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a b s t r a c t

Rapid integration of laboratory devices into automated workflows remains an arduous and time-
consuming process. A lack of interface standardization among hardware vendors leads to inflexible
device setups and highly customized and expensive software solutions. Thus, practical integration
capabilities of existing laboratory control systems (LCS) are insufficient when it comes to developing
small, rapid and cost-efficient automation solutions. The increasing importance of data integrity as well
as software system and workflow documentation, due to cGMP regulations, is calling for structured,
reliable and transparent middleware solutions. The SiLA 2 Manager uses the emerging SiLA 2 standard
and provides a lean and extendable framework for device discovery, management, and workflow
design, thereby bridging the gap between the physical device and higher software levels. This Internet
of Things (IoT) application enables immediate control of SiLA 2 devices and ensures user-friendly
real-time data collection and storage.
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. Motivation and significance

Laboratory automation in the commercial and academic en-
ironment in the life and chemical sciences has been gaining
omentum over the past two decades [1,2]. The trend of process
arallelization and miniaturization in the chemical and biochem-
cal laboratory, coupled with Design of Experiment (DoE) based
oftware assisted experiment planning is calling for increasingly
utomated experimental setups and advanced capability for dig-
tal device interaction [3–6]. The main driving force is not only
ncreased efficiency and throughput, but also automated docu-
entation and a reduction in human error. Regulatory bodies
ave expanded their guidelines to keep up with technological
dvances in laboratory automation, encompassing not only au-
it trail documentation, but documentation and validation of
oftware and computerized systems as well (cGMP, EudraLex).
ncreasingly detailed documentation requirements can only be
ulfilled efficiently by digitized systems [7–9].

ackground and problem statement

Computerized systems in a laboratory environment are hier-
rchical constructs of several subsystems. They range from the
nterprise or laboratory-level information management systems
LIMS) to the laboratory or process control software down to
he so-called middleware on the device level. In most cases, the
rocess control software directly integrates the necessary devices
ithout the use of a designated middleware. Prominent examples
re liquid handling stations that operate with several periphery
evices and require dedicated software for their operation. Ac-
ess to the respective periphery devices is only possible through
he vendor software interface. The integration of new devices is
ifficult and, due to the closed-source nature of the software,
equires application specialists. Furthermore, such software so-
utions generally lack an appropriate application programming
nterface (API) for further integration with other process control
oftware or into higher-level organizational systems such as LIMS.
A variety of vendor-specific, proprietary software and hard-

are interfaces exist for standalone laboratory equipment. Cus-
om solutions that combine several devices to create automated
orkflows have long development times and require program-
ing and software engineering expertise. This makes the integra-

ion of individual devices into an automated workflow an arduous
ask. The combination of various standalone devices with each
ther, like a digital scale with a robotic arm or the integration of
n unsupported third-party device into a liquid handling station
LHS), enables a more efficient mode of operation. However, the
ack of standardized device interfaces and of appropriate middle-
are still impedes the development of automated workflows [10,
1].
Hence, larger automation systems grow in software and hard-

are complexity and require subject matter experts. Replace-
ent or upgrading of individual devices is not straightforward
nd the most often used closed-source, non-modular software so-
utions lead to low code reusability and a high long-term mainte-
ance cost [12,13]. Due to a lack in hardware interface standard-
zation, most commercial automation solutions focus on work-
low and audit trail documentation or data and user management,
ut not basic middleware for hardware integration.
Despite recent advances in high throughput system technol-

gy and a constantly broadening automation product range, lab-
ratory automation is still most often confined to custom-built
sland solutions [2,7]. These solutions, whether implemented as
losed or open systems, are highly inflexible and come at a
igh development cost. The resulting cost to automate a task
n contrast to the cost of the respective manual labor, i.e. a

tradeoff between the amount of repetitions versus the complexity
of the task, still defines the grade of automation in the labora-
tory environment to this day. This tradeoff is an old paradigm
which may hold true for high-throughput stations but falls short
when considering the laboratory environment as a whole. There
are many aspects to consider in laboratory automation, such as
gained flexibility, replaceability, integration into existing systems,
time savings and thus competitive advantage, minimization of
human error, reduction of sample volume and data integrity [12,
14,15]. Reducing development cost through the use of innovative
software for device integration directly will make lab automation
more affordable and result in the aforementioned benefits.

Laboratory digitization can be overwhelming and the amount
of combinations of architectural solutions for distributed comput-
ing (REST, SOAP, JSON-/XML-RPC, gRPC), programming languages
and database types is vast. Developing custom solutions that
integrate all kinds of devices is possible and has been shown
by Porr et al. (2020) [11]. However, such solutions are quickly
increasing in complexity and maintenance effort making rapid
integration difficult. Laboratory automation should not be the
problem, but the solution. Reducing the aforementioned com-
plexity, in accordance with the law of parsimony, should be
the main priority of any automation solution. Converging on a
minimal number of network protocols, programming languages,
databases and overall software dependencies is a key aim of this
software proposal.

Standardization in laboratory automation - SiLA 2

Device integration requires intricate knowledge about the
used communication protocol. From a user perspective, this turns
simple commands like ‘‘Start_pump’’ into a programming chal-
lenge of e.g. string parsing, checksum calculations, numeral sys-
tem conversions and worries about thread safety or buffer queue
size. Furthermore, the intuitive assumption that the integration
solution of one device is transferable to another device with the
same functionality, but from different vendors, fails immediately
if the first glance at the documentation reveals that two entirely
different communication protocols are used, effectively doubling
the development effort. In an ideal world, the end-user should
not have to worry about such integration complexities and a
workflow script written for a specific task should only care about
the device type and be independent of the device make. However,
temporal and structural behavior of existing interfaces is vastly
different and error messages and error handling capabilities are
generally incompatible with third-party products. Introducing a
standardized device interface as an additional level of abstraction
resolves these problems and reduces the users effort to a simple
‘‘Start_pump’’-command, resulting in rapid integration capability
and device interchangeability [16].

Application of a standardized interface, as proposed by the
not-for-profit membership organization SiLA (SiLA, Rapperswil-
Jona, Switzerland), can drastically reduce the complexity and
development times of automation solutions. SiLA 2 provides the
tools for rapid integration and enables device-agnostic compre-
hensive middleware platforms for a new generation of laboratory
devices with plug-and-play capability. According to the standard,
each device is implemented as a SiLA server that exposes its
service in the network as a set of features. Each feature comprises
a set of functionally related commands and properties available
for the client to call. A SiLA device is a special case of a SiLA server,
as a SiLA server can implement any kind of service. Network
communication is based on gRPC via HTTP/2. The client can be
incorporated in a higher-level software, such as in a LIMS or a
PCS, or as in the case of the proposed middleware software, a
simple workflow script [14,17–19].
2
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The number of embedded SiLA 2 compatible devices is in-
reasing steadily, but adoption is still in its infancy as hardware
endors have not yet fully committed resources to in-house im-
lementations. However, since SiLA is a software solution to a
ardware interface problem, any legacy device can be converted
nto a SiLA 2 device in a fast and cost-effective manner as shown
y Porr et al. (2020) [20]. This makes every piece of laboratory
ardware a potential addition to an automation workflow. Mov-
ng forward, a SiLA server that implements a laboratory device
ill be referred to as a service. There are current efforts to specify
standard based on OPC-UA, which is widely used in the closely
elated process industry. The OPC-UA Laboratory Agnostic Device
tandard (LADS) may compete with SiLA 2 in the future [21].

xpectations and comparison with existing tools

A modern process control software framework should be mod-
lar and based on industry standards. The used technology must
e widely adopted to ensure long-term support and, as the soft-
are itself, be open-source to ensure transparency and reduce
hird-party company dependency. Industrial adoption of open-
ource software – often held back by unjustified quality concerns
is increasing, especially if value-added services are offered [22].
rominent examples of successful open-source software are Linux
r the databases MySQL and InfluxDB.
The dogma of limiting device access to software installed

n a local computer is outdated. Devices should be accessible
y the local network in a device-as-a-service fashion. Hence-
orth, the controlling software should be readily accessible from
ny eligible end user device. A further major advantage of this
eb-based concept is the resulting operating system or platform

ndependence.
In the age of information, all data is important and data

ecording should start at the lowest level: the device level. Raw
ata and meta-data should be collected not just in regulated
nvironments, but in academia and research as well [15]. Gath-
ring comprehensive datasets is time-consuming and prone to
uman error. Thus, any laboratory software should be capable of
inking certain streams of data to a selected database which can
e connected to the laboratory or company LIMS.
The SiLA Browser (UniteLabs AG, Basel, Switzerland) is a free-

o-use closed-source IoT application that enables discovery and
irect control of SiLA 2 devices. However, it is unsuitable for
orkflow automation due to the lack of a scripting environ-
ent or workflow editor. Other notable closed-source software
olutions are niceLab (EQUIcon Software GmbH, Jena, Germany)
nd zenLab

®
(Infoteam Software AG, Bubenreuth, Germany),

he successor of the iLab [23], whereas the zenLab
®
, a scalable

iddleware automation framework, follows the similar
ore principles as the proposed software, but accompanied by the
estrictions of proprietary vendor software. The SiLA 2 Manager
rovides a free, open-source alternative for researchers, engi-
eers, educators, and small laboratories in general, to automate
heir workflows. In comparison to the SiLA Browser, the pro-
osed software is a functional open-source alternative and vast
xpansion.
Workforce change management in the laboratory environment

n regard to new software solutions is an often underestimated
arrier due to a low level of computer and programming skills.
his further raises the importance of standardized, plug-and-play
ike device interfaces and intuitive graphical user interfaces. Intu-
tive, browser-based solutions that offer easily accessible device-
s-a-service functionality are needed to transform the laboratory
nvironment into an automated workspace [24].

2. Software description

2.1. Software architecture

The SiLA 2 Manager is based on a client–server architecture,
with a python backend and a typescript frontend. The user in-
teracts with the software through the web-based frontend which
communicates with the backend API by HTTP and WebSockets.
The frontend is secured by using the open authorization protocol
OAuth2. Authentication of authorized users is managed by issuing
a JSON Web Token. The automatic token timeout and renewal
policy can be configured to meet the required security level. Fig. 1
shows the relationship between the user and the involved soft-
ware systems. A user interacts with the application by using the
web-based graphical interface to discover and control available
services or execute experimental scripts. The SiLA 2 Manager
relies on multicast DNS service discovery (zeroconf) and is able
to discover SiLA servers that multicast their service by default.
A generic SiLA 2 python client uses the provided information to
connect to any of the discovered services. Once connected, the
user can explore the devices features, execute commands and
integrate the devices in experimental workflow scripts.

Furthermore, SiLA 2 services can be linked to InfluxDB
databases (v.1.7) [25] to automatically store selected process
information for the duration of an experiment. This stored ser-
vice data, e.g. from a device, can be accessed from within the
scripting environment with the respective python database client.
Stored information can also be accessed and visualized via the
web-based database browser chronograf, which is part of the
influxdata stack.

To allow further expansion and customization, the frontend
and backend have been strictly separated. The python backend
uses the FastApi web framework to transfer data via HTTP and
WebSocket to and from the Angular frontend. Fig. 2 shows the
different components of the system and the interactions between
them. Each component is a container, e.g. a module, that can be
executed independently.

To store persistent application data, e.g. service or booking
information, a relational SQL database is used because of its
high reliability, guaranteed data consistency and ease of use. In
addition to this, the relational data model, with its ability to
efficiently join rows from different tables, makes it a natural fit for
the persistent application data of the SiLA 2 Manager. The open-
source database PostgreSQL (v.13) was selected because it is fast
and has excellent SQL conformance [26]. Most No-SQL database
alternatives benefit from high horizontal scalability, i.e. they can
distribute data over many servers and load balance the access
to it. However, this does not provide any real benefit for the
proposed use case since there are no large distributed datasets.
The disadvantage of making it more difficult to ensure precise
data consistency would outweigh the advantages provided by the
horizontal scalability of NoSQL database types. Further, the ability
to have very loosely defined non-structured data structures is
of no benefit and thus not a relevant decision criterion for the
presented application.

The application consists of several subprocesses as shown
in Fig. 2. The in-memory database Redis (v.6.0.9) is used as a
message broker to enable interprocess communication. An in-
memory, No-SQL database was chosen over an SQL database
because information transmission between 2 components of the
system rather than persistent storage is required. Redis is a well-
established and high-performance database [27]. A major advan-
tage, as compared to other messaging libraries, is that Redis can
be used for other complex operations, like fast in-memory storage
or caching, as well.

The user is provided with an Angular client for easy access to

the functionalities of the system, which are exposed over an HTTP

3
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Fig. 1. The context diagram showing the scope of the software and its relation to the user and other software systems. The user interacts with the software through
the web-frontend and may view process data through web-frontend of the database. The SiLA 2 Manager discovers new services in the network via the mDNS
multicast server registrations of the SiLA servers and connects to the services via gRPC using a generic SiLA client. Recorded process data is forwarded from the
SiLA 2 Manager to a selected InfluxDB database.

Fig. 2. The container diagram of the SiLA 2 Manager is a detailed description of the software system introduced in Fig. 1. The web-frontend makes API calls to the
backend API. The API forwards these calls to the main sub-system, the service manager. A PostgreSQL database is used to store application related data. Temporary
and quickly changing data storage, such as device status and log data, is handled by the in-memory database Redis by using publish and subscribe (PUBSUB) channels.
The scheduler is an independent service that controls experiments in a docker container and initiates data transfer via the data handler.
4
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Fig. 3. The homepage shows registered services and the top layer of the service tree that contains more detailed information on the service’s features, commands
nd properties.

est-like API through the FastAPI Python framework. The service
anager handles detection of services on the network, commu-
ication with services, and storage and retrieval of persistent
nformation (e.g. service, experiment, and time-series database
onnection details) to and from the PostgreSQL database. The
ngular frontend is served by nginx [28], which is also used as
reverse proxy for the FastApi backend. Angular was chosen
ecause it is a proven technology to create modern single page
eb applications.
The scheduler is an independent subprocess that is responsible

or the execution of experiments and the initialization of the
ata handler and docker containers. The scheduler periodically
hecks for new experiment booking entries in the PostgreSQL
atabase and queues it in its in-memory scheduling list. With
he provided buttons to start and stop experiments, the user can
nteract with the scheduler directly over a WebSocket connection
o the backend, which itself communicates with the standalone
cheduling process over the in-memory database Redis. When
n experiment is ready to be scheduled, the scheduler loads the
orresponding data and script from the PostgreSQL database and
aunches a docker container and an associated data handling
rocess. The user-provided script contains a predefined entry
oint, which gets called with a dictionary of instantiated device
bjects and their name as parameter.
A docker container is used to execute a Python script. SiLA

ervices can be incorporated into this user script to control the
aboratory devices. Experiment associated script and service data
re loaded from the SQL-database and copied into the docker
ontainer as a tar archive file at the beginning of an experiment.
ocker allows the execution of python scripts in isolation; there-
ore, the scripts cannot interfere with each other or compromise
he host system. Containers can also be run independently of
he host operating system. This is crucial to guarantee server
ecurity and stability. The default python docker image (Python
.8.3-alpine) is used as it is an appropriate base image for most
se cases and is based on the lean Alpine Linux distribution. At
he same time, the data handler is started and periodically saves
ser-specified data from the services into an InfluxDB time-series
atabase. Polling intervals and the selection of data to be stored
re configured in the data-handler.
A detailed documentation of the software architecture, the in-

tallation process and several application examples are available
n the software documentation in the Git-repository or online on
eadthedocs.io (https://sila2-manager.readthedocs.io/en/latest/).

2.2. Software functionalities

The homepage for the SiLA 2 Manager software is shown
in Fig. 3 and can be accessed, upon login, by entering the IP
of the host computer followed by the default port in the URL-
address bar of any modern browser, e.g. 127.0.0.1:4200 for a
local host. There are six main tabs, each dedicated to one of the
core functionalities as well as an about page with instructions
and additional information. The core components are: Services,
Calendar, Experiments, Scripts, Data Handler, and Log. User man-
agement and user authentication is handled in the tabs Admin
Area and Login/Logout. The main page is the Services tab in
which all registered services and respective important informa-
tion is shown. New services are discovered and added in this
view and the expanded card of the services will open the more
detailed service tree view and the interactive command execution
environment.

Service manager and browser - Services
The core functionality of the proposed software is service

discovery, control, and management. All of these are available on
the main page. SiLA services can be added either by using the
discovery mode or by manual specification of the server address
and IP. Previously added SiLA services are listed as shown in
Fig. 3. When adding a new service, the service discovery initi-
ates a scan of the local network and returns the registered SiLA
servers within. SiLA services are registered on the unicast domain
name system (DNS) server and can be identified by their host-
name which contains ‘sila.local’ as terminal identifier. Services
are assigned the server name but can be renamed upon addi-
tion. Furthermore, the service is assigned an internal universally
unique identifier (UUID) and the service details are stored in the
PostreSQL database. A dynamic SiLA 2 python client is used to
establish a connection with the service and access information
regarding implemented features and functions. According to the
SiLA standard, the features of a SiLA service are defined in the
feature definition language (FDL), which is based on the extended
markup language XML. Several FDL-files describe the full func-
tionality of the service. During the initial connection to the SiLA 2
server, these files are queried by calling standard functions of
the SiLAService feature, a feature that is always implemented
by default. All further communication with the SiLA 2 server is
realized by the dynamic client which is part of the SiLA 2 python
library. Other implementations, such as C# and the C++, also offer
a generic (dynamic) client as part of the distribution.
5
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Fig. 4. The bottom layer of the service tree allows direct execution of command and property calls. If no parameter is supplied for command calls, the default
parameter will be used. in case of device services, accidental execution may have serious unwanted consequences; thus, execution must be confirmed.

The new device will appear in the service list and, if a connec-
tion is established successfully, will be shown as online. Clicking
on the service name or the information icon, the service detail
tree is expanded as shown in Fig. 4. The service tree shows
all implemented features of the service and the functions they
comprise. According to the SiLA specifications, a SiLA service
must implement features containing functionally related com-
mands and properties, which can be observable or unobservable.
Standard features are implemented by default, whereas custom
features are device specific. Each feature can be further expanded
to show command and property call information. While service
properties are static (e.g. a device serial number) or dynamic val-
ues (e.g. device time or status), commands require a parameter to
be supplied with the command call. Equipment that requires spe-
cial security considerations can be further secured by mandatory
incorporation of the SiLA Standard Features ‘‘AuthenticationFea-
ture’’ and ‘‘LockFeature’’ in the SiLA Server of that device, making
command execution only possible with valid access credentials
on unlocked devices.

Scripting environment - Scripts
The scripting environment enables the user to write automa-

tion scripts that incorporate the registered services as shown in
Fig. 5. In contrast to device specific vendor software, the script-
ing environment’s functionality is non-restrictive. Scripts can be
uploaded, created, and edited with the embedded python editor.
Each user only has access to their own scripts to avoid unwanted
access or script execution by unqualified users. The editor is
based on the open-source monaco code editor and supports type
hinting, auto-completion, and syntax control for python-based
scripts. Devices are automatically instantiated, and commands
and properties can be called using the SiLA python syntax of
the generic client. For ease of use, the respective usage syntax
is explicitly stated in the service detail view of each call. External
data-sources and non-standard python packages can be imported
but must be specified in the dockerfile.

Workflow creation - Experiments
Processes can be executed by scheduling experiments. An

experiment consists of an experiment name, start and end date,
a workflow script, and a selection of services. New experiments
can be added which will open the experiment definition window
(Fig. 6). In this window, the desired script to be executed, as
well as the required services are selected. The start and expected

reserved and blocked for the requested time slot. At the time of
execution, the specified script is run in a docker container and
the services are marked as ‘‘currently unavailable’’ in the service
list overview. Automated experiment workflows require access to
device services, a script that orchestrates device operation, and
a database to store relevant information. The experiments view
enables the user to setup such workflows and schedule their exe-
cution. In a commercial setting, each part of the workflow, i.e. the
SiLA 2 servers of the devices and the workflow script, would need
to be validated and access to these workflows be restricted by
using the inbuilt user management and authentication system.

The main view of the experiments tab shows a list of sched-
uled experiments, accompanied by the most important informa-
tion such as the start and end time of the experiment, booked
services, the user script and the current status of the experiment.
Scheduled experiments automatically create a booking entry in
the calendar view. It is possible to start experiments before their
scheduled starting time by pressing the play icon. A running
experiment can be aborted prematurely. An embedded terminal
displays the output of the docker container to observe the current
status of the script execution.

Bookings and calendar overview - Calendar
If a service is assigned to a specific experiment, a booking

is automatically created for the entire timeframe of the exper-
iment. A service can only be assigned to an experiment if it is
available throughout the experiments start and end time. The cal-
endar page visualizes these bookings and provides the user with
additional information on the booking, such as the respective
experiment, script and the user who created it. Furthermore, it is
possible to create bookings manually. In a future release, shared
or part-time service access will be available for bookings as well.
It is possible to delete bookings manually. Even automatically
created bookings can be deleted. However, this would circumvent
the in-built security mechanism and may lead to services being
accessed by multiple experimental scripts at the same time, as the
script does not communicate with the booking system anymore
once started. This may be desirable if the SiLA service implements
a virtual device or some other software solution, such as a DoE or
data analysis software.

Database connection - Data handler
Data collection is enabled by default, although the user should

specify which data is collected. This configuration is done on

end-time of the process are specified. The used services will be the data handler page shown in Fig. 7. InfluxDB databases can

6



Lukas Bromig, David Leiter, Alexandru-Virgil Mardale et al. SoftwareX 17 (2022) 100991

i
o
i
e

u
l
n
c
i
i
b

Fig. 5. An interactive code editor is used to view, create and edit workflow scripts. Scripts can be uploaded and saved. The device services are automatically
nstantiated and passed to the run() function as attribute. They are accessed either by key index in the order of assignment (see experiment overview for order)
r by key name, which is identical to the name the device services are listed as in the service list overview. In this example code snippet, a peristaltic pump is
mported. A get and a set command is executed to demonstrate the interface syntax. The command syntax is shown in the detailed service list view (See Fig. 4) for
ach command to further simplify the process.

Fig. 6. An example experiment is defined by selecting a workflow script, the used services, and by specifying the start time of execution and the anticipated end
time. The logging output of the script is forwarded to the frontend and can be viewed in a terminal when the experiment is expanded.

be registered and linked to services. InfluxDB is a time-series
database that is well suited for experimental time-series data [29,
30]. To use this feature, an InfluxDB server must be running
within the network. Providing the connection details to the SiLA 2
Manager is sufficient. A username and password can be added
optionally for additional security. A registered database can be
linked to a service to setup automated data transfer by clicking
the link symbol. Data transfer is started when the booking of a
service commences, i.e. the experiment the service is used in, is
started.

The data handler will repeatedly execute the SiLA calls in the
ser-specified polling intervals and store the responses in the
inked database with experiment name, service name, and user-
ame as tags. Several options are available to configure the data
alls, the data type, and the polling interval. The SiLA 2 Manager
s service agnostic and the functional response of individual calls
s unknown. Therefore, the user must specify the calls that should
e executed periodically and must deactivate unwanted calls,

such as certain set-commands. If set-commands are to be called,
a parameter can be supplied.

Most types of data can be classified as either meta-data or
measurement data. Typically, meta-data does not need to be
queried frequently. In most cases, requesting meta data (device
ID, calibration data, etc.) hourly or just once at the beginning
of an experiment is sufficient. Measurement data (Temperature,
pressure, etc.) on the contrary is usually queried on a more
frequent basis. The data handler distinguishes between the two
data types. Since there is no way to distinguish the type of data
queried by a call automatically in a reliable fashion, the user can
specify the type for each command using the meta-checkbox.
Depending on the selection, a default value is implemented (1 h
for meta-data, 30 s for measurement data). Different users have
different needs regarding polling intervals. Therefore, the defaults
can be overwritten to transfer data according to a custom polling
interval.
7
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Fig. 7. The service tree for the data handler configuration. Data transfer can be de-/activated for each property and command. The user assigns a meta-data or
measurement data flag which determines the polling interval used. If no custom polling interval is supplied, the default polling intervals are used. Some command
calls, like most set commands, may require additional parameters. The example above shows a configured off-gas analysis device that is linked to an InfluxDB. Sensor
results related to gas concentrations, pressure, and humidity are polled in the default non-meta data interval of 30 s.

The data handler configuration is stored in the PostgreSQL
atabase. The lower level of the data handler service tree is shown
n Fig. 7. A customized configuration is crucial to disable the un-
esired execution of set commands or the storage of unnecessary
ata.
The data handler simplifies data-acquisition and encourages

ollection of all data and meta-data for improved data integrity.
he separation of the data acquisition from the user script used
n the experiment has several advantages:

1. The query calls are not part of the user-script, improving
readability and making the script shorter.

2. Reduces the amount of code that needs to be written by
the operator.

3. Data-acquisition is out-sourced to a separate process. This
way data-acquisition is guaranteed to continue in case an
experiment crashes.

4. The data can be easily accessed from within the user-script
by a respective python client library. An example script is
provided in the ‘‘Scripts’’-section of the application.

.3. Example and application use cases

xample use cases
Use cases can stretch from very simple routine tasks to highly

omplex, event-driven process control workflows. A simple use
ase is scheduled device calibration (e.g. a digital scales) or self-
aintenance/cleaning tasks, or the collection of basic sensory

aboratory data such as room temperature and pressure. Setting
p the latter would be the simplest use case. Add the sensor
evice to the SiLA 2 Manager, customize the data you want to
ollect, link the device to a database, schedule an experiment with
n empty script and start the experiment. The data-handler will
ow collect the data and meta-data of your device and store it in
our database.

Application use case
The impact of intermittent substrate feeding on microbial

fermentation processes is a key factor for successful scale-up
in bioprocess development and remains an active area of re-
search [31,32]. Frequently changing nutrient availability leads to
rapidly changing metabolic states and may result in population
heterogeneity [33]. The effect of intermittent substrate feeding
on microbial process performance can be studied in laboratory-
scale parallel reactor systems to mimic the quasi-intermittent
feeding in large scale reactors due to nutrient gradients caused
by non-ideal mixing.

Using a parallelized and miniaturized bioreactor system with
48 single-use stirred-tank reactors on a mL-scale (BioREACTOR48,
2mag AG, Munich, Germany) automated by a LHS (Hamilton
STARLet, Hamilton Bonaduz AG, Bonaduz, Switzerland) enables
a fast analysis of the process parameter space and thus the
quantification of the effect that the substrate feeding strategy
has on product formation and population heterogeneity. In this
application example, a scale up experiment is performed for a se-
lection of substrate feeding intervals, to ensure that the observed
influence on microbial protein expression is the effect of the
varying feeding interval length and that this effect is independent
of reactor size. To achieve this, the substrate feeding strategy
must be emulated as closely as possible on the L-scale. Substrate
addition on the mL-scale is realized by pulse addition with the
pipetting robot. A dynamic scheduling algorithm coordinates this
feeding event with other tasks, such as sampling, at-line mea-
surements or pH-control, resulting in small variations of the feed
interval duration. The challenge at hand is the direct translation
of these irregular events into pump action on the L-scale.

The experimental setup consists of a parallel stirred tank
bioreactor system with four bioreactors (DASGIP Parallel Bioreac-
tor System, Eppendorf, Hamburg, Germany) that is connected to a
proprietary control computer and an off-gas analysis device. The
vendor software DASware

®
control (DASware

®
control, Eppen-

dorf, Hamburg, Germany), with its integrated OPC-UA interface,

serves as access point for the SiLA server of the DASGIP bioreactor

8
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ystem. Peristaltic pumps used for substrate addition, pH-control,
nd addition of antifoam are periphery devices of the reactor
ystem. A gateway module, based on a BeagleBone Green micro-
omputer and provided by Porr et al. (2020) [20], is connected
o the off-gas analysis device by RS-232. The corresponding SiLA
erver is hosted by the microcomputer and uses the serial inter-
ace for device control. Both SiLA servers are based on the sila2lib
elease 0.2.5 of the open-source SiLA python repository and the
ode was generated using the python sila2codegenerator version
.2.0.
The vendor software of the L-scale reactor system offers only

imited scripting capability. Scheduling of non-trivial substrate
ddition events, especially if based on external files, is not possi-
le. Furthermore, the used off-gas analytics are from a different
endor (BlueVary, BlueSens, Herten, Germany). Although the off-
as concentrations are not used actively for process control in
his particular use case, it is desirable to store and monitor all
enerated data in and from a single source, i.e. the laboratory
atabase (InfluxDB, Influxdata, San Francisco, USA). In this setup
he SiLA Manager is used for data and meta-data acquisition of
oth devices as well as the advanced orchestration of the feed
ump events, whereas the simple tasks of pH-, DO-, and temper-
ture control are carried out by DASware

®
control. Establishing

ull control with the SiLA 2 Manager is possible but was not
ealized to keep the application example as simple as possible.

The resulting workflow is written in form of a python script
nd is uploaded to the SiLA 2 Manager. DASware

®
control is

tarted and device connection established and verified. At the
cheduled experiment start time, the docker container is created
nd the user script is executed automatically. Substrate additions
erformed by the liquid handling station during the 48 preceding
xperiments on a mL-scale are stored in the same database that
s used for this experiment. Thus, the timestamps and the added
ubstrate volumes of the discrete feeding events can easily be
xtracted from the database using the influxdb-client within the
ser script. For reasons of simplicity and reproducibility, a differ-
nt approach was chosen to avail the required data within the
ocker environment. Experimental data regarding the substrate
eeding events and volumes during the experiment in the BioRE-
CTOR48 were extracted from the database in a csv-file format
nd manually moved to the data folder of the docker environment
irectory. The csv-file is provided as part of the use-case example
n the Git repository. Files in this directory are automatically
oved into the docker container. This feature enables the user
ccess to any kind of file from within the scripting environment.
Any logic necessary to control substrate addition events on the

-scale is based on the provided data and is defined in the python
ser script a priori. Data acquisition for both devices, the reactor
ystem and the off-gas analysis device, is started automatically
ccording to the selected criteria in the data handler settings.
ence, no additional commands related to data acquisition need
o be specified in the workflow script. Workflow progress is mon-
tored through the embedded terminal on the experiments page
nd measurement data can be visualized through the browser-
ased database interface chronograf. All process related data is
tored with a respective experiment and user tag to enable quick
nd fast data selection. Further workflow script examples dealing
ith device and database integration as well as simplified version
f the use case described above can be found in the example
older of the project Git repository.

Fig. 8 shows the resulting dissolved oxygen concentration in
he fermentation with E. coli during a short window of the cultiva-
ion and compares the immediate catabolic response to a glucose
eeding event on the mL- and the L-scale. It can be seen that
he irregular glucose feeding events could be synchronized with
ach other which enables a direct comparison of the metabolic

Fig. 8. The effect of intermittent glucose feed events on the dissolved oxygen
level is shown for cultivations of E. coli in the mL- and L-scale. Feed events
( ) are unevenly distributed on the mL-scale ( ) due to the dynamic nature
of the task scheduling algorithm of the pipetting robot. The feeding pattern is
mimicked as closely as possible with a peristaltic pump on the L-scale (♦) to
investigate scale-up limitations/criteria. The resulting DO off-set is caused by
different oxygen transfer rates. Stirrer speeds of the mL- and L-scale were set
at 3000 rpm and 1100 rpm respectively.

response, i.e. the dissolved oxygen concentration. The remaining
offset (minimum DO and maximum DO) can be attributed to
different oxygen transfer rates of the stirred-tank reactors at
mL- and L-scale and the different DO sensors. Dry cell mass
concentrations were similar on both scales within the estimation
error (14.3 ± 0.4 gL−1 on the mL- and 15.8 ± 0.9 gL−1 on the
L-scale at 24.3 h cultivation time).

The presented use case only involves two devices. A more so-
phisticated example, including more devices, event-based actions,
and active use of the influx data for process control would have
been beyond the scope of this article. However, the presented ex-
ample clearly demonstrates the advantages of simple integration
and automated, centralized data acquisition.

3. Impact

The proposed software enables automation and data acquisi-
tion of common tasks and complex scientific experiments. Based
on the SiLA 2 standard, it reduces integration effort of labora-
tory devices. Its intuitive GUI design and expandable software
framework reduces the necessary experience to automate ex-
perimental setups in the long run. Device integration is decou-
pled from developing automation workflows. Furthermore, it is
a beneficial development tool for testing of self-written SiLA
servers. This software is published under the MIT license to allow
for continuous application in science and industry. Addressing a
common laboratory challenge results in a broad application spec-
trum beyond disciplines in biotechnology, the life and chemical
sciences.

4. Conclusions and future development

The proposed software is mainly, but not exclusively, aimed at
laboratories of the life sciences, biochemical sciences and chemi-
cal sciences working in research and development, that are plan-
ning to digitize their laboratory infrastructure and create auto-
mated, SiLA-based, workflows including devices from multiple
vendors. Programming-agnostic users can use the basic SiLA-
browser functionality, with its service discovery and direct con-
trol capability, while the workflow creation requires basic script-
ing experience in the python programming language. The pow-
erful scripting environment allows the rapid integration of lab-
oratory devices and databases into automated workflows and
9
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mpowers the user with the full spectrum of python packages.
he data handler component enables the simple setup of database
onnections and encourages enhanced acquisition of measure-
ent and meta-data according to the FAIR data principles: Find-
bility, accessibility, interoperability, and reusability [34].
User management, device and script-specific access rights are

ritical when dealing with potentially dangerous or complicated
quipment to avoid erroneous or malicious use. The proposed
oftware incorporates these basic features that will be extended
n future efforts to improve the overall operational safety of this
oftware. Whereas device specific safety features, such as emer-
ency shutdown procedures or preconditions for device start-up,
hould be handled by the respective SiLA Server of that device,
he orchestration of multiple devices in a complex workflow
equires intricate knowledge of the used resources.

The proposed software offers an implementation framework
a model – that bridges the gap between standardized device

nterfaces, such as SiLA 2, and higher-level control software.
y clearly separating the challenges of device integration from
ustomized workflow automation solutions, a holistic approach is
hosen. By providing integrated devices as a network service, this
oftware can be broadly applied and reduces development times.
It is a helpful tool for developers and researchers alike and

an also be used as basis for a more comprehensive labora-
ory control software. Future work on this project will include
n expansion of the experiment planning component, to en-
ble advanced interaction capabilities with the running docker
ontainer, and event-based chaining of several individual ex-
eriments. A multi-level structure of main and sub-routines is
lanned for the scripting environment to increase code reusabil-
ty. It is planned to include a scheduling algorithm to allow the
haring of resources during the runtime of multiple, simultane-
usly active workflows. SiLA 2 implementations are being actively
eveloped and are quickly progressing towards meeting the full
tandard specifications, hence this software will be maintained to
nsure long-term compatibility.
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