and south of the city, namely, Bergedorf and Harburg. The rest of the chargers are
scattered in the suburbs north of the river Elbe.
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Figure 6. Hamburg charging stations.

The following sections describe the preparation of the charging data set. Firstly, all
necessary pre-processing steps are presented in Section 4.3.1. Secondly, an exploratory
analysis of the data set reveals first insights into usage patterns (Section 4.3.2). Lastly,
Section 4.4 analyzes the correlations between the spatial metrics from the first part of this
work and the objective utilization of charge points taken from the charging data set.

4.3.1. Pre-Processing

First, the data set is filtered and cleaned to make sure that it is as descriptive and
unbiased as possible. To this end, we exclusively use data which was recorded between
6 February 2020 (included) and 5 March 2020 (excluded), although the charging data set
contains more recent data. Before this period, the data set shows inconsistencies between
the recorded timestamps. After 5 March 2020, records are affected by the Corona pandemic,
which has a large impact on mobility and charging behavior. The end of the period is also
chosen to reflect four whole weeks, such that each weekday is equally weighted in the study
data set. Furthermore, fast charging stations (>22 kW) and charging stations which contain
at least one fast charging point are removed from the data set because of the fundamental
differences in usage patterns, pricing, and regulations between normal and fast charging
modes. Furthermore, fast charging points in Hamburg are often realized by combining
a Type 2, CCS, and CHAdeMO plug into one charging pole. In this setup, however, the
installed hardware does not allow both fast charging plugs to be used at the same time and
usually only two parking spots are reserved for the three plugs skewing and biasing the
data. The remaining raw data is transformed from a list of state observations to a list of
charging processes. The Hamburg charging data set in its original form supplies a list of
sensor values for each charging point of the infrastructure. A first data analysis reveals that
sensor values are not only updated on change, but also polled frequently and furthermore
recorded in additional, non-equidistant intervals. Hence, repetitions of unchanged sensor
states are removed from the study data set under the assumptions that no sensor state
changes are missing from the data set and all relevant information is retained without
state repetition. Finally, the data set of charging processes is generated by translating the
list of state changes to a list of charging processes by matching state changes in pairs and
propagating sensor states back in time. Charging processes of under 5 min that can be
caused by aborted charging processes or the misuse of charging infrastructure for short
term parking are removed from the data set. On the other end of the spectrum, we omit
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charging processes exceeding 48 h, which we consider to be outliers that do not reflect
regular charging demand.

4.3.2. Exploratory Data Analysis

After data pre-processing, an exploratory data analysis gives a first indication of the
spatiotemporal charging demand in the city of Hamburg during the observation period. To
access this demand, we evaluate the following performance indicators of the infrastructure:

• Occupancy: the share of occupied chargers at a given time.
• Connection ratio: the proportion of time a charger is occupied.
• Daily transactions: the number of transactions per charging station and day.
• Duration: the duration of a transaction.

Figure 7 provides an overview of the final study data set regarding the aforementioned
performance indicators without any spatial differentiation of the chargers. The occupancy
of the whole charging infrastructure in Hamburg varies only in a narrow band between 14%
and 22%. On weekdays (Monday to Friday), occupancy fluctuates in a 4% corridor between
approximately 18% and 22%, while Saturdays and Sundays exhibit a broader occupancy
spectrum. On weekdays, occupancy peaks overnight, during working hours before noon,
and in the evening at around 7 p.m. Due to the overall small band of fluctuation, weekday
occupancy peaks are not as prominent as those on Saturdays and Sundays. On Saturdays,
more pronounced peaks can be found around midday and in the evening. Overnight
occupancy shows a significant drop in comparison to weekdays. Sunday occupancies are
similar to their respective counterparts on Saturdays until noon, before they peak at around
2 p.m. and then closely resemble weekday charging processes from 6 p.m. onward. Because
of the clear difference in usage behaviors between weekdays, Saturdays, and Sundays, all
subsequent figures and analyses differentiate between these day types. The connection
ratio reveals that most of the charging points are utilized between just under 10% and
25% of the available time. That is approximately 2.5 to 6 h a day. In this statistic, no clear
differentiation between weekdays, Saturdays, and Sundays can be made. Looking at the
number of transactions per charging location and day, it can be seen that most charging
stations fall in an interval of 0.5 to 2.5 transactions per day. There are slightly less charging
transactions on Saturdays and Sundays. Typical transaction durations lie between 3 and 9 h
with longer connections on the weekend. It is to be noted that most of the analyzed charging
points have a maximum parking limit of 2 h between 9 a.m. and 8 p.m. on weekdays
and Saturdays. Outside of these times, unlimited parking and charging is possible, which
serves as an explanation for longer durations on Sundays.

Figure 7. Overview of the general charging station usage in Hamburg.
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A first look at the spatial characteristics of BEV charging is provided by Figure 8.
In both subfigures, only the most central districts of Hamburg are shown (gray area in
Figure 6) for the sake of simplicity. The left subfigure depicts the quantiles of transaction
durations at charging stations in four different shades of green, whereas on the right, the
quantiles of the number of transactions per charging stations are encoded in shades of
red. It is striking that charging stations close to the shopping mile, which is located in the
center-most city districts experience the shortest and most connections. To further analyze
the connection between spatial metrics and charging station utilization, the following
section investigates the relation between the spatial metrics introduced in Section 4.2 and
the presented performance indicators (occupancy, connection ratio, number of transactions,
and duration in hours).

Figure 8. Overview of the spatial utilization of public chargers in Hamburg. Left: duration per
transaction and charging station (quantiles); Right: number of transactions per charging station
(quantiles).

4.4. Correlations of Spatial Metrics and Charge Point Usage

In order to investigate the correlations between the spatial metrics introduced in
Section 4.2 and the infrastructure performance indicators from Section 4.3.2, all metrics are
evaluated for each of the charging stations. Subsequently, a clustering of charging stations
by their associated metrics is performed to reveal potential groups of charging stations with
similar characteristics in their spatial surroundings. Using a k-means clustering approach
under varying values for the number of clusters k, four clusters are identified to best
segment the data. A subsequent interpretation of the identified clusters shows that it
is possible to describe the four clusters by the predominant spatial context the clusters
appear in. Figure 9 shows the resulting clusters of charging stations with meaningful names
assigned: Suburbs (SU), Urban Residental (UR), City Center (CC), and Working Area (WA).

Figure 10 characterizes these cluster types by an excerpt of the evaluated metrics:
the Suburbs cluster comprises charging stations with a medium number of residents, few
surrounding charging stations, large catchment areas, slightly reduced reachability, few
POI, and the lowest share of business areas. The Urban Residential cluster describes charging
stations with a lot of neighboring residents, many competing charging stations leading to
small individual catchment areas, good reachability, a considerable amount of POI, as well
as a low share of business areas. The population around City Center stations is comparable
to Suburb stations. Stations in the City Center cluster are similar to Urban Residential locations
with regard to other charging points, catchment areas, and reachability but stand out from
all other clusters by the high number of POI around them. City Center stations are also close
to business areas. Lastly, Working Area locations are among those with the lowest number
of residents, and other charging points in comparison to other clusters. In contrast to City
Center locations, they serve a lot of business area while being adjacent to few POI.
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Figure 9. Clustered charging stations of the study region.

Figure 10. Characteristics of the identified charging station clusters.

The clustering of charging stations regarding their spatial surroundings reveals groups
of similar charging stations that may exhibit characteristic charging behavior, if the used
metrics are significant for the utilization of charging stations.

In order to investigate the relationship between spatial metrics and charging station
utilization, connection ratio, number of transactions, and connection durations are plotted
separately for each cluster of charging stations in Figure 11. Few differences between the
performance indicators of charging stations in different clusters can be observed both in
typical and extreme values across all day types. Consequently, the same applies to the
difference between each individual cluster and the total charging infrastructure (Figure 7).
Furthermore, existing differences between the medians of the performance indicators across
clusters are small in comparison to the variance within a cluster, indicating that charger
performance in absolute terms cannot be determined by the used metrics.

The only exception to this uniformity is the already known higher number of transac-
tions in the city center, with corresponding shorter connection times.
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Figure 11. Usage indicators per cluster.

While the absolute utilization of charging stations cannot be explained by the metrics
derived from our literature study, Figure 12 proves clear and significant differences in the
timely charging behavior at stations of different clusters. The figure is divided into three
subfigures, one for each day type (weekday, Saturday, Sunday). It shows both the line
of median occupancies, and the 5% and 95% percentile of daily occupancies to give an
indication of the fluctuation between different days and weeks. Looking at weekdays,
Working Area and City Center charging stations experience similar utilization with large
fluctuations of about 10% of occupied chargers overnight to nearly 40% during work hours.
Urban Residential and Suburb chargers on the other hand are more evenly occupied during
the day with 10% fluctuations at Urban Residential stations, which are mostly occupied in
the evening and overnight, and below 5% fluctuations at Suburb chargers, which shows
a qualitatively similar time behavior to Urban Residential chargers. The differences across
different clusters are evidently larger than the fluctuations between different days of the
week and different weeks as can be seen by a visual comparison of the errorbands and
occupancy graphs. While City Center and Working Area chargers are utilized similarly
on weekdays, their occupancy on Saturdays differs. As expected, City Center occupancy
remains high during the day on Saturdays, while Working Area utilization plummets to
occupancies below 20% for most part of the day. The same applies to occupancy curves
of the Suburbs and Urban Residential clusters which are much flatter on Saturdays than on
weekdays. Urban Residential chargers are occupied more often than Suburb charging points
and show a distinctive accumulation of transactions in the evening between 6 and 9 p.m.
on Saturdays, leading to an increase of about 5% occupancy. Large differences between
the 5% and 95% occupancy percentile can be observed before 9 a.m. on Saturdays for all
clusters. This indicates that there are significant differences in Saturday morning charging
infrastructure utilization across Saturdays of different weeks or across different charging
points within the same cluster. City Center, Working Area, and Suburb charging stations
are used almost equally often during Sundays. Chargers within these clusters are most
used in the early afternoon between noon and 3 p.m. with up to 30% of occupied chargers.
Urban Residential charging points are increasingly occupied during the course of the day. At
midnight, 25% of the chargers are occupied for overnight charging, which is in line with
typical weekday occupancies at that time.

Summarizing the insights provided by Figure 12, it can be said that while average
daily performance indicators hardly differ between different clusters as seen in Figure 7,
occupancy times and amounts of fluctuations vary widely between different station clusters.
This applies to both occupancy fluctuation during the course of a day and such across
different weekdays. Each cluster type can be characterized by a unique set of typical
occupancy curves for weekdays, Saturdays, and Sundays.
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Figure 12. Occupancy per cluster, time, and day type.

Figure 12 offers insights into the amounts of taken charging points over time. Adding
to these insights, Figure 13 reveals the character of individual transactions by picturing the
distribution of transaction durations for different start time intervals across all possible com-
binations of day types and station clusters. When looking at the distribution of connection
durations on weekdays and Saturdays, one finds that for many start time intervals median
values lie close to 2 h. This is the allowed maximum parking duration at public chargers in
Hamburg between 9 a.m. and 8 p.m., indicating that approximately half of the transactions
respect the charging policy as issued by the charge point operator. Nevertheless, more than
50% of transactions are in excess of the 2 h mark and some exceed it by more than 10 h. For
every day type and any cluster, growing connection durations can be observed outside
the 2 h policy interval. As expected, overnight charging, starting in the evening, results in
the longest transactions. Generally, there are only few differences across the clusters on
weekdays and Saturdays. On Saturdays, however, shorter connection times and smaller
variances are present within the City Center cluster in contrast to the other clusters. Another
difference lies in the typical lower bound of connection durations in the evening: Urban
Residential chargers exhibit only few connections that are shorter than 7 h for all day types.
In contrast, Suburban, Working Area, and City Center chargers are frequently used for shorter
connection sessions in the evening. Seeing the fact that a clustering in the spatial metrics
domain corresponds to a distinct differentiation regarding usage profiles, it can be assumed
that the employed metrics are usable to estimate usage characteristics at charging stations
and at potential candidate sites for new charging stations.
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Figure 13. Connection durations per cluster, day type, and start time interval.

5. Summary

The first part of this paper analyzed and structured publications on the topic of PEVCI
placement while focusing on the pre-existing usage of placement criteria, presented in
Section 2. The review showed that there is a high variety of influencing factors, and a
discrepancy of used terms. Furthermore, almost all reviewed studies apply a different set
of influencing factors. The goal of the literature analysis was to derive influencing factors
and respective metrics that allow for an automated assessment of potential site for new
PEVCI. To this end, in Section 3, we structured the problem domain of PEVCI placement,
and compiled a list of influencing factors that can affect BEV charging demand at candidate
stations based on the literature body. In addition, influencing factors were clustered into
core aspects to reduce the number of unique terms for similar influencing factors and to
generalize and emphasize the aspects which have to be considered when setting up new
charging points. We derived lines of argumentation to explain the underlying effects on the
charging demand as well as the rationales behind each core aspect. Finally, we summarized
the literature body’s metrics used to quantify the influencing factors.

In the second part of this contribution, we conducted a case study, as shown in
Section 4, which analyzed the correlation between influencing factors and charger utiliza-
tion based on real life data from the city of Hamburg. To this end, a set of metrics measuring
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the most prominently named core aspects from the literature review was established and
the existing PEVCI of the city of Hamburg was evaluated with regards to these metrics.
Subsequently, a clustering of the existing charging sites by their metrics revealed four
distinct clusters among the charging sites which are characterized by unique combinations
of spatial traits and were therefore named Suburbs, Urban Residential, City Center, and
Working Area. In order to assess the presumed relationship between metric clusters and
charger utilization, a data set of occupancy states of the considered chargers was prepared
in Section 4.3. An exploratory data analysis revealed clear differences between charging
profiles on weekdays, Saturdays, and Sundays, indicating the importance of analyzing
charging behavior separately for each day type. With regard to the aggregated PEVCI
performance factors connection ratio, daily transactions, and duration, the four clusters did
not exhibit significant differences. The difference between the clusters’ mean performance
factors are lower than their variance within one cluster. While no correlation between
the mean values of charger utilization and the spatial characteristics of the chargers were
found, the four clusters presented with distinct occupancy profiles over the course of a day
(Figure 12) indicating characteristic charging behaviors in different spatial environment
types. Hence, we conclude that the identified influencing factors can support the PEVCI
deployment by estimating usage characteristics of candidate sites in an automated way.

6. Discussion

While the previous sections have already presented our results, this section serves to
critically discuss their validity, possible applicability, and limitations as well as to compare
them with similar works. Regarding the literature review, there are no publications with
contrary or supporting results, because—to the best of our knowledge—this work provides
the first comprehensive and structured overview of influencing factors on charging demand.
Moreover, the presented influencing factors are directly taken from the literature and are
thus not in conflict with the cited works. Nevertheless, the formulation of influencing
factors and the means by which we extracted them especially from literature that only
implicitly contains such factors as well as the grouping of influencing factors into core
aspects is subject to our phrasing and interpretation. Additionally, the literature survey is
clearly limited by our focus on static, demand-oriented influencing factors and by the fact
that no explicit analysis of the influencing strength and direction was conducted. The latter
limitation is mitigated in parts by the derivation of lines of argumentation which help ex-
perts to analyze influencing strengths and directions for their use cases. Regarding the focus
on demand-oriented influencing factors, it is to be noted that real placement processes may
also depend on a much wider collection of influencing factors. Considerations of practical,
organizational, economic, and technical feasibility are known to influence charging station
placement as much as the presented demand oriented considerations [13–17,34,40,49]. Ad-
ditionally, known aspects of ecological sustainability, strategic placement, and socio-politics
have been spared out by this analysis. As a result, the list of influencing factors, core aspects,
metrics, and lines of argumentation as well as the analysis of their linkages may help to
guide decision-makers and researchers through the process of charging station placement,
optimization, and demand estimation by a clarification and structuring of the domain.
However, the results of the work at hand will not yet provide an optimal placement strategy
or demand estimation by itself, it merely helps to develop better and more comprehensive
estimations in the future.

The presented case study describes the Hamburg PEVCI regarding its performance
indicators in great detail. Therefore, it adds to the limited set of real-life data assessments
on the matter and thus provides a valuable addition to the existing literature base. The
open source data set, which has been generated from publicly available data can be used
by other researchers and businesses in the future. Our results regarding occupancies,
daily transactions, connection ratios, and connection durations fall in line with current
assessments of other PEVCI [48,69] both on average and in terms of the timely charging
behavior. Due to the insignificant differences in mean performance indicators among the
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identified clusters, we reasoned that it is momentarily impossible to reliably predict the
absolute occupancy of charging sites by evaluating spatial, demand-related metrics. While
this claim can hardly be generalized looking at a single case study and one set of metrics
that does not even cover all core aspects, let alone influencing factors named in this work,
there is strong evidence that it is indeed the case that site-specific occupancies cannot yet
be forecasted successfully. For instance, Straka et al. [61] perform a statistically advanced
regression analysis on the consumed energy at charging stations considering a broad range
of spatial and socio-demographic influencing factors. The obtained standardized regression
coefficients remain mostly inconclusive with many small, zero-valued or zero-spanning
coefficients despite their elaborated methodology. In a smaller scope, Straka et al. [60]
aimed to predict whether a charging site belongs to the top tier category of chargers
regarding utilization. While this classification yielded promising results, the authors
conclude that planning decisions solely based on such methodology are not justified. In
addition to these literature references, some analytical considerations further substantiate
the hypothesis that charging performance indicators cannot yet be predicted. In particular,
non-demand oriented influencing factors, the complexity of the system dynamic both
in time and in space, the ongoing roll-out of PEVCI, changes in technical specifications
like charging speeds and vehicle ranges, site-specific circumstances, as well as growing
penetration rates in the BEV sector are presumably more determinant of a specific charger’s
performance than spatial metrics alone.

An interesting difference between the work of Friese et al. [48] and this contribution is
given by the complementing approaches of the respective authors. While our contribution
first identifies a large set of possible influencing factors on the charging demand and
then clusters existing charging stations by the associated spatial metrics to arrive at the
conclusion that different spatial characteristics induce different usage behaviors, Friese et al.
first cluster usage behaviors and then formulate a classification problem which links the
identified usage clusters with spatial metrics. It is striking that Friese et al. also arrive at
four distinct usage clusters and that their usage clusters and the corresponding spatial
classification match our findings. This alludes to the fact that spatial metrics are indeed
inextricably linked to certain usage patterns no matter from which side one analyses the
problem. It is furthermore promising that Friese et al. conducted their analysis in the city
of Munich substantiating the hope that the presented findings of our respective studies are
generalizable to some extend.

Albeit all arguments for the validity of the presented results, a clear and undisputed
limitation of this case study is the fact that only connection data is available. Information
on the amount of transferred energy per charging session is lacking. Hence, it is not
possible to analyze charging times in contrast to connection times, and while there may
be further links between the suggested metrics and these variables, detailed analysis are
rendered impossible.

Last but not least, a limitation of the presented case study lies in the chicken–egg
relation of charging demand and supply: the observed charging demand at existing sta-
tions does not necessarily match user preferences perfectly, because users will inevitably
realize their charging demand at places where chargers are available. Unfulfilled charging
demands can thus not be observed in the spatial surroundings they appear in and conse-
quently elude analysis. The observed charging demand at existing chargers is thus only an
approximation of the real charging demand which may or may not coincide with spatial
influencing factors more or less closely. Existing chargers have often been placed based on
demand-oriented influencing factors through the adherence to practical guidelines. Hence,
it is to some extend a self-fulfilling prophecy that presumed influencing factors result in
realized charging demand. These potential limitations of the study at hand is mitigated
first and foremost by the large number of chargers already available in the study region.
With over 1000 chargers at nearly 500 charging sites, a sufficient spatial resolution of the
charging demand can be assumed. It is therefore unlikely that actual user preferences are
entirely different from the observed charging behavior.
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Building on the critical reception presented in this section, further research directions
can be identified: the catalogue of demand-oriented influencing factors has to be comple-
mented by all factors relevant to the choice of a charging station. Moreover, the relative
weighting of influencing factors should be studied. Analyses similar to this one should be
conducted in other study areas with different degrees of maturity regarding electromobility
to further refine and substantiate the findings of this and similar contributions.
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