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Abstract

Electronic and optical excitations in solid-state materials determine the properties of a material. A precise
understanding is therefore essential for developing novel applications and improving the performance of
many (opto-)electronic devices. In this dissertation, we mainly focus on three aspects that are relevant for
applied and fundamental research. The first aspect is the effect of electron-phonon coupling on charge
transport, which is illustrated using the example of organic molecular crystals, where the effect is partic-
ularly strong. The second aspect concerns the structure-property relationship of the electronic structure,
which is important for material selection. It is particularly crucial for covalent organic frameworks, which
is a class of organic materials where different molecular building blocks are combined into a single crystal
structure. They show a remarkably high flexibility in combining various different chemical structures, which
increases the need for precise understanding and predictions. The third aspect addresses the efficient
calculation of optical properties. Such properties are computationally expensive, as they require a quan-
tum many-body description that cannot be simplified by an effective single-particle approach. In all these
cases, we show that a localized real-space basis, which can consist of either (symmetrized) molecular
orbitals or, equivalently, maximally localized Wannier functions, enables calculations with superior per-
formance while being chemically intuitive. With this real-space approach it is possible to implement the
coupling to low-frequency phonon modes as vibrational disorder and to analyze the electronic properties
of the π-system and aromaticity in detail. Furthermore, we show that the exciton Hamiltonian becomes
very sparse within a basis of maximally localized Wannier functions, which allows a very efficient calcu-
lation of optical properties. We demonstrate that this approach scales linearly with system size, which
is a remarkable improvement over other established approaches. With this newly developed method we
therefore envision optical calculations even for large system which have been too costly before.
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Zusammenfassung

Elektronische und optische Anregungen in Festkörpermaterialien bestimmen deren Eigenschaften. Ein
genaues Verständnis ist daher für die Entwicklung neuer Anwendungen und Leistungsverbesserungen
zahlreicher (opto-)elektronischer Bauelemente unerlässlich. In dieser Dissertation konzentrieren wir uns
auf drei Aspekte, die sowohl für angewandte als auch Grundlagenforschung relevant sind. Der erste Aspekt
ist die Auswirkung der Elektron-Phonon-Kopplung auf den Ladungstransport, die am Beispiel von organi-
schen Molekülkristallen veranschaulicht wird, wo der Effekt besonders stark ist. Der zweite Aspekt betrifft
die Struktur-Eigenschafts-Beziehung der elektronischen Struktur, die für die Materialauswahl entscheidend
ist. Dies ist besonders wichtig für kovalent-organische Gerüststrukturen, eine Klasse von organischen Ma-
terialien, bei denen verschiedene molekulare Bausteine in einer gemeinsamen Kristallstruktur kombiniert
werden. Sie weisen eine bemerkenswert hohe Flexibilität bei der Kombination verschiedener chemischer
Strukturen auf, was ein präzises Verständnis und Vorhersagen erforderlich macht. Der dritte Aspekt ist
die effiziente Berechnung von optischen Eigenschaften. Solche Eigenschaften sind sehr rechenintensiv,
da sie eine Quanten-Mehrteilchen-Beschreibung erfordern, die nicht durch einen effektiven Ein-Teilchen-
Ansatz vereinfacht werden kann. In all diesen Fällen zeigen wir, dass eine Basis aus lokalisierten Funktio-
nen, die entweder aus (symmetrisierten) Molekülorbitalen oder, äquivalent dazu, aus maximal lokalisierten
Wannier-Funktionen bestehen kann, Berechnungen mit überragender Performance ermöglicht und gleich-
zeitig chemisch intuitiv ist. Mit diesem Realraum-Ansatz ist es möglich, die Kopplung an niederfrequente
Phononmoden als Unordnung zu implementieren und die elektronischen Eigenschaften des π-Systems
und die Aromatizität im Detail zu analysieren. Darüber hinaus zeigen wir, dass der Exciton-Hamiltonian
in der Basis von maximal lokalisierten Wannier-Funktionen sehr dünn besetzt ist, was eine sehr effiziente
Berechnung optischer Eigenschaften ermöglicht. Wir zeigen, dass dieser Ansatz linear mit der Systemgrö-
ße skaliert, was eine bemerkenswerte Verbesserung gegenüber anderen etablierten Ansätzen darstellt.
Mit dieser neu entwickelten Methode sind optische Berechnungen auch für große Systeme denkbar, die
bisher zu rechenaufwändig waren.
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1 Introduction

The properties of a material often result from microscopic interactions and quantum behavior of electrons
and nuclei. For example, optical properties of a material, such as its ability to absorb or reflect light, are
closely related to the behavior of bound electron-hole pairs, called excitons, which must be described
quantum mechanically. [1, 2, 3] Also other properties, such as electrical conductivity, depend strongly
on the delocalization and energies of charge carriers and their interaction with lattice vibrations. It is
quite remarkable that such microscopic processes, which typically take place at length scales of around
10−10 meter and time scales of 10−15 seconds, lead to macroscopic properties that can be experienced
in every day life. To understand material properties it is therefore important to understand the occurring
processes on a quantum scale. Such an understanding of material properties is extremely beneficial. One
example where this becomes obvious is the field of organic electronics [4, 5] and optoelectronic devices,
like field-effect transistors [6, 7], organic light-emitting diodes [8], organic solar cells [9, 10] or organic
sensors [11]. For all these devices the performance depends to a large extent on the chosen materials.
The search for suitable high-performance materials is therefore of central importance and has been, and
continues to be, a major challenge. As a result, advances in material selection and purification techniques
have led to vast improvements in device performance and commercial products are now available.

It is reasonable to believe that this trend will continue in the future, since the number of materials that are
available is huge and the number of materials that could be synthesized is even larger. In addition, devel-
opments in synthesis have also led to new material classes like covalent organic frameworks. [12, 13, 14]
These are crystalline 2D and 3D polymers which consist of organic molecular building blocks that can be
tailored as desired. [15, 16, 17] They are considered to have a huge potential for applications because
they have an ordered long-range structure [18] and at the same time are light and flexible like thin films of
organic molecules. It is believed that those materials can achieve improved performance for many applica-
tions, if the corresponding building units are chosen appropriately. In addition, combinations of materials,
e.g., in blends, interfaces, or by doping, allow for further device variations. This creates enormous potential
for improvement and innovation, but also requires a detailed theoretical understanding of the underlying
quantum processes. Theoretical approaches can help in rationalizing trends, explaining results and thus
supplementing experimental efforts by providing additional insights that cannot be obtained otherwise.
Furthermore, it is possible to guide material selection by predicting material properties even for materials
that have not been synthesized yet. This requires a sufficient theoretical model and efficient numerical
approaches that allow accurate computation of large systems with hundreds or thousands of atoms.

The goal of this work is to develop new approaches to model and evaluate organic and inorganic semi-
conductors and therefore push the boundaries towards better descriptions and larger system sizes. For
this, we focus on three aspects that are relevant for modern applications. The first one is the coupling
of electronic and vibrational degrees of freedom, known as electron-phonon coupling, and its impact on
the electrical conductivity of materials. It has a particularly strong effect between organic molecules that
are bound with weak van-der-Waals interaction, such as organic molecular crystals. This makes these
materials ideal test systems. The second aspect is the π-conjugation and electronic coupling of different
molecular building blocks within a covalent organic framework. This is particularly important for choosing
optimal building blocks and tailoring the electronic structure towards specific needs. The third aspect are
optical excitations and bounded electron-hole pairs that are important for calculating optical absorption
and reflection spectra. Here, a new method is developed that is able to calculate optical properties very
efficiently. It scales linearly with the system size and is therefore able to evaluate very large systems that
are not accessible with other techniques.

For all our investigations we use localized real space orbitals as basis functions. These are either
molecular orbitals in the case of organic molecular crystals or maximally localized Wannier functions in
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the case of covalently bonded crystals. The description obtained in this way is particularly well suited,
since breaking of translational symmetry, e.g., when considering disorder or electron-phonon coupling, can
easily be included. Moreover, we show that the resulting Hamiltonians become very sparse, which can be
exploited to achieve excellent performance, e.g., compared to a common used plane-wave descriptions.

This thesis is structured as follows. First, we will introduce linear response theory, which forms the basis
for evaluating the electrical conductivity and linear optical properties which we are interested in. This also
provides the connection to classical physics and experiment, which might be helpful for understanding. In
chapter 3, we will give an overview of the common methods to calculate the electronic structure, such as
density functional theory, the Green’s functions approach, and sketch the derivation of the exciton Hamil-
tonian, which is the starting point for our optical calculations. Finally, chapters 4, 5 and 6 are dedicated to
the results which are provided in the form of peer-reviewed publications.
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2 Response to electromagnetic fields and link to
experiment

We want to start by describing the response of a quantum system to external fields and establish the
connection to experiments from the very beginning. We are specifically interested in charge transport
and optical excitations of semiconductors, which both result as a response to an electric field. From a
theoretical point of view, those quantities can be calculated using the framework of linear response theory
[19, 20, 21, 22, 23], which allows to handle such properties quantum mechanically. The interaction with
external fields can be treated quite generally, which is why we do not need to make any assumptions about
the material or modeling of the electronic structure. This will be presented later in Chapter 3 using various
established methods. In the following we provide a brief summary of linear response theory. For further
details we recommend Ref. [21] and Ref. [23].

2.1 Linear response theory

Starting with the mathematical description, we assume an undisturbed quantum system which is described
by the Hamiltonian Ĥ0 and a time-dependent classical external field Vext(t) which is coupled to the system
through an operator Â. The resulting Hamiltonian for the perturbed system is then described by the
Hamiltonian

Ĥ = Ĥ0 − ÂVext(t). (2.1)

We furthermore assume that the field is not present at times t→ −∞ and is switched on adiabatically. For
the general formalism it is not important to specify Ĥ0, Â or the field explicitly. They will be chosen based
on the physical setting, which is provided in later sections.

The expectation value of an observable B̂ can be obtained from the density operator ρ̂ of the system by
〈B̂〉 = tr

{
ρ̂B̂
}

. Without any external field (t→ −∞), the system is in equilibrium and the density operator
is given by the (grand) canonical ensemble. To obtain the density operator for the perturbed system it is
useful to change to the interaction (Dirac) picture of quantum mechanics, which is more convenient when
considering perturbations. Within the interaction picture the equation of motion for the density operator is
then obtained as a von Neumann equation,

d

dt
ρ̂(t) = i

~
[ÂVext(t), ρ̂(t)], (2.2)

where only the coupling term from Eq. (2.1) appears in the commutator on the right-hand side. Please
note, that the overall sign is positive because the coupling term is negative. We can formally integrate and
iterate the expression and obtain

ρ̂(t) = ρ̂0 + i

~

∫ t

−∞
dt′ [Â(t′), ρ̂0]Vext(t′) +

(
i

~

)2 ∫ t

−∞
dt′
∫ t′

−∞
dt′′ [Â(t′), [Â(t′′), ρ̂0]]Vext(t′)Vext(t′′) + ...

≈ ρ̂0 + i

~

∫ t

−∞
dt′ [Â(t′), ρ̂0]Vext(t′). (2.3)

The iterated expression in the first line represents a power series with respect to Vext, which is an exact
expression. However, it is generally too complicated to solve. If we assume that the external perturbation is
sufficiently small compared to the unperturbed system, we can truncate the power series and approximate
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it to linear order, which is shown in the second line. Experience shows that this is often the dominant
contribution and is already sufficient to describe many physical phenomena. However, higher orders can
be added systematically if necessary and could lead, e.g., to non-linear optical phenomena such as second
harmonics generation. [24]

Using ρ̂(t) and the cyclic property of the trace, we can calculate the expectation values of any observ-
able,

〈B̂(t)〉 = tr
{
ρ̂(t)B̂(t)

}
= 〈B̂〉0 +

∫ +∞

−∞
dt′ χB,A(t, t′)Vext(t′), (2.4)

where 〈B̂〉0 = tr
{
ρ̂0B̂

}
is the expectation value of the unperturbed system and we have introduced the

retarded correlation function χB,A(t, t′) as

χB,A(t, t′) = i

~
Θ(t− t′)〈[B̂(t), Â(t′)]〉0. (2.5)

The linear response of a system can therefore be expressed as a correlation between two operators with
respect to the unperturbed system. The Heaviside function Θ(t − t′) guarantees the causality, i.e., the
response of the system can only happen after the field is applied. It is easy to show that the correlation
function only depends on the time difference χB,A(t, t′) = χB,A(t − t′), which follows directly from the
cyclic property of the trace. This suggests a Fourier transform of the expression and we obtain χB,A in the
spectral representation [21, 25],

χB,A(ω + iη) =
∫ ∞
−∞

d(t− t′)χB,A(t− t′)ei(ω+iη)t

= − 1
Z0

∑
mn

〈n|B̂|m〉〈m|Â|n〉
~ω + i~η + En − Em

(
e−βEn − e−βEm

)
. (2.6)

In this formula, |n〉 and |m〉 are eigenstates of the unperturbed system, and Z0 its partition function.
Em and En are the corresponding energies and β = 1/kBT is the inverse temperature. η is a positive
infinitesimal that ensures convergence of the integral and the boundary condition for t → −∞. The
resulting correlation function χB,A is analytical in the complex upper half plane. [3] From Eq. (2.6) we can
see that it has poles at the excitation energies of the undisturbed system.

Having established the general linear response theory, we now turn to specific cases that are relevant
for this work.

2.2 Electrical conductivity

A very important application of linear response theory is the calculation of charge carrier transport and
electrical conductivity, which is also used later in chapter 4 for calculating charge transport in organic
molecular crystals. The electrical conductivity σ is defined by Ohm’s law as the proportionality factor
between electrical field F and current density j,

j(ω) = σ(ω)F (ω). (2.7)

For the calculation of the conductivity we start by coupling the electric field to the Hamiltonian. In
accordance with experiment, we assume an alternating electric field that is switched on adiabatically and
is constant in space F (t) = F 0e

−i(ω+iη)t. From this approach, we can also obtain the DC-conductivity
by taking the limit ω → 0, which we will use at the end. The coupling to the Hamiltonian is performed by
minimal coupling of the momentum operator and vector potential, i.e., by substituting p̂ → p̂ − e

cA(x̂, t),
where the vector potential A and scalar potential Φ corresponding to the electrical field can be chosen as

A(t) = −i c

ω + iη
F 0e

−i(ω+iη)t, Φ = 0. (2.8)
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We ignore the spin of the particles as they are irrelevant for longitudinal transport and express everything
in terms of the current density operator ĵ and number density operator n̂. The resulting Hamiltonian is
then obtained as [21]

Ĥ = Ĥ0 +
∫
d3x′

[
−1
c

ĵ(x′)A(x′, t)− e2

2mc2 n̂(x′)A2(x′, t)
]
. (2.9)

The first term of the coupling is similar to the general case Eq. (2.1). In this case we have the current
operator ĵ which describes a linear coupling to the external field, given by the vector potential A. The
second term is already proportional to A2 and therefore beyond linear response.

The current density operator ĵ is usually split into two parts ĵ = ĵ
(P) + ĵ

(D)
, a paramagnetic contribution

ĵ
(P)

and a diamagnetic contribution ĵ
(D)

. They can be obtained from the continuity equation for a system
with N electrons (or holes) and are given by [21]

ĵ
(P)(x) = e

2m

N∑
i=1

[p̂iδ(x− x̂i) + δ(x− x̂i)p̂i] , ĵ
(D)(x) = e2

mc
n̂(x)A(x, t), (2.10)

where p̂i and x̂i denote the momentum and position operators for every particle i respectively and the
number density operator n̂ is given by n̂(x) =

∑N
i=1 δ(x− x̂i). Without external field the current operator

would just consists of the paramagnetic contribution. The diamagnetic part emerges from the minimal
coupling procedure of the momentum operators.

Having established the coupling of our system to the external electric field we can now use the results
from the previous section to calculate the linear response of the current operator. Utilizing Eq. (2.4), we
obtain for the expectation value

〈ĵα(x, t)〉 = 〈ĵ(D)
α (x, t)〉+ 〈ĵ(P)

α (x, t)〉 (2.11)

= − e2

mc
〈n̂(x)〉0Aα(x, t) +

∫
d3x′

∫
dt′

−1
c

3∑
γ=1

χ
j(P)
α (x)j(P)

γ (x′)(t− t
′)Aγ(x′, t′)

 , (2.12)

where the retarded current-current correlation function is obtained from Eq. (2.5),

χ
j(P)
α j(P)

γ
(t− t′) = i

~
Θ(t− t′)〈[ĵ(P)

α (t), ĵ(P)
γ (t′)]〉0. (2.13)

Finally, to obtain Ohm’s law Eq. (2.7), we average the current density over a volume V and obtain
the measured quantity 〈j〉 = 1

V

∫
d3x 〈j(x)〉. Similarly, the average particle density is obtained as n =

1
V

∫
d3x 〈n(x)〉. Together with Eq. (2.8) we can rewrite everything in terms of Ohm’s law and identify the

conductivity tensor as

σαγ(ω + iη) = i
ne2

m(ω + iη)δαγ −
i

V (ω + iη)χj(P)
α j(P)

γ
(ω + iη), (2.14)

which is also known as the Kubo formula. [20, 21, 22] The first term describes the diamagnetic contri-
bution which only contributes to the diagonal of the conductivity tensor. The second term contains all
paramagnetic contributions, which is determined by the current-current correlation function in equilibrium
Eq. (2.13).

We are usually interested in the real part of the conductivity for the case where the field and current
density have the same direction, i.e., the diagonal elements of the tensor. In the case of an effective
single-particle Hamiltonian, we can use Eq. (2.6) and after a few manipulations we obtain [21]

Reσαα(ω) = π~
V

∫
dE

f(E)− f(E + ~ω)
~ω

tr
{
δ(E − Ĥ0)ĵ(P)

α δ(E + ~ω − Ĥ0)ĵ(P)
α

}
, (2.15)

where f(E) is the Fermi-Dirac distribution. By taking the static limit we finally obtain the DC-conductivity,

Reσαα(ω → 0) = π~
V

∫
dE

(
−df(E)

dE

)
tr
{
δ(E − Ĥ0)ĵ(P)

α δ(E − Ĥ0)ĵ(P)
α

}
. (2.16)

This equation is called Kubo-Greenwood equation and will be used in section 4 together with an adequate
model for electron-phonon coupling.
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2.3 Optical absorption and reflection

Another important application of linear response theory is the calculation of optical properties of a material,
which is also used in chapter 6. For this we need to calculate the macroscopic dielectric function εM, which
contains information about the absorption and reflection spectrum and is directly related to the refractive
index n(ω) and extinction coefficient κ(ω) by√

εM(ω) = n(ω) + iκ(ω). (2.17)

It is therefore accessible in experiments. Before calculating εM we first need to introduce the microscopic
dielectric function ε, which describes the microscopic polarization and screening within a material and can
be obtained from linear response theory but is not directly accessible in experiments. From this we can
derive the macroscopic dielectric function in the second part of this section.

As before we start our derivation by coupling the Hamiltonian to an electromagnetic field. We follow the
standard approach as presented, e.g., in Ref. [3, 22, 23] and couple the system to an external potential
Vext(x, t) that is oscillating in time and space and is coupled via the density operator n̂,

Ĥ = Ĥ0 +
∫
d3x′ Vext(x′, t)n̂(x′). (2.18)

Alternatively, one could also use a coupling through a vector potential A as in the previous section, which
would yield the same result albeit being more complicated in the derivation. [26]

The oscillating external field then causes fluctuations of the charge density inside the materials which
are also oscillating in time and space. These fluctuations lead to an induced charge density δn that can
be evaluated in linear response (c.f. Eq. (2.4)) as

δn(x, t) =
∫
d3x′

∫
dt′ χnn(xx′, t− t′)Vext(x′, t′), (2.19)

using the density-density correlation function χnn(xx′, t− t′) = −i
~ Θ(t− t′)〈[n̂(x, t), n̂(x′, t′)]〉0.

According to classical electrodynamics, the induced charge density δn in turn creates an electric poten-
tial that counteracts the external field and (partially) screens it,

Vind(x, t) =
∫
d3x′ V (x− x′)δn(x′, t), (2.20)

where V (x) is the Coulomb potential. The change of the total potential δVtot(x, t) is then obtained as the
sum of external and induced potentials. Additionally, we can also relate the total and external potentials via
the inverse microscopic dielectric function ε−1 that describes the screening within the material. Together
with Eq. (2.19) and Eq. (2.20) we obtain

δVtot(x, t) = Vext(x, t) + Vind(x, t) =
∫
d3x′

∫
dt′ ε−1(x, t,x′, t′)Vext(x′, t′) (2.21)

⇒ ε−1(x, t,x′, t′) = δ(x− x′)δ(t− t′) +
∫
d3x′′

∫
dt′′ V (|x′ − x′′|)χnn(x′′x′, t′′ − t′). (2.22)

The microscopic screening is therefore obtained by the density-density correlation function of the system.
ε−1 not only describes the screening but also contains optical properties that we want to calculate. In the
case of a periodic crystal we can take a Fourier transform with respect to time and space and obtain

ε−1
GG′(q, ω) = δGG′ + V (|q + G|)χGG′(q, ω), (2.23)

where G and G′ are reciprocal lattice vectors. Eq. (2.23) points out that ε−1
GG′ has the form of a second

rank tensor rather than a scalar function. This must be taken into account when calculating the inversion.
Before we establish the connection to the macroscopic dielectric function we want to introduce the

polarization function, which is particularly helpful for practical calculations since it can often be obtained
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easier than the density-density correlation function. So far δn was obtained by the response to an external
field (c.f. Eq. (2.19)). Analogously, we can also calculate the response to the total field. For this we
apply the same linear response formulation as before and introduce the retarded polarization function P .
Together with Eq. (2.21) we obtain

δn(x, t) =
∫
d3x′

∫
dt′ P (x, t,x′, t′)Vtot(x′, t′) (2.24)

=
∫
d3x′

∫
dt′
∫
d3x′′

∫
dt′′ P (x, t,x′, t′)ε−1(x′, t′,x′′, t′′)Vext(x′′, t′′), (2.25)

where we can identify the relationship between polarization function and density-density correlation func-
tion,

χnn(x, t,x′, t′) =
∫
d3x′′

∫
dt′′ P (x, t,x′′, t′′)ε−1(x′′, t′′,x′, t′). (2.26)

By taking the Fourier transform and inserting this in Eq. (2.23) we obtain a Dyson equation, which can
formally be solved by a matrix inversion. The solution then yields the microscopic dielectric function εGG′ ,

ε−1
GG′(q, ω) = δGG′ +

∑
G′′

V (|q + G|)PGG′′ε−1
G′′G′ (2.27)

⇒ εGG′ = δGG′ − V (|q + G|)PGG′ . (2.28)

With Eqs. (2.23) and (2.28) we have obtained two ways to calculate the (inverse) microscopic dielectric
function from either χnn or P . In particular, the polarization function is of interest since it can be obtained
from a Bethe-Salpeter equation, which will be introduced in section 3.3.1.

2.3.1 Microscopic and macroscopic dielectric function

We now calculate the macroscopic dielectric function, which is measured in experiments, from the micro-
scopic dielectric function obtained in the previous section by linear response.

In an experiment the light source is usually far away from the sample, so the external perturbation
includes only the far field and is therefore macroscopic, i.e., Vext(q + G′, ω) → 〈Vext(q, ω)〉δG′,0. The
macroscopic perturbation still results in a total field that has microscopic and macroscopic components.
Since the detector is also far away from the sample and a measurement process averages over a small
area in space, an experimental setup measures only the macroscopic total field 〈Vtot(q, ω)〉. Taking these
averages in Eq. (2.21), we obtain

〈δVtot(q, ω)〉 = ε−1
GG′(q, ω)

∣∣∣∣
G=G′=0

〈Vext(q, ω)〉. (2.29)

This leads to the definition of the macroscopic dielectric function εM, which is directly related to the optical
reflection and absorption spectra,

εM(q, ω) := 1
ε−1
00 (q, ω)

6= ε00(q, ω). (2.30)

It is important to consider the tensor character of the dielectric function εGG′(q, ω) =
([
ε−1(q, ω)

]−1)
GG′ ,

which makes clear that εM(q, ω) 6= ε00(q, ω). The difference to the head (G = G′ = 0) of the microscopic
dielectric function ε00(q, ω) are called local field effects and are important for a correct evaluation of optical
properties. Physically they originate from microscopic fluctuations of the charge density that are smaller
than a unit cell.

The difference between εM and ε has some important computational consequences, depending on
whether one uses the density-density correlation function in Eq. (2.23) or the polarization function in
Eq. (2.28). In the first case, we can put the obtained inverse dielectric function directly into Eq. (2.30)
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without further complications. However, the second case requires more care since the obtained micro-
scopic dielectric function in Eq. (2.28) cannot be used directly, i.e., one has to perform a matrix inversion to
obtain ε−1

GG′ and then setting G = G′ = 0 afterwards. It is therefore necessary to compute all components
of εGG′ before taking the inverse. This, together with the matrix inversion, is computationally expensive
and should be avoided. A better way would be to compute εM directly. This can be done by introducing a
macroscopic polarization function which will be discussed in section 3.3.2. Since the macroscopic polar-
ization function can also be obtained from a Bethe-Salpeter equation (similar to P ), it is more convenient
to use this approach instead of calculating the density-density correlation function.

Finally, we can perform the optical limit for the macroscopic dielectric function. For UV-VIS spectra the
photon momentum is orders of magnitude smaller than the electron momentum. Therefore, it is sufficient
to take the limit q → 0. The macroscopic dielectric function then only depends on the direction of the
photon momentum eq = q/|q| and the frequency ω, [3, 23]

εM(eq, ω) = lim
q→0

εM(q, ω). (2.31)
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3 Microscopic description of materials

To gain a comprehensive understanding of material properties, it is important to have an adequate quantum
description from first principles, i.e., based exclusively on fundamental physical laws. To obtain such a
description is an elaborate task, as a typical macroscopic sample consists of about 1023 particles and the
corresponding Hilbert space grows exponentially. In such an extremely high-dimensional vector space, it
is not even possible to store a many-particle wave function or even to solve the many-body Schrödinger
equation directly. Furthermore, the problem is complicated by the long-range mutual electron-electron
interactions, which are extremely difficult to solve in a many-particle description, forcing the use of more
advanced methods.

A very efficient approach in this regard is density functional theory [27, 28], which can be used to calcu-
late ground state properties. It is extremely popular and often a precursor step for more costly methods. It
is also relevant for this work and will be revised briefly in the beginning of this chapter. Another approach
that is relevant for this work is the field-theoretic description in terms of Green’s functions, which circum-
vents the use of many-body wave functions and can also provide access to excitations beyond the ground
state. From the Green’s function formalism and Hedin’s set of equations we will then derive the exciton
Hamiltonian, which is the basis for our calculations of optical properties.

3.1 Density functional theory (DFT)

In DFT [27, 28], the electron density is the central object that has been shown to be sufficient to describe
the ground state properties of the system. This reduces the computational complexity of the problem
significantly since the density only depends on a single position, while the many-body wave function scales
exponentially with system size. The theoretical justification is provided by the Hohenberg-Kohn theorems
that we introduce in the following. For more details about the methods and their implementation we refer
to Ref. [3] and Ref. [23].

We start by considering N electrons within a material and assume that the positions of the nuclei are
fixed. The electrons are then described by a Hamiltonian Ĥ0 which contains the kinetic energy T̂ , electron-
electron interaction Û and an external potential Vext that couples through the density operator n̂,

Ĥ0 = T̂ + Û +
∫
d3xVext(x)n̂(x). (3.1)

The external potential originates from the nuclei and possible external fields and therefore depends on the
concrete system, while T̂ and Û are universal for any electron gas.

The ground state of the system |Ψ0〉 obeys the many-body Schrödinger equation,

Ĥ0|Ψ0〉 = E0|Ψ0〉, (3.2)

where E0 is the ground state energy. Since the Hamiltonian only depends on Vext(x) it becomes clear that
the ground state also depends on the external potential |Ψ0〉 = |Ψ0[Vext]〉. Having the ground state we can
easily calculate the ground state density,

ng(x) = 〈Ψ0|n̂(x)|Ψ0〉, (3.3)

which is uniquely defined by |Ψ0〉. We can therefore map Vext exactly to one ground state density ng(x).
The Hohenberg-Kohn theorem I then states that also the inverse map exists and is unique up to a constant.
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Hohenberg-Kohn theorem I:

"For a system of interacting electrons in an external potential Vext(x), the potential itself is uniquely
determined, except for a constant, by the ground-state density ng(x)." [3]

From the Hohenberg-Kohn theorem I it follows directly that we can express the ground state energy and
any other observable as a functional of ng(x),

E0 = 〈Ψ0[ng]|Ĥ0|Ψ0[ng]〉 = EVext [ng]. (3.4)

This makes ng(x) the central quantity of interest and circumvents the problems of dealing with a high-
dimensional many-body wave function. The Hohenberg-Kohn theorem II then provides a possibility to
obtain the ground state density by showing the variational character of the energy functional.

Hohenberg-Kohn theorem II:

"For a non-degenerate ground state |Ψ0〉 and a given external potential Vext(x) the energy func-
tional EVext [n] assumes its global minimum value E0 varying the density n(x) toward the true
ground-state density ng(x)." [3]

This is a manifestation of the Rayleigh-Ritz principle. In order to get physically meaningful results we need
to constrain the variation of the density such that n(x) is positive n(x) ≥ 0, continuous and conserves the
number of particles N =

∫
d3xn(x).

As for the Hamiltonian Eq. (3.1), the energy functional Eq. (3.4) can be further split into a universal
Hohenberg-Kohn functional FHK[n], which holds for any electron gas, and a contribution of Vext(x), which
depends on the specific system,

EVext [n] = FHK[n] +
∫
d3xVext(x)n(x), (3.5)

with FHK[n] = 〈Ψ0[n]|
(
T̂ + Û

)
|Ψ0[n]〉. (3.6)

Up to this point, the theory is exact in the sense that we have not made any approximation. However,
the Hohenberg-Kohn theorems only prove the existence of the energy functional and establish the density
as the central object. The universal functional FHK[n] remains unknown in general, and the theorems do
not provide a sufficient computational scheme that can be used for practical calculations.

To overcome this problem Kohn and Sham have presented an approach which makes practical calcu-
lations feasible. [29] The basic idea is to map the complicated interacting system to a fictitious system of
N non-interacting particles |φKS

i 〉, so called Kohn-Sham-particles, for which the Schrödinger equation can
be solved much easier. The non-interacting system is constructed such that it has the same number of
electrons and the same ground state density,

ng(x) = n(x) =
N∑
i=1
|φKS
i (x)|2. (3.7)

For convenience, we only consider a closed shell system, where an equal amount of electrons with spin
up and spin down exists. The ground state of the system is according to the Pauli principle filled with two
electrons per orbital.

The Kohn-Sham particles are placed in an effective potential Veff(x) and obey the Schrödinger equation,(
− ~2

2m∆ + Veff(x)
)
|φKS
i 〉 = εKS

i |φKS
i 〉. (3.8)
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The remaining challenge is to obtain Veff(x). For this we can use the Hohenberg-Kohn theorems, that are
also valid for the non-interacting system. The energy functional is then found as

Es[n] = Ts[n] +
∫
d3xVeff(x)n(x) (3.9)

and can be easily calculated in contrast to the interacting system. We can use the variational character of
the energy functional and apply the Hohenberg-Kohn theorem II,

0 = δ

δn(x)

[
Ts[n] +

∫
d3x′ Veff(x′)n(x′)− µs

(∫
d3x′ n(x′)−N

)]
= δ

δn(x)Ts[n] + Veff(x)− µs, (3.10)

where µs is a Lagrange multiplier, which ensures that the number of particles is conserved.
An equivalent expression can also be obtained for the interacting system. For this we introduce the

Hartree energy EH[n], which is the electrostatic interaction of a charge density with itself,

EH[n] = 1
2

∫
d3x

∫
d3x′

n(x′)n(x)
|x− x′|

, (3.11)

and the exchange correlation energy EXC[n], which contains all complicated many-body effects and con-
tributions of the electron-electron interaction that go beyond the classical Hartree interaction,

EXC[n] = 〈Ψ0[n]|(T̂ + Û)|Ψ0[n]〉 − Ts[n]− EH[n]. (3.12)

The exchange correlation also contains the difference between the kinetic energy of the interacting sys-
tem and non-interacting system T [n] − Ts[n]. Using these definitions allows us to rewrite the universal
Hohenberg-Kohn functional as

FHK[n] = EXC[n] + Ts[n] + EH[n], (3.13)

and applying the Hohenberg-Kohn theorem II together with the constraint of particle number conservation
yields

0 = δ

δn(x)

[
Ts[n] +

∫
d3x′ VH(x′)n(x′) +

∫
d3x′ Vext(x′)n(x′) + EXC[n]− µ

(∫
d3x′ n(x′)−N

)]
= δ

δn(x)Ts[n] + VH(x) + Vext(x) + VXC(x)− µ, (3.14)

where the exchange correlation and Hartree potential are defined as

VXC(x) = δEXC[n]
δn(x) , VH(x) =

∫
d3x′

n(x′)
|x− x′|

. (3.15)

We can compare Eq. (3.10) and Eq. (3.14) and find the effective potential by exploiting that both systems
have the same ground state density,

Veff(x) = Vext(x) + VH(x) + VXC(x) + µs − µ. (3.16)

Inserting Veff(x) into Eq. (3.8) and shifting the energies by the constant term µs−µ yields the Kohn-Sham
equation, (

− ~2

2m∆ + Vext(x) + VH(x) + VXC(x)
)
|φKS
i 〉 = εKS

i |φKS
i 〉. (3.17)

In this equation, the Hartree and exchange correlation potentials depend on the electron density. There-
fore, the solution must be self-consistent. The usual procedure is to start with an initial estimate of the
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density, e.g., by using typical atomic orbitals, and to calculate the potentials. From this, one can solve
Eq. (3.17) and obtain new Kohn-Sham orbitals. These can be used to update the electron density and
repeat the process until convergence. Although the exchange correlation potential is in general unknown,
it can be approximated. There are different approximation schemes one can use. [30, 31, 32] One popu-
lar choice are functionals of the GGA family (generalized gradient approximation), where the functional is
approximated locally by the value and gradient of the ground state density. [33, 34]

With the Kohn-Sham scheme it is possible to perform calculations for materials with hundreds or thou-
sands of atoms per unit cell, where a direct evaluation of the many-body problem is clearly illusive. Fur-
thermore, it can be applied to a wide range of materials and is now one of the standard approaches in
theoretical material science. This is because DFT provides a good balance between computational cost
and accuracy. It has been shown to align well with experiments in many cases, e.g., bond lengths can
be predicted with very high accuracy [28, 35, 36]. Nevertheless, there are also drawbacks of the DFT
method. For example, the Kohn-Sham energies εKS

i have little physical meaning themselves, since they
are not associated with any observable. A direct evaluation of ionization energies or electron affinities
therefore requires more care. Especially because the available functionals lead to an underestimation of
the band gap in insulators. [37, 38, 3] Moreover, DFT is, by construction, only able to calculate ground
state properties. The method is therefore not suitable to evaluate optical properties since they depend on
excited states. Those cases must be investigated with other approaches that we introduce next.

3.2 Green’s function approach and Hedin’s set of equations

The Green’s function approach offers an alternative way to compute properties of quantum many-body
systems that does not require complicated many-body wave functions, which are difficult to obtain. Instead,
it focuses on the propagation of individual (quasi-)particles and their mutual interactions. Unlike DFT, the
Green’s function approach is not limited to ground state properties, but can also be used to calculate
certain properties of exited states, which will be important for the evaluation of optical properties. For
example, it is possible to calculate ionization energies, electron affinities and the resulting fundamental
band gaps consistent with experiment. [37, 39, 40, 41, 42, 43, 3] Moreover, it is possible to include finite
temperatures without conceptual difficulties. There are even extensions for non-equilibrium problems,
which, however, are beyond the scope of this work.

As before, we intend to provide a comprehensive summary of the method. For a further and more
detailed review, we recommend Refs. [38, 3, 23, 44].

3.2.1 Field operators and Green’s functions

The basic idea is that we do not need to calculate the many-body wave functions explicitly if it is possible to
calculate measurable quantities directly. These could be ground state properties like, e.g., the ground state
energy, expectation values of observables, but also properties of excited states like ionization energies and
electron affinities.

We start by introducing quantum field operators ψ̂†(x) and ψ̂(x) that create and annihilate a particle
at position x, respectively. Here we define x = (r, s) as the position vector r together with the spin s
in order to obtain concise expressions. For an explicit treatment of the spin and more details about spin-
polarized system we refer to Ref. [3]. For fermions the field operators obey the anti-commutation relations
[ψ̂(x), ψ̂†(x′)]+ = δ(x − x′) = δ(r − r′)δss′ and [ψ̂†(x), ψ̂†(x′)]+ = [ψ̂(x), ψ̂(x′)]+ = 0. From the field
operators we can define the causal Green’s function which is the central object of this approach. Physically
it describes the propagation of a particle between (x1, t1) and (x2, t2),

G(x1t1,x2t2) = 1
i~
〈Ψ0|T

[
ψ̂(x1, t1)ψ̂†(x2, t2)

]
|Ψ0〉, (3.18)

where |Ψ0〉 is the many-body ground state of the system, T is the Wick time ordering operator that orders
the field operators such that time is increasing from right to left and the field operators are in the Heisenberg
picture. Depending on the time ordering we either describe the propagation of an electron or hole.
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This definition might seem rather abstract at first glance. However, the benefit of the Green’s function
becomes clear when we consider a single-particle observable Ô in second quantization, which can be
expressed as

Ô =
∫
d3x

∫
d3x′ ψ̂†(x′)O(x,x′)ψ̂(x). (3.19)

If we now calculate the expectation value for this operator we can easily express it in terms of a Green’s
function,

〈O〉 = 〈Ψ0|O|Ψ0〉 =
∫
d3x

∫
d3x′ 〈Ψ0|ψ̂†(x′)O(x,x′)ψ̂(x)|Ψ0〉

=
∫
d3x

∫
d3x′O(x,x′) lim

t→t′+
G(xt,x′t′). (3.20)

An explicit knowledge of the ground state |Ψ0〉 is therefore not necessary. Rather, it is sufficient to obtain
the Green’s function. Using the Green’s function we can also calculate other properties of our system,
e.g., the ground state energy can be directly obtained from the Galitskii-Migdal formula [45]. Furthermore,
we can obtain the density of states, magnetization, or current densities directly from the Green’s function.

Finally, the Green’s function also provides access to various excited states properties since it has poles
at the excitation energies of the system. To see this we use that G(x1t1,x2t2) only depends on the time
difference G(x1x2, t1 − t2) and perform a Fourier transformation with respect to time, [3]

G(xx′, ω) = lim
η→+0

1
2π

∫ ∞
−∞

dω′
A(xx′, ω′)

ω − ω′ + iη sgn(~ω′ − µ) , (3.21)

where A(xx′, ω′) is the spectral function and µ the chemical potential. From the analysis of the poles we
can then obtain ionization energies and electron affinities [38, 44], which are measured by photoemission
spectroscopy experiments.

However, we have to emphasize that the single-particle Green’s functionG(x1t1,x2t2) orG(xx′, ω) only
contains information about single-particle observables. For this reason we cannot use it directly to obtain
optical absorption spectra, which are intrinsic two-particle properties. For this we would need to consider
a two-particle propagation, which will be discussed in terms of the polarization function in section 3.3.

All these examples show that a detailed knowledge of the many-body wave function is not necessary to
obtain predictions for an experiment. The knowledge of the Green’s function is therefore enough to obtain
any single-particle property we would like to calculate. The remaining challenge is to obtain G without an
explicit calculation of |Ψ0〉. For this, we derive the equation of motion for the Green’s function.

3.2.2 Equation of motion

For concise expressions we introduce a short hand notation 1 = (x1, t1) = (r1, s1, t1), where the Green’s
function becomes G(x1t1,x2t2) = G(12). The equation of motion for a Green’s function can be obtained
from the Heisenberg equation of motion for the field operators,

i~
∂

∂t
ψ̂(x, t) =

[
ψ̂(x, t), Ĥ

]
. (3.22)

We use the identity ∂tΘ(t) = δ(t) and obtain the equation of motion of the Green’s function, [3]{
i~

∂

∂t1
− h0(x1)

}
G(11′) = δ(1− 1′)︸ ︷︷ ︸

= math. def. of a Green’s function

− i~
∫
d2V (1− 2)G2(12, 1′2+)︸ ︷︷ ︸

= el-el interaction

. (3.23)

In this expression h0(x) = − ~2

2m∇
2
x + Vext(x) contains all single-particle contributions of the Hamilto-

nian, i.e., kinetic energy, crystal potential and possible external fields. Two-particle contributions from the
electron-electron interaction are contained in the second term on the right-hand side, where V (1 − 2) =
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V (x1 − x2)δ(t1 − t2) is the Coulomb potential and G2(12, 1′2+) = 1
(i~)2 〈T ψ(1)ψ(2)ψ†(2+)ψ†(1′)〉 is the

time-ordered two-particle Green’s function, where 2+ indicates an infinitesimal shift to obtain the correct
time order.

In the case of independent particles, i.e., without electron-electron interaction, we can see that G(11′)
aligns with the definition of a mathematical Green’s function for the Schrödinger differential operator. This is
the reason for the name Green’s function, although in the general caseG andG2 are not Green’s functions
in the mathematical sense, and should rather be understood as propagators or correlation functions.

Similar as for G we can derive the equation of motion for the two-particle Green’s function G2, which
would contain a three-particle Green’s function. The three-particle Green’s function is then determined by
a four-particle Green’s function and so on. Following this idea we could obtain a hierarchy of equations
with ever increasing orders of Green’s functions. [25] Therefore, one strategy could be to approximate the
higher order Green’s function to obtain a closed set of equations that can then be solved. Although this
strategy has some advantages, it is usually not numerically tractable and will therefore not be considered
further.

Alternatively, we can relate the problem to an effective single-particle problem. To do this, we consider
the propagation of a particle together with the collective excitations of the environment. For example, in-
stead of a single electron, we consider the electron together with the polarized environment as a screened
charge cloud that moves together with the electron and can form a so-called quasiparticle. Formally, this
is achieved by introducing the self-energy operator Σ(12) of a quasiparticle, which is implicitly defined by
a modification of the equation of motion, [3]{

i~
∂

∂t1
− h0(x1)

}
G(11′)−

∫
d2 Σ(12)G(21′) = δ(1− 1′), (3.24)

or equivalently after taking a Fourier transform with respect to time,{
~ω − h0(x1)

}
G(x1,x

′
1, ω)−

∫
dx2 Σ(x1,x2, ω)G(x2,x

′
1, ω) = δ(x1 − x′1). (3.25)

The self-energy Σ contains collective excitations due to electron-electron interaction and is therefore in
general non-local in space, time and spin. Moreover, it is not Hermitian, which leads to complex eigenval-
ues whose imaginary part results in a finite lifetime.

In Eq. (3.24) Σ contains the entire electron-electron interaction. For practical calculations it is often
useful to shift some parts of the interaction into h0. One prominent choice would be to split the interaction
into Hartree and exchange-correlation interaction, like it was done previously in section 3.1 (c.f. Eq. (3.15))
and shift the Hartree contribution into the single-particle Hamiltonian h̃0(x1) = h0(x1) + VH(x1). The
self-energy would then only contain the exchange and correlation interactions, which we denote as Σ̃.
This has not only advantages for the calculation of the self-energy, but can also be used for an effective
computational scheme. For this we introduce the Hartree Green’s functionGH(11′) that obeys the equation
of motion, {

i~
∂

∂t1
− h̃0(x1)

}
GH(11′) = δ(1− 1′). (3.26)

A comparison with Eq. (3.24) then yields the Dyson equation for the full Green’s function,

G(11′) = GH(11′) +
∫
d2
∫
d3GH(12)Σ̃(23)G(31′). (3.27)

This equation can in principle be solved iteratively. [3]
Another approach to solve Eq. (3.24) can be obtained by expanding G(11′) in a basis of single-particle

wave functions φi(x), which are often assumed to be Kohn-Sham wave functions in practical calculations.
The Green’s function is then obtained as [46, 23]

G(x,x′, ω) =
∑
i

φi(x)φ∗i (x′)
~ω − εQP

i

, (3.28)
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where εQP
i denotes the quasiparticle energies. By inserting this in Eq. (3.25) we obtain the quasiparticle

equation,

h̃0(x)φi(x) +
∫
dx′Σ̃(x,x′, εQP

i /~)φi(x′) = εQP
i φi(x), (3.29)

which is a generalization of the single-particle Schrödinger equation with a non-local, energy dependent
potential. By choosing specific Σ̃ we can obtain typical approximations, e.g., the Kohn-Sham equation
with Σ̃DFT(12) = Vxc(1)δ(12), the Hartree-Fock equation with Σ̃HF(12) = i~G(12)V (1+2), or the Hartree
theory by setting Σ̃ = 0. The formulation in terms of Dyson equation Eq. (3.27) or quasiparticle equation
Eq. (3.29) are equivalent and one might chose the most appealing description for a given problem. The
remaining task is to obtain a general expression for Σ̃, which can be obtained from the Hedin’s set of
equations.

3.2.3 Hedin’s set of equations

A systematic way to obtain the self-energy and therefore the Green’s function is given by the Hedin’s set of
equations, which represents the quantum-many-body problem exactly without any approximation and can
be derived from first principles, [47]

G(11′) = GH(11′) +
∫
d2
∫
d3GH(12)Σ̃(23)G(31′) (3.30)

Σ̃(12) = −i~
∫
d4
∫
d5G(14)Γ(42, 5)W (1+5) (3.31)

W (11′) = V (1− 1′) +
∫
d3
∫
d4V (1− 3)P (34)W (41′) (3.32)

P (12) = i~
∫
d3
∫
d4G(13)Γ(34, 2)G(41+) (3.33)

Γ(12, 3) = −δ(1− 2)δ(1− 3) + 1
i~

∫
d4
∫
d5 δΣ̃(12)
δG(45)P (45, 33+). (3.34)

The first equation was already obtained before by introducing the self-energy Σ̃. The self-energy itself
can be obtained from the dynamically screened Coulomb potential W and the vertex function Γ, which
describes the interaction between electrons and holes in the system. The dynamically screened Coulomb
potential can furthermore be obtained from the polarization function P and V (1− 2) is the bare Coulomb
potential as before.

From this system of equations we can in principle obtain the Green’s function of a system and therefore
have access to spectroscopic quantities and other single-particle observables. Furthermore, we can ob-
tain the polarization function from which we can obtain two-particle properties like the dielectric function
Eq. (2.28) which includes optical properties. Although this system of equations can in principle be solved
iteratively, this is generally not feasible. It is therefore necessary to find suitable approximations. One of
the most important is the GW approximation, which we present next.

3.2.4 GW approximation

One typical approximation of the Hedin’s set of equations is the GW approximation. It simplifies the nu-
merical treatment tremendously while, at the same time, showing very good agreement with experiment.
For this we neglect vertex corrections by setting Γ(12, 3) = −δ(1− 2)δ(1− 3). Eq. (3.31) then becomes

Σ̃GW(12) = i~G(12)W (1+2), (3.35)

which is the reason for the name GW. It is a conserving approximation, i.e., energy and particle number
are conserved. [48, 49] A comparison with the self-energy of the Hartree-Fock approximation Σ̃HF(12) =
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i~G(12)V (1+2) shows that GW can be seen as an extension, where the bare Coulomb potential is re-
placed by the dynamically screened potential W . It can therefore be seen as an improvement on the
Hartree-Fock method, where many-body correlation effects are included. In addition, unlike the pure
Coulomb potential, the screened Coulomb potential is not divergent, which makes it possible to obtain
physically meaningful results, especially for metals where a pure Hartree-Fock approach is often not reli-
able. [50]

Today, the GW approximation has become the state-of-the-art method for calculating ionization energies,
electron affinities and electronic (fundamental) band gaps with high precision. It has been shown to give
results that are close to experimental measurements [37, 39, 40, 41, 42, 43, 3]. However, performing
numerical GW calculations is still computationally very expensive compared to DFT and therefore only
possible for relatively small systems. Furthermore, the complete omission of vertex corrections limits GW
to the level of individual quasiparticles. Two-particle states such as bound electron-hole pairs (excitons) are
not included. This can be seen from the polarization function Eq. (3.33) that simplifies to the polarization
function for independent (quasi-)particles, which we want to denote as L0,

PGW = −i~G(12′)G(21′) =: L0(11′, 22′). (3.36)

This makes the GW approximation incapable of obtaining correct optical spectra. [3] For the evaluation of
optical properties we have to go one step further and derive the Bethe-Salpeter equation, which is subject
of the next section.

3.3 Excitons

The GW approximation is sufficient to calculate single-particle excitation energies like electron affinities
or ionization energies. However, it is not sufficient to calculate charge neutral excitation such as optical
excitations. In those cases an excited electron interacts with a hole via Coulomb interaction. This often
leads to bound electron hole pairs that are called excitons. These states are crucial for optical properties
and it is thus very important to have an adequate description of them. Excitations are inherently two-
particle states and generally cannot be simplified to a single quasiparticle level. However, we can use
Hedin’s set of equations and derive an equation of motion for the two-particle polarization function, which
is the Bethe-Salpeter equation. Form this, we can finally derive the exciton Hamiltonian, which will be the
basis for the evaluation of optical properties later on.

3.3.1 Two-particle propagation and Bethe-Salpeter equation

First we generalize the polarization function P (12) to a two-particle polarization function P (11′, 22′), which
are connected by P (12) = P (11, 22). To obtain the equation of motion for the two-particle polarization
function we combine Eq. (3.33) and Eq. (3.34) and using the definition Eq. (3.36), which yields

P (11′, 22′) = L0(11′, 22′) +
∫
d3
∫
d4
∫
d5
∫
d6L0(11′, 34)Ξ(34, 56)P (56, 22′), (3.37)

with the integration kernel Ξ(34, 56) = − 1
i~
δΣ̃(43)
δG(56) . This equation is called Bethe-Salpeter equation (BSE) [51,

52, 53, 54, 46, 38, 3, 55]. It describes the simultaneous propagation of two particles and is very similar to
a Dyson equation Eq. (3.27) in the single quasiparticle case.

The variational derivative in the integration kernel Ξ(34, 56) is unsuitable for a direct numerical evalua-
tion. However, we can approximate the kernel by using the GW approximation for the self-energy Eq. (3.35)
as before. This allows us to calculate the derivative and we obtain

Ξ(1′1, 22′) = −δ(1− 2)δ(1′ − 2′)W (1+1′)−G(11′)δW (1+1′)
δG(22′)

≈ −δ(1− 2)δ(1′ − 2′)W (1+1′). (3.38)
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It can be shown that the second term (variational derivative of W ) is of the order ∝ W 2. Thus we can
neglect this term and obtain the linearized BSE [3],

P (11′, 22′) = L0(11′, 22′)−
∫
d3
∫
d4L0(11′, 4+3)W (34)P (34+, 22′). (3.39)

This equation now contains the interaction of electrons and holes via the screened Coulomb interaction.
With this description, it is possible to calculate charge neutral excitations and bound exciton states. More-
over, the polarization function is directly related to the microscopic dielectric function by Eq. (2.28), which
allows us to calculate optical properties from first principles.

3.3.2 Bethe-Salpeter equation for the macroscopic polarization and local field effects

The polarization function that is obtained from the Bethe-Salpeter equation Eq. (3.39) is directly related to
the microscopic dielectric function εGG′ by virtue of Eq. (2.28). As explained in section 2.3.1, an experiment
is only able to measure the macroscopic dielectric function εM, which means that we have to calculate εM

rather than εGG′ . Both functions are related to each other by Eq. (2.30). A straightforward solution could
be to compute all components of εGG′ and perform a complete matrix inversion to yield ε−1

GG′ from which
we can obtain the εM by Eq. (2.30). However, it turns out that this approach is computationally extremely
demanding and usually not feasible. [3]

A better approach is to compute εM directly. For this, we introduce the macroscopic (spin-summed)
polarization function PM in analogy to Eq. (2.28),

εM(eq, z) = lim
q→0

εM(q, z) = 1− lim
q→0

2Ṽ (|q|)PM(q, q, z), (3.40)

where eq = q/|q| is the direction of the photon momentum, Ṽ (|q|) is the Fourier transformed Coulomb
potential and the factor 2 is due to the spin summation. Pick, Cohen and Martin [56] have outlined an
approach to find the BSE for PM, which we present shortly. We start by splitting the tensor εGG′ into head,
wings and body,

ε =


ε00 . . . ε0G′ . . .
...
εG0 S

...

 =


head . . . wing . . .

...
wing body

...

 , (3.41)

and perform a formal matrix inversion, similar to a blockwise numerical inversion [57]. Taking the 00-
element (G = G′ = 0) and inverting it again we obtain εM,

εM(eq, z) = lim
q→0

ε(q, q, z)− ∑
G,G′ 6=0

ε(q, q + G, z)S−1(q + G, q + G′, z)ε(q + G′, q, z)

 . (3.42)

The difference between the macroscopic and the microscopic dielectric function εM(q, q, z) − ε(q, q, z),
usually called local field effects, is now clearly visible. It is caused by the wing and body elements on the
right-hand side. We can now insert Eq. (2.28) into Eq. (3.42) and compare it with Eq. (3.40) to obtain an
expression for the macroscopic polarization function,

PM(q, q, z) = P (q, q, z) + 2
∑

G,G′ 6=0
P (q, q + G, z)S−1(q + G, q + G′, z)Ṽ (|q + G′|)P (q + G′, q, z).

(3.43)

For a compact notation we introduce the truncated, short range Coulomb potential as

˜̄V (|q + G|) =
{

0 for G = 0,
Ṽ (|q + G|) for G 6= 0

. (3.44)
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Using this and after some reformulations, we can obtain the relation between P and PM in terms of the
BSE for the macroscopic polarization function PM = P + P2 ˜̄V PM. In the final step we use Eq. (3.39) for
the polarization function P and perform an inverse Fourier transform to obtain the BSE for the macroscopic
polarization function in real space,

PM(11′, 22′) = L0(11′, 22′) +
∫
d3
∫
d4
∫
d5
∫
d6L0(11′, 43)ΞM(34, 56)PM(56, 22′), (3.45)

with the kernel

ΞM(34, 56) =− δ(4− 5)δ(3− 6)W (4+, 3) + δ(3− 4)δ(5+ − 6)V̄ (3− 5). (3.46)

Here V̄ (1− 2) is the inverse Fourier transform of the truncated, short range Coulomb potential Eq. (3.44).
A comparison with Eq. (3.39) shows that the local field effects can be expressed in terms of an additional
short range interaction V̄ (1 − 2). With the BSE (3.45), we now have direct excess to optical properties
and avoid costly calculations of the microscopic dielectric function and explicit matrix inversions. With
Eq. (3.45) and Eq. (3.40) we therefore have all necessary ingredients to calculate linear optical properties.
The next step is to use this formulation to perform practical numerical calculations.

Before we proceed with the numerical evaluation, we want to introduce the static screening approxima-
tion, which we will use in the following. This assumes that the screening is instantaneous and the Coulomb
interaction becomes

W (34) ≈W (x3,x4)δ(t3 − t4). (3.47)

This approximation is justified for semiconductors because the screening is usually very fast. For a homo-
geneous electron gas the timescale is in the order of 2π/ωp, where ωp is the plasma frequency. [3] As a
result of this approximation, the macroscopic polarization function depends only on a single time difference
and thus only on one frequency, which leads to enormous simplifications in numerical calculations. In this
regard PM(11′, 22′) can be simplified to PM(x1x′1,x2x′2; z), where z is a complex frequency.

3.3.3 Basis of quasiparticle wave functions and generalized eigenvalue problem

A direct evaluation of Eq. (3.45) is usually not suitable and would be inefficient. However, we can express
the polarization function in terms of single-particle wave functions φρ(x) similar to what we did for the
Green’s function in Eq. (3.28), to obtain the quasiparticle Eq. (3.29). We choose the basis functions φρ(x)
such that they satisfy the quasiparticle equation. With this we can express the macroscopic polarization
function as

PM(x1x′1,x2x′2; z) =
∑

ρ1,ρ′
1,ρ2,ρ′

2

PM(ρ1ρ
′
1, ρ2ρ

′
2; z)φρ1(x1)φ∗ρ′

1
(x′1)φρ2(x2)φ∗ρ′

2
(x′2), (3.48)

where PM(ρ1ρ
′
1, ρ2ρ

′
2; z) are the coefficients within this basis. In the same manner we can express L0 and

ΞM in the same basis. The corresponding coefficients then satisfy the algebraic equation

PM(ρ1ρ
′
1, ρ2ρ

′
2; z) =

f(ερ1)− f(ερ′
1
)

ερ1 − ερ′
1
− ~z

(
δρ1ρ′

2
δρ2ρ′

1
+
∑
ρ3,ρ4

ΞM(ρ′1ρ1, ρ3ρ4)PM(ρ3ρ4, ρ2ρ
′
2; z)

)
, (3.49)

where f(ερ1) is the occupation number of a state |ρ1〉 according to the Fermi-Dirac distribution. In addition,
the problem can be further simplified by noting that the solution can be traced back to the solution of the
generalized eigenvalue problem [52],

FH|ΦΛ〉 = EΛ|ΦΛ〉. (3.50)
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Matrices F and H are given by

F(ρ1ρ2, ρ3ρ4) = − f(ερ1)− f(ερ2)
|f(ερ1)− f(ερ2)|δρ1ρ3δρ2ρ4 , (3.51)

H(ρ1ρ2, ρ3ρ4) = |ερ1 − ερ2 |δρ1ρ3δρ2ρ4 − |f(ερ1)− f(ερ2)|
1
2 ΞM(ρ2ρ1, ρ3ρ4)|f(ερ3)− f(ερ4)|

1
2 . (3.52)

From the solution of the eigenvalue problem Eq. (3.50) we can finally obtain the macroscopic polarization
function as

PM(ρ1ρ
′
1, ρ2ρ

′
2; z) = −

[
|f(ερ1)− f(ερ′

1
)| · |f(ερ′

2
)− f(ερ2)|

] 1
2
∑
Λ

sgn(EΛ)ΦΛ(ρ1ρ
′
1)Φ∗Λ(ρ′2ρ2)
EΛ − ~z

. (3.53)

F and H are both Hermitian, but the product FH is not. However, it can be shown that the product has
real eigenvalues [58]. Because of the definition of F the entire matrix FH is antisymmetric and for every
eigenvalue EΛ there exists a Λ′ with EΛ = −EΛ′ and the corresponding eigenvectors obey the relation
ΦΛ′(ρ1, ρ

′
1) = Φ∗Λ(ρ′1, ρ1).

Finally, we obtain the macroscopic dielectric function from Eq. (3.40) and the eigenvectors |ΦΛ〉 after a
Fourier transform, [3]

εM(eq, z) = 1 + lim
q→0

Ṽ (|q|) 1
Ω
∑
Λ

sgn(EΛ)
EΛ − ~z

∣∣∣∣∣∣
∑
ρ1ρ′

1

[
Bρ1ρ′

1
(q)
]∗

ΦΛ(ρ1, ρ
′
1)
√∣∣∣f(ερ1)− f(ερ′

1
)
∣∣∣
∣∣∣∣∣∣
2

, (3.54)

with the Bloch integrals that come from the Fourier transformation,

Bρ1ρ′
1
(q + G) =

∫
d3xφ∗ρ1(x)ei(q+G)xφρ′

1
(x). (3.55)

The problem of solving the BSE is therefore reduced to solving the generalized eigenvalue problem
Eq. (3.50). The eigenfunctions |ΦΛ〉 describe two-particle states of electrons and holes that interact with
each other and the description is therefore similar to a stationary Schrödinger equation. However, caution
is required since the product FH is not Hermitian. In the next step we simplify the eigenvalue equation
further by applying the Tamm-Dancoff approximation, from which we obtain a Hermitian exciton Hamilto-
nian.

3.3.4 Exciton Hamiltonian in Tamm-Dancoff approximation

We want to take a closer look at the eigenvalue Eq. (3.50) which needs to be solved in order to obtain
the macroscopic dielectric function. As a simplification we consider a periodic crystal with completely
occupied valence bands and completely unoccupied conduction bands. Thus, the occupation function
f(ερ1) becomes zero or one and |ρ1〉 is a state in the valence |vk〉 or conduction |ck〉 band. Furthermore,
we only consider transitions with vanishing wave vector q → 0, which is reasonable because in UV-
VIS spectra the photon momentum is negligibly small compared to electron and hole momentum. We
therefore only have vertical transitions |vkmv〉 → |ckmc〉. With this assumptions, the exciton Hamiltonian
FH consists of pair excitations of all possible combinations of v, v′, c and c′ with the same number of
particles,

(FH)ρ1ρ2,ρ3ρ4
=
(

(FH)cv,c′v′ (FH)vc,c′v′

(FH)cv,v′c′ (FH)vc,v′c′

)
=
(

H ΞM

−ΞM+ −H+

)
. (3.56)

The entire matrix FH can be split into four blocks that are described by the matrices H and ΞM. Along
the diagonal we find resonant pair-excitation (H) and anti-resonant excitations (−H+), with positive and
negative excitation energies respectively. These diagonal parts contain all single-particle contributions,
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i.e., the quasiparticle band structure, together with the two-particle contributions from (screened) Coulomb
interaction and local field effects,

H(ck vk, c′k′ v′k′) = [εc(k)− εv(k)] δcc′δvv′δkk′ −Wcc′,vv′(k − k′) + V̄cv,v′c′(k − k′). (3.57)

The off-diagonal parts describe the coupling between pairs of positive and negative excitation energies
described by ΞM. In many cases the off-diagonal parts are small. Neglecting these parts is called Tamm-
Dancoff approximation (TDA) [59, 60, 3]. In this approximation we only need to solve the eigenvalue
equation for H , ∑

v′c′k′

H(ck vk, c′k′ v′k′)AΛ(c′k′ v′k′) = EΛAΛ(c′k′ v′k′). (3.58)

Since H is Hermitian, this equation is of the form of a Schrödinger equation and we call H the exciton
Hamiltonian. As before the dielectric function follows from Eq. (3.54) together with the eigenvectors AΛ
and excitation energies EΛ. Performing the TDA is a huge simplification. However, it should be pointed
out that there are also systems where this approximation fails. [61, 62]

So far, we have not explicitly considered the spin of electrons and holes. In non-spin-polarized systems,
the BSE splits into a singlet and a triplet part, which can be solved independently. The screened Coulomb
interaction contributes to both singlet and triplet, whereas local field effects are only present in the singlet
case. Optical excitations can only excite the singlet states and cannot cause a spin flip, which can also be
seen in Eq. (3.55). It is thus sufficient to consider the singlet case only. [3]

Finally, we can write down the single parts of the Hamiltonian Eq. (3.57) in the basis of single-particle
wave functions |φ〉. The screened Coulomb interaction is given in reciprocal space,

Wcc′,vv′(k,k′) =
∫
dx

∫
dx′ φ∗ck(x)φ∗v′k′(x′)Vsc(x,x′)φvk(x′)φc′k′(x) (3.59)

with Vsc(x,x′) = 1
Ω
∑

q

∑
GG′

ε−1(q + G, q + G′)Ṽ (|q + G′|)eiq(x−x′)eiGxe−iG
′x′
,

and local field effects are given by

V̄cv,v′c′(k,k′) =
∫
dx

∫
dx′ φ∗ck(x)φ∗v′k′(x′)

 1
Ω
∑
G6=0

Ṽ (|G|)eiG(x−x′)

φvk(x)φc′k′(x′). (3.60)

With this we have obtained a complete description and tractable computational scheme for the calculation
of linear optical properties. The exciton Hamiltonian is implemented in many established codes [63, 64, 65]
and represents today’s state-of-the-art approach. Although we have simplified the two-particle problem
tremendously, it still is a computational very demanding task. This is because converged calculations
usually require a lot of k-points, which makes the exciton Hamiltonian a high-rank matrix that is in general
not sparse. In chapter 6 we will derive a further refinement of this method which solves this issue and
enables high-performance calculations for large systems. This is achieved by using maximally localized
Wannier function, which we introduce in the next section.

3.4 Periodic systems and maximally localized Wannier functions (MLWF)

Many solid-state materials have a periodic crystal structure in which a unit cell with one or more atoms
repeats itself periodically in different directions. This translational symmetry simplifies the theoretical de-
scription of the material enormously and also has important physical consequences. For example, single-
particle excitation energies depend on the (crystal) momentum k and form a continuous band structure
Enk. The associated (quasi-)particle wave functions |φnk〉, which satisfy Eq. (3.17) or Eq. (3.29) are then
in the form of Bloch waves,

〈x |φnk 〉 = φnk(x) = unk(x)eikx, (3.61)
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where unk(x) is a periodic function with respect to a unit cell vector R, i.e., unk(x) = unk(x + R). The
periodicity of the crystal and wave functions suggest an evaluation in Fourier space (reciprocal space),
where k is already a good quantum number. For numerical calculations it is therefore convenient to
express |φnk〉 in terms of plane waves. Such a procedure has proven to be very efficient and is usually
implemented in common ab-initio simulation codes that use periodic boundary conditions. [66, 67, 68, 69]

The obtained Bloch waves are by construction delocalized over the entire crystal, which can be disadvan-
tageous in some situations. For example the analysis of chemical bonds or comparisons with molecular
systems is not straightforward. Also perturbations that break the translational symmetry of the crystal,
e.g., when considering disorder or doping, are difficult to describe in such a basis. In such situations it is
beneficial to transform into a localized basis of atomic or molecular orbitals.

One systematic approach to obtain a localized basis in real space is to transform the Bloch waves using
a Fourier transformation. The obtained wave functions are then called Wannier functions wnR(x) [70],

|wnR〉 = 1√
NΩ

∑
k

e−ikR|φnk〉, (3.62)

where NΩ is the volume of the Brillouin zone and R is a unit cell vector.
Eq. (3.62) has already been used for qualitative considerations in the 1930s. [70] However, perform-

ing this transformation in numerical calculations causes two severe problems. First, band crossings and
degeneracies are not taken into account, which means that Eq. (3.62) is only valid for single bands that
are isolated in the entire Brillouin zone. Second, the underlying Bloch functions are obtained only up to a
k-dependent gauge phase. Choosing a different gauge |φ̃nk〉 = eiθn(k)|φnk〉 would be perfectly legitimate
for Bloch functions, but would have a huge impact on shape and spread of the obtained Wannier functions.
The gauge freedom of the Bloch functions therefore leads to a strong non-uniqueness of the Wannier
functions. If one chooses the gauge phase such that the Bloch functions are smooth with respect to k, i.e.
∇k|φ̃nk〉 is regular, one obtains very localized Wannier functions, which originates from general properties
of a Fourier transform. Therefore, it is possible to define maximally localized Wannier functions (MLWF) by
generalizing Eq. (3.62) to [71, 72]

|wmR〉 = 1√
NΩ

∑
nk

e−ikRUmn(k)|φnk〉, (3.63)

where the sum over n is usually restricted to certain groups of bands, e.g., all valence bands or the lowest
conduction bands, and Umn(k) is a unitary matrix that takes care of band mixing and gauge phases. It is
obtained by applying an optimization procedure in which the spread functional,

Ω =
∑
m

[
〈wm0|r2|wm0〉 − 〈wm0|r|wm0〉2

]
, (3.64)

is minimized [71, 72, 73] and the obtained Wannier functions are thus maximally localized. This criterion is
equivalent to the localization criterion of Foster and Boys [74, 75, 76, 73] used in quantum chemistry. The
obtained MLWF are also similar to molecular or atomic orbitals, e.g., s and pz orbitals in hydrocarbons or
combinations of sp3 hybrid orbitals for the valence electrons of silicon if all valence bands are contained in
the transformation. At larger distances they show an exponential decay [77].

Moreover, Wannier functions with the same index m but different unit cell indexes R are related to each
other by wnR(x) = wn0(x −R). That means they are transferable building blocks with the same shape.
In that sense they are a generalization of molecular orbitals in a periodic crystal. For single molecules they
are indeed similar to molecular orbitals if all valence states are included in the Wannier transformation.

From Eq. (3.63) it becomes clear that MLWF are directly related to the Boch functions of the system by
a unitary transformation. They can be obtained at different levels of theory, e.g., from DFT wave functions
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or at GW level [78]. Starting with a quasiparticle description, e.g., by using the Kohn-Sham approach, we
can express the Hamiltonian in terms of Wannier functions,

H =
∑
nk

|φnk〉εnk〈φnk| =
∑
mm′

∑
RR′

Hmm′(R′ −R)|wmR〉〈wm′R′ |

=
∑
mm′

∑
RR′

Hmm′(R′ −R)|wm0〉〈wm′,R′−R|, (3.65)

where matrix elements of the Hamiltonian in Wannier representation are obtained from the band energies
εnk,

Hmm′(R) = 1
NΩ

∑
nk

e−ikRUm′n(k)εnkU
∗
nm(k). (3.66)

Hmm′(R) represents a tight-binding model, where matrix elements with m = m′ represent the onsite-
energies of every Wannier orbital |wmR〉 and Hmm′(R − R′) the transfer integral between sites |wmR〉
and |wm′R′〉. The transfer integrals contain the probability of a particle to go from one site to another, to-
gether with the corresponding phase shift. Since the Wannier functions are strongly localized, the transfer
integrals decrease exponentially with distance between Wannier functions. Using the real space tight-
binding model one can perform an interpolation of the band structure by doing the reverse transformation
for arbitrary k-points. [73] Furthermore, the real-space tight-binding description is particularly useful for
the investigation of disorder, doping and electron-phonon coupling, which we will exploit in the following
chapters.

3.5 Including vibrational degrees of freedom: the Holstein-Peierls model

So far, we have assumed a rigid atomic lattice inside the material and focused on the electronic structure.
Now, we want to remove this assumption and include lattice vibrations using the Holstein-Peierls model
[79, 25]. We begin by expressing the quasiparticle Hamiltonian in a localized, orthonormal basis. This can
be, for example, a basis of MLWF, Gaussian functions or orthogonalized atomic or molecular orbitals. The
electronic structure is then obtained as a tight-binding model in second quantization,

Ĥel =
∑
ij

εij â
†
i âj , (3.67)

where â(†)
i annihilates (creates) a fermion at orbital i. If we chose a basis of MLWF we obtain Eq. (3.65)

with i ≡ (m,R) and j ≡ (m′,R′).
The motion of the nucleus around its equilibrium positions leads to harmonic oscillations that also con-

tribute to the Hamiltonian and can be expressed using bosonic annihilation (creation) operators b̂(†)Q of a
specific phonon mode Q with frequency ωQ,

Ĥph =
∑
Q

~ωQ

(
b̂†Qb̂Q + 1

2

)
. (3.68)

Moreover, lattice vibrations change the distance between atoms and thus electronic onsite energies
and transfer integrals. They are therefore functions of the nuclear positions Rnµ, which we denote as
εij({Rnµ}), where n denotes the unit cell and µ labels the atom in a unit cell. We can perform a Taylor
expansion of εij({Rnµ}) around the equilibrium lattice positions R0

nµ up to linear order,

εij({Rnµ}) = εij({R0
nµ}) +

∑
nµ

(Rnµ −R0
nµ) ∂εij

∂Rnµ

∣∣∣∣
Rnµ=R0

nµ

+ ... . (3.69)
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Here, localization in real space causes only displacements Rnµ near the orbitals |i〉 and |j〉 to contribute.
We can express the replacement (Rnµ−R0

nµ) in terms of phonon creation and annihilation operators and
obtain the electron-phonon-coupling part of the Hamiltonian as

Ĥel-ph =
∑
ij

∑
Q

~ωQg
Q
ij

(
b̂†Q + b̂−Q

)
â†i âj , (3.70)

where the coupling constants are obtained as gQ
ij = (2~ω3

QNΩ)−
1
2
∂εij
∂XQ

and XQ is the normal vector of
a phonon mode. Putting everything together, we obtain the Holstein-Peierls model Hamiltonian [79, 25],
which is the starting point for our transport calculations,

Ĥ =Ĥel + Ĥph + Ĥel-ph. (3.71)

The Holstein-Peierls Hamiltonian is particularly well suited to model organic molecular crystals. Those
materials show significant electron-phonon coupling across multiple energy scales, i.e., simultaneously
coupling to very low and high energy vibrations. [80] As a result the corresponding model hosts a variety
of different phenomena. For example, the coupling to high-frequency modes leads to the emergence of
polarons. [81, 25, 82, 83] This is a quasiparticle that consists of an electron (or hole) together with high-
frequency lattice vibrations that form a polarization cloud. On the other hand, the coupling to low-frequency
modes leads to scattering of charge carriers and can better be described by hopping models or disordered
lattices. [84, 85] The coexistence of both regimes poses a significant theoretical challenge and it is difficult
to find effective and tractable descriptions. [85, 86] In the next chapter, we will present an approach to
overcome such problems and show that the combination of low- and high-frequency modes gives rise to
new physical effects that are not present in either regimes.
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4 Publication: Interplay of band occupation,
localization, and polaron renormalization for
electron transport in molecular crystals:
Naphthalene as a case study

Summary:

Organic molecular crystals are a class of organic materials, in which single molecules are arranged in a
crystal structure with long range order. Such crystals hold together by weak van-der-Waals interaction,
which makes them particularly susceptible for electron-phonon coupling.

In this publication [87] we investigate the charge transport in the presence of electron-phonon coupling
to high- and low-frequency modes exemplarily for a naphthalene crystal. For this a real-space formalism
based on molecular orbitals is used in which low-frequency modes are described as vibrational disorder
and high-frequency modes contribute through polaron renormalization. The approach explicitly considers
the symmetry of electron-phonon coupling and allows to capture the dispersion relation of the coupling,
which is a great improvement to previous approaches. The so obtained vibrational disorder is correlated
between adjacent molecules. Taking the electronic structure into consideration, we were able to show
that a symmetric coupling has a strong effect on states near the band edge, i.e., near the Fermi level,
whereas anti-symmetric coupling has a strong impact for states in the middle of the band. Depending on
the temperature, different states within the band contribute to transport. As a result, at low temperatures
the symmetric coupling dominates whereas anti-symmetric coupling has only a small effect. This changes
for larger temperatures when more states towards the middle of the band contribute to transport. This
leads to typical features in the temperature dependence of the charge carrier mobility which agree with
experimental observations. Furthermore, the simultaneous coupling of high and low frequency modes is
investigated which leads to the surprising and counter-intuitive effect that the coupling to high-frequency
modes can improve the mobility of charge carriers. The reason is found in the occupation of the band,
which changes upon polaron renormalization.

For the numerical calculations we have used a real space description in terms of molecular orbitals.
In such a formulation it is easy to implement disorder, which would not be straightforward in a k-space
description since the translational symmetry is broken. Furthermore, the Hamiltonian becomes very sparse
which allows to calculate large supercells of the crystal very efficiently.

Individual contribution:

The first author (K.M.) derived and implemented the electron-phonon coupling according to the described
method using a real-space tight-binding description. This contains the symmetric and anti-symmetric cou-
pling to low-frequency modes which leads to correlated vibrational disorder and the integration of existing
polaron models for high-frequency modes within the same model. For numerical calculation K.M. im-
plemented the method in a pre-existing transport code and performed extensive tests to ensure correct
results. The resulting model and implementation is the main aspect of the publication.

To illustrate the performance of the model, we have used the example of naphthalene. For this all
numerical transport calculations, subsequent evaluation and post-processing of the data were performed
by K.M.. This also includes the detailed evaluation of the energy dependence of symmetric and anti-
symmetric coupling and the resulting consequences for low and high-temperature regimes and creation of
all figures.
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Structure relaxation, mode analysis and the calculation of necessary material parameters for the tight-
binding system and electron-phonon couplings were calculated by other authors of the paper. F.O. super-
vised the project. All authors contributed to the writing of the manuscript.
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Understanding electronic properties and charge transport in organic semiconductors is important for improv-
ing organic electronic materials and devices. Here we investigate the impact of electronic band occupation,
charge-carrier concentration, and symmetry of phonon modes on the electron mobility in naphthalene crystals
for various temperatures. Our theoretical approach is based on the description of the electron-phonon coupling
(EPC), where the coupling to low-frequency modes is treated by an effective vibrational disorder potential with
local and nonlocal contributions and the coupling to high-frequency modes is included by a polaron treatment.
Surprisingly, the coupling to high-frequency modes leads to an increase in the mobility in presence of the
low-frequency modes, which is explained by localization and band occupation effects that further depend on
the carrier density. A symmetry analysis sheds additional light on the energy dependence of the EPC, which
is important to describe transport properties as a function of charge density and temperature. We also find that
coupling to low-frequency phonons together with band occupation effects can lead to a vanishing slope of the
mobility versus temperature that is known from experiments.

DOI: 10.1103/PhysRevB.105.165136

I. INTRODUCTION

Over the last decades, organic semiconductors have re-
ceived increasing attention in fundamental and applied
research. The progress in material synthesis, purification
techniques and electronic optimization strategies led to a con-
stant improvement of electronic device performance, which
makes organic semiconductors very promising candidates for
low-cost and easy-to-process electronic and optoelectronic
applications [1,2]. This development has resulted in appli-
cations such as organic light-emitting diodes [3], organic
field-effect transistors [4,5], organic solar cells [6,7], and
organic sensors [8], which are now becoming commercially
available. Despite the number of applications, there are still
great challenges in describing the microscopic charge trans-
port in those materials. Even in the same material such as
naphthalene, electrons and holes can behave very differently
[9–12] and elude a satisfactory description. While at room
temperature the electron mobility along a certain direction is
almost temperature-independent, the hole mobility shows a
steep power-law behavior [13,14]. A deep understanding of
a number of microscopic aspects is essential but has not been
achieved yet.

In general, the properties of organic semiconductors de-
pend very sensitively on intra- and intermolecular vibrations.
For instance, to understand charge transport it is essential to
find a suitable description of the electron-phonon coupling
(EPC) that is intrinsic to all organic materials. Within the
broad class of organic semiconductors, organic molecular
crystals have long-range order, which reduces the complexity
as compared to blends or polymers and makes them ideal
model systems to study. One important milestone was the
development of polaron theories [15–21] that describe the

impact of EPC through the formation of a polaron, a charge
carrier coherently dressed by dynamic molecular vibrations.
This dressing causes a reduction of the electronic bandwidth,
also known as band narrowing. This polaronic description
is suitable for high-frequency vibrations but questionable for
slow (low-frequency) modes [22,23], for which a quasistatic
treatment generating electronic disorder was suggested to
be more appropriate [22,24]. This disorder and the dynamic
change of the same (also referred to as dynamic disorder) is
the basis for a description of the transient localization sce-
nario [25–27] at ultrashort time scales. Time-scale analysis
become more important in recent research since the molecular
vibration spectra are broad and cover two orders of magni-
tude in energy [28]. A single analytical limit to describe all
molecular vibrations, i.e., either dynamic polaron dressing or
quasistatic disorder, appears inappropriate and recent models
perform a separation into multiple frequency regimes [28–30].
Additionally, numerical methods treating the full dynamics of
the molecular vibrations are emerging [31,32].

In this work, we use linear response theory and a dedicated
treatment of EPC for low- and high-frequency phonons that
combines a vibrational-disorder approach with a polaron ap-
proach to calculate electron mobilities in naphthalene crystals.
We concentrate on the coupling to only low-frequency phonon
modes first and later extend our considerations to all phonon
modes. We show that the simultaneous coupling to low- and
high-frequency vibrations leads to an unexpected increase
of mobility, which is explained in detail. We shed light on
temperature dependences of the electron mobility, the role
of the charge-carrier density and band-occupation effects, as
well as the impact of correlated vibrational disorder across the
conduction band.

2469-9950/2022/105(16)/165136(13) 165136-1 ©2022 American Physical Society
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II. THEORY AND METHODS

A. Holstein-Peierls Hamiltonian

The arrangement of organic molecules in a periodic crystal
structure leads to an overlap of molecular orbitals, which
enable charge carriers to spread across the crystal. Inter- and
particularly intramolecular vibrations in the crystal change
the overlap of orbitals and thus directly affect the electronic
properties and charge transport, which is called EPC. We
model these properties of organic crystals by utilizing the
Holstein-Peierls Hamiltonian [17,19],

H = Hel + Hph + Hel−ph. (1)

The electronic Hamiltonian is given by an effective tight-
binding model, where every molecule represents a single site

Hel =
∑

i j

εi j a†
i a j, (2)

a(†)
i annihilates (creates) an electron at the lowest unoc-

cupied molecular orbital (LUMO) of the ith molecule. Inter-
and intramolecular vibrations (phonons) are described by har-
monic oscillators

Hph =
∑

Q

h̄ωQ

(
b†

QbQ + 1

2

)
, (3)

where the index Q ≡ (λ, q) is composed of λ the mode
index and q the phonon momentum. The EPC Hamiltonian is
given by

Hel−ph =
∑

i j

∑
Q

h̄ωQgQ
i j (b

†
Q + b−Q)a†

i a j, (4)

where the coupling constant gQ
i j can be written as

gQ
i j = 1√

2N�h̄ω3
Q

∑
nμ

eλ
nμ(q)Cnμ

i j , (5)

with polarization vectors

eλ
nμ(q) = eλ

μ(q)eiqR0
n , (6)

and the gradients of the transfer integrals with respect to
atomic displacements

Cnμ
i j = 1√

Mμ

∂εi j

∂Rnμ

∣∣∣∣
Rnμ=R0

nμ

. (7)

Here, the index n runs over all unit cells and μ over all
atoms inside the unit cell. Rnμ is the position of an atom,
R0

nμ the associated equilibrium position, and Mμ its mass. The
vectors Cnμ

i j account for changes in the electronic structure due
to displacements of atoms and have the full crystal symmetry.
Information about phonon mode patterns are contained in the
polarization vectors, which are composed of the mode patterns
eλ
μ(q), which are the eigenvectors of the dynamical matrix

[33], and a phase factor eiqR0
n due to a finite wave vector q.

Unfortunately, the Holstein-Peierls Hamiltonian cannot
be solved analytically for large crystals with many phonon

modes. Typical problems are the phonon dispersion and the
large number of modes, which lead to an exponentially in-
creasing Hilbert space with increasing system size. In the
following, we discuss an analytic approach how such obsta-
cles can be approached.

B. Phonon symmetry and phonon dispersion relation

The challenge of describing the q dependence of the EPC
is often circumvented by assuming dispersionless optical
phonons [34–37,12,18]. However, such a description could
leave out essential physics as has been demonstrated for
one-dimensional (1D) models of organic molecular crystals
[38,39]. Notwithstanding, in 3D bulk crystals the influence
of phonons with a nontrivial q dispersion relation is rarely
explored but we believe that this would contribute to a better
description of charge transport in crystalline organic semicon-
ductors [40].

To interpolate gQ
i j throughout the Brillouin zone (BZ), we

start with Eq. (5) and restrict the sum over all unit cells n to
the unit cells of the involved transfer integral, i.e., the unit
cell which contains the sites Ri or R j . For organic molecular
crystals, this is a good approximation because of the rapidly
decaying orbital overlap, which also entails rapidly decaying
couplings with orbital distance. As a result, changes in the
geometry outside the involved unit cells do not affect the
transfer integral. Performing this approximation allows us to
continue analytically and yields

gQ
i j ≈ 1√

2N�h̄ω3
λ

∑
μ

(
eλ

n(i)μ(q)Cn(i) μ
i j + eλ

n( j)μ(q)Cn( j) μ

i j

)
.

(8)
The indexes i and j run over all molecules in the crystal and

can also be described by their corresponding unit cell index
n(i) or n( j) and molecule indexes μ within their unit cell.
The vectors eλ

n(i)μ denote the corresponding mode patterns
according to unit cell n(i), which is related to the mode pattern
in unit cell n( j) by,

eλ
n( j)μ = eλ

n(i)μeiq(R0
n( j)−R0

n(i) ), (9)

where R0
n(i) is the position of the unit cell, in which site i

is located. It is not to be confused with the position of the
ith molecule Ri. As a result, the EPC constants are solely
determined by the mode patterns inside the unit cell and
neighboring unit cells in the crystal lattice, which corresponds
to an interpolation of the q dispersion of gQ

i j on the basis of two
wave functions. A systematic improvement with more terms
is straightforward but not in the scope of the present work.

We next define the symmetric (s) and antisymmetric (a)
EPC parameters as

gs λ
i j (q) := 1√

2h̄ω3
λ
(q)

∑
μ

eλ
μ(q)Cns (i) μ

i j ,

ga λ
i j (q) := 1√

2h̄ω3
λ
(q)

∑
μ

eλ
μ(q)Cna (i) μ

i j , (10)
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with the symmetrized and antisymmetrized gradients of the
transfer integrals,

Cns (i) μ
i j = Cn(i) μ

i j + Cn( j) μ

i j ,

Cna (i) μ
i j = Cn(i) μ

i j − Cn( j) μ

i j , (11)

respectively, and obtain

gQ
i j = gs λ

i j (q)

2
√

N�

(
eiqR0

n(i) + eiqR0
n( j)

)

+ ga λ
i j (q)

2
√

N�

(
eiqR0

n(i) − eiqR0
n( j)

)
. (12)

The EPC is hereby (without further approximations) ex-
pressed in terms of symmetric and antisymmetric coupling
constants and therefore the q dependence of the EPC constant
can be split into symmetric and antisymmetric contributions,
which turns out to be very useful for later analysis. The EPC
constants gs(a) λ

i j (q) themselves are still a function of phonon
momentum. From Eq. (12), we see that the symmetric cou-
pling has the strongest impact for q = 0 and the weakest for
q being at the edge of the BZ. For antisymmetric coupling the
behavior is opposite [39]. The symmetric coupling constant
gs λ

i j (q) can be evaluated at the BZ center (� point) and the
antisymmetric coupling constant ga λ

i j (q) at the edge of the
BZ. From Eqs. (10) to (12), we can immediately see that the
antisymmetric coupling vanishes for n(i) = n( j), i.e., when
both molecular sites i and j are located in the same unit cell.
That is, inside a unit cell [n(i) = n( j)] the EPC constant has
only symmetric contributions.

The symmetrization of the EPC is illustrated schematically
in Fig. 1 for the example of two sites i and j. In this figure,
the atom index μ is neglected for simplicity in the mode
patterns eλ

n(i) and in the gradients of the transfer integrals Cn(i)
i j

and the projection eλ
n(i)C

n(i)
i j + eλ

n( j)C
n( j)
i j is proportional to the

EPC coupling constant [cf. Eq. (8)]. Figure 1(a) illustrates
that the gradients (orange arrows) are in general different,
i.e., Cn(i)

i j �= Cn( j)
i j . Symmetrization leads to the symmetrized

gradients Cns (i)
i j in Fig. 1(b) and the antisymmetric gradients

Cna (i)
i j in Fig. 1(c). The sum of Cna (i)

i j and Cns (i)
i j gives the

original gradient Cn(i)
i j . Please note that the mode pattern is not

symmetrized. The q dependence of the EPC constant can then
be expressed in terms of the (anti)symmetric Cns(a) (i)

i j gradients
projected onto the mode patterns in the unit cells n(i) and n( j)
yielding the q dispersion given in Eqs. (10) and (12).

Further extending Eqs. (8) and (12) to more neighboring
unit cells is possible and would lead to additional symmetry
flavors besides (anti-)symmetric EPC. However, such an sys-
tematic extension is computationally demanding [40], because
it involves simulating large supercells to obtain the material
parameters. It is not in the scope of the present work and we
focus on symmetric and antisymmetric coupling, which is an
improvement over previous publications that are exclusively
based on �-point phonon modes.

FIG. 1. Schematic view on the relevant contributions to the q
dependence of the EPC constants for neighboring molecular sites
i and j with transfer integral εi j . For simplicity, we have dropped
the atomic index μ in the mode patterns eλ

n(i) and eλ
n( j) and in the

gradients Cn(i)
i j and Cn( j)

i j (see Eq. (7) for their definition). (a) Un-
symmetrized gradients used in Eq. (8). (b) Symmetrized gradients
Cns (i)

i j as introduced in Eq. (10) to define the q dependence of the
symmetric part of the EPC constant gs λ

i j (q). (c) Antisymmetrized

gradients Cna (i)
i j as introduced in Eq. (10) to define the q dependence

of the antisymmetric part of the EPC constant ga λ
i j (q).

C. Effective description of electron-phonon coupling

1. EPC to low-energy phonon modes

In our study, we combine the two different theoretical con-
cepts of (adiabatic) quasistatic disorder and polaron narrowing
to cover the effect of EPC of different modes with improved
accuracy. The first treats the phonon modes within the adi-
abatic limit of EPC, in which the vibrational mode energies
are small compared to the electronic transfer integrals. This
leads to an effective description of EPC in terms of dynamic or
vibrational disorder for EPC to low-frequency modes. The ef-
fectiveness of vibrational disorder treatments has been shown
for model systems by previous studies [38,39,41]. They show
that not only the high-frequency modes but also the coupling
to quasistatic modes are essential to understand the dynamics
of charge carriers.

Here, we introduce a real-space formulation of the
nonlocal, temperature-dependent vibrational disorder oper-
ator V (T ) that generalizes local vibrational disorder used
previously [42,28]. More details on the derivation of vibra-
tional disorder can be found in the Supplemental Material
[43]. We account for the symmetry of the EPC in terms
of symmetric and antisymmetric vibrational disorder and
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obtain

V (T ) = V s(T ) + V a(T ), with

V s(a)(T ) =
∑
λi j

σ
s(a) λ
i j (T )

(
φλ

i + (−)φλ
j

)
2

a†
i a j, (13)

where φλ
i are independent, normal-distributed random num-

bers with zero mean and variance of one. Note that this is a
nonlocal disorder potential, which results from the nonlocal
EPC. The disorder strengths σ

s(a) λ
i j (T ) for each mode with its

symmetric and antisymmetric coupling parameters are given
by

σ
s(a) λ
i j (T ) = gs(a) λ

i j h̄ωλ

√
(1 + 2〈nλ〉T ). (14)

Here, 〈nλ〉T denotes the occupation according to the
Bose-Einstein distribution function for phonon mode λ at
the absolute temperature T . The absolute values of σ

s(a) λ
i j

denote the standard deviation of the random disorder.
According to Eq. (14), σ

s(a)
i j consists of a temperature-

independent and a temperature-dependent contribution. The
temperature-independent part originates from quantum me-
chanical zero-point vibrations of the phonon modes and is
the main difference to a classical description [37]. Please note
that the random numbers φλ

i in Eq. (13) only depend on the
site index i and mode λ. Consequently, two transfer integrals
ti j and tik , which share the same site, share the same φλ

i but
may differ in the second random number φλ

j and φλ
k if j �= k.

The partly randomized transfer integrals are therefore not
independent but correlated with an autocorrelation A, whereas
on-site energies are not correlated. This corresponds to the
physical picture, where, e.g., a molecular vibration would lead
to a decrease in distance to a neighboring site and therefore
increase the distance to another neighbor in opposite direc-
tion. The transfer integrals at one site would increase due
to a stronger overlap of molecular orbitals and decrease by
the same amount in opposite direction. Thus, the vibrational
disorder is correlated.

The sign of σ
s(a) λ
i j is related to the autocorrelation between

neighboring sites. From the hermiticity of the Hamiltonian, it
follows directly that σ s

i j = σ s
ji and σ a

i j = −σ a
ji. The symmetry

of a phonon mode manifests with different correlations of
neighboring transfer integrals. Total (anti)symmetric modes
generate an autocorrelation of A = +(−)0.5 for adjacent
transfer integrals along a certain crystal-direction. The mix-
ture of symmetric and antisymmetric modes in a real system
would lead to smaller values, i.e., between −0.5 and +0.5.

2. EPC to high-frequency phonon modes

The appropriate concept to treat phonon modes which vi-
brate significantly faster than a typical charge-transfer time
can be described suitably by using polaron theories [17–21,5].
It is assumed that the polaron is instantaneously formed af-
ter the excess electron (or hole) has been created. In other
words, the time scales entail a relaxation of the geometry upon
charging that is faster than the charge transfer. The polaron
description here is based on the Lang-Firsov (LF) transforma-
tion [44], which is a unitary transformation of both electron

and phonon operators given by the operator

S =
∑

iQ

gQ
ii (b

†
Q − b−Q)a†

i ai. (15)

This transformation is performed for vibration modes with
intramolecular EPC only, whereas the modes with finite inter-
molecular EPC are effectively described using the vibrational
disorder potential. This assumption is always justified when
the EPC to typical high-energy phonon modes is dominated
by the intramolecular coupling constants gQ

ii . If we use the
proposed model for the Q dependence of the EPC constants
we find the real-space representation of the operator S,

S =
∑

iλ

gs λ
ii (b†

i,λ − bi,λ)a†
i ai, (16)

which indicates that only the intramolecular couplings at the
� point contribute. This is reasonable since prototypical high-
energy phonon modes only possess an intramolecular EPC
constant. The transformed Hamiltonian is then treated by a
mean-field approach that substitutes the transformed elec-
tronic part by the phonon average [45,20],

H̃el → 〈H̃el〉ph =
∑

i j

(δi j (εii + Vii(T ) − �)

+ (1 − δi j )P̃(εi j + Vi j (T ))) a†
i a j, (17)

where � is the polaron shift � = ∑
λ h̄ωλ(gs λ

ii )2 and P̃ is the
polaron renormalization factor

P̃ = exp

(
−

∑
λ

(
gs λ

ii

)2
(1 + 2〈nλ〉T )

)
. (18)

Equation (17) therefore considers both the EPC to the
low-energy modes by using the vibrational disorder potential
V (T ) and the EPC to high-energy modes yielding the polaron
renormalization factor P̃ for the electronic transfer integrals as
well as the polaron shift � of the on-site energies. Details on
the chosen mode energy which separates the modes according
to the two treatments of the EPC are discussed below.

At this point, we note that, for consistency, the LF trans-
formation also transforms the intermolecular part of the EPC
and leads to a renormalization of the vibrational disorder that
is caused by intermolecular EPC in the same way as for the
electronic transfer integrals [cf. second term on the rhs of
Eq. (17)]. This is because only electronic operators in the
intermolecular EPC are affected by the LF transformation
since phonon operators of different vibrational modes com-
mute with each other.

The effective mean-field Hamiltonian in Eq. (17) is used
below to evaluate the current-current correlation function for
the coherent contributions to charge transport (cf. [45]) with
an ab initio description of the Hamiltonian parameters. We
note that the high-frequency modes do not lead to incoher-
ent transport contributions because they are not thermally
activated.

D. Charge transport simulations

We use the framework of linear-response theory by apply-
ing the Kubo formula [46–48] for the longitudinal electrical
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FIG. 2. (a)–(c) Naphthalene crystal and definition of transfer integrals with their ordering number (see Table I). Molecules of a single,
primitive unit cell are shown in green. (d) Band structure from fragment-orbital (FO) and plane-wave (PW) DFT simulations. The energy
zero is set to the valence band minimum. (e) Half of the Brillouin zone and definition of k points. The used k points in the plot include: Y =
(0.5, 0.0, 0.0), � = (0.0, 0.0, 0.0), B = (0.0, 0.5, 0.0), Z = (0.0, 0.0, 0.5), A = (0.5, 0.5, 0.0), L = (0.0, 0.5, 0.5). (f) Cumulative variance
of the vibrational disorder in the ab direction for symmetric (blue) and antisymmetric (orange) EPCs as well as combined σ (black line)
plotted against the energy cutoff for quasistatic phonons. Vertical gray lines indicate phonon modes. Every phonon mode is either symmetric
or antisymmetric. To show if a phonon mode couples (anti-)symmetrically small blue (orange) dots are used.

conductivity σαα in the form

σ dc
αα = 1

�

∫ β

0
dλ

∫ ∞

0
dtTr[ρ jα (t + ih̄λ) jα (0)], (19)

where ρ = e−β(H−ζN )/Zgc denotes the grand-canonical den-
sity operator of the unperturbed system with Hamiltonian H,

chemical potential ζ , partition function Zgc, and inverse tem-
perature β = 1/kBT . � denotes the volume of the crystal and
jα (t ) = e0vα (t ) is the current operator for the charge carriers,
where α is the cartesian component and e0 the elementary
charge.

We evaluate Eq. (19) based on an ab initio description of
the electronic structure using density-functional theory (DFT)
whose details are given further below. Through this connec-
tion to DFT, one can treat electron-electron interaction in
mean field and continue with effectively noninteracting Kohn-
Sham particles for the calculation of the density of states
D(E ) = 1

�
Tr{δ(E−H )} and the energy-resolved mean square

displacement

�X 2(E , t ) = 〈(x(0) − x(t ))2〉E , (20)

with effective single-quasiparticle wave packets [49]. The
notation 〈O〉E := Tr{δ(E−H ) O}

Tr{δ(E−H )} for an operator O denotes the
corresponding energy-projected averages.

We employ the efficient Lanczos recursion and continued
fraction methods [49–51] to tridiagonalize the Hamiltonian.
The time evolution of the system is performed by a Cheby-
shev polynomial expansion of the time evaluation operator
[52]. Furthermore, we apply periodic boundary conditions.
The initial state is a random phase state, which allows us to

calculate traces as expectation values over the random phase
state if the sample is large enough [53]. For our study on
naphthalene, we find that a supercell consisting of 325 ×
416 × 180 primitive unit cells is sufficiently large to calculate
numerically converged results.

Finally, the longitudinal mobility is obtained as [49]

μαα (t ) = βe0

2n

d

dt

∫ ∞

−∞
dE f (E )[1 − f (E )]D(E )�X 2(E , t ),

(21)
where n denotes the charge-carrier density and we have used
∂ f (E )

∂E = −β f (E )[1− f (E )] with the Fermi function f (E ) =
1/(eβ(E−ζ ) + 1). Equation (21) is used to calculate the time-
dependent mobility for a single wave packet propagating
coherently in time and space. In a measurement setup, such
wave packets could in principle decohere, which we do not
model explicitly. The influence of such stochastic decoher-
ence can be captured by introducing an empirical coherence
time τc, which leads to an exponential decay over time [54],

μdc
α = 1

N

∫ tmax

0
dt e− t

τc μα (t ), (22)

where N = ∫ tmax

0 dt e− t
τc is needed for normalization and tmax

is the maximum time of our simulation. The coherence time
is usually unknown for real systems. However, it needs to
be chosen consistently with the energy cutoff for quasistatic
modes. A meaningful choice would be τc = h̄

Ecut
, where Ecut is

the energy cutoff for quasistatic phonons.

165136-5



MERKEL, PANHANS, HUTSCH, AND ORTMANN PHYSICAL REVIEW B 105, 165136 (2022)

TABLE I. Transfer integrals for electrons in a naphthalene crystal.

Number Direction Symbol Value [meV]

1 ±(a/2 ± b/2) εab −37.0
2 ±b εb 9.9
3 ±c εc −3.8
4 ±(a + c) εac 4.5
5 ±(a/2 ± b/2 + c) εabc −3.3

III. RESULTS

A. Material parameters for naphthalene

We apply the above theoretical framework to naphthalene
as a concrete example. Naphthalene is an organic molecu-
lar crystal with two molecules per unit cell arranged in a
herringbone-stacking fashion [Figs. 2(a)–2(c)]. We determine
all Hamiltonian parameters based on the experimental crystal
structure [55,56].

1. Electronic structure

We perform the DFT parametrization of the Hamiltonian
for the two lowest conduction bands that are derived from
the molecular LUMO states of naphthalene and map them, by
representing every LUMO in the crystal by a single site, on an
effective tight-binding model, Eq. (2). The transfer integrals
between the sites are calculated with the fragment-orbital
approach [57–59] using DFT (FO-DFT) and the Gaussian16
code [60] with the basis set 6–311G** [61] and the exchange-
correlation-functional B3LYP [62,63]. The obtained transfer
integrals are shown in Figs. 2(a)–2(c) with their ordering
number used here. The values for all finite transfer integrals
are listed in Table I. Only a small number of neighbors have
a significant contribution and long-range transfer integrals are
exponentially suppressed. The on-site energies εii can be set
to zero.

A straightforward calculation of the band structure from
the electronic Hamiltonian Eq. (2) and the transfer integrals in
Table I leads to the band energies

ε(k) = ε0 +
∑

i∈{b,c}
2εi cos kRi + 2εac cos k(a + c)

± 2εab

(
cos k

a + b
2

+ cos k
a − b

2

)
± 2εabc

×
(

cos k
a + b + 2c

2
+ cos k

a − b + 2c
2

)
. (23)

Figure 2(d) shows the resulting FO-DFT band structure
in blue. As a reference, we have also calculated the band
structure with plane-wave DFT (PW-DFT) and B3LYP hy-
brid functional using the projector augmented-wave method
[64,65] of the VASP program package [66,67]. The reference
PW-DFT band structure is shown as dashed orange line in
Fig. 2(d). The PW-DFT and FO-DFT model agree very well
at the bottom of the conduction band, where electron transport
takes place. However, differences emerge at higher energies
and in the c direction, where distances between molecules are
largest. The model is in agreement with previous calculations

[68] and for transport properties up to room temperature, such
differences should be negligible.

2. Phononic properties and EPC

In the present approach we distinguish between local EPC
to the onsite energies of a molecule and the nonlocal EPC to
the transfer integrals between two different molecules. In the
case of naphthalene, the former predominantly contribute to
the polaron renormalization, while local and nonlocal con-
tributions together generate the disorder potential. The local
EPC is calculated for an isolated gas-phase molecule using
a frozen phonon approach [69] with vibrational patterns and
mode frequencies obtained with DFT using Gaussian 16 [60],
the basis set 6–311G** [61], and the exchange-correlation-
functional B3LYP [62,63].

The nonlocal EPC is calculated with phonon mode pat-
terns and vibration frequencies obtained with the density
functional based tight-binding method (DFTB) [70,71]. It
has been shown that DFTB yields appropriate estimations
of vibrational properties in a computationally efficient way
although being less accurate than DFT [72]. We used the
DFTB+ program [73] with the 3ob-3-1 parameter set [74,75]
for third-order density functional tight binding [76] and in-
cluded Grimme’s dispersion correction [77]. We apply a
frozen phonon approach [69], where the atoms in a supercell
are displaced according to the phonon mode patterns and
changes in εi j (calculated with DFT as explained above) are
tracked to obtain gQ

i j . To sample both the � point and BZ
edge of the crystal vibrations we have used a supercell with
2 × 2 × 1 primitive unit cells (8 molecules).

Antisymmetric modes are located at the BZ edge of the
primitive unit cell (see the Methods section) and are folded
into the BZ center of the supercell. Because of the chosen
size of the supercell only symmetric and antisymmetric gns(a) λ

i j
are located at the � point of the supercell’s BZ. The dis-
tinction between symmetric and antisymmetric modes can be
achieved afterwards by checking if gλ q=0

i j is periodic with
respect to the primitive unit cell (symmetric) or only with
respect to the supercell (antisymmetric). Finally, we calculate
the (anti)symmetric coupling constants gs(a) λ

i j according to
Eq. (10) for every phonon mode and the overall vibrational
disorder strength σ

s(a)
i j (T ) using Eq. (14).

The method of vibrational disorder is strictly valid only if
the phonons are static with respect to the electrons dynam-
ics. Therefore only the lowest-energy modes can be treated
quasistatically and we need to find a cutoff energy to sepa-
rate high- and low-frequency modes. Figure 2(f) shows the
cumulative vibrational disorder σ

s(a)
i j (T ) over different cutoff

energies along the largest transfer integral εab at T = 300 K.
Vertical lines represent phonon energies. The overall vibra-
tional disorder changes very much for small energy cutoffs
and barely changes for higher energies, where more phonon
modes are involved.

We performed test simulations for several cutoff
energies and compared the electrons dynamics in terms
of displacement and localization with the oscillation period
of the highest frequency phonon that is treated quasistatically.
We found that treating the eight lowest-frequency nonlocal
phonon modes with a maximum energy of 4.9 meV as
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quasistatic modes yields consistent results, i.e., where the
phonon oscillations are quasistatic compared to the electrons
dynamics. Similar cutoff energies of 5 meV have been chosen
previously for similar organic molecular crystals [41]. In our
case the standard deviation |σ s(a)

i j | of nonlocal vibrational
disorder at 300 K is highly anisotropic and reaches from 1.7
meV (38% of εac) in the ac direction to 23.9 meV (241%
of εb) in the b direction. The vibrational disorder from local
modes is an order of magnitude smaller with a maximum
standard deviation of only 0.45 meV.

B. Phonon-mode symmetries and correlation of
transfer integrals for quasistatic modes

An important precursor for transport properties is the den-
sity of states (DOS). We therefore investigate the influence
of the quasistatic phonons and their associated vibrational
disorder on the states in the conduction band. Figure 3(a)
shows a broadening of the DOS with increasing temperature
(increasing vibrational disorder). Higher temperatures lead to
an activation of more phonon modes and hence a stronger
vibrational disorder. Consequently, the DOS broadens with
increasing temperature. Despite the temperature dependence,
our data shows that the part of the vibrational disorder [cf.
Eq. (14)], which originates from quantum mechanical zero-
point vibrations, is significant at all considered temperatures
including room temperature. We note that a classical descrip-
tion of EPC, e.g., in the form of a molecular dynamics simula-
tion, would therefore not be able to capture such contributions.

EPC does not homogeneously broaden the DOS but can
have a different impact at different energies within the band.
To analyze the energy-dependent influence of the EPC on the
DOS, we now introduce the energy-resolved absolute cou-
pling constant Gs(a)

λ (E ) of (anti)symmetric modes to establish
a measure of the EPC strength projected onto the crystal band
energy [38,39] based on the band structure ε(q) [cf. Eq. (23)],

Gs(a)
λ

(E ) = 1

N�

∫
BZ

d3q Gs(a)
λ

(q)δ(E − ε(q)), (24)

with

Gs(a)
λ

(q) =
∑
〈i, j〉

∣∣gs(a) Q
i j

∣∣2
. (25)

The sum includes couplings over all the nearest neighbors
that are also connected via a transfer integral.

Figures 3(b) and 3(c) show the impact of the EPC for
symmetric and antisymmetric contributions across the band
for three different crystal directions (three transfer integrals).
In these figures, Gs(a)

λ (E ) is divided by the DOS for bet-
ter comparison of the couplings. The purely electronic DOS
without EPC (gray lines) indicates the energetic position of
the electronic band. It is clearly visible that the symmetric
coupling is strongest at the band edges, whereas the anti-
symmetric coupling is dominant in the middle of the band.
From Eq. (12) it gets clear that modes with q = 0 only cou-
ple symmetrically, whereas for q at the edge of the BZ, the
antisymmetric coupling is stronger. From the band structure
[see Fig. 2(d)] it can be seen that points near the � point
are related to energies at the band edge and points near the

FIG. 3. (a) Temperature dependence of the DOS. Vibrational
disorder broadens the DOS even at zero temperatures due to
temperature-independent zero-point fluctuations in Eq. (14). For
comparison the DOS without any vibrational disorder is shown in red
(no EPC). (b), (c) Energy-resolved coupling strength (see Eq. (24) for
definition) of purely symmetric EPC (b) and purely antisymmetric
EPC (c) for three different directions. DOS without EPC is indicated
in gray for clarity.

BZ edges are related to energies at the band center. Thus, the
symmetry of the coupling (and therefore the autocorrelation
of disorder) has a very distinct impact on different energy
regions in the band. We note that similar effects were observed
in theoretical studies of nonlocal, (anti)symmetric EPC in 1D
pentacene chains [39].

This observation can be further related to the influence of
the couplings at different temperatures and carrier densities.
For small temperatures and small charge densities, electrons
only populate states near the band edge and therefore symmet-
ric modes dominate EPC. On the other hand, antisymmetric
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coupling is more important at higher temperatures and larger
charge-carrier densities, because states in the middle of the
band become occupied. A detailed analysis of the band occu-
pation is given in the next section.

We next analyze the autocorrelation of the vibrational dis-
order. The combined vibrational disorder from all phonon
modes is correlated with an autocorrelation between the
neighboring transfer integrals along a given direction that
ranges from A = 0.1 (b direction) up to A = 0.3 (abc direc-
tion). This indicates that both symmetric and antisymmetric
modes contribute substantially but symmetric modes are more
dominant for every transfer integral. Previous studies of pen-
tacene crystals also have shown a dominance of symmetric
coupling with an autocorrelation of 0.25 [22], which agrees
with our results on naphthalene.

C. Influence of quasistatic phonon modes on 3D
electronic transport in naphthalene crystals

Before we address the influence of EPC on charge transport
in all its complexity, we want to investigate the influence
of band occupation on transport first. We focus on the case
of quasistatic modes only and generalize our findings later
systematically to the whole phonon spectrum. We start with
the observation that in our model we identify two underlying
temperature dependences. One is related to the ensemble of
phonons and affects vibrational disorder (see previous sec-
tion) while the other is bound to the ensemble of electrons,
which determines the band occupation and transport energies.

1. Transport level and band occupation

According to the Kubo-Formula in Eq. (21), the mobil-
ity depends on the density of transport states defined by
f (E )[1− f (E )]D(E ), which is to be distinguished from the
occupied density of states f (E )D(E ). Figure 4 shows the
energetic distribution of transport states (colored bold lines)
for two temperatures and different charge-carrier densities.
Colored areas show the occupation of the band, which differs
from the distribution of transport states especially at the band
edge. The distribution gets very narrow for low temperatures
[Fig. 4(a)] as its full-width-at-half-maximum is proportional
to 4kBT . For high temperatures [Fig. 4(b)] the distribution
gets broader and energy regions close to the band center
contribute more to the overall mobility. In general, those states
in the middle of the band are more delocalized and a broader
distribution would therefore increase the overall mobility if
the DOS would remain unchanged.

It becomes clear that the underlying temperature depen-
dences for phonons and electrons have opposite effects on the
charge transport. How these temperature dependences influ-
ence the mobility will be the subject of discussions in the next
sections. We start with the time-dependent mobility of a single
electronic wave packet, which than leads to the dc mobility
μdc

α (T ) in Sec. III C 3.

2. Time-dependent mobility

To calculate transport properties, we use the approach de-
scribed above (Sec. II D), the calculated DOS, and �X 2(E , t )
according to Eq. (20).

FIG. 4. Occupied density of states (colored areas) and associated
density of transport states ∝ f (E )[1 − f (E )]D(E ) (solid lines) for
three different charge densities at 60 K (a) and 300 K (b). (a) and (b)
use the same legend.

Figure 5 shows the mobility over time in the b direction
for three different charge-carrier densities. The vibrational
disorder and therefore DOS and �X 2(E , t ) are independent
of the density. All figures show a typical time dependence.
At the shortest times, electrons start spreading across the
crystal ballistically (linear increase of mobility up to ∼10 fs,
see insets) and eventually get scattered by local and nonlocal
vibrational disorder, which leads to destructive interference.
Consequently, the mobility decreases and transport becomes
diffusive. We find that for a 3D naphthalene crystal vibrational
disorder does not lead to a complete localization of electrons.

In Fig. 5(a) we observe that small charge-carrier densities
show a sharper and more pronounced initial mobility peak
compared to larger densities [cf. Fig. 5(c)]. Small carrier
densities lead to transport levels near the band edge. With
increasing carrier densities, we observe in Fig. 4 that the
density of transport states does not increase as strongly as the
density n itself that appears in the 1/n prefactor. This leads
to a reduced mobility-peak height for larger density, i.e., a
lower mobility at short times. For longer times, localization
effects set in and lead to a mobility decay. The stronger these
effects the sharper is the mobility peak. Consequently, the mo-
bility has a more pronounced peak for small charge densities.
A small temperature amplifies this effect, because a smaller
energy range is thermally active and higher energy states do
not contribute.

At the initial peak, μ(t ) is larger for small temperatures
than for larger temperatures. However, for longer times the
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FIG. 5. Time dependent mobility in b-direction for three differ-
ent charge-carrier densities and temperatures. Charge-carrier density
is set to (a) 10−4, (b) 10−3 and (c) 10−2. Insets show behaviors at
ultrashort times.

order is reversed and the mobility at 300 K becomes larger
than in the case of 60 or 140 K. This is related to the stronger
delocalization of states in the middle of the band, which
eventually dominate over the more localized states at the band
edge. As discussed in Sec. III B, symmetric coupling has the
strongest impact at the band edge while antisymmetric cou-
pling dominates the band center. From this we can conclude
that symmetric modes influence the ballistic regime and the
initial mobility peak stronger than antisymmetric modes do.

It becomes clear that at different times different energy
regions in the conduction band dominate transport. Therefore
it depends on the coherence time τc how much weight the
initial mobility peak gets and how strong the influence of the
long-time behavior is. The energy regions of transport are thus
influenced by τc.

FIG. 6. Temperature-dependent dc mobility for two directions
in the herringbone plane. Vibrational disorder stems from the eight
lowest quasistatic phonon modes (see main text). Solid lines show the
dc mobility for a coherence time of 135 fs, which is consistent with
the phonon cutoff energy. Dashed lines indicate a higher coherence
time of 270 fs. Colors indicate different charge-carrier densities. The
legend applies to both panels.

3. Coherence time and dc mobility

Figure 6 shows the dc mobility μdc
α (T ) in the herringbone

plane according to Eq. (22) for τc = 135 fs that is chosen in
consistency with the energy cutoff for vibrational disorder and
for τc = 270 fs which, for comparison, allows for a possibly
larger coherence time. Regardless of this choice, the mobility
decreases with temperature and shows power law behavior
below 150 K. We further analyze the phononic and electronic
contributions to the temperature dependency, which affect the
mobility additional to the β ∝ 1

T prefactor in Eq. (21). At low
T the broadening of the DOS due to EPC and the broader den-
sity of transport states are significant and therefore phononic
and electronic temperature dependences both codetermine the
slope of the power law in Fig. 6. We find that the peak of μα (t )
(see Fig. 5) dominates the dc mobility. Therefore the stronger
initial mobility peak at lower T leads also to higher mobilities
at low T in Fig. 6 and the mobility decreases with increasing
temperatures up to 150 K.

At high temperatures, the behavior of μdc
α in Fig. 6 changes

and the slope of the mobility flattens and even suggests the
emergence of a high-temperature plateau in the b direction
above 200 K. The phonon-induced changes in the DOS are
much less pronounced at higher temperatures for the relevant
energies around the chemical potential. This is in contrast
to low temperatures where the shape of the DOS changes
significantly, especially near the chemical potential. However,
the broadening of the density of transport states still increases
significantly leading to an increased contribution of delocal-
ized states. Thus, the main temperature dependence originates
from the thermal occupation of electronic states and not from
the temperature-dependent broadening due to vibrational dis-
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order. The high-temperature change in the mobility slope (i.e.,
dμdc

α (T )
dT ) in Fig. 6 is therefore identified as an effect of band

occupation (at constant carrier density).
Figure 6 additionally shows μdc

α for a larger coherence
time. Larger coherence times represent a case in which a
charge carrier has more time to localize (see Fig. 5) and the
differences between localized and delocalized states appear
more strongly. The localization leads to a lower overall mo-
bility and the relevance of the small amount of delocalized
states for the mobility increases slightly. Figure 6 shows an
emphasized high-T plateau behavior for larger coherence time
(τc = 270 fs). This indicates that the high-T plateau is mainly
driven by the influence of delocalized states in the diffusive
transport regime, which, in the middle of the conduction
band, are increasingly accessible upon thermal occupation.
Additionally, the high-T plateau is more pronounced at higher
charge densities. Both observations support the reasoning that
the high-temperature plateau is an effect of band occupation.

We want to note that decoherence is a complex phe-
nomenon, where all kinds of external and internal processes,
which are not part of the model, can contribute. Any assumed
value for the coherence time can therefore only be understood
as a simplification, where the whole complexity is reduced
to a single parameter. For this reason, we have considered a
possible variation of such a number. In general, the coherence
time could also be temperature-dependent and would probably
decrease with temperature. However, such models are beyond
the scope of the present work.

Experimental data on naphthalene electron transport
[14,78] show also a power-law behavior for small tempera-
tures and high-temperature plateaus in the b and c directions.
In the herringbone-plane (a and b direction) our results coin-
cide qualitatively. However, the simulations cannot describe
the out-of-plane direction c. One reason might be that the c
direction shows the smallest transfer integrals and therefore
possibly has the largest numerical error. More likely, however,
we believe the reason lies in the fact that our approach does
not contain any inelastic phonon creation or annihilation pro-
cesses, which might be necessary and have been conjectured
in literature [20].

D. Simultaneous modeling of EPC to high-frequency
and quasistatic phonon modes

So far, we have discussed EPC due to low-frequency
phonon modes only. Now, we want to include the high-
frequency modes in a combined model. Below, we discuss the
phonon mode spectrum and the associated polaron renormal-
ization, which is used in Sec. III D 2 to calculate the mobility
in the presence of low- and high-frequency phonons.

1. Polaron-renormalization and coupling to
high-frequency phonon modes

From the EPC parameters gs(a) λ
i j , we obtain the polaron

renormalization for high-frequency local phonon modes by
applying Eq. (18). We consider all phonons as high-frequency
modes whose phonon energy is above a certain threshold.
Figure 7 shows the cumulative polaron renormalization of
the transfer integrals for different threshold energies over the

FIG. 7. Polaron renormalization of transfer integrals due to local
phonon modes that are above an energy cutoff (abscissa). The cumu-
lated plot indicates no renormalization on the right and increasingly
stronger renormalization from right to left due to an increased num-
ber of involved modes. Vertical gray lines indicate phonon energies.

whole spectrum and for two temperatures. High threshold
energies mean only a few modes are considered, whereas low
thresholds correspond to situations, where almost all phonons
are treated as high-frequency modes. Figure 7 shows that for
threshold energies above 70 meV no significant temperature
dependence exists, because those modes are not thermally
active for either temperatures and only contribute via their
quantum mechanical zero-point fluctuations. For threshold
energies below 70 meV the occupation of phonon modes
(thermal activation) becomes significant and a difference be-
tween high and low temperatures is clearly visible.

In the subsequent transport calculation we treat all qua-
sistatic modes below 4.9 meV with the method of vibrational
disorder as before. Higher-frequency modes are treated by
polaron renormalization. For this cutoff energy, the polaron
renormalization becomes temperature dependent. The corre-
sponding renormalization factor varies from P = 0.453 at 60
K to P = 0.399 at 300 K.

2. Transport properties

Figure 8 shows the temperature-dependent mobility in the
herringbone plane for coupling to high- and low-frequency
modes (solid lines), which are compared to simulations with
only low-frequency modes from above (dashed lines). We
can see that the coupling to high-frequency modes counter-
acts the formation of the high-temperature plateau at elevated
temperatures, but does not add new characteristic features.
Surprisingly, polaron renormalization causes an increase of
the mobility for all temperatures. Usually, one would expect
the opposite since polaron renormalization reduces the trans-
fer integrals, which is expected to impede transport.

A detailed analysis of the DOS in the presence of phononic
renormalization shows a narrowing of the band according to
Eq. (18) in Fig. 9. The narrowing of the band counteracts the
band broadening from vibrational disorder. We can see that
the energy rescales but the Fermi-Dirac distribution, which de-
termines the band occupation and density of transport states,
remains broad. Only the chemical potential changes to ensure
the same charge-carrier density for every simulation. This
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FIG. 8. Combined effects of vibrational disorder and polaron
renormalization on electron mobility (solid lines) compared to the
case of absence of renormalization (dashed lines). Phonon modes
with energies below Ecut = 4.9 meV are treated as vibrational disor-
der. Coherence time is consistent with energy cutoff for quasistatic
modes at 135 fs. Charge density is constant at 10−3.

FIG. 9. Occupation of density of states (colored areas) and asso-
ciated density of transport states ∝ f (E )[1 − f (E )]D(E ) (solid lines)
for three different charge densities at 60 K (a) and 300 K (b). (a)
and (b) use the same legend. Polaron renormalization leads to band
narrowing, which enables the occupation of delocalized states in the
middle of the band.

leads to an occupation of states in the middle of the band,
which did not contribute before. States in the middle of the
band are more delocalized and by occupying those states the
effect of the renormalization of the transfer integrals can be
overcompensated, which leads to higher mobilities. We want
to emphasize that this is a feature of the band structure of
naphthalene. Whether polaron renormalization has generally
a positive or negative impact on the overall mobility depends
on the relative increase of delocalization towards the middle
of the band. Microscopic investigations by Vukmirović et al.
[23] suggest that polaron-renormalization has only a small
influence on transport, while we find a factor below two for
the present case that is not negligible.

Finally we note that the high-temperature plateau seen in
the experiment and our simulations, cannot be associated to
polaron renormalization because we observe a stronger de-
crease of mobility at high temperatures, which counteracts the
plateau formation. In any event, our results stress again the
importance of EPC to low-frequency modes and the role of
band occupation.

IV. CONCLUSIONS

In this paper, we have presented an efficient way to cal-
culate transport properties of a 3D organic molecular crystal
in the presence of EPC based on a tight-binding-like repre-
sentation of the DFT electronic structure and a thoughtful
evaluation of the Kubo formula for the electrical conductivity.
By splitting the phonon spectrum into quasistatic and dynami-
cal modes, we were able to find effective descriptions in terms
of vibrational disorder for low-frequency modes and polaron-
renormalization for high-frequency modes. We have shown
that not only the variance of vibrational disorder is important,
but also the symmetries of the phonon modes. Depending on
the symmetry, different regions of the conduction band are
affected by EPC to low-frequency phonons, which contribute
to charge transport depending on the band occupation.

An in-depth analysis of electron transport in naphthalene
has shown the importance of band occupation effects and the
role of charge-carrier density. The overall temperature de-
pendency of transport properties originates from the thermal
occupation of electronic states, the temperature-dependent
broadening of the DOS (due to vibrational disorder), and po-
laron renormalization when EPC to high-frequency phonons
is considered. We found that the experimentally observed
high-temperature flattening in the b direction can be caused by
band occupation and the coupling to low-frequency phonons
even when inelastic phonon creation and annihilation pro-
cesses are not included.

Finally, we investigated the combined effects of EPC to
high- and low-frequency modes simultaneously and found
the interesting result that the mobility increases by including
the interaction to high-frequency modes, i.e., formation of
polarons. This counterintuitive finding could be explained as
the combined effect of band narrowing and vibrational disor-
der, which leads to an occupation of delocalized states in the
middle of the band that would not contribute otherwise. The
occupation effect overcompensates the decrease of transfer
integrals between molecular sites due to polaron renormaliza-
tion.
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5 Publication: Understanding the electronic
pi-system of 2D covalent organic frameworks
with Wannier functions

Summary:

Covalent organic frameworks (COF) are an extremely interesting class of organic materials since they allow
to combine different organic molecules into a single covalently bonded crystal structure. However, choos-
ing high performing building blocks for a certain application requires some care. Traditionally, chemists
use empirical concepts like π-conjugation to rationalize design decisions. From a theoretical standpoint
these concepts are rather vague and often ambiguous [88] hampering structure-property predictions. In
contrast, a detailed analysis of the electronic structure from first principles can provide more and better
insights.

In the following publication [89] we perform such a detailed analysis for a family of seven hexagonal
COFs which have the same symmetry but consist of different chemical elements in the linker nodes.
We analyze chemical trends and correlate them with measures of aromaticity like nuclear independent
chemical shifts (NICS) and the Shannon entropy of the ground state density. Furthermore, the calculation
of maximally localized Wannier functions (MLWF) yields molecular orbitals which are in the shape of typical
π-, σ- and lone-pair orbitals and agree with chemical intuition. Moreover, their rigorous mathematical
definition enables quantitative calculations. We find that the electronic structure of the π-system completely
decouples and is very similar between the investigated COFs. The shapes of the bands are determined
by the symmetry of the COFs and is therefore similar for all investigated COFs. However, the bandwidths
depend on the chemical specifies and the polarization of bonds. In fact, the cumulative bandwidth of all
π-bands nicely correlates with other measures of aromaticity. This is, however, not always true for single
bands, e.g., bands near the Fermi-level might not follow the same trends. As a consequence, aromaticity
or cumulative bandwidth are not suitable predictors of effective masses and transport properties.

Using the description in term of MLWF we could also analyze the impact of doping and disorder on
bandwidths and delocalization of charge carriers. Both aspects are important for applications. We found
that the delocalization of charge carriers mainly depends on the energetic differences between building
blocks (onsite energies) and is hardly related to the NICS-aromaticity (of the building blocks). Only for
large amounts of disorder aromatic building blocks seem to be more resilient. Furthermore, we have
investigated the effect of bond torsions that can break π-conjugation.

Individual contribution:

Statement from the publication: "Initial structure creation and relaxation together with the numerical calcu-
lations of NICS values, Wannier functions, electronic structures and IPR values were performed by K.M.
Numerical calculations for the evaluation of bond torsion and related measures were carried out by J.G.
All authors contributed to the discussion and writing of the paper. F.O. supervised the work." [89]
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Understanding the electronic 
pi‑system of 2D covalent organic 
frameworks with Wannier functions
Konrad Merkel , Johannes Greiner  & Frank Ortmann *

We investigate a family of hexagonal 2D covalent organic frameworks (COFs) with phenyl and 
biphenyl spacer units and different chemical linker species. Chemical trends are elucidated and 
attributed to microscopic properties of the π‑electron‑system spanned by atomic pz‑orbitals. We 
systematically investigate the electronic structure, delocalization of electronic states, effects of 
disorder, bond torsion, and doping, and correlate these with variable π‑conjugation and nucleus‑
independent chemical shift (NICS) aromaticity. Molecular orbitals are obtained from maximally 
localized Wannier functions that have σ ‑ and π‑character, forming distinct σ ‑ and π‑bands for all 
valence states. The Wannier‑orbital description goes beyond simple tight‑binding models and enables 
a detailed understanding of the electronic topology, effective electronic coupling and delocalization. 
It is shown that a meaningful comparison between COFs with different chemical elements can only 
be made by examining the entire π‑electron system, while a comparison of individual bands (e.g., 
bands near the Fermi energy) can be a insufficient to derive general design rules for linker and spacer 
monomer selection. We further identify delocalized states that are spread across tens or hundreds of 
pores of the 2D COFs and analyze their robustness against structural and energetic disorders like out‑
of‑plane rotations of molecular fragments, different strength of energetic disorder and energetic shifts 
due to chemical doping.

Layered 2D  COFs1–3 are attracting huge scientific interest because they combine different worlds, namely the 
construction paradigm of covalently linked molecular building blocks such as in linear polymers with the 
intriguing features of inorganic 2D materials such as graphene or transition-metal dichalcogenides. After pio-
neering synthetic works demonstrating the feasibility of 2D  COFs4 and development of advanced synthetic 
 methodologies5–7 for tuning crystallinity, pore size or surface  area8–10, the research directions for 2D COFs have 
diversified  greatly11–13, where the electronic properties are a common theme. Recent improvements in material 
 quality14, have triggered the quest for unveiling the intrinsic electronic properties of 2D  COFs15. Moreover, 
the active control over these by synthetical strategies would be desirable. This requires a local monomer-based 
understanding of the emergence of these properties that includes the type of linkage between the  monomers1–3 
which in itself controls the electronic coupling and macroscopic observables such as charge transport param-
eters. To rationalize the influence of both building blocks and their electronic coupling, one uses effective lattice 
 models16–19 for specific electronic bands to explain intriguing band features, which however, are not well-con-
nected to the molecular building units used by synthetic chemists and not to the linkage chemistry.

From a chemist’s perspective, these electronic properties are rooted in the π-conjugation1,20, which is also 
associated with thermal and chemical stability. This concept is one of the most-frequently cited ones in 2D COF 
research. For semiconducting 2D COFs, π-conjugation is frequently connected with improved electronic proper-
ties, delocalization of states and good charge-carrier transport, but this connection is usually not supported or 
quantified and hence remains elusive. While for single molecules a number of different measures for π-conjuga-
tion or aromaticity, that quantify the entire π-electron system, have been suggested, e.g. resonance  energy21,22, 
aromatic stabilization  energy23–25, multicenter bond  index26,27, Bird  index28, Fluctuation  index29, Shannon 
 aromaticity30 or nucleus independent chemical shift (NICS)31–34, and are routinely simulated for monomers, 
this has not been done for 2D COFs. Notwithstanding, it is expected that also for 2D COFs, π-conjugation is 
an important prerequisite for dispersive electronic  bands35, low band gaps, low effective  masses36 and that it 
affects optical properties or allows for high carrier  mobilities37. In this sense, the route towards better π-con-
jugated systems is believed to be an important design  principle38 provoking claims of “high π-conjugation” or 
“full π-conjugation” in recent literature. However, only scant attention has been paid to investigate these meas-
ures for 2D COFs and assess their suitability in rationalizing the global electronic structure or to understand 
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delocalization of electrons in these materials, which is necessary for engineering their properties by synthetic 
approaches.

Here we investigate a family of prototypical hexagonal 2D COFs with aromatic and non-aromatic linker 
molecules in a combined ab initio and model study. The role of the π-orbitals for their electronic structure and 
the tendency to form delocalized π-systems, is analyzed with regard to the chemical nature of the linker unit. 
Toward this end, localized Wannier orbitals (WO) from first-principles DFT calculations are used to establish 
topological electronic lattice models. These WO lattice models have the advantage over mere effective lattice models 
(representing only few bands) that they are complete and contain all information about the system, including 
the band entanglement. They also resemble the Lewis structure closely, i.e. they are close to chemical intuition 
and are thus preferable and universally applicable to any 2D COF. Two manifestations of global π-conjugation 
are found, namely the effective coupling of π-orbitals leading to a large cumulated electronic bandwidth and the 
electron delocalization over linker and spacer units. Both properties are in general independent of each other 
and show different chemical trends. We show that whereas aromatic linkers may exhibit flat bands indicating 
insulating electrical characteristics, 2D COFs with non-aromatic and very polarized linkers in contrast can have 
a delocalized, global π-system, challenging the wisdom that formally better π-conjugation would be sufficient 
or necessary for better transport properties or delocalization of states.

Results and discussion
2D COF systems and NICS aromaticity. To investigate the in-plane π-conjugation, we choose seven 
2D COFs in monolayer geometry with different linker molecules, which are shown in Fig. 1. All structures are 
fully planar and belong to the P6/mmm space group, while the sheet separation is chosen sufficiently large to 
avoid any interaction. For clarity, all materials are named according to their linker elements and number of 
phenyl rings in the spacer unit (see Fig. 1). Common aliases, if they exist, are provided in parentheses. Among 
the systems, COF-CC-1Ph (Fig. 1d) is included as a hydrocarbon reference system, whose phenyl linker has no 
polarity in its carbon-carbon bonds and potentially leads to optimized conditions for a delocalized π-system. 
We note that, despite obvious steric effects, also COF-CC-1Ph is studied in its planar configuration because our 
focus is on the comparison of the electronic properties of the seven 2D COFs in the first place, while bond tor-
sions will be studied further below. On the other hand, COF-BO-1Ph4 and COF-BO-2Ph39,40 with their strongly 
polarized BO bonds are conventionally considered to be only weakly conjugated, if at all (vide infra), thus rep-
resenting the opposite case in our series of test systems with variable electronic properties. The triazine linker 
in COF-CN-1Ph5 and COF-CN-2Ph41 has less strongly polarized bonds and may be considered an intermedi-
ate case. The comparision between carbon-based and boron-based linkers enables us to distinguish between 
aromatic and non-aromatic linker monomers (vide infra). BS-based linkers add another interesting variant to 
the family studied here. The electronic structure and wave functions of these systems are described by density 
functional theory (DFT)42 for the relaxed structures (details are provided in the “Methods” section).

To characterize π-conjugation of the studied 2D COF systems, we calculate NICS, which is a well-estab-
lished measure of  aromaticity31–34. It is, in principle, applicable to macrocyclic systems and even to non-planar 
 structures43–45, which is a major advantage over other measures of aromaticity that are often applicable only to 

Figure 1.  2D COF structures with different linkers and phenyl (a–d) or biphenyl spacing units (e–g). Structure 
(d) serves as an idealized reference system for comparison. Chemical elements are represented with different 
colors: boron (pink), carbon (gray), hydrogen (white), nitrogen (blue), oxygen (red) and sulfur (yellow).
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single molecules, single rings or rely on suitable non-aromatic reference systems. NICS measures the response 
to an external magnetic field in an NMR Gedanken experiment, where a ring current is induced in cyclically 
conjugated molecules, which in turn causes a magnetic field that counteracts and therefore shields the external 
field. The NICSZZ value is defined as the negative ZZ-component of the shielding tensor (out-of-plane direction) 
and is usually evaluated at the center or 1Å above the center of a cyclic molecule. A more comprehensive picture 
is obtained by performing NICS scans across the molecular  planes46,47.

Before we investigate NICS values for the COF pores, we start by examining the basic building blocks, i.e. 
the linker and phenyl rings. Figure 2 shows their NICSZZ(1) values. Strongly negative values in the middle of the 
ring indicate aromatic  molecules33,34 as seen for phenyl- and CN-linker rings. As compared to the most aromatic 
monomers, both boron containing linkers show drastically reduced absolute but still non-zero NICSZZ(1) values 
at the center. We note that they stem from sulfur or oxygen atoms and cannot be associated to aromatic ring 
currents. These linker units are therefore reminiscent of non-aromatic species. The NICS plots also show that 
the ring currents not only generate a magnetic field inside the rings, but also outside. There the direction of the 
magnetic field is reversed as described by Ampères law. This leads to a shielding of the external magnetic field 
inside the rings but amplifies the external magnetic field outside the rings in the molecular plane, as is clearly 
visible for all monomers. Such outfield effects are very important for a sound interpretation of NICS values of 
multiple ring systems such as  anthracene48,49. In these systems, multiple ring currents around every single ring 
(and every combination of rings) can occur. Magnetic fields generated from one ring current also influence 
neighboring rings and shift the NICS value to positive  values34,46,50.

In order to address this question for 2D COFs, different contributions from all rings need to be analyzed. 
Our study here focuses on the induced ring current of a single 2D COF pore rather than all kinds of local ring 
currents, because we are interested in the characterization of global π-conjugation for 2D COFs and not local 
π-conjugation of single monomer units. Therefore, we need to distinguish the NICS values originating from 
ring currents around the COF pore (that are of interest) from all other sources of NICS originating from the 
peripheral building blocks. Towards this end, we split the COF pore into fragments as shown in Fig. 3a,b such 
that no ring current can flow analogously to an open electrical circuit. NICS values for this situation of a broken 
conjugation are compared to a completely closed COF pore, where ring currents are possible (Fig. 3d). The COF 
fragments in Fig. 3a,b are saturated with additional hydrogen atoms and the NICS maps resemble those of the 
monomers in Fig. 2. The NICS values of all fragments are added in Fig. 3c. Interestingly, this yields values very 
similar to the ones of a completely closed 2D COF pore (Fig. 3d) although the fragmented geometry prohibits 

Figure 2.  NICSZZ(1)-scan for all basic building blocks of the investigated COFs. Linker units are terminated 
with hydrogen.

Figure 3.  NICSZZ(1)-scans ( 1Å above the molecular plane) for a single pore of COF-BS-1Ph. (a–c) The 
decomposition scheme that is compared with calculations of the entire pore (d). All other investigated COFs 
show similar results.
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a pore ring current whereas the closed geometry might support such current. For better analysis, Fig. 3e shows 
the difference in the NICS values ( �NICS) between the sum of the COF fragments and the full COF pore. This 
�NICS plot confirms that the difference vanishes. Only minor contributions that are due to the breaking of the 
chemical bonds at local points remain where the two phenyl rings were cut out, which is a purely local effect that 
is not associated to the COF pore. The same results were found for calculations of all other investigated systems. 
Therefore, the NICS values of the investigated COFs can be understood as the superposition of NICS values of 
the smaller peripheral rings surrounding the pore. Possible contributions from pure pore-ring currents, which 
would manifest in a finite �NICS value in Fig. 3e, are found to vanish in any of the COFs up to numerical preci-
sion of the simulations. We emphasize that several tests of more elaborate decomposition schemes for the COFs 
did not give measurable �NICS values from ring currents for any of the investigated systems (see section SI-8 
in the Supporting Information).

This leads us to the conclusion that, despite clear signatures of NICS aromaticity of the different linkers, 
NICS calculations for an entire 2D COF are only of limited use. They cannot provide insight into the role of π
-conjugation-induced formation of extended states that possibly could extend over many pores. We therefore 
study other measures that are more suitable here subsequently.

Orbitals and band structure. We next analyze the DFT electronic structure, which is fully described 
by the Bloch states |mk� and the Kohn–Sham Hamiltonians Ĥ =

∑
mk

ǫm(k)â
†
mk

âmk . For a better analysis of 
structural and energetic disorders, which are rather intransparent in k-space, we represent the Kohn–Sham 
states with localized orbitals that are associated to linker or phenyl/biphenyl spacer moieties. We choose WOs in 
the concrete form of maximally localized Wannier functions (MLWF)51, which are particularly well suited since 
they provide a natural way to obtain localized orbitals for periodic crystals (see “Methods” section for all details). 
It has been shown that if all occupied states (valence bands) are contained in the Wannierization procedure, 
MLWF reproduce typical bonding orbitals such as sp3-hybrid orbitals in Si and GaAs and σ - and π-orbitals in 
 hydrocarbons51,52. They are obtained from the Bloch states by a unitary transformation according to

and therefore retain all electronic information about the system. R indicates the unit cell associated to the WO 
and the unitary matrix U(k) can be chosen such that the obtained orbitals have minimum  spread51,53. For this 
reason MLWF are commonly used for band structure  interpolation54 and calculations of topological proper-
ties, e.g. Berry phases or Chern  numbers55. The transformed Kohn–Sham–Hamiltonian in the WO basis reads

where â(†)i  (create) annihilate an electron at the i-th orbital, ǫii are the orbital (onsite) energies and ǫij with i  = j 
are transfer integrals (TI). We have checked that the transformed Hamiltonian Eq. (2) accurately reproduces the 
Kohn–Sham electronic structure (see Fig. SI-1 in the Supporting Information).

Figure 4 shows the resulting WOs for COF-BS-1Ph as example representing all 2D COF structures in this 
work. We observe that all WOs are localized within the range of 

√

�x2� − �x�2 ≤ 1.4 Å which is close the C=C 
bond distance. They can be associated with typical bonding hybrid orbitals. As an example, Fig. 4a shows the 
WOs of the type X-π (X = S, N, O), which are localized at a single linker moiety (e.g. the uppermost BS linker 
with its WO in darker colors). It also shows the copies of the orbital at the six symmetry equivalent positions in 
the COF. In addition to these six X-π orbitals, Fig. 4b,c illustrates a complete set of all occurring types of WOs at 
linker and spacer units. Although WOs of the same type share the same shape, small deformations in the vicinity 
of the linker can occur and are shown in Figs. SI-2 and SI-3.

(1)|nR� =
∑

mk

eikRUnm(k)|mk�,

(2)Ĥ =
∑

ij

ǫij â
†
i âj ,

Figure 4.  Illustration of Wannier orbitals obtained for all materials. (a) The symmetry equivalent WO of the 
type X-π . (b,c) All different bond-types in terms of WO at linker and phenyl rings. The notation of WO is based 
on the atom types (X,Y,C,H) and shapes ( π , σ , lp). All studied COFs contain the same shapes of WO.
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Similar to the X-π WOs at the linker, π-orbitals of type C=C-π are located at the phenyl rings (three π-orbitals 
per ring). The π-orbitals at linker and phenyl rings together form the π-system (Fig. 4b), which contains in total 
15 π-orbitals per unit cell for COF-BS-1Ph, COF-CN-1Ph, COF-BO-1Ph and COF-CC-1Ph (Fig. 1a–d) and 24 
π-orbitals per unit cell for COF-BS-2Ph, COF-CN-2Ph and COF-BO-2Ph (Fig. 1e–g). These are by symmetry 
the only WOs which have contributions from atomic pz-orbitals.

Figure 4c shows all σ-orbitals (apart from symmetry equivalent copies) that represent the bonds between the 
chemical elements (type X-Y-σ , for which X = S, N, O, C and Y = B, C are the linker atoms). At every phenyl and 
linker ring there are six WOs of type C-C-σ or X-Y-σ , respectively. Together with the C=C-π and X-π orbitals 
we find a typical structure of alternating single and double bonds that is in agreement with the Lewis structure 
for all COFs. The C-C-σ orbitals at single-bond and double-bond positions have the same shape. However, they 
differ in other properties and, if necessary, we distinguish these two sub-types in our notation as C-C-σs and 
C-C-σd , respectively. In addition, lone-pair orbitals at the linker are denoted as X-lp (X = S, N, O). Note that, 
since COF-CC-1Ph only consists of phenyl rings as building blocks, it does not host X-π or X-lp orbitals but 
C=C-π and C-H-σ orbitals instead. In total one obtains 69 WOs per unit cell for COF-BS-1Ph, COF-CN-1Ph, 
COF-BO-1Ph and COF-CC-1Ph and 111 WOs per unit cell for COF-BS-2Ph, COF-CN-2Ph and COF-BO-2Ph.

Having established the WOs as convenient basis of our study, we turn to their electronic coupling and pos-
sible formation of globally extended states and their robustness. The distribution of such states over linker and 
phenyl rings, spanning over several pores or even throughout the entire 2D COF, would indicate interesting 
electronic and transport properties. This requires the electronic coupling between adjacent orbitals, while their 
energies should not differ too much.

Band structure, bandwidth, and lattice models. In order to investigate the influence of π-orbitals on 
the electronic structure, we analyze the π-system as a whole rather than restricting ourselves to specific bands, 
because a preselection of a subset of bands could be misleading. Toward this end, we determine the contribution 
of the π-orbitals to the Kohn–Sham-eigenstates |nk� by projecting them onto all π-orbitals in a unit cell accord-
ing to the weight

Figure 5a shows the electronic structure for the uppermost valence states of COF-BS-1Ph and the projec-
tion Pπ (n, k) (red color bar) together with the density of states (DOS) and the π-projected DOS ( π-DOS) for 
COF-BS-1Ph. Band structures for all other COFs can be found in section SI-3 of the Supporting Information.

The π-orbitals only contribute to a specific subset of bands, subsequently denoted π-bands. Protected by 
symmetry, these π-bands are decoupled from all other bands, i.e. they do not have contributions from σ - or 
lone-pair-orbitals and vice versa, allowing a clear distinction of the π-system from all other bands. Although, 
the σ - and lone-pair-bands differ strongly between different COFs, we see that the π-system is very similar in 
shape and arrangement of the bands. Only 2Ph-COFs host additional π-bands, however, similarities between 
1Ph and 2Ph COFs are still obvious. We can therefore conclude that the qualitative energy dispersion is mainly 

(3)Pπ (n, k) :=
∑

i∈π-WOs

|�i|nk�|2.

Figure 5.  (a) Band structure of COF-BS-1Ph, projected on all π-orbitals, and density of states (DOS) for all 
states and π-states ( π-DOS). Zero energy is put to the top of the valence bands. Colored stripes indicate the 
bandwidth for every group of π-bands. The Brillouin zone is shown as inset. (b–e) Partial charge densities at the 
Ŵ-point from the indicated group of π-bands, |

∑
n�nk = 0|ψ�|2 (where n is restricted to a single π-group). (f,g) 

Comparison to the 2D effective lattice models.
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determined by the geometry and symmetry of the COF, whereas the chemical elements of the linker manifest 
themselves solely in the bandwidth of individual π-groups.

We briefly discuss the origin of these π-groups using COF-BS-1Ph as an example. For convenience of presen-
tation, we indicate in Fig. 5a the different groups with colored stripes, which will be used throughout this paper. 
The first two π-groups (blue and orange) are distorted kagome (kgm) bands (cf. Fig. 5f for a kgm lattice and its 
idealized band structure)16–18. Their partial charge density is mainly localized at typical kgm sites as expected 
(cf. Fig. 5b,c). A deeper analysis of the Hamiltonian in the WO basis reveals that the distortion is not related to 
symmetry-breaking but originates from (small) next-nearest neighbour interactions. In agreement with previ-
ous  studies56 these distortions can be reduced by removing corresponding transfer integrals. π-group 3 and 4 
(dark and light green) have the same origin and show the same partial density (cf. Fig. 5d). The corresponding 
real-space lattice is a honeycomb lattice in which the simple vertex is replaced by a connected trimer (cf. Fig. 5g), 
which we call “hcb-tri”18,56. The fifth group of π-bands (brown) shows a nearly ideal kgm band structure. In con-
sistency, the corresponding partial density in Fig. 5e is located at the phenyl units, which, at first glance, seems 
to be a perfect manifestation of a kgm lattice that is realized by phenyl-based π-WOs (Fig. 5f). The visual identi-
fication of an effective lattice model from crystal states, however, can be tricky and caution should be exercised. 
For instance, in the present case, the Hamiltonian in the WO basis does not contain significant TIs between the 
WOs at the phenyl rings, in contradiction to the kgm lattice model. The absence of these (through space) TIs 
between WOs at the phenyl rings is explained by the fact that long range connections between WOs are exponen-
tially suppressed and significant TIs only exist over short distances (few Angstroms). An overview is compiled 
in Figs. SI-4 and  SI-5 of the Supporting Information. This case exemplifies that it is generally not permitted to 
infer an effective lattice model just from the band structure. The TIs that are responsible for these kgm-bands 
are those between WOs of the phenyl units and the BS linkers. The linkers therefore serve as bridging units that 
facilitate the carriers tunneling from one phenyl ring to the other through the linker (and not through space). As 
a consequence, the linkers, even if devoid of charge density for these bands, can have a strong impact on these 
bands (see “Impact of orbital energies” below). This shows that picking isolated groups of bands for an effective 
lattice model may not capture all its properties and can be a misleading simplification that may not correctly 
describe the origin and entanglement of the bands, while the formal representation in a Wannier basis is exact.

The π-system is analyzed further by quantifying its electronic bandwidth. Our focus is on the cumulated 
bandwidth of the entire π-system in Fig. 6, while the individual contributions are also resolved in the figure. 
From comparing the different COF structures, we find the cumulative bandwidths to depend sensitively on the 
linker type. We observe similar trends for phenyl (1Ph) and biphenyl (2Ph) cases. The reference system COF-
CC-1Ph has the largest cumulative bandwidth, which confirms the conjecture of the highest degree of (global) 
conjugation for this material. The two boron-based COFs have much lower values. The weaker π-conjugation 
in presence of boron atoms leads to a reduction in the cumulated bandwidth by about a factor of two in case of 
BS COFs and by a factor of about three to four in case of BO COFs. This reduction is in full consistency with 
the combination of boron, an electron deficient atom with electron-rich oxygen or sulfur. Also, COF-BO-1Ph 
and COF-BO-2Ph are the COFs with the most polarized linker according to the electronegativity values of the 
chemical elements and Bader charges (see section SI-4 in the SI).

In contrast to the cumulated bandwidths, these chemical trends are not reflected in the top valence bands. 
These bands, which are responsible for (p-type) transport properties, are π-bands for almost all investigated 
systems except for COF-CN-1Ph, where the top valence bands originate from lone-pair orbitals. The widths 
of these bands do not follow the same trend as the cumulative bandwidth, which makes transport parameters 
like the effective mass (see Table SI-4 of the SI) uncorrelated to the overall π-conjugation, which is a rather 
unexpected finding. Furthermore, the top valence bands are often kgm groups which contain a flat band that 
yields huge effective masses (see  also56). For transport properties it is therefore crucial if the flat band is on top 
or below the dispersive bands, which can even change for different COFs with the same linker, e.g. in the case 
of COF-BO-1Ph and COF-BO-2Ph.

Figure 6.  Electronic bandwidths for planar structures. Colors represent different groups of bands as highlighted 
in Fig. 5 for COF-BS-1Ph. The overall size of the bars indicate the cumulative bandwidth. Values are provided in 
Tables SI-1 and SI-2.
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Impact of orbital energies. Orbital energies are key electronic parameters for many applications. They 
determine redox potentials of the monomers, which can be used to control the COF’s electronic properties. They 
can be further tuned by chemical doping, which is frequently performed for 2D  COFs37,57–60. In addition, orbital 
energy differences have a strong impact on the band structure. For instance, they can lead to a reduction of the 
band width and to a gap opening in the bands. A prominent example for the latter is the difference between the 
atomic 2D crystals graphene vs. hexagonal BN. In 2D COFs, owing to the symmetry, WOs that belong to the 
same bond-type for a given COF share the same orbital energy, while differences occur for C-C-σs and C-C-σd 
at single and double bond positions, respectively. In contrast, the orbital energies of analogous WOs in different 
2D COFs vary substantially. Figure 7 compares the WO orbital energies for all systems. Colors represent differ-
ent linkers and their pale version represent the biphenyl COFs.

The C=C-π , C-C-σs and C-C-σd orbitals at the phenyl rings have, respectively, similar onsite energies for 
all COFs, including the reference system COF-CC-1Ph, with variations within a range of maximally 0.37 eV 
among each individual group, while all other orbital energies depend much more strongly on the chemical spe-
cies. Indeed, the onsite energies of the linker orbitals ( ǫS-π,ǫN-π , ǫO-π ) show big differences depending on their 
chemical elements and the polarization of the bond, ranging between −11.85 eV and −7.63 eV.

In order to study how the different WO energies influence the electronic structure, we focus on the X-π orbit-
als at the linkers, which are material dependent as discussed above and have the strongest effect on the π-system. 
COF-BS-1Ph is studied as a concrete representative case. It is instructive to study modifications in the WO energy 
by a simple model according to the replacement ǫS-π → ǫS-π +�ǫS-π while all other electronic parameters are 
kept fixed for the sake of transparency of the effects. Positive values for �ǫS-π would correspond to p-type doping 
and could be realized by intercalation of strong electron acceptors such as  F4TCNQ59. Figure 8 shows the changes 

Figure 7.  Orbital onsite energies for every WO and material. C-C-σs and C-C-σd denote the C-C-σ orbitals at 
single and double bond positions, respectively.

Figure 8.  Impact of S-π onsite energy on the band structure of COF-BS-1Ph. Red color indicates high values 
of projection Pπ onto π-orbitals. The black dashed line shows the original onsite energy and the blue dashed 
line highlights the special case where all upper π-groups touch each other. The energy scale is set to zero at the 
highest occupied state of the original 2D COF for better comparison.
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in the band structure as a function of �ǫS-π . For clarity of presentation, the color scale in the figure indicates 
the maximal projection Pπ (E) = maxk∈�{Pπ (n, k) |En(k) = E} ( � is the path along Ŵ-M-K-Ŵ in the BZ) for 
a given energy E. This clearly distinguishes all π-bands from all other bands regardless of the values of �ǫS-π.

We observe that the shift �ǫS-π leads to strong changes for the bands of COF-BS-1Ph for both n- and p-type 
doping regimes. This affects the bandwidths and energies of all π-bands, whereas all other bands remain 
unchanged. These changes are even qualitative since various crossovers and gap closures and openings are 
observed. We also find that even those π-bands, which have no charge density on the linker (S-π ) are affected 
by the S-π onsite-energy change. For instance, the bandwidth of the fifth group of bands (at an energy below 
−3 eV ) changes significantly with �ǫS−π , despite the fact that the charge density of this kgm-group is completely 
localized on the phenyl rings without any contributions from the linker (see Fig. 5e). Above, we have pointed 
out that there are no direct (through space) TIs between any phenyl-based WOs that lead to the kgm-bands as 
would be expected by a simple model. There are rather many indirect connections with TIs through the linker 
(see Fig. SI-4). It is these indirect connections that are influenced by the energy variation of the linker and further 
corroborate the above findings.

Interestingly at �ǫS-π = 0.8 eV (blue dashed line in Fig. 8), we observe that four of the five π-groups of bands 
join into a single one with a total band width of 2.4 eV , whereas the lowest-energy band remains separated. 
The upper π-groups touch each other but do not overlap. Larger shifts of �ǫS-π > 0.9 eV lead to reconstructed 
π-groups such that new gaps appear and flat bands change their group affiliation resulting in π-groups with 
different topology. More precisely, the upper two kgm-groups become a hcb-tri group and the former hcb-tri 
group splits into two kgm-groups, i.e. the topological groups get therefore reordered. Figure SI-10 shows three 
band structures for selected values of �ǫS-π at 0.5 eV , 0.9 eV and 1.2 eV for the interested reader. These findings 
show that the entire π-system is important for a comprehensive understanding of the COF’s electronic structure 
and investigations of isolated π-bands may not provide the full picture. Our results further suggest a very rich 
playground for manipulating band topologies with dopant-induced orbital energies. This is possible even for 
rather modest energy shifts, which should be accessible with conventional dopant species that have already been 
used for 2D COFs in the  past60–62.

Robustness and breaking of π‑conjugation by bond torsion. Mechanical distortions like out-of-
plane rotations of phenyl rings (around the bonds to their neighbors) may limit the delocalization of electronic 
Bloch states because they can modify the overlap of π-orbitals between linker and phenyl  rings63,64. To investi-
gate these effects on the bandwidth, we rotate all phenyl rings of the 2D COF by the same angle φ in a propeller 
like arrangement (P3 symmetry group) while keeping the linker positions fixed. Figure 9 shows the impact of 
such rotations on the bandwidth for COF-BS-1Ph. Complementary figures for the other structures can be found 
in the SI (Figs. SI-11, SI-12). For reference, the band structure for the planar geometry is reproduced (from 
Fig. 5) in the left panel of Fig. 9. For a better overview over different states, they are projected onto atomic pz 
orbitals at the linker positions and indicated by red color (see “Methods” section for all details). Projections onto 
these pz-orbitals at the linker are sufficient to characterize the global, delocalized π-system because there are no 
π-states that are solely localized at the linker.

Upon rotation we observe a change in the bandwidth with increasing φ for all highlighted π-bands and for 
π-band group two (orange bar), indicating that the out-of-plane-rotation reduces the effective coupling within 
the π-system as expected. The largest bandwidth reduction is found for the two π-groups with the largest width 
(dark and light green), that correspond to the hcb-tri effective model. Despite the reduction of bandwidth, 
the band structures of these π-groups maintain the same order for the groups for all φ . This is different to the 
onsite energy change investigated above which induced band crossovers, suggesting that structural effects have 
a somewhat weaker impact as compared to energetic effects. The 2D COFs with rotated groups, however, have a 
reduced symmetry that leads to additional band gaps in Fig. 9. These gaps exist already at small angles φ < 20◦ 
and become clearly visible for larger rotations. Despite the emergence of gaps, the band structure remains similar 

Figure 9.  Band structure of COF-BS-1Ph (including projection on pz-orbitals at linker positions) and impact of 
rotation of the phenyl rings on band width and projection. The energy zero is set to the valence band maximum 
of the planar structure.
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to the planar case for almost all π-groups. Only for the fifth π-group (brown) we observe fundamental changes 
of the band structure, where bands get mixed with energetically nearby bands resulting in a complete disappear-
ance of this π-group. This is not surprising since the (partial) charge density of these π-group is entirely located 
at the rotated phenyl rings (see Fig. 5e). Interestingly, the distortion of the first (blue) and second (orange) kgm 
bands is reset upon rotation and eventually leads to nearly perfect kgm bands for φ ≥ 50◦.

To quantify the visual impression in Fig. 9, we extract the ( φ-dependent) cumulative bandwidth (see Eq. (6) 
for definition) in Fig. 10 for all phenyl COFs (a) and bi-phenyl COFs (b). Solid lines show the cumulative width 
of the π-bands that are already present in the planar systems. We see that the cumulative bandwidth (solid 
lines) decrease upon rotation for all phenyl COFs. Especially COF-CC-1Ph has not only the largest cumulative 
bandwidth but also shows the strongest decrease (linear slope). COF-BO-1Ph exhibits only small changes with 
increasing φ . In the case of 2Ph COFs (b) this trend is less pronounced.

In addition to the reducing bandwidth, in some 2D COFs additional π-bands appear that do not exist for 
the flat geometries ( φ = 0 ). This occurs at low energies and is accompanied by the complete change of the fifth 
π-group (brown). These new bands can have a large impact on the overall cumulative bandwidth which we 
indicate by dashed lines in Fig. 10.

We finally note that changes of the electronic structure upon rotation can also be evaluated by other quantita-
tive measures which are compiled in the SI in section SI-7.

Density of states, disorder and delocalization. Of central importance to electronic and transport 
properties of 2D COFs is the delocalization of the electronic states. While the electronic coupling between π
-orbitals is a central prerequisite, it may not be sufficient to delocalize electronic states beyond the size of indi-
vidal pores which would be necessary for efficient charge-carrier  transport65,66.

We start by investigating the stability of the π-bands against increasing strength of energetic disorder. For 
this purpose we investigate large samples (supercells of 29× 29× 1 unit cells for 1Ph COFs and 23× 23× 1 for 
2Ph COFs) that are constructed from the WO-based Hamiltonian (Eq. 2) and add electronic disorder. We use a 
generic uncorrelated Anderson model which shifts the onsite energy of every orbital randomly with a value �ǫ 
from the interval [−W/2,W/2] , where the disorder strength W is the width of a box  distribution67. We calculate 
wave functions and their energies at the center of the supercell BZ (see “Methods” section).

Figure 11 shows the DOS and the π-DOS of COF-BS-1Ph for different strengths of disorder W. π-groups are 
clearly distinguishable from all other valence bands and highlighted with colored stripes as before. The Dirac 
cones in the band structure are clearly visible in the DOS and the π-DOS with their characteristic V-shapes and 
are labeled by “D” at −1.1 eV and −2.3 eV . With increasing disorder, these shapes remain visible up to large 
disorder values ( W = 1 eV ), indicating a good robustness against disorder. Analogous behaviour of the Dirac 
cone states was observed for graphene, which however has much wider π-bands68,69. The robustness of the states 
for the more complex 2D COFs with rather moderate bandwidths, however, is quite surprising and suggests a 
similar mechanism here, which would suggest similar transport  phenomena70.

In contrast to these features, the two groups of flat π-bands (at 0 eV and −0.35 eV ), which we identified 
as deformed kgm bands, are much more strongly affected by the disorder. These bands are broadened with 
increasing W and the individual DOS peaks of both bands overlap already for W = 0.5 eV and finally merge 
into a broad feature at W = 1 eV . The broadening is much larger than for other bands because these bands are 
dispersionless, which makes them more susceptible to disorder and localization as compared, for instance, to 
the Dirac cone states.

We next study the delocalization of the electronic states and their robustness against disorder. The ques-
tion of disorder-induced localization is independent of the changes in the bandwidth (see “(Projected) inverse 
participation ratio” in the Methods section). Based on the clear separation of the π-system we can calculate the 
delocalization of the wave functions within the π-system by means of the inverse participation ratio (IPR)71. The 
IPR is a well-established measure for the spread of wave functions, which has already been used successfully for 
2D-Dirac materials and topological  insulators72,73. It is defined as

Figure 10.  Cumulative bandwidth for different rotation angles φ for 1Ph COFs (a) and 2Ph COFs (b). Solid 
lines focus on the upper π-groups (near the Fermi-level) and dashed lines show the measurement for all π
-groups. Colored areas indicate the numerical error of CBW due to a change of threshold parameters by 15%.
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where the sum runs over all N orbitals in a supercell. |i� denotes a WO and |n, k = 0� is the analyzed eigen-state 
of the system. To focus on the π-states only, we utilize here the projected IPR ( π-IPR) defined in the “Methods” 
section, where |i� is restricted to π-orbitals. Since the IPR values depend on the number of orbitals and the 
choice of supercell, we can only compare the phenyl COFs with each other and, separately, the biphenyl COFs 
with each other.

A more intuitive and closely related quantity is the participation ratio (PR), which is defined as the inverse of 
the IPR. It can be understood as the average number of orbitals over which a wave function is distributed. Fig-
ure 12 shows the average PR that is obtained for the entire set of π-states and compares the studied 2D COFs. In 
all cases one observes that the π-PR decreases with increasing disorder, which induces to a stronger localization 
of these states. Starting from pristine systems ( W = 0 ) in which an average π-state is spread over 32% (COF-
BO-1Ph) to 39% (COF-CC-1Ph) of the π-orbitals, at W = 0.1 eV , the average spread is reduced to 20.6% for 
COF-CC-1Ph and strongly suppressed to 10.0% for COF-BO-1Ph. To put this into perspective, this corresponds 
to an average (de-)localization over 174 and 84 pores, respectively, which are in the same order of magnitude as 
experimentally achieved domain  sizes14,74,75. For the same W, electronic states of COF-BS-1Ph and COF-CN-1Ph 
are (de-)localized on average over 110 and 108 pores, respectively. These values are surprisingly similar and are 
indeed not expected given the strong differences in the NICS aromaticities of the linker monomers.

For larger strength of disorder ( W ≥ 0.5 eV ) we observe a switch in the order of the PR values between 
COF-BS-1Ph and COF-CN-1Ph (cf. Fig. 12a) and also for the corresponding biphenyl COFs (cf. Fig. 12b), sug-
gesting that CN-based COFs are more resilient to energetic disorder than BS-based COFs. This behavior can be 
correlated to the energy-resolved PR values which can vary by more than one order of magnitude for a single 

(4)IPR(n) :=
N
∑

i=1

|� i | n, k = 0 �|4,

Figure 11.  DOS and π-DOS for COF-BS-1Ph with different amounts of Anderson disorders W. Disorder-free 
case reproduced from Fig. 5a for comparison. Colored bars and energy scale are the same as in Fig. 5. Labels “D” 
show the Dirac points of the hcb-tri group.

Figure 12.  Participation ratio of π-states for different strength of Anderson disorders in a supercell. 
Calculations without disorder are shown in the inset for the same supercell.
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systems (not shown as a plot). A detailed analysis of the band- and energy-resolved PR shows strong differences 
between band edge and band center with more delocalized states towards the middle of the bands for CN-based 
COFs, especially in the hcb-tri group, which increase the average PR at these energies while analogous states 
in the middle of the bands of BS-COFs are less delocalized. States at the band edges are much more strongly 
localized in both systems.

We finally study how the delocalization of electronic states can be increased upon linker-based doping for the 
assumed disorder regime of W = 0.5 eV . Figure 13 shows the changes in the π-PR for energetic shifts �ǫX−π of 
up to 1.25 eV that are achievable with conventional molecular dopants even in non-porous organic  systems76. 
In all cases one observes that the induced energetic differences have a strong impact on the π-PR. Vanishing 
energetic differences between linker and phenyl rings |ǫX-π − ǫC=C-π | (indicated by dashed lines in Fig. 13) can 
be understood as resonance condition and always lead to much better delocalization. For instance the π-PR 
increases up to 47% for COF-BS-1Ph as compared to the undoped case. We therefore confirm that even in cases 
with large disorder, energetic differences of π-orbitals between linker and spacer units have a large impact. For 
small disorder this resonance effect is further amplified.

Conclusion
In this work, we compared a family of COFs with the same symmetry but different linker units in terms of π-con-
jugation, aromaticity and resulting electronic properties which are all routed in the COF’s π-system. Although 
the electronic bands (including σ - and lone-pair-bands) of the COFs may appear quit different at first glance, 
we found that the π-bands are very similar in terms of band shape and arrangement. Our results show that the 
structure and symmetry alone determines the band dispersions qualitatively regardless of the chemistry of the 
linker unit. The chemical elements on the other hand control, through bond polarizations and aromaticity, the 
bandwidth and delocalization, quantitatively. However, the impact on single bands (e.g. bands near the Fermi 
level) might be very different and uncorrelated.

The understanding of electronic properties is facilitated by the transformation of the crystal Bloch states to 
localized Wannier orbitals with σ , π and lone-pair character. This WO representation of the electronic states 
resonates well with chemical intuition and is a natural basis for analyzing the π-system and allows rationalizing 
simpler effective topological models that are associated to certain subsets of bands. The analysis of electronic 
bandwidth, robustness against out-of-plane rotations, sensitivity to energetic disorder, delocalization and nuclear 
independent chemical shifts unveiled chemical trends that are independent of the number of phenyl rings 
between linkers and only depend on the chemical elements of the linker.

Our study revealed two independent effects of variable π-conjugation due to differently polarized linker bonds 
within the studied family. First, 2D COFs with more aromatic linker rings (as measured by NICS) show larger 
cumulative bandwidths and therefore larger effective TIs between the building blocks. The NICS aromaticity, 
however, characterizes the π-system as a whole and is not necessarily a valid descriptor for specific π-bands, 
such as the top valence bands. This renders the linker’s aromaticity barely related to (hole) transport properties 
and transport parameters like effective masses of the top valence bands. A second aspect of π-conjugation is the 
delocalization of wave functions within the π-system. This depends mainly on energetic differences between π
-orbitals at linker and spacer units and is less related to the aromaticity of the linker or cumulative bandwidth 
of the π-system. In fact, even non-aromatic BS linkers can lead to stronger delocalization than aromatic triazine 
linkers for energetic disorder that is not too strong. However, a larger coupling between building blocks (larger 
effective TIs) makes aromatic linkers more robust against very large disorder strengths. Other measures of aro-
maticity that are based on delocalization such as the Shannon  aromaticity30 (see section SI-9 in the SI) show the 
same trend as the π-PR, although, one should keep in mind that the Shannon aromaticity also depends on the 
size of the linker ring and therefore overestimates delocalization in COF-BS-1Ph and COF-BS-2Ph slightly. We 
note that measures of aromaticity, which are based on different physical or chemical properties, are generally 
not necessarily fully compatible to each  other77 which is also observed for 2D COFs.

Figure 13.  Changes in the delocalization of π-states (measured by the participation ratio with disorder 
W = 0.5 eV ) upon shifting the linker’s onsite-energy. Vertical dashed lines indicate where onsite energies 
for linker and phenyl rings would coincide, i.e. |ǫX-π +�ǫX-π − ǫC=C-π |=0. For COF-CC-1Ph this ocurs at 
�ǫX-π = 0 eV , for COF-BS-1Ph at �ǫX-π = 0.46 eV and for COF-CN-1Ph at �ǫX-π = 2.87 eV).
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Finally, we conclude that minimizing energetic differences between linker and spacer units, for instance 
by doping, increases delocalization to dozens of pores or more, depending on the disorder, which provides an 
intuitive and elegant way to tailor electronic properties.

Methods
Ab‑initio DFT simulations and Wannier orbitals. The symmetrized structures are optimized at DFT 
level of theory using vasp78,79 with PBE exchange correlation functionals and PAW pseudo  potentials80,81. In 
all calculations a cutoff energy of 450 eV is used for the plane wave basis set. The relaxation was performed in 
two steps. First, ionic relaxation for different sizes of the unit cell are used to determine the lattice constants in 
a Ŵ-point only calculation (for Brillouin zone integration). The optimal size of the unit cell was found at the 
minimum of the ground state energy. This was done for every COF. In the second step a final relaxations of the 
optimized and symmetrized structures were performed using a 3× 3× 1 Monkhorst-Pack k-points grid. A 
subsequent electronic structure calculation using a Ŵ-centered 6× 6× 1 Monkhorst-Pack grid is the basis for 
all further calculations.

We use the wannier90  code82 to obtain MLWF for all valence bands. Starting projections are s-orbitals at 
the mid-bond positions and alternating double and single bonds are assumed according to the Lewis structure. 
Slightly different starting points, e.g. different orbital shapes or slightly different positions, lead to the same 
MLWF. Electronic properties like band structures are in perfect agreement with the DFT results. All MLWFs are 
real-valued within numerical precision, which shows that the optimization correctly finds a global minimum of 
the spread  function52. We want to note that the non-uniqueness of the Lewis structure also reflects in a freedom 
of choice for MLWF, which is determined by the starting guess of the Wannierization. However, alternative 
configurations are equivalent and give the same results.

In situation, where π-like and σ-like orbitals are centered at the same position (double bond), the obtained 
MLWF from wannier90 are not typical π - and σ-orbitals but superpositions |±� = 1√

2
(|π� ± |σ �) . Performing 

the inverse transformation (i.e. symmetrization) is easily possible and yields typical π-like and σ-like molecular 
orbitals, where only the π-like orbitals have contributions from atomic pz-orbitals.

Nuclear independent chemical shift (NICS). For the calculation of NICS we use the gaussian16  code83 
and the B3LYP exchange-correlation  functional84,85. We created a structure, which contains only one pore of 
the COF and is saturated with hydrogen at the outermost phenyl rings. With this setting we make sure that no 
magnetic fields from other ring currents than the central COF-pore and their constituents disturb the result. All 
atoms lie in the x–y plane and NICS values are calculated 1Å above the plane. Therefore, only the ZZ-component 
of the magnetic shielding tensor, which is the negative of NICSZZ(1) , is of relevance.

Out‑of‑plane rotation. To measure the effect of out-of-plane rotations of the phenyl rings we perform 
separate band-structure calculations for all rotation angles and align them at their vacuum levels, which allows 
a proper comparison of band energies E(φ)n (k).

Furthermore, we define the energy dependent maximal projection as

where k is along the path � (i.e. Ŵ-M-K-Ŵ ) that is representative for the Brillouin zone. Note that pz-orbitals from 
the rotated phenyl rings are not included in the projection.

For quantitative results we introduce the φ-dependent cumulative bandwidth (CBW) as,

similar to the cumulative bandwidth in the main text, where �(x) denotes the Heaviside-step-function and Pmin 
is the minimum projection required for assigning states to a π-band. The value can easily be chosen such that 
individual bandwidths for φ = 0 are in agreement with bandwidths in Fig. 6 (main text).

(Projected) inverse participation ratio. The inverse participation ratio (IPR)71 is defined as the second 
moment of the probability density,

where the sum runs over all N orbitals in a unit cell and p(nk)i  is the occupation probability of the orbital i for 
the state |nk� given by

Since we are first of all interested in the delocalization with respect to π-orbitals we introduce the projected IPR 
that measures only the delocalization within a certain subsystem S ⊆ WO (e.g. all π-orbitals), but is insensitive 
to all other contributions (e.g. from σ-orbitals). The projected S-IPR is defined in analogy to the general IPR 
with (renormalized) probabilities p̃(nk)i

(5)P(φ)(E) = max
k∈�

{p(φ)z,linker(n, k) |E
(φ)
n (k) = E},

(6)CBW(φ) :=
∫ EF

−∞
dE�

(

P(φ)(E)− Pmin

)

,

(7)IPR(nk) :=
N
∑

i=1

(

p
(nk)
i

)2
,

(8)p
(nk)
i := |� i | nk �|2.
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with

p̃
(nk)
i  is the normalized projected probability with 

∑

i∈S p̃
(nk)
i = 1.

For the actual calculation we create a real-space 29× 29× 1 supercell for 1Ph COFs and a 23× 23× 1 super-
cell for 2Ph COFs and add Anderson onsite disorder. The disorder is generated from a uniform distribution of 
random numbers in the interval [−W/2,W/2] , where W is the strength of the disorder. A direct diagonalization 
using the lapack  library86 is performed to get eigenstates and eigen-energies at the Ŵ-point of the supercell. The 
(projected) IPR are calculated for every eigenstate and inversion provides the participation ratio for every state. 
The results are independent of the actual realizations of random numbers, which we tested by applying different 
seeds of the random number generator. Successful examples, where the IPR has been used in conjunction with 
Anderson disorder can be found in the  literature87.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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6 Publication: Linear Scaling Approach for Optical
Excitations Using Maximally Localized Wannier
Functions

Summary:

The calculation of optical properties from first principles is a very challenging task as it involves two-
particle states and cannot simply be approximated at the single-particle level. Moreover, many k points
are required for converged results (compared to usual calculations of the electronic structure, e.g., with
DFT). This makes this type of calculation only feasible for relatively small systems. The established codes
that are used for such calculations usually represent the exciton Hamiltonian in a basis of Bloch function
similar to Eq. (3.58). This is beneficial since only a minimum number of basis functions is needed which
results in a smaller Hamiltonian matrix with minimal rank. However, the representation is in general not
sparse. The authors of BerkleyGW particularly emphasized this problem by saying: “[...] It should be
pointed out that the kernel matrix is not sparse in general, so methods designed for the diagonalization of
sparse matrices are not appropriate here.” [65] In fact, the scaling of such an approach is O(N3) for a full
diagonalization of the dense matrix or O(N2) if a Haydock-Lanczos approach is used.[63, 64, 65, 90, 91]

In the following publication [92] we propose a new method based on maximally localized Wannier func-
tions (MLWF), which is able to evaluate optical properties in linear scaling and is therefore suitable for
large systems. MLWFs represent an ideal basis set for the evaluation of excitons since they are strongly
localized and at the same time require only a minimal number of basis functions to represent the electronic
structure, i.e., the number of Wannier functions per unit cell is equal to the number of bands. Numerically,
the Hamiltonian matrix in the basis of MLWF has therefore the same dimensions as in a basis of Bloch
function. This would not be the case for other localized basis sets like a Gaussian basis set where hun-
dreds or thousands of basis functions would be required to represent a single Bloch state and the resulting
matrix would be correspondingly larger. In contrast to a Bloch basis, the resulting exciton Hamiltonian
becomes sparse due to the strong localization of the MLWF and can therefore be solved very efficiently
with linear scaling algorithms.

Moreover, the interaction between electrons and holes, which is included in the exciton Hamiltonian,
can be efficiently evaluated using MLWF in real space. This is due to the fact that we only need to
calculate the interaction between strongly localized (overlap) densities. Due to the strong localization,
we can treat large electron-hole distances in a multipole expansion, which improves the computational
efficiency. Furthermore, since the overlap between two MLWFs decreases exponentially, there is only
a finite number of overlap densities and thus only a finite number of Coulomb integrals that need to be
solved. We were able to show that the total number of Coulomb integrals which needs to be calculated
in full detail saturates very quickly and becomes independent of the number of k-points in the simulation
(see Fig. 4 in [92]). This means that once all Coulomb integrals are evaluated, we can calculate the optical
properties at any k resolution without solving additional integrals.

We demonstrate the approach for silicon, one of the most commonly used reference systems, and were
able to show that the method is able to reproduce the experimental spectrum.

Individual contribution:

K.M. developed and implemented the method, which involved calculating the Coulomb integrals and nu-
merically solving the exciton Hamiltonian in the basis of MLWF. Electronic structure calculations and cal-
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culations of Wannier functions were also carried out by K.M. F.O. supervised the project. All authors
contributed in writing the manuscript.
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Abstract
We present a theoretical method for calculating optical absorption spectra based on maximally
localized Wannier functions, which is suitable for large periodic systems. For this purpose, we
calculate the exciton Hamiltonian, which determines the Bethe–Salpeter equation for the
macroscopic polarization function and optical absorption characteristics. The Wannier functions
are specific to each material and provide a minimal and therefore computationally convenient
basis. Furthermore, their strong localization greatly improves the computational performance in
two ways: first, the resulting Hamiltonian becomes very sparse and, second, the electron–hole
interaction terms can be evaluated efficiently in real space, where large electron–hole distances are
handled by a multipole expansion. For the calculation of optical spectra we employ the sparse
exciton Hamiltonian in a time-domain approach, which scales linearly with system size. We
demonstrate the method for bulk silicon—one of the most frequently studied benchmark
systems—and envision calculating optical properties of systems with much larger and more
complex unit cells, which are presently computationally prohibitive.

1. Introduction

Simulations of optical properties such as UV–vis-NIR absorption or reflection spectra are crucial for
designing or improving opto-electronic devices with novel materials. In this context, accurate theoretical
predictions help to find suitable materials much faster and at lower cost, thus complementing and guiding
experimental efforts. However, calculating optical properties is computationally demanding, which limits
calculations to small systems with only a few atoms per unit cell. The reason is that optical properties are
inherently affected by many-body effects. For example, the optical response of semiconductors and insulators
is determined by the Coulomb interaction between electrons and holes in a material, which leads to the
formation of bound electron–hole states called excitons [1–3]. For the calculation of optical properties such
as UV–vis-NIR absorption spectra it is therefore necessary to describe two-particle states of electrons and
holes that are created upon optical excitation. A suitable description of such many-body effects can be
derived in terms of a Bethe–Salpeter equation (BSE) [3–10] for the polarization function. For almost all real
materials, however this BSE is too difficult to solve. Important simplifications can be obtained for
non-spin-polarized systems, where the BSE splits into singlet and triplet parts, which can be treated
independently [3]. Optical transitions, described by transition matrix elements that are diagonal in spin
space, cannot induce spin-flips, and it is sufficient to calculate the singlet case only, which is already a huge
simplification. Furthermore, the singlet-BSE can be rewritten into a generalized eigenvalue problem and
further simplified by performing the Tamm–Dancoff approximation for electronically gapped systems [3, 11,
12]. The resulting Hamiltonian matrix is still very large and dense but can in principle be diagonalized for
small system sizes using popular simulation packages [13–16]. In addition, very dense k-meshes are needed

© 2023 The Author(s). Published by IOP Publishing Ltd
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in order to obtain converged results, a problem that is known from the independent particle picture [17] and
which becomes more severe for excitons. This has lead to strategies like the use of hybrid meshes [18, 19],
where specific parts of the Brillouin zone are sampled with higher precision. Despite all these works on
different computational aspects, it is still challenging to include exciton effects in the calculation of optical
absorption spectra, in particular for systems with many atoms per unit cell.

In this paper we present an approach based on maximally localized Wannier functions (MLWF) [20, 21],
which can deal with large and/or complex systems. MLWF are directly obtained from underlying
quasi-particle wave functions and represent a minimal basis set that is adapted to the specific material.
Moreover, they can be obtained for specific bands, e.g. near the band gap, making the calculation
independent of the number of atoms in a unit cell. Furthermore, we show that the resulting representation
has important computational advantages, namely that the Hamiltonian matrix becomes very sparse, and can
therefore be solved very efficiently, thus enabling optical calculations of large systems. For convenience, we
use the term linear scaling Wannier optics (LSWO) for the presentation of the entire approach.

2. Theory: optical properties and exciton Hamiltonian

2.1. General formalism
We start from the two-particle eigenvalue problem in Tamm–Dancoff approximation [3, 11, 12],

∑

v ′c ′k ′

Hcvk, c ′v ′k ′AΛ
c ′v ′k ′ = EΛAΛ

cvk, (1)

where c and v label the conduction and valence bands, respectively, and A describes the exciton amplitude.
The crystal momentum k is the same for electron and hole because only vertical excitations are considered in
the optical limit. The hermitian singlet-exciton Hamiltonian H is given by

Hcvk, c ′v ′k ′ =
[
Econd.c (k)− Eval.v (k)

]
δcc ′δvv ′δkk ′ −HSC

cvk, c ′v ′k ′ + 2HLFE
cvk, c ′v ′k ′ (2)

and consists of effective single-particle contributions from conduction and valence band structures (first
term), which are diagonal with respect to k, and two-particle contributions from screened electron–hole
interactions HSC and local field effects (LFEs) HLFE, which couple different k and k ′ via Coulomb
interaction. While the occurrence of a screened electron–hole interaction is intuitively plausible, the LFEs
term seems less obvious and some comments are appropriate. LFE arise when the system is inhomogeneous
on the microscopic scale, i.e. the microscopic dielectric function ϵGG ′ is not diagonal with respect to
reciprocal lattice vectors G [22–24]. By including LFE in the Hamiltonian, it is ensured that one can later
calculate the macroscopic rather than the microscopic dielectric tensor directly from EΛ and AΛ. Note that
the LFE matrix elements are in the form of electron–hole pair exchange interactions [25].

HSC and HLFE can be obtained from single-particle Bloch functions for conduction ϕck(x) and valence
states ϕvk(x). A natural choice for ϕck(x) and ϕvk(x) are Kohn–Sham orbitals leading to

HSC
cvk, c ′v ′k ′ =

ˆ

d3x

ˆ

d3x ′ϕ∗ck (x)ϕ
∗
v ′k ′ (x ′)W(x− x ′)ϕvk (x

′)ϕc ′k ′ (x) , (3)

HLFE
cvk, c ′v ′k ′ =

ˆ

d3x

ˆ

d3x ′ϕ∗ck (x)ϕ
∗
v ′k ′ (x ′)


 1

Ω

∑

G ̸=0

Ṽ(|G|)eiG(x−x ′)


ϕvk (x)ϕc ′k ′ (x ′) , (4)

whereW(x− x ′) is the screened Coulomb interaction and Ṽ(|q+G|) = 4π e2

ϵ0
1

|q+G|2 is the Fourier
transformed bare Coulomb potential. We emphasize that arbitrary screening functions can be used here. The
possible choices include functions from many-body perturbation theory (e.g. from GW calculations), model
screening functions or just a constant relative permittivity. Here, as an example, we use a model dielectric
function ϵ−1(q) = 1− (η+αq2/q2TF)

−1 that has been shown to yield good results for typical semiconductors
[26]. The parameter η = (1− ϵ−1

∞ )−1 with the electronic dielectric constant ϵ∞ of the material, and qTF is the
Thomas–Fermi wave vector. The dimensionless parameter α= 1.563 has been shown to be rather universal
[26]. The screened Coulomb potential is then obtained fromW(q) = ϵ−1(q)Ṽ(q). We assume a static
screening, i.e. no time dependence, which is the most frequent approach. However, we note that current

2
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efforts also investigate extensions to the frequency dependence of screening [27, 28]. By taking the Fourier
transform we obtain the corresponding potential in real space,

W(x− x ′) =
1

4πϵ0ϵ∞|x− x ′| +
(
1− ϵ−1

∞
) exp

[
−qTF|x−x ′|√
(1−ϵ−1

∞ )α

]

4πϵ0|x− x ′|
= Vscr (|x− x ′|)+

(
1− ϵ−1

∞
)
VYuk (|x− x ′|) , (5)

which is the superposition of a screened Coulomb and a Yukawa potential. A more detailed derivation can be
found in section B of the appendix.

Independently of the type of screening, the numerical evaluation of equation (1) can be quite expensive
because a very fine k-mesh is usually required to obtain converged results and the Hamiltonian matrix that
needs to be diagonalized is very large and, in general, a dense matrix. Furthermore, the underlying Bloch
functions, that are needed for the evaluation of equations (3) and (4), are delocalized which leads to
additional challenges for numerical calculations. These obstacles are circumvented by transforming above
equations into a localized basis of Wannier functions (WFs) which will be explained here below.

2.2. Exciton-Hamiltonian in basis of MLWF
For an efficient treatment of the exciton problem in equation (1), it is advantageous to employ a localized
basis of MLWF wmR(x). MLWF are routinely used to investigate single-particle observables [21, 29] and have
been shown to be advantageous for many-body first-principles calculations, including electron–electron
interactions and screening [30, 31], spin excitations [32] or quadratic optical response [33]. They are directly
related to the underlying Bloch functions ϕnk(x) by the transformation,

wmR (x) :=
1√
NΩ

∑

nk

e−ikRUmn (k)ϕnk (x) , (6)

where R represents a unit cell vector and U(k) is a unitary matrix. It can be chosen such that the obtained
WFs are maximally localized, i.e. their spread

[
⟨x2⟩− ⟨x⟩2

]
is minimal. To be more precise, U(k)

disentangles the individual energy bands in case of band crossings or degeneracies and fixes the k-dependent
gauge phase eiθ(k) that each Bloch function has. U(k) can be obtained from an optimization algorithm [20,
21] for specific groups of bands, e.g. all valence bands. The obtained MLWF are orthogonal to each other and
must be real valued [20]. Owing to translational symmetry, MLWF at different unit cells R have the same
shape and are related to each other by wmR(x) = wm0(x−R), which is known as shift property.

For the LSWO approach it is advantageous to obtain MLWF for conduction and valence bands near the
fundamental band gap separately. Therefore, the obtained MLWF keep the character of either an electron or
a hole. We denote them as conduction-WF and valence-WF in the following. Even though the conduction
and valence MLWF are obtained separately, they are orthogonal since valence and conduction states are
non-degenerate for all k-points. Hence, they represent a suitable basis for the excitonic two-particle Hilbert
space.

As mentioned above, only a subspace of the two-particle Hilbert space in which electrons and holes have
the same momentum is relevant for the calculation of optical properties. This means we need to transform
the Bloch representation with the indexes cvk into a real-space description of MLWF with indexesmnS. This
mapping is achieved by a unitary transformation of the two particle basis using the matrix

FmnS, cvk =
1√
NΩ

eikSU∗
cm (k)Unv (k) , (7)

where the U matrices are obtained fromWannier transformations of valence and conduction bands and the
unit cell vector S= R− L is the distance between electron unit cell R and hole unit cell L. Excitonic wave
functions in the optical subspace (i.e. at vanishing photon momentum q→ 0) are obtained by

ξmnS (x,x
′) =

∑

cvk

FmnS, cvkϕ
∗
ck (x)ϕvk (x

′)

=
1√
NΩ

∑

R

wmR (x)wn,R−S (x
′) . (8)

3
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We have used that MLWF are real and therefore the excitonic wave function fulfills ξmnS = ξ∗mnS.
Equation (8) is a manifestation of the convolution theorem in terms of Bloch functions and corresponding
MLWF. At this point we should mention that the use of the variable R (electron unit cell) as summation
index by no means introduces any asymmetry in the treatment of electrons and holes. The same result can
also be expressed by center of mass and relative coordinates. The center of mass motion is not relevant for
optics due to translational symmetry of the crystal and only the relative distance S between electron and hole
remains in ξmnS.

We also use FmnS, cvk to transform equation (1) into the Wannier basis,

∑

m ′n ′S ′

H̃mnS,m ′n ′S ′BΛ
m ′n ′S ′ = EΛBΛ

mnS, (9)

where the exciton eigenvector is obtained as

BΛ
mnS =

∑

cvk

FmnS, cvkA
Λ
cvk (10)

and the exciton Hamiltonian becomes

H̃mnS,m ′n ′S ′ =
∑

cvk

∑

c ′v ′k ′

FmnS, cvkHcvk, c ′v ′k ′ F∗c ′v ′k ′,m ′n ′S ′

= H̃ band
mnS,m ′n ′S ′ − H̃SC

mnS,m ′n ′S ′ + 2H̃LFE
mnS,m ′n ′S ′ . (11)

According to equation (2) the single-particle band contributions are obtained as

H̃ band
mnS,m ′n ′S ′ =H cond.

m ′m

(
S− S ′)δnn ′ −H val.

nn ′
(
S− S ′)δmm ′ , (12)

where H cond.
m ′m (S− S ′) and H val.

nn ′(S− S ′) are the single-particle Wannier Hamiltonians for conduction and
valence bands, respectively. They are directly accessible from the Wannier transformation of the
first-principles electronic structure [20, 21].

The screened electron–hole interaction can be obtained by virtue of equation (8) and by applying the
shift property of MLWF (see appendix),

H̃SC
mnS,m ′n ′S ′ =

ˆ

d3x

ˆ

d3x ′ ξmnS (x,x
′)W(x− x ′)ξm ′n ′S ′ (x,x ′)

=
∑

A

W̃mm ′
nn ′

(
A,S,S ′) , (13)

with the general Coulomb matrix elements

W̃mm ′
nn ′

(
A,S,S ′) =

ˆ

d3x

ˆ

d3x ′wm0 (x)wm ′A (x)W(x− x ′)wn ′,A−S ′ (x ′)wn,−S (x
′)

= W̃m ′m
n ′n

(
−A,S ′,S

)
, (14)

which depend on three different unit cell vectors (corresponding to three k-vectors in reciprocal space).
H̃SC

mnS,m ′n ′S ′ only depends on two unit cell vectors because electrons and holes have the same momentum.
For a more intuitive and physically comprehensible description, we introduce the unit cell vectors Rc, Rv, and
RD, which correspond to the relative shifts between conduction WFs, between valence WFs, and to the
electron–hole distance, respectively. We substitute A= Rc, S=−RD and S ′ =−RD +Rc −Rv in
equation (14) and use the shift property of MLWF to obtain

W̃mm ′
nn ′

(
A= Rc,S=−RD,S

′ =−RD +Rc −Rv

)

=Wmm ′
nn ′ (Rc,Rv,RD) =

ˆ

d3x

ˆ

d3x ′ρmm ′Rc (x)W(x− x ′ −RD)ρnn ′Rv (x
′) , (15)

where ρmm ′Rc(x) = wm0(x)wm ′Rc(x) and ρnn ′Rv(x) = wn0(x)wn ′Rv(x) are (overlap) densities of two electrons
and (overlap) densities of two holes, respectively.

Before we come to the integration strategy in section 3, we comment on the distance dependence of
these matrix elements. Since the overlap between two different MLWF is exponentially suppressed with
increasing distance, it is clear that the overlap densities vanish for large values of Rc and Rv. Therefore, the
corresponding Coulomb integrals equation (15) also vanish rapidly for large displacements Rc or Rv. This
substantially reduces the number of calculations required and constitutes a significant advantage over a plane

4
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wave basis set. In contrast, RD is associated with long-range Coulomb interactions, which always yields
contributions that decay very slowly. Substituting back the original variables S, S ′, and A, we see that finite
Coulomb integrals contribute only to matrix elements H̃SC

mnS,m ′n ′S ′ near the diagonal and RD corresponds to
the position along the diagonal. The matrix representation is therefore very sparse. This is a great advantage
for numerical computations, since diagonalization or alternative treatments can be performed very
efficiently and with low memory requirements. It is thus not surprising that other localized basis sets leading
to sparse representations of Coulomb interactions have shown large performance advantages for GW
calculations in the past [34, 35]. The diagonal elements for whichm=m ′, n= n ′, and Rc = Rv = 0 (or
alternatively A= 0 and S= S ′ =−RD) are expected to yield the largest contributions to H̃SC. They represent
interactions of classical charge densities with total charge of one, because MLWF are normalized. The
non-diagonal elements of H̃SC correspond to interactions where at least one density is an overlap density, i.e.
ρmm ′Rc or ρnn ′Rv contains two different MLWF. Such overlap densities have zero total charge because MLWF
are orthogonal. We therefore expect the non-diagonal elements to be significantly smaller. Finally,
contributions from LFE, equation (4), are calculated in analogy to equation (13),

H̃LFE
mnS,m ′n ′S ′ =

ˆ

d3x

ˆ

d3x ′ ξmnS (x,x) V̄(x− x ′)ξm ′n ′S ′ (x ′,x ′)

=

ˆ

d3x

ˆ

d3x ′wm0 (x)wn,−S (x)


∑

G ̸=0

Ṽ(|G|)eiG(x−x ′)


wm ′0 (x

′)wn ′,−S ′ (x ′) . (16)

This matrix is, like H̃SC, very sparse since the overlap between MLWF is exponentially suppressed with
increasing distance. Consequently, only matrix elements with small values S and S ′, where electron and hole
have closest distance, are affected by LFE. In the limiting case of strongly localized WFs only matrix elements
with S= S ′ = 0 would contribute. We thus have a complete description of the singlet exciton Hamiltonian in
the Wannier basis equation (9) that can be used to calculate optical properties.

2.3. Optical properties
The macroscopic dielectric function ϵM(q̂,ω) could be calculated within the original Bloch representation
directly from the solutions of equation (1) and the optical transition matrix elementsMcvk(q̂) that can be
obtained from conduction and valence Bloch functions,

Mcvk (q̂) = lim
q→0

e√
4πϵ0|q|i

ˆ

d3xϕ∗ck (x)e
iqxϕvk (x) . (17)

The macroscopic dielectric function is given as [3]

ϵM (q̂,ω) = 1+
4π

Ω

∑

Λ

∣∣∣∣∣
∑

cvk

M∗
cvk (q̂)A

Λ
cvk

∣∣∣∣∣

2 [
1

EΛ − h̄(ω+ iη)
+

1

EΛ + h̄(ω+ iη)

]
. (18)

Like in the previous section we transform these expressions into the basis of MLWF by utilizing the matrix
FmnS, cvk to calculate ϵM(q̂,ω) directly from BΛ

mnS and corresponding transition matrix elements. The
transformation is applied to the scalar product in equation (18),

∑

cvk

M∗
cvk (q̂)A

Λ
cvk =

∑

mnS

∑

c ′v ′k ′

M∗
c ′v ′k ′ (q̂)F∗c ′v ′k ′,mnS

∑

cvk

FmnS, cvkA
Λ
cvk

=
∑

mnS

M̃∗
mnS (q̂)B

Λ
mnS, (19)

where M̃∗
mnS(q̂) =

∑
c ′v ′k ′ M∗

c ′v ′k ′(q̂)F∗c ′v ′k ′,mnS was defined in the last step. Using equation (8) we can
rewrite the transition matrix elements in terms of MLWF,

M̃∗
mnS (q̂) = lim

q→0

ie√
4πϵ0|q|

1√
NΩ

∑

R

ˆ

d3xwm0 (x)e
−iq(x+R)wn,−S (x) . (20)

Taylor expanding the exponential up to linear order (higher orders are irrelevant in the optical limit q→ 0)
[36, 37] we get

M̃∗
mnS (q̂) =

e
√
NΩ√
4π ϵ0

q̂

ˆ

d3xwm0 (x)xwn,−S (x) . (21)

5
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From equation (21) we can see that the transition matrix elements are proportional to transition dipole
moments, i.e. dipole moments of electron–hole overlap densities, which nicely connects to expectations from
finite systems. The evaluation of transition dipole moments does not cause any problems (like one would
have with delocalized Bloch functions) since WFs are localized in real space. Finally, the macroscopic
dielectric function becomes

ϵM (q̂,ω) = 1+
4π

Ω

∑

Λ

∣∣∣∣∣
∑

mnS

M̃∗
mnS (q̂)B

Λ
mnS

∣∣∣∣∣

2 [
1

EΛ − h̄(ω+ iη)
+

1

EΛ + h̄(ω+ iη)

]
. (22)

With equations (11), (21) and (22) the entire problem is formulated in the Wannier basis. The remaining
task is to evaluate all required matrix elements for the screened Coulomb interaction and LFE in this basis,
which will be discussed below.

3. Numerical evaluation of two-particle matrix elements andmacroscopic dielectric
function

3.1. Evaluating Coulombmatrix elements in the basis of MLWF
For the numerical evaluation of the screened Coulomb interaction we insert the model-screened potential
equation (5) into equation (15) and evaluate the Coulomb and Yukawa potentials separately,

Wmm ′
nn ′ (Rc,Rv,RD) =

ˆ

d3x

ˆ

d3x ′ρmm ′Rc (x)Vscr (|x− x ′ −RD|)ρnn ′Rv (x
′)

+
(
1− ϵ−1

∞
)ˆ

d3x

ˆ

d3x ′ρmm ′Rc (x)VYuk (|x− x ′ −RD|)ρnn ′Rv (x
′) . (23)

While the integral with the Yukawa potential (second term of equation (23)) can be solved efficiently in
reciprocal space, the numerical evaluation of the Coulomb integral (first term of equation (23)) is quite
challenging, because the potential diverges in both real and reciprocal space for x→ 0 and q→ 0. However,
the integral is nevertheless finite as can be shown on general grounds. The problem is still complicated by the
fact that MLWF are typically obtained numerically from DFT or GW calculations and analytic forms are
usually unknown. Strategies to circumvent such issues include expansions of MLWF using spherical
harmonics and appropriate radial functions [38, 39], where the Coulomb integrals can be rewritten and
partly solved analytically, or attempts to expand MLWF around the origin in k-space by a suitable Taylor
expansion. While the latter is numerically inconvenient, the expansion in spherical harmonics can provide
satisfactory results for simple systems [38], especially when the WFs are expressed in a form of atomic
orbitals and only a small number of expansion coefficients are needed. This, however, may not be the case,
which means that in general an extreme large set of spherical harmonics becomes necessary, especially when
satellite structures far away from the charge center exist. Alternatively, one might consider choosing a
different system of functions where the Coulomb integrals can be solved analytically. A well-known example
is Gaussian basis functions, which are routinely used in quantum chemistry codes [40]. However, an
expansion of MLWF in terms of such basis functions is usually very complicated and requires sophisticated
optimization and fitting algorithms. Despite some proof of principle studies [41], there are no commonly
available tools to perform such an elaborated task. Here, we want to use a numerical method that yields
satisfactory results for all types of MLWF and is easily applicable. This method follows the ab-initio
philosophy in the sense that we avoid any fitting.

The numerical evaluation of the first term of equation (23) is performed in multiple steps. We start by
introducing auxiliary densities ρauxmm ′Rc

(x) and ρauxnn ′Rv
(x) for each ρmm ′Rc(x) and ρnn ′Rv(x), respectively. These

auxiliary densities are Gaussian functions with the constraint that they have the same charge as the
corresponding overlap density, i.e.

ˆ

d3xρauxmm ′Rc
(x) =

ˆ

d3xρmm ′Rc (x) . (24)

The center and variance of each Gaussian function is in general not important, albeit specific choices might
be numerically favorable. We continue by adding and subtracting auxiliary densities for each integral and
separate four different terms,
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ˆ

d3x

ˆ

d3x ′
[
ρmm ′Rc (x)− ρauxmm ′Rc

(x)+ ρauxmm ′Rc
(x)

]

×Vscr (x− x ′ −RD)
[
ρnn ′Rv (x

′)− ρauxnn ′Rv
(x ′)+ ρauxnn ′Rv

(x ′)
]

=I1 + I2 + I3 + I4, (25)

where the individual contributions are given by,

I1 =

ˆ

d3x

ˆ

d3x ′
[
ρmm ′Rc (x)− ρauxmm ′Rc

(x)
]
Vscr (x− x ′ −RD)

[
ρnn ′Rv (x

′)− ρauxnn ′Rv
(x ′)

]
,

I2 =

ˆ

d3x

ˆ

d3x ′
[
ρmm ′Rc (x)− ρauxmm ′Rc

(x)
]
Vscr (x− x ′ −RD)ρ

aux
nn ′Rv

(x ′) ,

I3 =

ˆ

d3x

ˆ

d3x ′ρauxmm ′Rc
(x)Vscr (x− x ′ −RD)

[
ρnn ′Rv (x

′)− ρauxnn ′Rv
(x ′)

]
,

I4 =

ˆ

d3x

ˆ

d3x ′ρauxmm ′Rc
(x)Vscr (x− x ′ −RD)ρ

aux
nn ′Rv

(x ′) . (26)

The last term I4 can be evaluated analytically because only Gaussian functions are involved. For instance,

choosing radial symmetrical Gaussian ρauxmm ′Rc
(x) =

(
α
π

)3/2
e−α|x−B|2 and ρauxnn ′Rv

(x) =
(
γ
π

)3/2
e−γ|x−C|2 , one

obtains [40],

I4 =
1

ϵ0ϵ∞|B−C−RD|
erf

[√
αγ

α+ γ
|B−C−RD|

]
. (27)

The remaining three terms I1, I2 and I3 are solved in Fourier space. This is demonstrated for I1, which, in
Fourier space reads

I1 =
1

(2π)3

ˆ

d3qeiqRD fmm ′Rc (q) Ṽscr (q) fnn ′Rv (−q) , (28)

where the Fourier transformed quantities are

fmm ′Rc (q) =

ˆ

d3xe−iqx
[
ρmm ′Rc (x)− ρauxmm ′Rc

(x)
]
, (29)

fnn ′Rv (q) =

ˆ

d3xe−iqx
[
ρnn ′Rv (x)− ρauxnn ′Rv

(x)
]

(30)

and the Fourier transformed potential Ṽscr(q)∝ q−2. The divergence at q→ 0 is integrable, i.e. the integral is
finite for all finite regions including volumes around the origin.

Since the auxiliary densities have the same charge as the corresponding overlap densities (see
equation (24)), it becomes clear that fmm ′Rc(q= 0) = fnn ′Rv(q= 0) = 0 by construction. For a discrete
numerical evaluation of the integral equation (28), this means that the q= 0 term can be omitted, since it
must be zero (finite value times zero). The only remaining task is to perform the q-sum for all q ̸= 0, where
no problems occur, and we obtain

I1 ≃
∆Vq

Ngrid

∑

q̸=0

eiqRD fmm ′Rc (q) Ṽscr (q) fnn ′Rv (−q) . (31)

Integrals I2 and I3 are solved in full analogy. After summation and back substitution we obtain the desired
(screened) Coulomb matrix elements equation (14).

3.2. Evaluating LFE in the basis of MLWF
The numerical calculation of LFE matrix elements in equation (16) is much easier than the screened
Coulomb interaction because the used potential is not divergent (G= 0 is not contained). The potential in
Fourier space is obtained as,

˜̄V(q) =

ˆ

d3xe−iqx
∑

G ̸=0

Ṽ(|G|)eiGx = (2π)3
∑

G ̸=0

Ṽ(|G|)δ (q−G) . (32)

The overlap densities are now between conduction and valence WF and are known as transition densities. We
denote their Fourier transform as

fmn−S (q) =

ˆ

d3xe−iqxρmn−S (x) . (33)

7
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Finally, equation (16) becomes

H̃LFE
mnS,m ′n ′S ′ =

∑

G ̸=0

fmn−S (G) Ṽ(|G|) fm ′n ′−S ′ (−G) , (34)

which can be easily evaluated numerically with a fast Fourier algorithm.

3.3. Time domain approach for calculating the macroscopic dielectric function
We have now everything at hand to construct the exciton Hamiltonian in the basis of MLWF. The remaining
task would be to solve the eigenvalue equation and use equation (22) to obtain the macroscopic dielectric
function ϵM. Numerically this could be done by using a sparse matrix diagonalization algorithm. However,
we want to use a time-domain approach [42] which allows us to calculate ϵM without a formal high-scaling
diagonalization or restrictions to a few number of eigenvalues. Therefore, we rewrite equation (22) in the
time domain by taking a Fourier transform.We start with the dielectric function in the Cartesian direction êj,

ϵMjj (ω) = 1+
4π

Ω

∑

Λ

∣∣∣∣∣
∑

mnS

M̃∗
mnS

(
êj
)
BΛ
mnS

∣∣∣∣∣

2 [
1

EΛ − h̄(ω+ iη)
+

1

EΛ + h̄(ω+ iη)

]
(35)

This is equivalent to a time-domain formulation [42],

ϵMjj (ω) = 1− 8π

Ωh̄

ˆ ∞

0
dtei(ω+iη)t Im

[∑

mnS

M̃∗
mnS

(
êj
)
ψ
( j)
mnS (t)

]
, (36)

where the time-initial state is given by ψ( j)
mnS(t= 0) = M̃∗

mnS(êj) and is propagated with the exciton
Hamiltonian,

ψ
( j)
mnS (t) =

∑

m ′n ′S ′

(
exp

[−it

h̄
H̃

])

mnS,m ′n ′S ′
ψ
( j)
m ′n ′S ′ (t= 0) . (37)

4. Computational details

To demonstrate our approach for the example of silicon crystals, which has been frequently studied
experimentally and theoretically in the past [11, 13, 42, 43], we proceed in multiple steps. First, electronic
states are obtained using density functional theory (DFT) with the PBE exchange-correlation functional and
projector augmented wave (PAW) pseudo potentials [44, 45] as implemented in the VASP code [46, 47]. We
use an energy cut-off of 350 eV and a 11× 11× 11 Monkhost–Pack k-points grid for converged DFT
calculations. From these results, we calculate four MLWF which correspond to all valence bands and six
MLWF for the lowest-energy conduction bands separately by utilizing the WANNIER90 code [48]. It was
carefully checked that all obtained MLWF are real-valued and reproduce the DFT band structure very
accurately. The obtained Wannier functions are very localized with maximal spreads of 2.18 Å2 for valence
WF and 5.25 Å2 for conduction WF. Since the underlying DFTGGA calculations in generalized gradient
approximation do not provide the correct band gap, we apply a scissors shift of 0.9 eV which is is similar to
previously calculated quasi-particle shifts [3]. The Wannier Hamiltonians for valence and conduction bands
provide all single-particle contributions of the exciton Hamiltonian equation (12). The two-particle integrals
entering H̃SC and H̃LFE are evaluated on a regular grid in Fourier space as described in sections 3.1 and 3.2,
which captures a supercell of 11× 11× 11 primitive unit cells. The grid is determined by the Fourier space
grid of the VASP calculation. (Overlap-)densities and auxiliary functions are also constructed on this real
space grid and Fourier transformations (see equations (29), (30) and (33)) are performed using the FFTW
library [49]. For the screening model introduced in section 2.1 we use ϵ∞ = 11.68 for Si. From the obtained
single-particle and two-particle contributions we construct the exciton Hamiltonian equation (11) in a
sparse matrix format where S,S ′ are running over 61 lattice vectors in each direction for converged results.
To test the capability of the LSWO approach we also performed calculations with 111 lattice vectors in each
direction, which is equivalent to 1.37 million k-points.

The time evolution for the calculation of ϵM (see section 3.3) is performed by a Chebyshev polynomial
expansion [50, 51] of the time evolution operator, which has proven to be very accurate and efficient
in the past [52–54]. We set the maximum time to 14.77ps, use 2000 time steps and 16 polynomials.
When calculating the spectrum we assumed a broadening of η = 65meV. Figure S-2 shows the
time-autocorrelation function which enters equation (36).
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Figure 1. (a) Examples of overlap densities ρnn ′Rv
for valence WF with n= n ′ and different Rv . Yellow colors represent positive

and blue negative values. All densities are plotted for the same iso-value magnitude of 0.001 and blue lines indicate the Si crystal.
(b) Coulomb integrals for different hole–hole distances rv and electron–electron distances rc in the corresponding overlap
densities ρnn ′Rv

and ρmm ′Rc
. While Rv and Rc are only unit cell vectors, rv and rc also consider the position of Wannier centers

within their unit cell.

We also carefully tested the implementation of the LSWO approach at multiple levels. This includes the
comparison to an analytic Wannier–Mott exciton model and the reproduction of its energies. The interested
reader is referred to section C.1 of the appendix for more details.

5. Results

5.1. Overlap densities and Coulomb integrals
Before discussing the optical absorption of bulk Si, we investigate more closely the distance-dependence of
the two-particle contributions of the exciton Hamiltonian. We start by discussing the overlap densities
ρmm ′Rc(x) and ρnn ′Rv(x), which contribute to the screened Coulomb interaction via equation (15).
Figure 1(a) shows selected overlap densities ρnn ′Rv of the valence WF (with n= n ′ and different Rv). In this
case, the overlap density for Rv = 0 is a classical charge density in the shape of σ-bonded combination of sp3

hybrid orbitals. The density is positive everywhere (yellow color) with total charge of one. On the other hand,
finite shifts Rv introduce negative regions (blue color) in ρnnRv and result in a total charge of zero. It is clearly
seen that large values of Rv lead to smaller overlaps as expected.

The implications of the decay of the Coulomb integralsWmm ′
nn ′ (Rc,Rv,RD) with distance are shown in

figure 1(b). Blue stars denote data with varying distance between conduction WF rc and orange dots show
data with varying distance between valence WF rv. The distances rc and rv depend on the unit cell separation
Rc and Rv, respectively, and on the position of the Wannier centers within the unit cell. It is clearly visible
that already small separations in the overlap densities of a few angstroms lead to much smaller values in the
Coulomb integral. The largest Coulomb integrals are observed for rc = rv = 0, where classical charge
densities (with total charge of one) interact with each other. Our above discussion has therefore been
confirmed numerically. Furthermore,Wmm ′

nn ′ (Rc,Rv,RD) is more sensitive to rv than rc because valence WFs
are more localized than conduction WFs. In both cases, the overlap densities ρmm ′Rc and ρnn ′Rv vanish for
large separations where the Coulomb integrals become zero. As a consequence, the corresponding screened
Coulomb operator H̃SC is very sparse and the largest values contribute to the diagonal of the Hamiltonian
matrix, as suggested. Similar results can be found for H̃LFE (not shown), which leads to a very sparse total
exciton Hamiltonian.

We next turn to the diagonal elements of the Hamiltonian that correspond to electron–hole interaction
of classical charge densities. They are shown in figure 2 for different distances between electrons and holes,
which depends on the unit cell distance RD and the positions of the MLWF (charge centers) within a unit cell.
The Coulomb integralsWmm

nn (0,0,RD) become smaller with increasing distance and can be approximated for
distances larger than 10Å by the monopole–monopole interaction (gray dashed line). Notable deviations
from the monopole–monopole approximation are found here only when electron and hole densities start
overlapping at smaller distances. As a result of the multipole expansion, only a relatively small fraction of the
Coulomb integrals need to be calculated numerically, which reduces the computational effort substantially.
For example, in the present study, we only need to compute 2496 out of 5.4 million density–density Coulomb
integrals in full detail (less than 0.5% for a 61× 61× 61 supercell with four valence and six conduction WFs)

9
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Figure 2. Screened density–density Coulomb interaction (m= m ′, n= n ′, Rc = Rv = 0) between conduction and valence WF.
The interaction is dominated by the monopole–monopole interaction (dashed line). Only interactions between overlapping
densities with small distances differ significantly.

and assume the monopole–monopole approximation for the vast majority of terms. In general, the value of
10 Å does not have to be universal and deviations from the leading monopole–monopole term could occur
also at larger distances, for instance in systems with WFs that are less strongly localized. However, we are
confident that systems with larger orbital spreads can also be treated very efficiently.

5.2. Optical absorption spectrum
With the obtained exciton Hamiltonian we calculate the optical absorption spectrum of Si. Figure 3(a) shows
a comparison the LSWO approach (black solid line) to experimental data (orange dashed line). The
spectrum contains the peaks E1 and E2 (naming convention from [56]), in good agreement with experiment.
Most importantly, the characteristic (direct) exciton peak at E1 = 3.5eV is a clear sign of bound exciton states
that arise from electron–hole interactions. This peak is not present at GW or DFT theory level as shown by
the dotted gray line. Compared to the quasiparticle spectrum, the excitonic effects result in a significantly
redshifted spectrum, as generally expected which is a consequence of the electron–hole interaction. Residual
deviations of the exciton spectrum to experiment might be related to the screening model (which is
frequently used but still remains an approximation) or missing quasi-particle corrections in the band
structure that go beyond a scissors shift. Figure 3(b) compares LSWO results to other theoretical calculations.
The height of the E1 exciton peak varies significantly among different methods, which might be related to
different treatments of the screening. Our results are closely comparable to the approach by Marini [57] and
performs better than others in the literature.

5.3. Scaling and performance of the LSWO approach
Finally, we discuss the performance and scaling with respect to the size of the exciton Hamiltonian, which
depends on the number of valence and conduction states and the number of k-points (or equivalently
S-points in equation (9)). The overall performance depends on two parts, i.e. firstly the calculation of all
required matrix elements of the Hamiltonian and secondly the evaluation of the optical absorption spectrum
using the time evolution approach. Figure 4 shows the scaling of both parts for various numbers of k-points.
All computations are performed on a single CPU core and normalized to a reference computation. Note that
in the current implementation we do not exploit the symmetry of the crystal.

The most time-consuming part for the construction of the exciton Hamiltonian, which is shown in
figure 4(a), is the evaluation of the Coulomb and LFE integrals that enter ĤSC and ĤLFE. In contrast, the time
required to generate the single-particle contributions of the Hamiltonian, i.e. valence and conduction bands,
is negligible. As a result, the computing time scales with the number of two-particle integrals that need to be
evaluated numerically on a real space grid. As we have shown in the previous section, the majority of such
integrals either vanish if Rc or Rv deviate sufficiently from zero, or become analytical monopole–monopole
interactions for larger values of RD. Consequently, only a finite number of integrals need to be evaluated,
leading to a saturation of CPU time in figure 4(a). This plateau is already reached for a supercell of 7× 7× 7
unit cells (corresponding to a k-lattice of the same dimensions) which can be done with moderate effort.
Once all integrals have been obtained, one can proceed to even denser k-grids (corresponding to very large
supercells S) without additional effort for the computation of H̃.

The second step that is crucial to the performance of the LSWOmethod is the time evolution with the
exciton Hamiltonian, which is shown in figure 4(b). This time propagation is performed in a step-by-step
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Figure 3. Absorption spectrum for silicon. (a) Comparison of the calculated MLWF-based spectrum (solid black) with
calculations without electron–hole interaction (dotted gray) and experiment [55] (dashed orange). Peak labels are in agreement
with previous conventions [56]. (b) Comparison with other theoretical calculations. References: Gajdos et al [14], Puschnig and
Ambrosch-Draxl [13], Schmidt et al [42], Arnaud and Alouani [43], Marini [57].

Figure 4. Scaling behavior for (a) construction of the exciton Hamiltonian and (b) calculation of the optical absorption spectrum.
N is the rank of the Hamiltonian N= Nel ·Nh ·Nk. For comparison, a direct diagonalization of the exciton Hamilton in the Bloch
basis (dense matrix) scales withO(N3). Using the time evolution approach of [42] scales withO(N2). The legend is shared for
both figures. Calculations are performed on a single CPU core.

fashion, where each time step has the computational complexity of a sparse matrix-vector multiplication.
Such operations can be performed very efficiently in linear scaling as shown in the figure. For comparison,
the time-evolution approach in a Bloch representation, where the Hamiltonian is dense, would scale with
O(N2) [42], which is similar to implementations that use a Lanczos–Haydock approach as implemented in
the Yambo code [58]. Note that a direct diagonalization of the Hamiltonian scales withO(N2) in the case of a
sparse matrix or withO(N3) in the case of a dense matrix.

6. Conclusion and outlook

We have presented a method for describing the exciton Hamiltonian of the BSE using MLWF, which
represent a minimal, spatially localized and material-specific basis set that accurately represents the
quasiparticle band structure. The electron–hole interaction, i.e. local field effects and screened Coulomb
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attraction, are evaluated numerically in this basis, where the required number of two-particle matrix
elements to be computed is greatly reduced due to the localized character of WFs. Moreover, Coulomb
integrals where electron and hole densities have large distances can be treated very efficiently in monopole
approximation. Therefore this description in real space leads to a very sparse exciton Hamiltonian that can be
calculated and used with high efficiency and offers intuitive user control over the simulations. With this
implementation at hand, the macroscopic dielectric function for optical properties is calculated in the time
domain using a linear-scaling algorithm. We have demonstrated the approach for a Si crystal where the
optical subspace was constructed with millions of simple unit cells (corresponding to millions of k-points).
The calculated absorption spectrum agrees well with experimental results.

In the future, we expect that the described LSWO approach will be very efficient for materials with many
atoms per unit cell, which are not accessible with alternative current implementations. We hope that
excitonic effects in optical spectra, which are relevant in a large number of crystalline systems, become more
easily accessible.
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Appendix A. Step-by-step derivation for screened Coulomb interaction

We insert equation (8) into H̃SC and using the shifting property of Wannier functions, i.e.
wmR(x) = wm0(x−R), we obtain

H̃SC
mnS,m ′n ′S ′ =

ˆ

d3x

ˆ

d3x ′ ξmnS (x,x
′)W(x− x ′)ξm ′n ′S ′ (x,x ′)

=
1

NΩ

∑

RR ′

ˆ

d3x

ˆ

d3x ′wmR (x)wm ′R ′ (x)W(x− x ′)wn ′,R ′−S ′ (x ′)wn,R−S (x
′)

=
1

NΩ

ˆ

d3x

ˆ

d3x ′
∑

RR ′

wm0 (x−R)wm ′R ′ (x)W(x− x ′)wn ′,R ′−S ′ (x ′)wn,R−S (x
′)

=
1

NΩ

∑

RR ′

ˆ

d3x

ˆ

d3x ′wm0 (x)wm ′R ′ (x+R)W(x+R− x ′)wn ′,R ′−S ′ (x ′)wn,R−S (x
′)

=
1

NΩ

∑

RR ′

ˆ

d3x

ˆ

d3x ′wm0 (x)wm ′R ′−R (x)W(x− x ′)wn ′,R ′−S ′ (x ′ +R)wn,R−S (x
′ +R)

=
1

NΩ

∑

RR ′

ˆ

d3x

ˆ

d3x ′wm0 (x)wm ′R ′−R(x)W(x− x ′)wn ′,R ′−R−S ′(x ′)wn,−S(x
′)

=
1

NΩ

ˆ

d3x

ˆ

d3x ′
∑

AB

wm0(x)wm ′A(x)W(x− x ′)wn ′,A−S ′(x ′)wn,−S(x
′)

=
∑

A

ˆ

d3x

ˆ

d3x ′wm0(x)wm ′A(x)W(x− x ′)wn ′,A−S ′(x ′)wn,−S(x
′) (A1)

with A= R ′ −R and B= R ′ +R.
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An alternative form can be derived easily,

H̃SC
mnS,m ′n ′S ′ =

∑

A

ˆ

d3x

ˆ

d3x ′wm0 (x)wm ′A (x)W(x− x ′)wn ′,A−S ′ (x ′)wn,−S (x
′)

=
∑

A

ˆ

d3x

ˆ

d3x ′wm0 (x)wm ′A (x)W(x− x ′)wn ′,A−S ′ (x ′)wn,0 (x
′ + S)

=
∑

A

ˆ

d3x

ˆ

d3x ′wm0 (x)wm ′A (x)W(x− (x ′ − S))wn ′,A−S ′ (x ′ − S)wn,0 (x
′)

=
∑

A

ˆ

d3x

ˆ

d3x ′wm0 (x)wm ′A (x)W(x− x ′ + S)wn ′,A+S−S ′ (x ′)wn,0 (x
′)

=
∑

A

W̃mm ′
nn ′

(
A,S,S ′) . (A2)

We finally show that the hermiticity of the Hamiltonian can be traced back to relations between single
Coulomb integrals W̃mm ′

nn ′ (A,S,S ′). For this we substitute A→−A.

W̃mm ′
nn ′

(
−A,S,S ′) =

ˆ

d3x

ˆ

d3x ′wm0 (x)wm ′−A (x)W(x− x ′ + S)wn ′,−A+S−S ′ (x ′)wn,0 (x
′)

=

ˆ

d3x

ˆ

d3x ′wm0 (x)wm ′0 (x+A)W(x− x ′ + S)wn ′0
(
x ′ +A− S+ S ′)wn,0 (x

′)

=

ˆ

d3x

ˆ

d3x ′wm0 (x−A)wm ′0 (x)W
(
x−A−

(
x ′ −A+ S− S ′)+ S

)

×wn ′0 (x
′)wn,0

(
x ′ −A+ S− S ′)

=

ˆ

d3x

ˆ

d3x ′wmA (x)wm ′0 (x)W
(
x− x ′ + S ′)wn ′0 (x

′)wn,A−S+S ′ (x ′)

= W̃m ′m
n ′n

(
A,S ′,S

)
. (A3)

Performing the sum over A on both sides, we obtain the hermiticity of the Hamiltonian.

Appendix B. Model screening potential

We start from the screened Coulomb interaction as defined in section 2.1 and define α ′ = α/q2TF for
simplicity,

W(q) = ϵ−1 (q)V(q) =

(
1− 1

η+α ′q2

)
1

ϵ0q2
. (B1)

A simple rearrangement of the terms yield the Coulomb and Yukawa potential in reciprocal space,

W(q) =

(
1− 1

η

)
1

ϵ0q2
+

(
1

η
− 1

η+α ′q2

)
1

ϵ0q2

=
1

ϵ∞

1

ϵ0q2
+

α ′q2

η (η+α ′q2)
1

ϵ0q2

=
1

ϵ0ϵ∞q2
+

1

ηϵ0

α ′

η+α ′q2

=
1

ϵ0ϵ∞q2︸ ︷︷ ︸
=Coulomb

+
(
1− ϵ−1

∞
) 1

ϵ0

1

q2 +
q2TF

α(1−ϵ−1
∞ )︸ ︷︷ ︸

=Yukawa

. (B2)

The Fourier transform then yields equation (5).
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Appendix C. Numerical details

C.1. Implementation test
Figures S-1 and S-2 show additional numerical data regarding the Coulomb interaction and time evolution,
respectively.

We have carefully and extensively tested all implementations, of which we want to discuss one particular
test case that demonstrates the ability to compute excitons. For this purpose, we propose a simple test system
that can be solved analytically. It consists of one orbital per unit cell in a cubic lattice of length L and nearest
neighbor transfer integrals for electrons and holes. The electronic structure is given by a tight-binding
model,

Hel =
∑

<ij>

−tel a
†
i aj + E0,

Hh =
∑

<ij>

th h
†
i hj, (C1)

whose band energies are

Eel (k) =−2tel
(
cos(kxL)+ cos

(
kyL

)
+ cos(kzL)

)
+ E0, (C2)

Eh (k) = 2th
(
cos(kxL)+ cos

(
kyL

)
+ cos(kzL)

)
. (C3)

We construct the exciton Hamiltonian and include the electron–hole interaction. For simplicity we chose
a static screening with ϵ∞ and do not include local field effects. The resulting model is given by

H
(
k,k ′) = [Eel (k)− Eh (k)]δkk ′ − 1

ϵ∞
Ṽ

(
k− k ′) , (C4)

where Ṽ(k− k ′) is the bare Coulomb potential in k-space. The model system is therefore similar to the
Wannier–Mott exciton model [59]. To obtain an analytical solution of this model, we perform a Taylor
expansion of the band energies around k= 0

Eel (k)− Eh (k) ≈ E0 − 2(tel + th)

(
3− 1

2
L2|k|2 + 1

24
L4|k|4 − . . .

)
. (C5)

By expanding the exciton Hamiltonian up to second order we obtain the hydrogen-like problem,

H
(
kk ′) =

h̄2k2

2µ
δkk ′ − 1

ϵ∞
Ṽ

(
k− k ′)+ Eg, (C6)

with an effective mass µ= h̄2

2(tel+th)L2
and Eg = E0 − 6(tel + th) the band gap without electron–hole

interaction. The exciton energies follow a Rydberg series,

En = Eg −
Rex

n2ϵ2∞
m (C7)

where the exciton Rydberg energy Rex and exciton Bohr radius aB are,

Rex =
e4µ

2(4π ϵ0)
2 h̄2

,

aB =
4πϵ0ϵ∞h̄2

µe2
. (C8)

We note that this result can be further improved by calculating the energy shifts due to the k4 term in
equation (C5), which would correspond to a relativistic correction of the hydrogen atom (fine structure
without spin–orbit coupling). In complete analogy, they can be calculated using perturbation theory (more
details on the derivation can be found in reference [60]),

∆Enl =− 1

12

E2n
(tel + th)

[
4n

(l+ 1/2)
− 3

]
. (C9)

The analytical model will be compared with results of our Wannier implementation. Towards this end,
the exciton Hamiltonian is set up in real space using the tight-binding models for valence and conduction

14
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Figure S-1. Convergence of equation (13) for matrix element S= S ′ = 0,m= m ′ = 1, n= n ′ = 1.

Figure S-2. Imaginary part of the autocorrelation function that enters equation (36) and is calculated using equation (37). The
initial state |ψ(t= 0)⟩ is normalized for convenience.

bands (see equation (C1)) and statically screened monopole–monopole interaction. The results can then
compared for various model parameters (L, tel, th or ϵ∞). For converged numerical results, it is necessary to
ensure that the size of the supercell (corresponding to the number of k points) is large enough to host the
eigenfunctions (hydrogen-like wavefunctions). More specifically, it must be much larger than the exciton
Bohr radius aB. To avoid discretization errors, the spacing of the lattice points must be small compared to aB
so that the eigenfunction can be represented on a real space lattice. By varying the parameters, one can obtain
converged numerical results that are arbitrary close to the analytical result. On example is shown in
figure S-3, where the parameters are L= 5Å, tel = th = 8eV, and ϵ∞ = 1. The calculations are performed in a
700× 700× 700 supercell and we have used an efficient Lanczos algorithm to calculate the density of states.
The figure shows perfect agreement between the numerical and analytical results, demonstrating the
correctness of our implementation and the ability to simulate various excitons.

15
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Figure S-3. Rydberg series of Wannier excitons as a test case. Analytical results are shown as vertical dashed lines.
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7 Conclusion and Outlook

In this work, we have investigated the electronic and optical properties of three different classes of organic
and inorganic semiconductors. We have investigated the charge transport and electron-phonon coupling
in organic molecular crystals, the electronic π-system, disorder and doping in covalent organic frameworks
and presented a new method for calculating optical properties that scales linearly with the system size,
which is a huge advantage compared to established methods.

For all those cases we have used a real space basis of localized functions such as molecular orbitals
and MLWF. They turned out to be extremely beneficial in terms of computational performance and quality
of results. The reason is that only a minimal number of basis function is needed per unit cell and the
resulting Hamiltonian matrix within this basis becomes very sparse. This allows the construction of large
supercells consisting of millions of unit cells that can be solved very efficiently with linear scaling algorithms.
In the case of transport we presented a method that is able to consider electron-phonon coupling to
the entire spectrum, where low-frequency modes are treated as vibrational disorder and high-frequency
modes are included using polaron-renormalization. In the case of optical calculations it was shown that
the electron-hole interaction can be evaluated very efficiently in a basis of MLWF. Since the Wannier
functions are directly obtained from the underlying Bloch functions (Kohn-Sham wave functions) without
any approximation, they contain all information about the electronic structure and can also be used to
analyze the electronic structure, delocalization and π-conjugation in detail.

For the future, we can imagine that the methods presented will be further refined and become standard
computational tools. Furthermore, it is possible that the different aspects could be combined. For example,
it would in principle be possible to calculate optical properties in the presence of disorder, doping or
electron-phonon coupling. Similarly, the results could be used to study exciton transport and exciton
diffusion.
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Vibrational disorder from spectral moments of the one-electron 
spectrum of the Holstein-Peierls Hamiltonian 
 

We derive an approximation for the Holstein-Peierls Hamiltonian 𝐻𝐻 in which the electron-phonon coupling 
(EPC) results in a purely electronic vibrational disorder potential defined in Eq. (13) of the main text. The 
derivation is based on the equivalence of the spectral moments of the DOS of the Holstein-Peierls 
Hamiltonian and the DOS of an electronic system with specifically tailored electronic disorder that is 
obtained within the static approximation of the electron-phonon coupling. In this section, we demonstrate 
this equivalence based on the Holstein-Peierls Hamiltonian for purely symmetric coupling including all 
modes with intramolecular and intermolecular symmetric coupling. 

We first introduce the vibrational disorder as an ansatz in site representation as follows: 

𝑉𝑉s(𝑇𝑇) = ∑ 𝜎𝜎𝑖𝑖𝑖𝑖s𝜆𝜆(𝑇𝑇)𝜆𝜆𝑖𝑖𝑖𝑖
�𝜙𝜙𝑖𝑖

𝜆𝜆+𝜙𝜙𝑗𝑗
𝜆𝜆�

2
𝑎𝑎𝑖𝑖
†𝑎𝑎𝑖𝑖,        (S1) 

with standard deviation of 𝜎𝜎𝑖𝑖𝑖𝑖s𝜆𝜆(𝑇𝑇) = 𝑔𝑔𝑖𝑖𝑖𝑖s𝜆𝜆ℏ𝜔𝜔𝜆𝜆�(1 + 2〈𝑛𝑛𝜆𝜆〉𝑇𝑇) and a normalized Gaussian random variable 
𝜙𝜙𝑖𝑖𝜆𝜆 generating Gaussian random numbers for each molecular site and each vibrational mode. We calculate 
the DOS of this model  

𝐷𝐷(𝐸𝐸) = − 1
𝜋𝜋
ℑ�∫ 𝑑𝑑𝑑𝑑 Θ(𝑑𝑑)𝑒𝑒

𝑖𝑖𝑖𝑖𝑖𝑖
ℏ 𝐺𝐺(𝑑𝑑) ∞

−∞ �,         (S2)  

using the definition of the momentum-averaged Green’s function 

𝐺𝐺(𝑑𝑑) = − 𝑖𝑖
ℏ

Trel�𝑒𝑒
−
𝑖𝑖𝑖𝑖�𝐻𝐻el+𝑉𝑉

s(𝑇𝑇)�
ℏ   �

Trel(𝟙𝟙el) 
.         (S3) 

The moments of the averaged Green’s function are defined from the series expansion 

𝐺𝐺(𝑑𝑑) = �− 𝑖𝑖
ℏ
�∑ 1

𝑘𝑘!
∞
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ℏ
�
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𝑀𝑀(𝑘𝑘),        (S4) 

which are equivalent to the spectral moments 𝑀𝑀(𝑘𝑘) of the DOS 
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𝑀𝑀(𝑘𝑘) = ∫ 𝑑𝑑𝐸𝐸 𝐸𝐸𝑘𝑘𝐷𝐷(𝐸𝐸)∞
−∞ .         (S5) 

In this derivation, we focus on the calculation of the spectral moments for 𝐻𝐻el = 0,  

𝑀𝑀(𝑘𝑘) =  Trel�𝑉𝑉
s(𝑇𝑇)𝑘𝑘 �

Trel(𝟙𝟙el) 
.          (S6) 

One can show by applying Isserlis’ or Wick’s probability theorem [1] [2] for Gaussian random numbers that 
the spectral moments 𝑀𝑀(𝑘𝑘) can be expressed as 

𝑀𝑀(2𝑘𝑘) = (2𝑘𝑘 − 1)‼  
Trel��𝜎𝜎2�

𝑘𝑘 �

Trel(𝟙𝟙el) 
,         (S7) 

𝑀𝑀(2𝑘𝑘+1) = 0,           (S8) 

with an operator-valued variance 𝜎𝜎2. The expectation value Trel�𝜎𝜎2𝑘𝑘 � can explicitly be evaluated in the 
electronic momentum space: 

Trel�𝜎𝜎2𝑙𝑙 � = ∑ �𝜎𝜎𝐤𝐤𝐤𝐤2 �
𝑙𝑙

𝐤𝐤 ,          (S9) 

with  

𝜎𝜎𝐤𝐤𝐤𝐤2 = ∑ ℏ𝜔𝜔𝜆𝜆�(1+2〈𝑛𝑛𝜆𝜆〉𝑇𝑇)
4

�∑ 𝑔𝑔0𝑚𝑚s𝜆𝜆𝑚𝑚 𝑔𝑔𝑚𝑚0
s𝜆𝜆 + 2∑ 𝑔𝑔00s𝜆𝜆𝑚𝑚 𝑔𝑔𝑚𝑚0

s𝜆𝜆 𝑒𝑒𝑖𝑖𝐤𝐤⋅𝐑𝐑0𝑚𝑚 + ∑ 𝑔𝑔0𝑚𝑚s𝜆𝜆 𝑔𝑔𝑚𝑚𝑛𝑛s𝜆𝜆𝑚𝑚𝑛𝑛 𝑒𝑒𝑖𝑖𝐤𝐤⋅𝐑𝐑0𝑛𝑛� 𝜆𝜆 . (S10) 

Here, we have used the translational invariance of the coupling constants, i.e. 𝑔𝑔𝑖𝑖𝑖𝑖s𝜆𝜆 = 𝑔𝑔0𝑖𝑖−𝑖𝑖s𝜆𝜆 = 𝑔𝑔0𝑚𝑚s𝜆𝜆 . In 
Eq. (S9) the sum over 𝑚𝑚 runs over all nearest-neighbor molecules and the sum over 𝑛𝑛 runs over all nearest-
neighbor molecules of 𝑚𝑚. The vectors 𝐑𝐑0𝑚𝑚 = 𝐑𝐑𝑖𝑖 − 𝐑𝐑𝑖𝑖 correspond to the lattice vectors and are also 
translation invariant. We compare this result to the case of purely local coupling, which is obtained by 

setting 𝑔𝑔𝑖𝑖𝑖𝑖s𝜆𝜆 = 𝑔𝑔𝑖𝑖𝑖𝑖s𝜆𝜆𝛿𝛿𝑖𝑖𝑖𝑖, and see that Eq. (S10) reduces to 𝜎𝜎𝐤𝐤𝐤𝐤2 = ∑ �𝜎𝜎00s𝜆𝜆�
2

𝜆𝜆 , which is the standard deviation 
that results from intramolecular coupling. The vibrational disorder derived from purely local coupling has 
been applied in previous studies [3] [4]. 

We now show that the same result for the spectral moments 𝑀𝑀(𝑘𝑘) is obtained within the static 
approximation of the EPC in the Holstein-Peierls Hamiltonian. For this purpose, we consider the averaged 
Green’s function for a single particle in the form 

𝐺𝐺(𝑑𝑑) = − 𝑖𝑖
ℏ

Tr�𝑒𝑒−𝛽𝛽𝐻𝐻ph𝑒𝑒
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,        (S11) 

where the trace is taken over all one-electron multiple-phonon states in this case.  

We now use the Baker-Campbell-Hausdorff formula to define an approximate Green’s function, 

𝐺𝐺stat(𝑑𝑑) = − 𝑖𝑖
ℏ
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in which all nested commutators involving 𝐻𝐻ph are neglected in the time-dependent exponent. This limit 
corresponds to the static treatment of the EPC, in which we assume that the mode amplitudes in 𝐻𝐻el−ph 
become static. 

The above expression for the averaged Green’s function can be evaluated analytically in the special case 
where 𝐻𝐻el = 0, using Wick’s theorem for independent bosons [5],  

𝐺𝐺stat(𝑑𝑑) =
Trel�𝑒𝑒
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2ℏ2
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with the operator-valued variance 𝜎𝜎2 that reads in the site basis, 

𝜎𝜎2 = ∑ 1
4

(ℏ𝜔𝜔𝜆𝜆)2(1 + 2⟨𝑛𝑛𝜆𝜆⟩𝑇𝑇)��∑ 𝑔𝑔𝑖𝑖𝑖𝑖s𝜆𝜆�𝑔𝑔𝑖𝑖𝑖𝑖s𝜆𝜆 + 𝑔𝑔𝑖𝑖𝑖𝑖s𝜆𝜆�𝑖𝑖𝑖𝑖 + ∑ 𝑔𝑔𝑖𝑖𝑙𝑙s𝜆𝜆𝑖𝑖𝑙𝑙 𝑔𝑔𝑙𝑙𝑖𝑖s𝜆𝜆 + ∑ 𝑔𝑔𝑖𝑖𝑙𝑙s𝜆𝜆𝑔𝑔𝑙𝑙𝑖𝑖s𝜆𝜆𝑖𝑖𝑖𝑖𝑙𝑙 �𝑎𝑎𝑖𝑖
†𝑎𝑎𝑖𝑖 −𝜆𝜆

2∑ 𝑔𝑔𝑖𝑖𝑙𝑙s𝜆𝜆𝑔𝑔𝑙𝑙𝑖𝑖s𝜆𝜆𝑎𝑎𝑖𝑖
†𝑎𝑎𝑙𝑙

†𝑎𝑎𝑙𝑙𝑎𝑎𝑖𝑖 𝑖𝑖𝑙𝑙𝑖𝑖 � .         (S14) 

The two-particle term in Eq. (S13) can be neglected since only one-particle averages are considered. This 
assumption corresponds to the limit of low charge-carrier densities [6]. 

Taking into account the translational symmetry of the coupling constants, we find 

𝜎𝜎2 = ∑ 𝜎𝜎𝐤𝐤𝐤𝐤2 𝑎𝑎𝐤𝐤
†

𝐤𝐤 𝑎𝑎𝐤𝐤,          (S15) 

with the same matrix elements as given in Eq. (S10). The spectral moments 𝑀𝑀stat
(𝑘𝑘)  are obtained from Eq. 

(S13) by evaluating the power-series expansion of 𝐺𝐺stat(𝑑𝑑) around 𝑑𝑑 = 0, 

𝑀𝑀stat
(2𝑘𝑘) = (2𝑘𝑘 − 1)‼  

Trel��𝜎𝜎2�
𝑘𝑘 �

Trel(𝟙𝟙el) 
,         (S16) 

𝑀𝑀stat
(2𝑘𝑘+1) = 0.           (S17) 

Consequently, we find that all moments of the one-electron DOS are equal, i.e., 

𝑀𝑀(𝑘𝑘) = 𝑀𝑀stat
(𝑘𝑘) ,           (S18) 

and thus obtain the equivalence of the introduced vibrational disorder with the static treatment of the 
EPC in the Holstein-Peierls Hamiltonian.        

In conclusion, the approximation made in Eq. (S12) leads to an effective description of the EPC using a 
vibrational disorder potential, which only depends on the electronic degrees of freedom. We note that the 
present derivation is provided for symmetric EPC only but remains valid also in the presence of 
antisymmetric EPC.  

In addition, it is straightforward to prove the equivalence of the spectral moments in Eq. (S18) for purely 
intramolecular coupling since then the operator 𝜎𝜎2 becomes trivial, namely 

𝜎𝜎2 = ∑ �𝜎𝜎𝑖𝑖𝑖𝑖s𝜆𝜆�
2
𝑎𝑎𝑖𝑖
†𝑎𝑎𝑖𝑖𝜆𝜆 ,          (S19) 

whose spectral moments can directly be compared with those calculated from a purely intramolecular 
disorder potential 
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𝑉𝑉intra(𝑇𝑇) = ∑ 𝜎𝜎𝑖𝑖𝑖𝑖s𝜆𝜆𝜙𝜙𝑖𝑖𝜆𝜆𝑎𝑎𝑖𝑖
†𝑎𝑎𝑖𝑖𝑖𝑖𝜆𝜆  .         (S20) 

We thus introduce the substitution rule for the phonon amplitudes as 

𝑏𝑏𝑖𝑖𝜆𝜆
† + 𝑏𝑏𝑖𝑖𝜆𝜆 → 𝜙𝜙𝑖𝑖𝜆𝜆,           (S21) 

which automatically generates the vibrational disorder potential in correspondence with the static 
treatment of the EPC. 
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SI-1 Quality of Wannierization

Figure SI-1: Comparison between band structure before the wannierization (VASP) and
after wannierization (wannier90).



SI-2 Orbitals and Transfer Integrals

Figure SI-2: All C=C-π orbitals of a single phenyl ring. Shapes are similar but small
deformations occur in the vicinity of the linker.

Figure SI-3: All C-C-σ orbitals of a single phenyl ring. Shapes are similar but small
deformations occur in the vicinity of the linker. C-C-σ orbitals at single and
double bond positions (C-C-σs, C-C-σd) have the same shape.



Figure SI-4: Map of transfer integrals (TI) larger than 1meV for COF-BS-1Ph. Dots
represent the center of every Wannier orbital, straight lines show the corre-
sponding TI between orbitals, where the line width characterizes the value of
the TI. The unit cell is highlighted with dashed lines. The lower panel shows
the corresponding COF-pore.



(a) COF-BO-1Ph (b) COF-BO-2Ph

(c) COF-BS-1Ph (d) COF-BS-2Ph

(e) COF-CN-1Ph (f) COF-CN-2Ph

(g) COF-CC-1Ph

Figure SI-5: Values of Transfer integrals (log) and their distance. All figures show that
TI become exponentially suppressed for large distances.



SI-3 Band Structure

The subsequent figures show the valence band structures and their projection onto the
π-system for the investigated COFs. Systematic investigations of the band gap for COF-
BO-1Ph, COF-BO-2Ph, COF-CN-1Ph and COF-CN-2Ph can be found in Ref.1.

(a) COF-BO-1Ph (b) COF-BO-2Ph

Figure SI-6: Band structures for BO-COFs



(a) COF-BS-1Ph (b) COF-BS-2Ph

Figure SI-7: Band structures for BS-COFs



(a) COF-CN-1Ph (b) COF-CN-2Ph

Figure SI-8: Band structures for CN-COFs



(a) COF-CC-1Ph

Figure SI-9: Band structure for reference COF

Table SI-1: Bandwidth of 1Ph COFs in eV

Band group COF-CC-1Ph COF-BS-1Ph COF-CN-1Ph COF-BO-1Ph
1 0.875 0.075 0.24 0.008
2 0.026 0.065 0.058 0.215
3 1.483 0.675 1.048 0.363
4 1.074 0.641 0.800 0.443
5 0.399 0.171 0.091 0.048



Table SI-2: Bandwidth of 2Ph COFs in eV

Band group COF-BS-2Ph COF-CN-2Ph COF-BO-2Ph
1 0.12 0.008 0.156
2 0.066 0.011 0.0003
3 0.013 0.007 0.001
4 0.333 0.33 0.077
5 0.695 0.669 0.249
6 0.434 0.644 0.348
7 0.168 0.238 0.105
8 0.032 0.006 0.005

SI-4 Bader Charge

Bader charges2,3 are calculated for the ground state using the bader charge analysis
code4,5. DFT calculations are described in the methods section of the main text. Results
are shown in Tab. SI-3.

Table SI-3: Bader charge of linker species for all COFs.

COF Linker Atom 1 (X=C,B) [C] Linker Atom 2 (Y=S,N,O,C) [C]
COF-CC-1Ph 4.1 3.9
COF-BS-1Ph 1.3 7.1
COF-BS-2Ph 1.3 7.1
COF-CN-1Ph 3.0 6.1
COF-CN-2Ph 2.9 6.2
COF-BO-1Ph 0.8 7.5
COF-BO-2Ph 0.8 7.5

SI-5 Effective Mass

Effective masses are obtained in the real space basis of MLWF as described in Ref.6.
k-derivatives of the Fourier series (c.f. Eq. (1) in the main text) can be performed ana-
lytically, where the only difficulty is the calculation of ∇kUnm(k), which can be obtained
by k ·p perturbation theory6,7. The obtained effective masses in Tab. SI-4 show better or
equally good agreement than direct fits of the band structure, which are always dependent
on finite k-differences. Degenerate bands are denoted with * or †. Components of m∗ are
given with respect to reciprocal lattice vectors. The eigenvalues of m∗ are given in the
last two columns. In general the effective mass tensors for different bands do not share
the same eigensystem.
Bands near the Fermi level are very flat for all COFs except for COF-CC-1Ph (∆E =

0.88 eV). The resulting effective masses are therefore very high. Flat bands (from kgm
bands) only have finite effective masses due to distortions.
The highest occupied bands are π-bands, except for COF-CN-1Ph, where the high-

est occupied bands originate from lone-pair (lp) orbitals at the linker and are very flat.



Table SI-4: Effective mass tensor m∗ at Γ-point expressed in reciprocal basis for upper-
most group of bands in units of electron rest massme. Degeneracies at Γ-point
among a group are marked with * or †. The underlying orbitals that corre-
spond to the a band are given in brackets (π or lp). The effective mass tensor
is symmetric m∗

12 = m∗
21. Last two columns contain the eigenvalues of the

effective mass tensor.
Material Band m∗

11 (me) m∗
22 (me) m∗

12 (me) Eig.val. 1 (me) Eig.val. 2 (me)
COF-CC-1Ph HOMO* (π) -37.9 -42.6 35.7 -4.4 -76.1
COF-CC-1Ph HOMO-1* (π) -21.7 -17.1 -5.9 -25.7 -13.0
COF-CC-1Ph HOMO-2 (π) 1.5 1.5 -0.8 2.3 0.8
COF-BS-1Ph HOMO* (π) -27.8 -28.1 16.2 -11.7 -44.2
COF-BS-1Ph HOMO-1* (π) -25.1 -24.8 10.3 -35.2 -14.7
COF-BS-1Ph HOMO-2 (π) -257.9 -257.7 135.1 -392.9 -122.7
COF-CN-1Ph HOMO* (lp) 11.4 -322.3 79.7 29.4 -340.4
COF-CN-1Ph HOMO-1* (lp) -291.8 15.2 68.0 -306.2 29.6
COF-CN-1Ph HOMO-2† (lp) 160.1 131.9 -166.9 313.4 -21.5
COF-CN-1Ph HOMO-3† (lp) 8.1 33.8 83.8 -63.9 105.7
COF-CN-1Ph HOMO-4* (π) -26.1 -19.9 7.7 -31.3 -14.6
COF-CN-1Ph HOMO-5* (π) -24.9 -30.9 17.7 -9.9 -45.9
COF-CN-1Ph HOMO-6 (π) 16.8 16.8 -8.4 8.4 25.2
COF-BO-1Ph HOMO* (π) -237.5 -193.3 103.9 -321.6 -109.1
COF-BO-1Ph HOMO-1* (π) -194.6 -239.2 112.2 -102.5 -331.3
COF-BO-1Ph HOMO-2 (π) -8406.2 4061.0 -13477.5 -17021.9 12676.7

COF-BS-2Ph HOMO (π) -33.8 -33.7 16.8 -50.6 -16.9
COF-BS-2Ph HOMO-1* (π) 209.5 87.9 64.1 237.0 60.3
COF-BS-2Ph HOMO-2* (π) 269.8 388.3 -301.2 22.1 636.0
COF-CN-2Ph HOMO* (π) 7205.5 1747.0 2510.9 8184.8 767.7
COF-CN-2Ph HOMO-1* (π) -7256.0 -11618.3 9476.5 287.0 -19161.4
COF-CN-2Ph HOMO-2 (π) 292.8 304.6 -159.3 139.3 458.1
COF-BO-2Ph HOMO-0 (π) -29.7 -29.8 14.9 -14.9 -44.6
COF-BO-2Ph HOMO-1* (π) 1005.1 1724.6 1271.7 43.3 2686.4
COF-BO-2Ph HOMO-2* (π) 3611.2 3015.1 -3285.0 6611.6 14.7

Similar states also exist in COF-CN-2Ph but with lower energy, which makes them unim-
portant for transport. For COF-CN-1Ph we have given the top nine bands to also provide
information about the top bands of the π-system.



SI-6 Onsite energy

(a) ∆ϵS-π = 0.5 eV (b) ∆ϵS-π = 0.9 eV (c) ∆ϵS-π = 1.2 eV

Figure SI-10: Band structure of COF-BS-1Ph for different changes of S-π onsite energy.
Fermi energy is chosen individually to be the valence band maximum in
each plot.



SI-7 Robustness and Breaking of π-Conjugation by Bond
Torsion

(a) COF-BS-1Ph (b) COF-CN-1Ph

(c) COF-BO-1Ph (d) COF-CC-1Ph

Figure SI-11: Band structure for one phenyl systems (including projection on pz-orbitals
at linker positions) and impact of rotation of the phenyl rings on band width
and projection. The energy zero is set to the valence band maximum of the
planar structure.



(a) COF-BS-2Ph (b) COF-CN-2Ph

(c) COF-BO-2Ph

Figure SI-12: Band structure for two phenyl systems (including projection on pz-orbitals
at linker positions) and impact of rotation of the phenyl rings on band width
and projection. The energy zero is set to the valence band maximum of the
planar structure.

To elaborate the changes of the electronic structure we extend our analysis by comparing
our results with the projected norm (PN) of P (ϕ)(E), which is defined as,

PN(ϕ) :=

∫ EF

−∞
dE

∣∣P (ϕ)(E)
∣∣2 . (SI-1)

In contrast to CBW (see main text for definition) PN does not depend on any adjustable
threshold parameter and is therefore more sensitive to small changes in P (ϕ)(E). Including
the actual values of P (ϕ)(E) makes PN(ϕ) also sensitive to possible redistribution of
charge density and localization like we have observed for the top kgm-bands near the
Fermi-level, which relocate their charge density at the linker completely into px and py-
like orbitals for large ϕ. It is therefore not surprising that PN(ϕ) highlights the decline
of global π-conjugation even more than CBW (ϕ), as can be seen in Fig. SI-13(e)-(f).
In particular, PN(ϕ) of COF-CN-1Ph decreases faster than PN(ϕ) of COF-CC-1Ph,

whereas for CBW it is vise versa. This effect is caused not only by the decrease in projec-
tion, but also by gaps in the third π-band (dark green), which are caused by symmetry
breaking. COF-CN-1Ph and COF-CN-2Ph show the largest decline. They are therefore
more sensitive to rotation as COF-BS-1Ph and COF-BS-2Ph as well as COF-CC-1Ph.



Figure SI-13: Quantitative measures that characterize the influence of rotations. (a)-(b)
Cumulative bandwidth CBW (ϕ). (c)-(d) Normed cumulative bandwidth
CBW (ϕ)/CBW (0). (e)-(f) Normed potential norm PN(ϕ)/PN(0). All
solid lines focus on the upper pi-groups (near the Fermi-level); the dashed
lines in (a)-(b) show the measurement for all π-groups. The colored areas
indicate the deviations at a 15% change of Pmin.



An initial increase in PN(ϕ) is observed for COF-BO-1Ph. This is also caused by a gap
in a π-band due to symmetry breaking.
For all other COFs PN(ϕ) behaves very similarly to CBW (ϕ), which shows that the

linker projection only changes merely upon rotation and further justifies our choice of
Pmin for CBW (ϕ).

SI-8 NICS

Table SI-5: Upper bounds of NICS values that originate from ring currents. All values
are smaller than numerical precision of the calculation independent of the
partition scheme.

COF NICS (ppm) Percentage of entire NICS value from COF-pore
COF-CC-1Ph -0.13 -3.7%
COF-BS-1Ph 0.026 0.8%
COF-CN-1Ph 0.006 0.1%
COF-BO-1Ph 0.024 0.7%

Figure SI-14: Alternative partition scheme for calculating the ring current contribution
to NICS. Ring current contribution of NICS was found to be smaller than
0.03ppm, which is smaller than numerical precision for every COF.

SI-9 Shannon Aromaticity

The Shannon aromaticity8 is defined as

S = −
∫

dr ρ(r) ln ρ(r), (SI-2)

which is the Shannon entropy9 of the ground state charge density ρ(r). Values for all
COFs are shown in Fig. SI-15. Please note that 1Ph COFs and 2Ph COFs cannot be
compared directly due to their different sizes of the unit cell.



Figure SI-15: Shannon aromaticity
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