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Abstract: Plasma cell-free DNA (cfDNA) originates from various tissues and cell types and can
enable minimally invasive diagnosis, treatment and monitoring of cancer and other diseases. Proper
extraction of cfDNA is critical to obtain optimal yields and purity. The goal of this study was to
compare the performance of six commercial cfDNA kits to extract pure, high-quality cfDNA from
human plasma samples and evaluate the quantity and size profiles of cfDNA extracts—among them,
two spin-column based, three magnetic bead-based and two automatic magnetic bead-based methods.
Significant differences were observed in the yield of DNA among the different extraction kits (up
to 4.3 times), as measured by the Qubit Fluorometer and Bioanalyzer. All kits isolated mostly small
fragments corresponding to mono-nucleosomal sizes. The highest yield and reproducibility were
obtained by the manual QIAamp Circulating Nucleic Acid Kit and automated MagNA Pure Total
NA Isolation Kit. The results highlight the importance of standardizing preanalytical conditions
depending on the requirements of the downstream applications.
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1. Introduction

Cell-free DNA (cfDNA) is a minimally invasive and real-time biomarker for the early
detection, identification and monitoring of various diseases. Liquid biopsy has been
investigated as a minimally invasive technique that can avoid the inherent shortcomings
of tissue biopsy, such as sampling bias, tissue heterogeneity and difficulty in repetitive
sample extraction [1,2]. However, due to the great variability and relatively low abundance
(average 10–30 ng/mL, range 1.8–44 ng/mL) [3,4] of cfDNA in circulation and the high
degree of fragmentation, it remains a highly challenging analyte.

Preanalytical factors can significantly affect the quality and quantity of cfDNA and
have to be investigated thoroughly [5]. Such factors include the choice of matrix (plasma
or serum), the sample collection tubes and processing (centrifugation regime), storage,
thawing conditions (temperature and freeze–thaw cycles), DNA isolation method, storage
of isolated DNA, method of quantification and the intended downstream analysis [6–8].
General requirements for efficient isolation techniques include fast, robust, simple and
automatable methods that extract cfDNA with satisfactory purity and yield. This is crucial
to ensure reliable results in downstream applications such as NGS or PCR. However, the
method of choice also depends on the number and volume of samples.

There is a variety of commercially available DNA isolation methods based on different
binding chemistries. Each of these chemistries can influence the efficiency and purity
of the isolation, and each has a characteristic binding capacity. Ethanol precipitation,
anion-exchange resin (coupled with ethanol precipitation), silica gel membrane binding
and magnetic silica particle binding technologies can be used. Out of these, magnetic
particle-based methods are cheaper, faster and easier to upscale and automate, while
membrane binding methods can provide higher yields. The method of choice depends
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on the number of samples and their volume, required output, purity and downstream
applications. Most commercial kits favor the isolation of DNA fragments from 50 to 800 bp,
which encompasses the generally reported size of cfDNA (130–170 bp) [9]. However, it is
increasingly recognized that the view of mono-nucleosomes as the most important fraction
of cfDNA is biased. Recently, smaller fragment sizes have been shown to be of clinical
interest [10–12], and there is a growing body of evidence that a significant portion of longer
cfDNA fragments may not represent contaminants form lysed peripheral blood cells, such
as extrachromosomal circular DNA [13,14]. Long cfDNA fragments (larger than 1 kb) from
hepatocellular carcinoma patients have recently been shown to contain lower methylation
levels than those from non-cancer patients and carry characteristic methylation patterns,
opening new possibilities for cancer liquid biopsy [15].

The goal of this study was to compare six commercial cfDNA kits to extract pure, high-
quality cfDNA from human plasma samples and evaluate the quantity and size profiles of
the obtained extracts.

2. Materials and Methods
2.1. Plasma Samples

First, 11 mL plasma samples were collected in Sarstedt S-Monovettes 9 mL K3E (1,6 mg
K3 EDTA/mL blood; Sarstedt Diagnostics GmbH; Nürmbrecht; Germany) from ten healthy
individuals. These samples were collected as part of the quality control for biobanked
blood samples. Blood samples were taken from patients of the Department of Cardiology
during routine venipuncture or from healthy individuals after informed consent for blood
collection for the Cardiovascular Biobank of the German Heart Centre Munich was obtained.
Blood collection for biobanking was approved by the Ethics Commission of the Technical
University Munich (Nr. 5943/13; 16.10.2013).

2.2. Sample Processing

After blood drawing, samples were kept at room temperature and were processed
within 60 min. First, they were centrifuged at 1600× g for 10 min at 20 ◦C. Then, the
upper layer was transferred into a 15 mL Falcon tube (BD, New Jersey, United States) and
centrifuged again at 6000× g for 10 min at 20 ◦C. The plasma was aliquoted into 1.5 mL
Eppendorf Safe-Lock tubes (Eppendorf, Hamburg, Germany) and stored at −80 ◦C within
30 min of the second centrifugation. Before further processing, all samples were thawed at
room temperature. After isolation, all DNA samples were stored in 1.5 mL DNA-LoBind
tubes (Eppendorf) at −20 ◦C.

2.3. cfDNA Isolation

Five manual magnetic bead or spin column methods and one automated method were
used in a direct comparison. The isolation kits were: QIAamp Circulating Nucleic Acid Kit
(QiaM, 55114 Qiagen GmbH, Hilden, Germany), NucleoSpin Plasma XS (Macherey-Nagel
740900.50, high-sensitivity protocol—MNaS, Macherey-Nagel GmbH, Düren, Germany),
QIAmp MinElute ccfDNA Mini Kit (QiaS, 55204, Qiagen GmbH, Hilden, Germany), cf-
Pure Cell-Free DNA Extraction Kit (BChM, K5011610-BC, BioChain Inc., Newark, CA,
USA), MagMAX Cell-Free DNA Isolation Kit (TFiM, A29319, Thermo Fisher Scientific,
Waltham, MA, USA) and the automated method MagNA Pure 24 Total NA Isolation Kit
(RocA, 07658036001, Roche Diagnostics GmbH, Penzberg, Germany), using the cfNA ss
2000 protocol on the MagNA Pure 24 System (Roche Diagnostics). All kits and their code
names for this study are summarized in Table 1. Isolations were performed in duplicate
following the instructions provided in the manual of each kit. Moreover, 1 mL of plasma
was used as input, with the exception of the MNaS kit, wherein 240 µL was used. For RocA,
1 mL of PBS was added to 1 mL of plasma to obtain the required 2 mL. The elution volume
for QiaM and QiaS was 50 µL, for BChM and TFiM 30 µL, for MNaS 12 µL and for RocA
100 µL.
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Table 1. CfDNA extraction kits compared in this study.

Product Code Type Can Be
Automated

Isolation
Volume (mL)

Elution
Volume (µL)

QIAamp Circulating Nucleic Acid
Kit (Qiagen) QiaS spin column

(vacuum manifold) no 1 50

NucleoSpin Plasma XS (Macherey-Nagel) MNaS spin column no <0.24 5–30
QIAmp MinElute ccfDNA Mini

Kit (Qiagen) QiaM magnetic beads yes 1–4 20–80

cfPure Cell-Free DNA Extraction
Kit (BioChain) BChM magnetic beads yes 1–10 15–50

MagMAX Cell-Free DNA Isolation Kit
(Thermo Fisher Scientific) TFiM magnetic beads yes 0.5–10 15–50

MagNA Pure 24 Total NA Isolation
Kit (Roche) RocA magnetic beads

(automated) - 2 50/100

2.4. cfDNA Quantification and DNA Sizing

The concentration of the isolated cfDNA was analyzed in duplicate by fluorometric
quantification using the Qubit Fluorometer 3.0 (Thermo Fisher, Waltham, MA, USA) and
the dsDNA HS Assay (quantification range: 10 pg/µL–100 ng/µL; Thermo Fisher). For
four of the donors, we determined the representative quantity and fragment size profiles
of cfDNA using a 2100 Bioanalyzer (Agilent Inc., Santa Clara, CA, USA) with the Agilent
High-Sensitivity DNA Kit.

2.5. Statistics

Statistical analysis of the data was performed using the GraphPad Prism software
version 8 and Excel. Differences between group means were calculated using one-way
analysis of variance (ANOVA), followed by pairwise comparison using a post-hoc Tukey
test. Differences were considered statistically significant if the p values were smaller than
5% (p < 0.05).

3. Results and Discussion

CfDNA is a source of clinical biomarkers in blood with applications ranging from
cancer detection and monitoring to prenatal diagnostics. However, with concentrations
ranging from a few ng/mL to several thousand ng/mL [3,16] and various fragment sizes,
cfDNA is challenging to analyze. In this study, we compared six different extraction kits,
including two spin column-based methods and four magnetic bead-based methods, to one
that is automated. We isolated cfDNA from 1 mL plasma for each healthy volunteer (for
Nucleospin Plasma XS (MNaS), only 240 µL plasma was used) and the yield and fragment
sizes were assessed with the Qubit Fluorometer and Bioanalyzer (BA), respectively. Based
on the Qubit and BA measurements, all methods were able to recover cfDNA from all
plasma samples (Figure 1).

Overall, QiaS showed significantly greater recovery in comparison to MNaS (p = 0.0001),
QiaM (p < 0.0001) or TFiM (p = 0.0004) when assessed by Qubit. No statistically significant
difference was observed between QiaS and BChM or RocA. In addition, MNaS produced
significantly lower yields compared to QiaM (p = 0.0386), TFiM (p = 0.0076) or QiaS. No
other statistically significant difference was observed (Figure 2). Although spin column-
based methods are typically more costly and time-consuming than magnetic approaches,
they typically produce higher yields. In our study, QiaS resulted in the highest recovery,
which is consistent with a number of comparative studies [5,17–22].
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Figure 1. Comparison of cell-free DNA (cfDNA) yields delivered by different DNA extraction kits. 
CfDNA was isolated from the plasma of 10 healthy donors using different extraction kits and then 
quantified by (A) the Qubit HS DNA kit and (B) the Agilent HS DNA Kit on the Bioanalyzer. Quan-
titative measurements of cfDNA are expressed as the total mass of cfDNA (ng) present in 1 mL of 
plasma. 
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proaches, they typically produce higher yields. In our study, QiaS resulted in the highest 
recovery, which is consistent with a number of comparative studies [5,17–22]. 

The method of quantification can also significantly affect the measured quantity of 
DNA. For example, Maas et al. 2021 compared the Qubit, PicoGreen assay, BA and TapeS-
tation and found that the Qubit, BA and TapeStation provide excellent estimations of the 
sample concentrations, especially within the ranges specified by the manufacturer [23]. A 
few years prior, though, Solassol et al. demonstrated that the Qubit was superior to the 
TapeStation, especially for estimating higher concentrations [24]. In our analysis, cfDNA 
concentrations were lower when quantified by the BA as compared with the Qubit, and 
there were only minor significant differences between the various extraction methods 
when concentrations were assessed by the BA. MNaS resulted in significantly lower con-
centrations than QiaM (p = 0.0052) and TFiM (p = 0.03496). Additionally, BChM resulted 
in significantly lower concentrations than QiaM (p = 0.0335) and TFiM (p = 0.0377). This 
may be related to the fact that TFiM consistently isolated longer DNA fragments (>1 kb), 
which are excluded from the cfDNA estimation in the BA. A similar finding was reported 
by Cédile et al. in 2021, when they observed an underestimation of cfDNA plasma con-
centrations by BA (2.86–14.12 ng/mL) as compared with Qubit measurements (7.5–23.31 
ng/mL) [25]. 

Figure 1. Comparison of cell-free DNA (cfDNA) yields delivered by different DNA extraction
kits. CfDNA was isolated from the plasma of 10 healthy donors using different extraction kits and
then quantified by (A) the Qubit HS DNA kit and (B) the Agilent HS DNA Kit on the Bioanalyzer.
Quantitative measurements of cfDNA are expressed as the total mass of cfDNA (ng) present in 1 mL
of plasma.
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Figure 2. A heat map representation of the post-hoc multiple comparison of cfDNA recovery isolated
using different extraction kits and measured with the Qubit HS DNA assay. Significant differences
(p < 0.05) are shown in green to orange.

The method of quantification can also significantly affect the measured quantity
of DNA. For example, Maas et al. 2021 compared the Qubit, PicoGreen assay, BA and
TapeStation and found that the Qubit, BA and TapeStation provide excellent estimations of
the sample concentrations, especially within the ranges specified by the manufacturer [23].
A few years prior, though, Solassol et al. demonstrated that the Qubit was superior to
the TapeStation, especially for estimating higher concentrations [24]. In our analysis,
cfDNA concentrations were lower when quantified by the BA as compared with the
Qubit, and there were only minor significant differences between the various extraction
methods when concentrations were assessed by the BA. MNaS resulted in significantly
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lower concentrations than QiaM (p = 0.0052) and TFiM (p = 0.03496). Additionally, BChM
resulted in significantly lower concentrations than QiaM (p = 0.0335) and TFiM (p = 0.0377).
This may be related to the fact that TFiM consistently isolated longer DNA fragments
(>1 kb), which are excluded from the cfDNA estimation in the BA. A similar finding was
reported by Cédile et al. in 2021, when they observed an underestimation of cfDNA
plasma concentrations by BA (2.86–14.12 ng/mL) as compared with Qubit measurements
(7.5–23.31 ng/mL) [25].

To estimate the reproducibility of each extraction method, the coefficient of variance
for each sample was calculated and each CV% value was used to calculate the median CV%
of each method, thereby avoiding a direct influence of sample variations. Median CV% and
ranges are shown in Table 2. The smallest variation was found for QiaS (11.8%), followed
by RocA (16.0%), which agrees with the observations of van Ginkel et al., 2017 [26]. The two
methods also displayed comparable yields of cfDNA. BChM was found to have the lowest
reproducibility, with a CV% of 34.6%, which is reported to show excellent reproducibility
in the cell culture context [22]. Here, it is noteworthy that, in the context of plasma, there
is often higher variability between replicate isolations, and although CV% values are not
commonly reported (e.g., when each sample is isolated only once), we often encounter
large standard deviations, especially for low amounts of cfDNA [19,23]. Variability seems
to be lower for spike-in controls [17].

Table 2. Reproducibility of cfDNA recovery of different kits.

Kit Code Median Conc. (ng/mL) CV% Range Median CV%

QIAamp Circulating Nucleic Acid Kit QiaS 13.0 8.3–21.9 11.8
NucleoSpin Plasma XS MNaS 3.0 3.1–64.8 16.2

QIAmp MinElute ccfDNA Mini Kit QiaM 6.5 5.3–29.6 20.0
cfPure Cell-Free DNA Extraction Kit BChM 10.2 3.5–52.4 34.6

MagMAX Cell-Free DNA Isolation Kit TFiM 9.0 2.9–75.2 21.5
MagNA Pure 24 Total NA Isolation Kit RocA 10.4 3.2–44.4 16.0

To evaluate the size distribution of the isolated cfDNA fragments extracted using the
different kits, four of the ten isolated samples (samples from 4 of the 10 donors) were run
on the Bioanalyzer using the Agilent High-Sensitivity DNA Kit (Figure 3).

The on-board software of the BA was then used to calculate the relative proportions
of different cfDNA size populations recovered by each method (Figure 4). Taken together,
these size analyses showed that all kits recovered a high proportion of mono-nucleosomes,
while all kits also recovered a small percentage of larger cfDNA fragments, where the
BChM kit delivered the highest relative proportion of longer cfDNA fragments. The
relative proportion of mono-nucleosomes in the eluates appears to be lower than what is
commonly reported in plasma. This is most likely due to the low amounts of DNA extracted,
which leads to an overestimation of the longer fragments by the BA as the background noise
becomes higher. Thereby, all kits resulted in similar percentages of mono-nucleosomes,
without significant differences, as measured with the dsDNA High-Sensitivity Kit on the
Bioanalyzer. The median percentage for MNaS was 21%; 22% for BChM and RocA, 26.5%
for QiaS, 34% for TFiM and 34.5% for QiaM. The same effect was seen in Maas et al. 2022,
when they assessed the sensitivity and reproducibility of the BA and other methods in low
concentration ranges [23]. Therefore, in our case, the Qubit is the preferred method for
quantification, while the BA still provides valuable information about shorter fragment
sizes, such as those of mono- and di-nucleosomes.
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2100 Bioanalyzer, were analyzed to determine the relative proportions of different size populations
recovered by each kit. Each bar represents that average of four donor samples. Error bars indicate
standard deviation.



Diagnostics 2022, 12, 2550 7 of 8

4. Conclusions

Based on our results, we selected QiaS as the kit most suited to our needs. This
kit produces cfDNA at a desirable concentration for downstream applications such as
use with PCR and DNA sequencing. RocA delivers comparable cfDNA yields and it
has some benefits over manual methods (better standardization), and it may be more
suitable for high-throughput laboratories. BChM can result in higher yields of longer DNA
fragments. The choice of kit will depend on the individual needs of the user. In the clinical
setting, it is important to obtain the highest DNA quantity from as little sample volume
as possible, in order to enable multiple tests even with precious and spare samples. In a
future comparison, it would be interesting to see how different isolation methods show
bias towards the capturing of cfDNA fragments that are both shorter and longer than
mono-nucleosomes in the context of human plasma.

Author Contributions: Conceptualization, S.H. and Z.M.; methodology, Z.M.; validation, E.P., Z.M.
and A.J.B.; formal analysis, V.U. and E.P.; investigation, Z.M., E.P. and V.U.; resources, S.H.; writing—
original draft preparation, E.P.; writing—review and editing, A.J.B. and S.H.; visualization, A.J.B.
and S.H.; supervision, Z.M.; project administration, S.H. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki. Patients had given their informed consent for blood collection to the Cardiovascular
Biobank of the German Heart Centre Munich (Nr. 5943/13; 16.10.2013).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study. The blood collection for biobanking was approved by the Ethics Commission of the Technical
University Munich (Nr. 5943/13; 16.10.2013).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.
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