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Abstract: All cell and tissue types constantly release DNA fragments into human body fluids by
various mechanisms including programmed cell death, accidental cell degradation and active ex-
trusion. Particularly, cell-free DNA (cfDNA) in plasma or serum has been utilized for minimally
invasive molecular diagnostics. Disease onset or pathological conditions that lead to increased cell
death alter the contribution of different tissues to the total pool of cfDNA. Because cfDNA molecules
retain cell-type specific epigenetic features, it is possible to infer tissue-of-origin from epigenetic
characteristics. Recent research efforts demonstrated that analysis of, e.g., methylation patterns, nu-
cleosome occupancy, and fragmentomics determined the cell- or tissue-of-origin of individual cfDNA
molecules. This novel tissue-of origin-analysis enables to estimate the contributions of different
tissues to the total cfDNA pool in body fluids and find tissues with increased cell death (pathologic
condition), expanding the portfolio of liquid biopsies towards a wide range of pathologies and early
diagnosis. In this review, we summarize the currently available tissue-of-origin approaches and point
out the next steps towards clinical implementation.
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1. Introduction

Liquid biopsy is a minimally invasive diagnostic approach in which a variety of
biomarkers present in body fluids (mostly plasma and serum), including nucleic acids,
are analyzed in order to detect diseases, e.g., cancer. The analysis of circulating nucleic
acids already complements ‘classical’ solid biopsy (i.e., tissue biopsy) by providing a more
comprehensive picture of the progression and heterogeneity of cancer, the response of tu-
mors to therapy, the presence of minimal residual disease, and has recently been suggested
as promising screening tool for early cancer diagnosis. Liquid biopsy has significantly
advanced prenatal testing for genetic disorders and monitoring of graft rejection. Due
to its minimally invasiveness, it offers the possibility to obtain serial snapshots during
disease progression and is well suited for monitoring of individual therapy response. So
far, non-invasive prenatal testing (NIPT) [1], detection of circulating tumor DNA (ctDNA)
in the plasma of cancer patients [2], and detection of donor-derived DNA in the plasma
of transplantation recipients [3] have been clinically implemented. These analyses are
all based on genetic differences (fetal and maternal DNA; donor and recipient DNA in
graft patients) or mutations (cancer), limiting the approach to diseases involving genetic
aberrations. Additionally, detection of the low number of mutated cfDNA molecules poses
a great analytical challenge and lies beyond the current limit of detection at early cancer
stages. Thus, screening tests for early detection of many types of cancer and various
pathologies are still lacking and are urgently needed. One way to fill this diagnostic gap
might be to utilize more general features carried by all cfDNA molecules, such as epigenetic
characteristics. This might broaden their diagnostic applications and expand them to early
diagnosis of a wide range of pathologies.
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DNA fragments from virtually all cell and tissue types are constantly released into
various human body fluids, e.g., plasma, serum, cerebrospinal fluid, and urine [4–6]. Exoge-
nous DNA (e.g., bacterial or viral DNA) can also be found in the different body fluids [7–11]
in addition to host DNA (genomic and mitochondrial DNA). The so-called cell-free DNA
(cfDNA) in plasma is very short-lived (half-time between 15 min and 2.5 h [12,13]) and
is released into the circulation by different cellular pathways including different sorts
of cell death, regular cellular turnover and upon pathologies [11,14–16]. Thereby, liquid
biopsy provides a current snapshot of what cell or tissue types contribute to the plasma
DNA pool at the time of blood draw. In diseased tissues, more cell death has been ob-
served [17,18], and consequently, more cfDNA molecules from that particular cell type(s)
are released into the blood compared with healthy individuals. Enzymatic digestion is
usually involved in DNA release and, e.g., in plasma, cfDNA predominantly exists as short
double-stranded DNA fragments in the size between 100 and 200 base pairs (bp). However,
considerably longer fragments (almost 24,000 bp) have been detected recently [19]. It is
widely accepted that cfDNA molecules retain the cell-type specific epigenetic features and
it has been shown that methylation or fragmentation patterns of cfDNA molecules are
cell-type and tissue-specific [20–23], as genes are differentially regulated in distinct cell
types and different release pathways are employed by distinct cell types. Furthermore,
fragment length and fragment end motifs of cfDNA molecules are non-random and de-
pend on the cellular release pathway, the involved enzymes, and regulatory state of the
releasing tissue [15,24–26]. Therefore, methylation or fragmentation patterns of cfDNA
molecules represent epigenetic features that are well-applicable to infer tissue-of-origin
of individual cfDNA molecules and thereby determine the contribution of individual cell
types or tissues to the total plasma cfDNA pool. During the last years, research efforts
have focused on identifying cell type-specific methylation or fragmentation patterns that
can be employed to trace the origin of individual cfDNA molecules (Figure 1). Various
groups developed methods to assign cfDNA molecules to their cell- or tissue-of-origin
based on epigenetic features such as DNA methylation patterns, nucleosome footprinting,
transcription factor binding sites, fragmentation patterns, and histone modifications among
others [20,21,23,27–29]. Establishing methylation or fragmentation pattern atlases of dis-
tinct cell types is a prerequisite for developing sensitive epigenetic-based tissue-of-origin
analyses. Deciphering these patterns and attributing them to the corresponding cell- or
tissue-of-origin opens up novel ways for non-invasive early diagnostic tests. The focus on
more general cfDNA characteristics holds promise to develop multiple powerful diagnostic
tools in the future. In this review, we will discuss the currently available toolbox for liquid
biopsies and the early detection of diseases based on the tissue-of-origin analysis.
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Figure 1. Tissue-of-origin analysis of cell-free DNA. (a) Different organs and various cell types
release cell-free DNA (cfDNA) into blood plasma. (b) This clinical biospecimen represents a highly
heterogeneous mixture of cfDNA molecules, often complicating the analytical differentiation between
different cfDNA subtypes. (c) Multiple different epigenetic characteristics can be employed for
tissue-of-origin analysis such as unique methylation patterns, fragmentation profiles and fragment
end-points, transcription-factor binding sites occupancy, nucleosome positioning, as well as post-
translational histone modifications. (d) Analysis of these features poses an analytical challenge, but
various approaches developed recently enable determination of tissue-of-origin of individual cfDNA
molecules, facilitating localization of tumors or tissue damage in specific regions such as the heart
or liver.

2. Epigenetic-Based Biomarkers in Liquid Biopsy

Gene transcription is a tightly regulated process that involves multiple epigenetic
regulatory mechanisms, such as DNA methylation, DNA compaction in accessible and
non-accessible chromatin regions through binding of histones, and transcription factor (TF)
binding. Transcriptional programs differ significantly between cell types and are altered
upon tumorigenesis or onset of pathology. Investigating the differences in these epigenetic
patterns in circulating nucleic acids might enable the early diagnosis of a wide range of
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pathologies. In the following section, we summarize currently developed approaches that
infer tissue-of-origin from cfDNA molecules based on different epigenetic characteristics
(see Table 1 for an overview of important approaches). Handling of plasma DNA molecules
necessitates very high caution with respect to DNA isolation and treatment procedures to
account for the very low amounts of available DNA (very low input DNA) and its already
fragmented nature. Therefore, existing protocols for the analysis of DNA from, e.g., tissue
need to be adapted to the special needs of circulating nucleic acids from blood. We will
also include information on cfDNA-adapted protocols within this review.

Table 1. Overview of key studies that performed tissue-of-origin analysis on cfDNA using various
approaches based on methylation patterns, nucleosome positioning patterns, TFBS occupancy, histone
modifications, and fragmentomics. The data literature search was performed with the PubMed
NCBI database. All deconvolution methods listed in this table are reference-based and employ a
classification, unless stated otherwise.

Epigenetic
Feature Method Approach Disease Deconvolution

Method References

Methylation CpG islands
analysis WGBS HCC, NIPT,

Transplant QP [21]

Methylation Analysis of
adjacent CpG sites

Bisulfite
amplicon-seq

PDAC, CRC,
Diabetes,

Transplant, MS,
TBI, IBD

Read-specific
binary

classification
[17,22]

Methylation
Methylation

haplotype block
analysis

scRRBS, WGBS CRC, LCP
QP, Random forest,
feature extension

“haplotype blocks”
[30]

Methylation

Analysis of
differentially

methylated regions
(DMRs) + ctDNA

abundance

CfMeDIP-seq

PDAC, AML, lung
and breast cancer,

CRC, RCC,
bladder cancer

Limma, binomial
GLM (GLMnet) [31]

Methylation Cell-type
methylation atlas Microarray

Sepsis, islet
transplantation,

CRC, lung, breast,
prostate cancer,

CUP

NNLS [32]

Methylation CancerDetector Microarray, WGBS Liver cancer

Maximizing
log-likelihood
model (grid

search)

[33]

Methylation

Cell-type
methylation atlas
Analysis of blocks
of homogenously
methylated CpG

sites

Deep WGBS COVID-19

dynamically
programmed

probabilistic Bayes
model, NNLS,

wgbstools

[34]

Methylation MCED test
validation

Bisulfite
amplicon-seq 12 cancer types

Ensemble logistic
regression,
Perceptron

[35]
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Table 1. Cont.

Epigenetic
Feature Method Approach Disease Deconvolution

Method References

Nucleosome
occupancy/ TFBS

occupancy

Windowed
protection score
(L-WPS/S-WPS)

analysis of
long/short
fragments

Deep WGS

Small-cell lung
cancer, squamous
cell lung cancer,

colorectal
adenocarcinoma,

HCC, ductal
carcinoma in situ

breast cancer

Windowed
approach,

Fast Fourier
transformation,
no classification

[20]

Nucleosome
occupancy

Nucleosome-
depleted region
(NDR) analysis

WGS Breast cancer

ABSOLUTE [36],
estimation of
tumor purity
and ploidy

[37]

TFBS occupancy Accessibility score
analysis sWGS

Prostate
adenocarcinoma,

breast cancer, colon
adenocarcinoma

Logistic regression [29]

Histone
modifications

Analysis of
activating histone

modifications
cfChIP-seq

Colorectal
carcinoma, diverse
liver diseases, AMI

Robust linear
regression (rlm

R-package)
[28]

Fragment size
Fragment size
distribution

analysis

sWGS + in vitro
size selection

High-grade serous
ovarian cancer

Logistic regression,
random forest [23]

Orientation of
fragments

Orientation-aware
plasma DNA
fragmentation
analysis (OCF)

WGS
Pregnancy,

transplant, HCC,
CRC, lung cancer

Nucleosome-
depletion signal
used to calculate

OCF value,
no classification

[38]

Fragment size

DNA evaluation of
fragments for early

interception
(DELFI)

sWGS +
genome-wide
fragmentation

pattern analysis

Breast, colorectal,
lung, ovarian,

pancreatic, gastric,
and bile

duct cancer

Multi-classifying
approach,

stochastic gradient
boosting model

[27]

Fragment end
motif

Motif diversity
score (MDS)

analysis using
an adopted
normalized

Shannon entropy

WGS

HCC, pregnancy,
liver

transplantation,
CRC, lung cancer;

head and neck
squamous cell, and

nasopharyngeal
carcinoma

SVM, logistic
regression [39]

Fragment size

Promoter
fragmentation
entropy (PFE)

analysis using a
modified Shannon

index

Epigenetic
expression

inference from
cfDNA-seq
(EPIC-seq)

Non-small-cell
lung cancer,

diffuse large B cell
lymphoma

Dirichlet-
multinomial

model,
logistic regression

[40]

Abbreviations: TFBS: transcription factor binding site; HCC: hepatocellular carcinoma; NIPT: non-invasive
prenatal testing; PDAC: pancreatic ductal adenocarcinoma; CRC: colorectal cancer; MS: multiple sclerosis; TBI:
traumatic brain injury; IBD: inflammatory bowel disease; LCP: lung cancer primary; AML: acute myeloid leukemia;
RCC: renal cell carcinoma; AMI: acute myocardial infarction; MCEP: multi-cancer early prediction; WGBS: whole
genome bisulfite sequencing; scRRBS: single-cell reduced representation bisulfte sequencing; cfMeDIP-seq: cell-
free methylated DNA immunoprecipitation and sequencing; cfChIP-seq: cell-free chromatin immunoprecipitation
and sequencing; GLM: generalized linear model; NNLS: non-negative least squares; QP: quadratic programming;
SVM: support vector machine.



Diagnostics 2022, 12, 1834 6 of 26

2.1. Methylation-Based Tissue-of-Origin Analysis

The transfer of a methyl group onto the C5 position of cytosine residues results in the
formation of 5-methylcytosine (5 mC) and occurs almost exclusively on cytosines with an
adjacent guanosine, which are termed CpG sites. This DNA modification inhibits gene
expression by hindering the binding of TFs to DNA or by inhibiting the recruitment of
proteins involved in gene expression. Thus, methylated promoters are usually a sign of
a silenced gene with no or low gene expression. Transcriptional programs are tightly
regulated by cell-specific DNA methylation patterns and these methylation marks reflect
the gene expression profile of the respective cell type. Methylation patterns are conserved
among cells of the same cell type, are highly stable under physiological or pathological
conditions, and are unique to each cell type. In cancer cells, transcriptional programs are
altered and lead to different methylation patterns. Promoter regions of tumor suppressor
genes are generally hypermethylated (i.e., silenced gene expression), whereas promoters of
cancer driver genes are hypomethylated (i.e., activated gene expression) [41,42].

There are numerous different techniques to identify methylated cytosines. Generally,
it can be differentiated between genome-wide, reduced genome and targeted approaches;
the order mentioned represents increasing cost effectiveness. For a complete and detailed
description of all available DNA methylation detection approaches, please refer to the
recent review by Galardi et al. [43]. In order to detect 5 mCs, the DNA needs to be treated
either by (i) restriction enzyme digestion, (ii) bisulfite treatment, (iii) affinity enrichment of
methylated DNA or (iv) a combined treatment of enzymatic and chemical modifications.
The gold standard for genome-wide methylation analysis is bisulfite conversion [44,45].
For this purpose, unmethylated cytosine residues are converted into uracil residues, while
methylated cytosines remain unmodified. During PCR, uracil residues are replaced by
thymine residues and subsequent analysis observes cytosine residues as methylated cy-
tosines, while thymine residues represent unmethylated cytosines in the original DNA
sample. Whole genome sequencing of bisulfite converted (WGBS) DNA samples enabled
genome-wide DNA methylation profiling and was employed to establish genome-wide
methylation maps. However, the harsh conditions of bisulfite conversion in combination
with the already fragmented population of cfDNA molecules is problematic and might
result in significant sample loss [46]. A bisulfite conversion-based approach adjusted for
low input DNA is the post bisulfite adaptor tagging (PBAT) technique, which is a PCR-free
method that reduces bisulfite induced DNA degradation by attaching adaptors to DNA
after bisulfite treatment [47,48]. An adaptation of the PBAT technique for the analysis of
methylation status at single cell level by single cell bisulfite sequencing (scBS-seq) [49,50]
together with the PBAT method might be employable for cfDNA analyses.

Other genome-wide approaches combining the use of enzymatic and chemical modi-
fications are enzymatic methyl-sequencing (EM-seq) [51,52] and ten-eleven translocation
(TET)-assisted pyridine borane sequencing (TAPS) [53]. These 5 mC (and 5 hmC, see last
part of chapter) mapping techniques are bisulfite-free and might be an alternative for
plasma samples. Recently, a cfDNA-adapted protocol for TAPS was published [54].

An alternative genome-wide method for mapping methylation is immunoprecipitation
of methylated DNA (MeDIP) with 5-methylcytidine-specific antibodies and subsequent
sequencing of captured genomic regions [55]. This sensitive bisulfite-free workflow is
especially applicable for low input samples. The original MeDIP protocol was optimized
for even lower input [56], such as cfDNA from plasma, and enables detection of large-scale
DNA methylation changes that are enriched for tumor-specific patterns. Immunoprecipita-
tion of methylated DNA can further be achieved via proteins containing a methyl-binding
domain (MBD). This technique followed by sequencing of captured DNA is called MBD-
or MethylCap-seq [57,58] for which a cfDNA-optimized protocol exists [59].

A reduced genome approach for DNA methylation analysis is reduced representation
bisulfite sequencing (RRBS) [60]. Here, CpG-rich regions across the genome are enriched via
restriction enzyme digestion followed by bisulfite conversion and sequencing. This reduced
genome approach is more cost-effective compared to whole genome sequencing (WGS).
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This technique was also optimized for cfDNA samples (cfRRBS) [61,62]. Microarrays
are another option for reduced genome methylation profiling. Commercially available
microarrays facilitate DNA methylation analysis of specific, pre-selected regions of interest.
This reduced cost technique is ideal for clinical applications, but prior target knowledge
is required. Microarrays have been extensively employed for methylation mapping and
establishing reference methylome atlases [32].

Targeted approaches for methylation mapping include targeted bisulfite amplicon
sequencing (targeted BS-seq) [63,64]. Target selection can be performed by PCR amplifi-
cation or probe hybridization capture. For targeted BS-seq, DNA is bisulfite converted
and amplified using specific and validated primers. This technique was also optimized for
plasma samples [65].

For tissue-of-origin analysis, genomic regions are identified that exhibit hyper- or
hypomethylation in one cell or tissue type compared with others. These differentially
methylated regions (DMRs) are subsequently employed as markers for tissue-of-origin
analysis. An early study demonstrated that differentially methylated regions can be
employed to detect prostate cancer [66]. In a next step, differential methylation across
distinct cell or tissue types can be utilized to trace the cell- or tissue-of-origin of a single
cfDNA molecule, even of different cell types within a particular tissue [67]. The basis
for methylation-based tissue-of-origin analysis are high resolution methylation maps of
multiple different reference cell types or tissues [68–71]. Several projects were initiated
that generated high resolution methylation or epigenetic maps that are mostly available
as open access datasets, such as the Roadmap Epigenomics Project [68], the ENCODE
Project [72,73], the International Human Epigenome Consortium (IHEC) [74], the Cancer
Genome Atlas (TCGA; https://www.cancer.gov/tcga, accessed on 11 February 2022),
and the Gene Expression Omnibus (GEO) [75]. Tissue-of-origin analysis requires the
development of qualified algorithms for deconvolution of sequencing data with reference
methylation profiles of different tissues to determine the cell- or tissue-of-origin of cfDNA
molecules and to estimate the major tissue contributors to the cfDNA pool. WGBS of
plasma samples and analysis of tumor-associated hypomethylation in combination with
tumor-associated copy number aberrations (CNAs) enabled the detection of several non-
metastatic cancer types with a sensitivity and specificity of 87 and 88%, respectively [76].
Further, WGBS was employed to generate cfDNA methylation profiles that were used to
infer relative contributions of four different tissues using a deconvolution approach [21].
For this purpose, several high resolution patterns of multiple tissue types were employed
as reference methylomes [68–70]. The authors identified two types of methylation markers:
(i) type I marker is a genomic locus that shows a methylation level in one of the tissues that
is significantly different from those in other tissues and (ii) type II marker is a genomic locus
with high variability in methylation densities. This approach demonstrated that ≥70%
of the cfDNA pool originated from white blood cells (i.e., neutrophils and lymphocytes)
in conditions in which source tissue differed genetically from host tissue (i.e., pregnancy,
transplantation, cancer) and showed that the methylation deconvolution approach is
able to identify the tissue-of-origin of CNAs [21]. Moreover, tissue-of-origin analysis
was successfully performed with urinary cfDNA as well [77]. The authors found a high
variation of proportional contribution from different tissues (i.e., neutrophils, T-cells, B-cells,
urothelium, and kidney) to the urine DNA pool [77].

Expanding the analysis window from one CpG site to a number of adjacent CpGs
led to enhanced sensitivity and reduced background of methylation analysis [22]. The
authors were able to demonstrate that tissue-specific methylation patterns in cfDNA could
be used to detect tissue cell death with a high level of specificity and sensitivity in multiple
human pathologies. This approach was based on targeted sequencing of specific markers,
which reduced sequencing costs immensely, and was able to show origins of cfDNA in
pathologies such as β-cell death in diabetes, brain cell death in multiple sclerosis and
head trauma without genetically distinguishable tissue [22]. A systematic search of highly
coordinated methylation by a combined method approach of WGBS, RRBS, and methylation

https://www.cancer.gov/tcga


Diagnostics 2022, 12, 1834 8 of 26

arrays identified thousands of tightly coupled CpG sites, termed methylation haplotype
blocks [30]. By defining the methylation haplotype load (MHL) as a metric that is capable
of quantitatively distinguishing blocks that have the same average methylation levels but
various degrees of coordinated methylation, the authors were able to directly compare
different regions across multiple data sets and observed a reduction in perfectly coupled
CpG pairs in cancer patients. The study showed that this methylation haplotype blocks
approach can be employed for quantitative estimation of tumor load and tissue-of-origin
mapping of cfDNA in patients with lung or colorectal cancer [30]. The development of
probabilistic models such as CancerLocator or CancerDetector enabled researchers to infer
the relative proportions and tissue-of-origin of tumor-derived cfDNA from genome-wide
DNA methylation data or joint methylation states of multiple adjacent CpG sites. This
allowed the detection of cancer with high sensitivity and specificity [33,78].

Comparative methylome analysis identified several genomic loci that are unmethy-
lated specifically in cardiomyocytes or hepatocytes, respectively, and could be utilized to
quantify cardiomyocyte- or hepatocyte-derived DNA in cfDNA to detect acute cardiomy-
ocyte or hepatocyte death [17,18]. This method is based on the analysis of a limited number
of genomic loci, which reduces turnaround time tremendously and might complement
existing biomarkers such as troponins or liver enzymes.

The development of a sensitive, immunoprecipitation-based protocol to analyze the
methylome of small quantities of cfDNA (cfMeDIP) marked an important step in methyla-
tion pattern analysis of low-input plasma DNA samples that are already of fragmented
nature [31]. Specifically, the authors optimized an existing low-input MeDIP-seq protocol
using exogenous Enterobacteria phage λ DNA (filler DNA) for DNA inputs as low as 1
to 10 ng. The work demonstrated that cfMeDIP-seq was able to detect large-scale DNA
methylation changes that were enriched for tumor-specific patterns and robustly detect
and classify cancer in plasma samples from several tumor types [31].

Tissue-of-origin analysis strongly relies on reference methylomes of key tissues. Since
tissues mostly represent mixtures of distinct cell types, Moss and colleagues established a
reference atlas of 25 human tissues and cell types covering major organs and cells involved
in common diseases [32]. They employed methylation microarrays and demonstrated
that plasma methylation patterns could be used to accurately identify cell type-specific
cfDNA in healthy and pathological conditions including islet transplantation, sepsis, and
cancer of unknown primary [32]. Further, they quantified the major cell types contribut-
ing to cfDNA in healthy individuals with 55% originating from white blood cells, 30%
from erythrocyte progenitors, 10% deriving from vascular endothelial cells and 1% was
hepatocyte-derived [32]. An in silico approach using automated machine-learning con-
ducted differential methylation analysis on available microarray methylomes to establish
low number biosignatures (i.e., several differentially methylated genes) for breast cancer,
osteoarthritis, and diabetes mellitus and achieved high performance [79]. In order to detect
distant metastases and potentially advance early detection, cell type-specific cfDNA methy-
lation markers were recently used to identify collateral tissue damage in cancer [80]. In this
work, elevated levels of hepatocyte-derived cfDNA were detected in the plasma of patients
with liver metastases vs. cancer patients without liver metastases. Moreover, patients with
brain metastases were identified by increased levels of neuron-, oligodendrocyte-, and
astrocyte-derived cfDNA [80].

Recently, the single-molecule real-time (SMRT) long-read sequencing technology by
Pacific Biosciences was modified to accurately detect 5 mC modifications [81]. This method
uses a convolutional neural network to analyze the sequence context and pulse signals
associated with DNA polymerase kinetics for accurate detection of 5 mC modifications and
might be employed as alternative technique for methylation pattern analysis. Most recently,
a human methylome atlas based on deep WGBS and 39 cell types sorted from healthy
tissue samples was completed [34]. Loci uniquely unmethylated in a specific cell type are
often located at transcriptional enhancers and contain DNA binding sites for tissue-specific
transcriptional regulators, whereas uniquely hypermethylated loci are rare and enriched



Diagnostics 2022, 12, 1834 9 of 26

for CpG islands, polycomb targets and CTCF binding sites [34]. The authors developed
a computational machine-learning suite to represent, compress, visualize and analyze
WGBS data (available at: https://github.com/nloyfer/wgbs_tools, accessed on 7 February
2022) [34]. The Circulating Cell-free Genome Atlas study aimed at establishing a blood-
based multi-cancer early detection (MCED) test utilizing cfDNA targeted methylation-
based sequencing in combination with machine-learning in order to detect cancer signals
across multiple cancer types and predict cancer signal origin with high accuracy [35,65,82].
The clinical validation study concluded that the MCED test demonstrated high specificity
and accuracy of cancer signal origin and the test detected cancer signals across many
different types of cancers. These results support that this minimally invasive MCED test
complements and expands existing single-cancer screening tests [35,65,82].

For methylation patterns, there are currently two bioinformatics approaches that
are employed: (i) the reference-based approach [21,22,30,32,34], and (ii) the reference-
independent approach [31,83,84]. Both methods rely on WGBS, RRBS, or microarray
methylation data to detect DNA methylation at single-nucleotide resolution genome-wide
or at thousands of sites in the case of microarrays. For the reference-based approach,
differentially methylated regions or positions (DMRs or DMPs) that are unique to a specific
cell type are identified (i.e., methylated in a specific cell type and unmethylated in all
other cell types or vice versa). Quadratic programming (QP; also referred to as constrained
projection(CP)) is a well-established methylation-based bioinformatic approach that infers
proportions of cell types present in the reference DNA methylation database using a con-
strained projection via least-squares minimization [67]. Other reference-based algorithms
are CIBERSORT, an advanced Support Vector Regression for penalized multivariate regres-
sion after estimating the regression weights, or robust partial correlation (RPC) [85,86]. For
these algorithms to perform well, high quality methylation atlases [32,34] based on samples
comprising of preferably one cell type are required to select appropriate markers/loci that
are robust enough to differentiate between distinct cell types in a mixture of unknown cell
types. There is currently a trend towards broader sequencing techniques called ‘third gen-
eration liquid biopsy’ [87,88]. Techniques such as WGBS lead to higher sensitivity by using
many markers—also called “features”. Therefore, feature selection is becoming increasingly
important to reduce the number of markers, which in turn facilitates the interpretation of
the data. Feature selection can be guided by databases such as the NCBI Gene Expression
Omnibus [75] to learn which loci are reliable [32]. Other groups, such as Loyfer et al., ex-
ploited the inherent sequential data structure of the genome by grouping features that were
adjacent and co-varied by cell type using a dynamically programmed probabilistic Bayes
model [34]. Their aim was to obtain homogeneous blocks of methylated or unmethylated
markers to (i) perform dimensionality reduction and (ii) increase the robustness of the mark-
ers. The blocks were then selected by the number of markers per block to reduce 7.2 million
blocks to 2.1 million blocks. Based on this data set, Loyfer et al. filtered out further charac-
teristics that they needed for their research goals. They arrived at a minimum of about a
thousand blocks for their atlas [34]. The reference-based approach is limited to tissue and
cell types that can be purified sufficiently. Furthermore, a reference in an atlas needs to be
measurable and the approach does not account for influences from other cell types on the
expression profile of the investigated cell type. On the other hand, quantification of cell
type contributions at the single sample level is possible and the algorithms are relatively
assumption-free. Reference-free algorithms include EWASher [89], RefFreeEWAS [90],
ReFACTOR [91], the removing unwanted variation (RUV) framework [92], surrogate vari-
able analysis (SVA) [93], independent surrogate variable analysis (ISVA) [94], or are based
on non-negative matrix factorization (NMF) [95,96]. The reference-independent algorithms
do not require reference methylation profiles or prior knowledge of cell types, and are
therefore applicable to any tissue type, and account for cell-cell interactions. However, the
performance of reference-independent algorithms strongly depends on whether the model
assumptions are valid and sample-specific estimates of cell type fractions are not possible.

https://github.com/nloyfer/wgbs_tools
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In addition to the extensively scrutinized 5 mC modification, 5-hydroxymethylcytosine
(5 hmC) is an intermediate DNA modification that influences biological processes ranging
from development to pathogenesis [97,98]. The ten-eleven translocation (TET) family
dioxygenases convert 5 mC into 5 hmC and this DNA modification is generally thought to
reflect gene activation on permissive chromatin [99]. It is particularly located at enhancers,
gene bodies and promoters and changes in 5 hmC reflect alterations in gene expression
levels [100,101]. 5 hmC additionally displays a tissue-specific mass distribution [102,103]
and decreased levels of 5 hmC are often observed in many solid tumors compared with
corresponding healthy tissues [104]. Several groups demonstrated that 5 hmC signatures in
cfDNA can be utilized to detect cancer type and stage [105–107]. One study demonstrated
that pancreatic ductal adenocarcinoma tissue-derived hyper-hydroxymethylated genes can
separate non-cancer cfDNA from PDAC cfDNA samples [105]; making hydroxymethylation
patterns another promising approach for early detection and tissue-of-origin analysis.

Taken together, deep sequencing methods such as WGBS and the development of
deconvolution algorithms paved the way for methylation-based tissue-of-origin analysis
of cfDNA to detect various cancer types and numerous other pathologies. Employment
of targeted approaches and methodological advancements such as immunoprecipitation
of methylated DNA (MeDIP) reduced the costs significantly, which is a prerequisite for
clinical application. However, for methylation-based tissue-of-origin analysis to become
routine application the turnaround time and workflow need to be optimized and larger
validation studies are required.

2.2. Nucleosome Positioning-Based Tissue-of-Origin Analysis

DNA is packaged into chromatin by several histone proteins in order to fit within the
nucleus. The degree of DNA compaction regulates its accessibility and gene expression. The
histone protein octamer with ~147 bp of DNA wrapped around it is termed a nucleosome
and represents the basic unit of DNA compaction. Another histone protein—H1—binds
to ~20 bp of linker DNA adjacent of the nucleosome core and the ~167 bp DNA with
the histone protein octamer and H1 is called chromatosome. Nucleosomes are spaced
with varying distances to each other along the DNA strand and DNA regions tightly
occupied by nucleosomes are rather inaccessible, whereas DNA regions with a wider
spacing of nucleosomes are more accessible for DNA binding proteins. By hindering
proteins involved in gene regulation and transcription from binding, nucleosomes regulate
DNA accessibility and transcription. Additionally, for TF binding and gene expression it is
essential that nucleosomes move along the DNA or are removed for chromatin opening
at specific genomic regions [108–110]. Gene expression is unique for every cell type,
differing considerably between distinct cell types and tissues, and consequently nucleosome
positioning varies significantly between different cell types [20]. Upon release into a
body fluid, nuclear DNA is cleaved by distinct enzymes dependent on cell type and
release mechanism [25]. Open chromatin regions lacking nucleosomes are poorly protected
against digestion compared with nucleosome-occupied DNA regions. Thus, nucleosome-
bound regions are expected to be found more frequently in the plasma DNA pool than
nucleosome-depleted regions. Transcription-prone regions with low nucleosome occupancy
are underrepresented in sequencing data of cfDNA, whereas higher coverage suggests
lower expression levels of this genomic region. Nucleosome positioning is consequently
reflected by sequence read-density across the genome and can be employed to extract
information about gene expression and thereby cell identity [111], enabling tissue-of-origin
analysis via cfDNA read frequency pattern.

Several accessibility assays exist to characterize nucleosome positioning and examine
nucleosome architecture and gene regulation [112]. Most techniques employ enzymatic
digestion or mechanical shearing of DNA of interest and subsequent analysis of resulting
fragments. DNase-seq involves enzymatic digestion by DNase I that preferentially digests
open regions of chromatin, leaving behind mostly nucleosome-bound DNA regions that
are subsequently sequenced [113]. Seldomly found regions in DNase-seq are called DNase
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I hypersensitive sites (DHSs) and reflect active regulatory regions. Micrococcal nuclease
(MNase) is another endo-exonuclease that preferentially digests unprotected DNA (i.e., ac-
cessible linker DNA between nucleosomes) and mostly leaves nucleosome-occupied DNA
intact. MNase assays followed by sequencing were performed to identify nucleosome
occupied regions of DNA [114], showing pronounced nucleosome-depleted regions (NDRs)
directly upstream of the transcription start site (TSS) at promoters of highly expressed
genes [108,115,116]. Another NDR was found at transcription termination sites (TTSs) of
highly expressed genes [115]. Pronounced NDRs are not detected at genes with no or low
transcription activity. Many nucleosome position maps were generated via the MNase
assay. Formaldehyde-assisted isolation of regulatory elements sequencing (FAIRE-seq)
utilizes crosslinking of chromatin-interacting proteins to DNA by formaldehyde, chro-
matin shearing and subsequent phenol-chloroform extraction to separate DNA unbound
by proteins (aqueous layer) from protein-DNA crosslinks (organic layer) [117]. An assay
for transposase accessibility sequencing (ATAC-seq) employs hyperactive Tn5 transposase
to insert sequencing adapters at accessible regions of the genome that will subsequently be
sequenced [118,119]. Thereby, resulting sequencing reads represent regions of increased
accessibility and can be used to map nucleosome positions.

To determine the nucleosome positions by analysis of plasma DNA, no experimental
enzymatic digestion is necessary due to the fragmented nature of cfDNA. Nucleases that
are present intracellularly and in the blood degrade preferentially DNA regions that are not
bound by nucleosomes or other proteins. Because nucleosome-bound DNA is protected
better against degradation, (deep) sequencing of the total plasma DNA pool primarily
yields reads of nucleosome-bound regions. By aligning the resulting sequencing reads of a
plasma sample to the reference genome, nucleosome positions can be inferred from and
information on the cell identity can be extracted.

One study built a genome-wide map of in vivo nucleosome occupancy of cfDNA
based on deep sequencing of total cfDNA and demonstrated that the resulting nucleosome
spacing pattern could be utilized to perform tissue-of-origin analysis [20]. Specifically, they
defined a metric—the windowed protection score (WPS)—to determine the nucleosome
occupancy at a given genomic coordinate. For this purpose, they looked at 120 bp windows
and quantified how many fragments (120–180 bp) ended in that window and how many
fragments completely spanned it. By subtracting the number of fragments ending in that
window from the number of fragments completely covering that window, they yielded
the L-WPS of any genomic coordinate. A higher WPS is correlated with many fragments
spanning that specific window and few fragments ending in that window, indicating that
this DNA region is occupied by a nucleosome or other protein. Vice versa, a lower L-WPS
corresponds to a low number of fragments spanning the window and a higher number
of fragments ending in that window, suggesting that this region is not protected by a
nucleosome. The metric yielded a graph that spanned the entire genome and that was
analyzed for local maxima that represented regions occupied by nucleosomes, resulting in
approx. 10 million peaks. To verify this hypothesis that WPS peaks represented regions
occupied by nucleosomes, the authors used ChIP-seq data from the ENCODE database [120]
to adjust the filtering to only receive high confidence peaks. The fragment length was the
main aspect for inferring nucleosome positions in Snyder et al. and resulted in a specific
pattern that was distinct for different cell types and genomic regions [20]. Additionally,
single-stranded libraries revealed shorter DNA fragments that directly footprinted TF
occupancy (for details see Section 2.3). Those epigenetic footprints matched hematopoietic
lineage in healthy individuals, while additional contributions were observed in cancer
patients, often aligning with the cancer type [20].

Another group reported that gene expression could be predicted with plasma DNA
coverage in promoter regions [37]. The authors developed a nucleosome promoter analysis
utilizing machine-learning and WGS datasets to determine the expression status of a gene.
For this purpose, they used coverage at the TSS to infer gene expression from nucleosome
occupancy [37]. They defined two ranges: (i) 2 kbp centered around the TSS and (ii)−150 bp
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to 50 bp with respect to the TSS. Applying kernel density estimation to the normalized
read coverage in these two ranges led to the distinction between two clusters. These two
clusters could be classified with an accuracy of 0.91 using a support vector machine [121] of
the most and least expressed 100 genes [37]. This approach identified two discrete regions
at TSSs where nucleosome occupancy resulted in different read depth coverage patterns
for expressed and silent genes, allowing classification of expressed cancer driver genes in
regions with somatic copy number gains in patients with metastatic cancer [37].

A compilation of published in vivo nucleosome positioning datasets in a database
called NucPosDB provides a comprehensive overview on available datasets and includes
datasets of sequenced cfDNA that reflect nucleosome positioning in situ in the cells of
origins [122]. Moreover, a list of computational tools for the analysis of nucleosome
positioning or cfDNA experiments can be found at NucPosDB and the database contains
theoretical algorithms for the prediction of nucleosome positioning preferences from DNA
sequence [122]. Different approaches employing nucleosome footprinting for tissue-of-
origin analysis of cfDNA fragments determined varying contributions of white blood cells
and other organs to the plasma DNA pool [20,21,123–125].

The combination of EM-seq to study methylation patterns in combination with analyz-
ing nucleosome occupancy in a single assay (cell-free DNA-based nucleosome occupancy
and methylation profiling: cfNOMe) might advance tissue-of-origin analysis in plasma
samples [126].

A better understanding of the underlying release mechanisms and cfDNA biology is
pivotal to unravel the wealth of valuable information encoded in nucleosome positions.

2.3. Tissue-of-Origin Analysis by Inferring Transcription Factor Binding Sites

TFs are essential factors in regulating gene expression by promoting or blocking the
recruitment of RNA polymerase to specific genes. Thereby they fine-tune the expression of
their target genes and are key players in development and differentiation [127]. By failing
to suppress cancer driver genes or silencing tumor suppressor genes, dysfunctional TFs
can lead to carcinogenesis. As transcription differs tremendously between distinct cell
types, distinct TFs are involved in gene expression depending on the cell type. Identifying
occupied transcription factor binding sites (TFBS) within plasma DNA might be a way
for tissue-of-origin analysis, allowing a more dynamic snapshot on rapidly changing gene
expression in response to cancer or other pathologies.

To determine accessible DNA regions, the afore-mentioned techniques for studying
accessible chromatin/nucleosome occupancy can be employed (see Section 2.2). In the
case of cfDNA, enzymatic digestion is not needed due to the fragmented state of cfDNA.
Sequencing cfDNA and aligning the obtained reads to the human genome results in
sequence read density across the genome. Regions with low read density are suggestive
of DNA lacking TFs or nucleosomes, while regions with high read density indicate TFs
or nucleosomes bound to that region. However, due to the smaller size of TFs, TFBS
occupancy is more challenging to determine experimentally. Consequently, few studies
have to date attempted to infer TFBS occupancy from cfDNA fragmentation patterns.

One study employed single-stranded library preparation of cfDNA samples to re-
cover short fragments and used deep sequencing to investigate if it is possible to utilize
TFBS occupancy for tissue-of-origin analysis. The authors observed that short cfDNA
fragments (35–80 bp) directly footprint the in vivo occupancy of TFBSs of several TFs [20].
To demonstrate this, they determined the occupancy of a TFBS by defining the short frag-
ment windowed protection score (S-WPS) at a given genomic coordinate. The S-WPS is
the number of short DNA fragments (35–80 bp) completely spanning a 16 bp window
centered at a given genomic coordinate subtracted by the number of fragments with an
endpoint within that window. By focusing on short cfDNA fragments, they were able to
infer additional contributing tissues to the plasma DNA pool in non-healthy states [20].
The bioinformatic analysis occurred identically to the L-WPS analysis. Ulz et al. employed
publicly available ATAC-seq data and WGS data from plasma cfDNA to infer accessibil-
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ity of hundreds of TFBSs from cfDNA fragmentation patterns [29]. To determine TFBS
occupancy, they developed a metric called accessibility score that measured the strength
of TF phasing at the TFBS, reflecting the strength of the TF binding. [29]. This score was
based on the read coverage quantifying the amplitudes close to TFBSs and then applying
signal filtering with the Savitzky-Golay algorithm [128] to smoothen the graph, making
the amplitudes easier to measure and detect. The rank differences (i.e., overall z-scores) in
this high frequency signal between tumor and healthy samples with defined thresholds
for TFBS accessibility differences were used as the accessibility score. A logistic regression
was applied based on 504 markers that were pre-selected. A cross-validation approach
was used to train and test the algorithm. By quantifying the amplitudes at TFBSs, the
authors were able to identify nucleosome-depleted regions (NDRs) and thereby distinguish
between control and cancer samples and even different subtypes of cancers. Applying
this approach, the authors were able to profile numerous individual TFs and objectively
compare TF binding events in plasma samples, allowing subclassification of tumor entities
and TFBS plasticity during disease progression [29].

2.4. Tissue-of-Origin Analysis Utilizing Histone Modifications

Histone proteins involved in DNA compaction can be post-translationally modified
in multiple ways, including methylation, acetylation, phosphorylation, adenosine diphos-
phate (ADP) ribosylation, ubiquitylation, sumoylation, formylation, and hydroxylation of
specific histone amino acids [129,130]. These various modifications change the interaction
between DNA and nuclear proteins (i.e., by compelling or attracting DNA from or to
histone proteins, respectively) or modify the binding affinity of chromatin remodelers or
the transcription machinery to the nucleosome. Thereby, they regulate chromatin acces-
sibility and gene transcription and can be grouped into four major functions: activating,
repressing, heterogeneous, and bivalent modifications. Methylation and acetylation are
among the most well-studied histone modifications. The addition of an acetyl group
influences chromatin compaction by neutralizing the basic charge at unmodified lysine
residues and weakens the electrostatic interaction between the negatively charged DNA
and histones [131]. Histone acetylation has further been implicated in regulation of the
intracellular pH [132]. Histone acetylation is largely associated with active transcription,
particularly when located at enhancers, promoters, and the gene body [133]. Histone
methylation, on the other side, retains the basic character of the modified histone and
represents a subtler modification [134]. Trimethylation of histone H3 at lysine residues 9
and 27 (H3K9me3 and H3K27me3) for instance has a repressive effect on transcription and
marks regions of closed chromatin [129], while (tri-) methylation of histone H3 at lysine
residues 4 and 36 (H3K4me1/2/3, and H3K36me1/2/3) and acetylation of histone H4 at
lysine 16 (H4K16ac) are considered activating marks and hint at open chromatin regions
where active transcription occurs [129]. Histone modification patterns mirror recent and
transient changes in chromatin regulation and RNA polymerase activity, often occurring
at the onset of pathologies when cells attempt to adapt to altered conditions by chang-
ing their transcriptional profiles. Accessible and active promoters, enhancers and gene
bodies of actively transcribed genes are characterized by the presence of specific combi-
nations of histone modifications [135–140]. Hence, histone modifications are indicative of
altered transcriptional programs in response to pathologies. Specifically, changes in histone
modification patterns have been extensively linked to cancer [134]. Hyperacetylation, par-
ticularly at proto-oncogenes, may activate gene expression. Conversely, hypoacetylation
of tumor suppressor genes (often localized at promoters) might silence gene expression.
Post-translational methylation of histones represents a functionally very complex regu-
lation mechanism and both elevations and reductions in histone methylation have been
associated with, e.g., cancer.

The most commonly used technique for profiling protein-DNA interaction is chro-
matin immunoprecipitation (ChIP) [141,142]. First, crosslinking is performed to covalently
bind the lysines of interacting proteins with local DNA. Second, cell lysis and subsequent
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shearing by sonication are carried out, followed by incubation with an antibody targeting
the protein of interest or the specific histone modification of interest and finally the inter-
acting DNA region is pulled down, usually via beads attached to the secondary antibody,
crosslinks are reversed, protein is digested and sequencing is performed. One drawback
of this method is, however, the high input needed to produce a high signal-to-noise ratio.
Adaptations to the original protocol reduced the input need (µChIP) [143]. Employing
MNase digestion instead of sonication (native ChIP) further decreased the DNA input
required [144]. However, applying ChIP to very low-input plasma samples remains tech-
nically challenging. Recently, the chromatin immunoprecipitation protocol was modified
specifically for low-input cfDNA from plasma samples (cfChIP) [28].

cfChIP followed by sequencing (cfChIP-seq) demonstrated that plasma nucleosomes
maintain the epigenetic information of the cell they originated from and that cfChIP-seq
recapitulates the original genomic distribution of histone modifications related to active
transcription. Antibodies specific for different histone modifications, which were immobi-
lized on paramagnetic beads, were directly incubated with plasma samples. Subsequently,
on-bead adapter ligation was performed before DNA isolation. Four antibodies specific for
active transcription (accessible/active promoters: H3K4me3 or H3K4me2; accessible en-
hancers: H3K4me2; gene bodies of actively transcribed genes: H3K36me3) were employed
in this study that included plasma samples from healthy individuals, patients with different
liver diseases, and patients with metastatic colorectal carcinoma. The authors showed that
cfChIP-seq allowed genome-wide unbiased analysis and was capable of determining the
tissue-of-origin and detecting differences in patient- and disease-specific transcriptional
programs (including cancer-specific signatures) by generating biologically relevant reduced
representation of the genome [28]. Individual tailored bioinformatics procedures were
applied for each of the four antibodies used in this study. The analysis showed that bone
marrow megakaryocytes were identified as major contributors to the plasma DNA pool in
healthy individuals and pathology-related changes in hepatocytes chromatin were found
in patients with liver diseases.

Colorectal cancer was detected with high sensitivity using cfChIP-seq and could
identify subgroups of patients with distinct cancer-related transcriptional programs [28].
Another study employing blood plasma cfChIP revealed that H3K36me3 cfChIP followed
by droplet digital PCR can be used to identify tumor-specific transcriptional activity of
the mutated EGFR-L858R allele in non-small cell lung cancer [145]. This focus on tumor-
specific transcriptional activity of genes harboring somatic mutations will help to gain
more insights on the relevance of mutations in, e.g., therapy resistance mechanisms.

So far, however, only activating histone modifications for tissue-of-origin analysis
have been studied. Prospectively, it will be of great interest to investigate repressive and
heterogeneous modifications as well. It might also be helpful to look into combinations of
distinct histone modifications, e.g., immunoprecipitate a specific histone acetylation prior to
a specific histone methylation. Hereby, it is essential to employ validated antibodies (e.g., by
IHEC) of sufficient quality and to streamline the different existing protocols to achieve
standardization and comparability of studies performed by different groups. Importantly,
cfChIP-seq provides information on transient changes in gene expression altered upon
various pathologies and during disease progression.

2.5. Tissue-of-Origin Analysis Based on Fragmentomics

Nucleosome occupancy and DNA compaction degree are not the only determinants
of cfDNA fragment size, but the release pathway and nucleases present in blood also play
major roles [146,147]. Depending on the cell type, release mechanism (e.g., apoptosis or
necrosis), and DNA condensation mode, nuclear DNA is cleaved by distinct nucleases,
resulting in varying cfDNA fragments that are characteristic for each cell type [11]. DNA
fragments bound to proteins (typically histones or TFs among other proteins such as al-
bumin, HDL, etc.) are preferentially found in bodily fluids, while naked DNA is mostly
digested [148]. Commonly, the majority of cfDNA molecules exhibit the size of DNA
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wrapped around one nucleosome plus DNA linker (i.e., ~167 bp) [20,23,27]. A series of
additional peaks with ~10 bp periodicity below ~143 bp putatively correspond to the helical
pitch and binding sites of DNA to the nucleosome core [20]. Size distribution of cfDNA
fragments is altered by pathologies, e.g., cfDNA from cancer patients was found to be
slightly shorter than cfDNA from healthy individuals (147 vs. 167 bp) [23,27], which is
possibly explained by a different binding strength of the external histone H1. Generally,
the lengths of cancer-derived cfDNA fragments have a tendency to be more variable than
non-cancer DNA [23]. In addition to mono-, di-, and trinucleosome-sized cfDNA fragments
predominantly found in plasma samples, considerably longer cfDNA fragments were de-
tected, particularly a ~3 kbp cfDNA population (ranging between 1–6 kbp with an average
size of 3 kbp) initially thought to originate from randomly lysed cells that might represent
genomic DNA contamination [149–153]. Currently, many groups hold the view that this
~3 kbp cfDNA population is actively extruded by live cells [154–159] and it might represent
an artifact of incomplete size separation with an underlying DNA laddering pattern of
at least seven nucleosomes or more [160]. Depending on the nuclease(s) involved in the
release pathway, the cfDNA fragments exhibit distinct fragment end motifs (i.e., four-base
motif at both ends of a cfDNA fragment) [39] with “CCCA” being the most common 4-mer
end motif in plasma DNA fragments from healthy individuals [161]. DNASE1L3 was
suggested to generate predominantly end motifs starting with “CC” [24,162], DNA frag-
mentation factor subunit β (DFFB) was found to be responsible for 5′ “A” end motifs [25],
and DNASE1 activity was associated with generating “T” end motifs [25]. Nuclease activ-
ity is thought to be altered upon pathogenesis and might be utilized for tissue-of-origin
analysis.

In particular, cfDNA size distribution, preferred ends (i.e., genomic coordinates that
are found at cfDNA ends more often than others), end motifs of cfDNA, end orienta-
tion of cfDNA, and topology of ends (i.e., double-stranded vs. single-stranded) are in-
formative about tissue-of-origin and numerous studies demonstrated the feasibility of
fragmentomics-based liquid biopsies to detect cancer and other pathologies [23,26,27,38].
These fragmentomics features can be studied by sequencing plasma samples and analyzing
the fragmentomics feature of interest. However, to determine fragmentomics features of
cfDNA molecules accurately, it is essential to preserve the charactistics of plasma DNA
molecules by a preanalytical routine that does not alter fragmentation and by a gentle and
suitable library preparation procedure (e.g., optimized single-stranded library preparation
or a library preparation method without end repair). Thus, the cfDNA fragmentomics
features can be employed to distinguish between healthy and diseased cells. Patholo-
gies and injuries have in common that they induce increased cell death in the affected
tissue, leading to elevated levels of cfDNA molecules to the plasma DNA pool from the
pathogenic tissue. Tissue-of-origin analysis based on fragmentation patterns have been
shown to reveal elevated contributions to the plasma DNA pool and enable sensitive
detection of pathologies lacking genetic differences, such as myocardial infarction, stroke
and autoimmune disorders.

An early study on plasma cfDNA fragmentation patterns demonstrated that frag-
mentation occurs non-randomly and cfDNA retained characteristics previously found in
genome-wide analysis of chromatin structure and are concordant with corresponding cell-
line derived patterns [163]. The same authors further investigated fragmentation patterns
of cfDNA from cerebrospinal fluid (CFS) from glioma patients and found a distinct frag-
mentation pattern of cfDNA in CFS [164]. Another research group developed an approach
to detect the total pool of cancer-associated somatic mutations in plasma and studied the
cfDNA end characteristics in patients with hepatocellular carcinoma and chronic hepati-
tis [26]. The authors found tumor-associated cfDNA preferred end-coordinates at certain
genomic coordinates that point to cfDNA derived from transplanted liver, hepatocellular
carcinoma, or the placenta. The number of cfDNA molecules with end signatures for tumor
or liver correlated with the amounts of tumor- or liver-derived cfDNA in plasma [26]. The
comprehensive analysis of cfDNA fragmentation patterns in plasma samples from patients
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with different cancer types and healthy individuals identified differences in the size distri-
bution of tumor-derived and non-cancer DNA fragments [23], namely mutant ctDNA was
more fragmented than non-mutant cfDNA. This observation led the authors to develop
an approach that selectively analyzes short cfDNA fragments in the size of 90 to 150 bp
with a machine-learning algorithm, achieving greater sensitivity to detect tumor DNA
from multiple cancer types in plasma [23]. Extending the fragmentation pattern analysis
to additionally determining cfDNA fragment orientation (i.e., upstream or downstream
fragment end profile) can identify short linker DNA and tissue-specific open chromatin
regions, allowing determination of relative contributions of various tissues to the plasma
DNA pool [38].

Evaluating fragmentation patterns across the genome at megabase level (the authors
looked at ~500 windows of 5 Mbp size each) to observe large-scale fragmentation pat-
terns was the aim of a different approach termed DNA evaluation of fragments for early
interception (DELFI) [27]. The authors used shallow coverage WGS data and developed
a machine-learning model that incorporated genome-wide fragmentation features and
examined fragmentation patterns from healthy and cancer samples. For this classifying
approach, the authors utilized the gbm (stochastic gradient boosting) machine-learning
model and performed a 10-fold cross-validation. They determined the ratio of short (100–
150 bp) and long fragments (151–220 bp) for these 500 Mbp windows and normalized for
GC content via a LOESS smoother [165]. They simulated the limit of detection based on
the fraction of ctDNA in the plasma DNA pool and attempted to improve performance by
adding copy number changes, chromosomal arm changes or mitochondrial DNA, but the
genomic profile as defined originally performed better or equal. They observed that profiles
of healthy individuals reflected nucleosomal patterns of white blood cells and patients with
cancer exhibited altered fragmentation patterns. Applying the DELFI algorithm to samples
from different cancer types could identify the tissue-of-origin of cancers in three-quarters
of examined samples. Combining DELFI with mutation-based cfDNA analysis detected
91% of patients with cancer [27].

Studying the diversity of plasma DNA end motifs (i.e., the first 4-nucleotide sequence
on each 5′ end of the Watson and Crick strand) and determining the motif diversity score
(MDS) identified differences in the end motifs between patients with different cancers (in-
cluding hepatocellular carcinoma) and healthy subjects [39]. Additionally, it was observed
that plasma DNA molecules from liver, hepatocellular carcinoma, placenta, hematopoietic
cells bore characteristic plasma DNA end motifs that could be utilized for tissue-of-origin
analysis [39]. For instance, the end motif “CCCA” was less frequently found in samples
from patients with hepatocellular carcinoma than from healthy individuals. The authors
found a downregulation of DNASE1L3 in hepatocellular carcinoma cells and hypothesized
that decreased DNASE1L3 activity was responsible for decrease of “CCCA”-bearing cfDNA
fragments in plasma of patients with hepatocellular carcinoma.

Moreover, cfDNA fragment end sequence patterns were investigated and utilized for
tissue-of-origin analysis [166]. This work focused on the diversity of bases at the ends of
cfDNA fragments (i.e., cfDNA termini) and defined a quantitative metric referred to as
the fragment end integrated analysis (FrEIA) score to objectively compare fragment ends.
For comparison, it was focused on the first mapped 5’ trinucleotide, the first mapped 5’
mononucleotide and the last mapped 3’ nucleotide [166]. These nucleotides were catego-
rized into the first 5’ trinucleotide, the first 5’ nucleotide and the first and last 5’ nucleotide
pair. Fractions for the fragment categories were calculated. Using these fractions, the FrES
entropy (i.e., information content) was calculated by applying the normalized Shannon
entropy and the Gini index. The FrEIA score developed in that study was defined as
the ratio of increased trinucleotides and decreased trinucleotides in cancer multiplied by
the previously mentioned normalized entropy. The machine-learning model for cancer
classification was cross-validated 10-fold and included hyper-tuning and applying several
different models resulted in the selection of a support vector machine (SVM) [121] as
the best model. In addition, unsupervised machine-learning was employed using t-sne
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for clustering via k-means. The limit of detection was determined by simulating down-
sampled populations [166]. By compiling a genome-wide catalogue of cfDNA fragment
end sequence patterns of a large cohort of cancer patients, the authors demonstrated that
fragment-end sequence and diversity were altered in 18 distinct cancer types. Furthermore,
they were able to classify cancer samples from controls at low tumor content [166].

Most recently, a novel approach for analyzing expression based on cfDNA fragmen-
tomics was developed that measured fragment length diversity to infer RNA expression
levels at individual genes [40]. The working hypothesis was that cfDNA fragments from
active promoters would display more random cleavage than fragments from inactive
promoters due to the difference in nucleosome occupancy. To test this, targeted sequenc-
ing of promoters of genes of interest was performed and fragment length diversity was
determined by promoter fragmentation entropy (PFE). The developed prediction model
was based on two features: (i) promoter fragmentation entropy (PFE) that measured the
diversity in fragment length distribution at a TSS compared to control genes and (ii) NDR
defined as normalized counts per million of 2 kbp around the TSS. For classification of
cancer vs. control and subtype classification, the authors employed logistic regression
with regularization (elastic net; between 50–150 features per model). They performed
cross-validation and preanalytic checks and in silico simulation for determining the limit
of detection. Employing this analysis method to plasma samples could classify subtypes
of lung carcinoma and diffuse large B cell lymphoma. Further, it was possible to correlate
gene expression profiles with clinical response in serial blood samples from patients with
PD-(L)1 immune checkpoint inhibitors treatment [40].

It has become increasingly clear during the last years that another cfDNA population
exists in plasma that might exhibit diagnostic potential: ultrashort single-stranded cfDNA
fragments up to 100 bp [20,167–170]. These fragments are often omitted by conventional
library preparation due to the adapter ligation process that needs double strands and/or
applied size selection procedures. An early study employing single-stranded library
preparation and subsequent sequencing demonstrated that short cfDNA molecules directly
footprint TFBS occupancy [20]. Recent efforts optimizing different DNA extraction and
library preparation procedures independently demonstrated the presence of this novel
population of cfDNA molecules that might inform on gene regulatory regions and DNA
secondary structures [168–170].

Overall, cfDNA fragments hold an abundance of information that can be utilized
for tissue-of-origin analysis (reviewed in detail in [171]) with broad potential clinical
applications after further validation.

2.6. Bioinformatic Analysis of Epigenetic Features of cfDNA

The basis for a rigorous and comprehensive bioinformatic tissue-of-origin analysis is
the generation of high-quality data from samples collected with well-defined preanalytical
and analytical procedures. Sequencing data is quality-checked, filtered and then further
processed in different ways prior to downstream analysis for deconvolution of contributing
cell or tissue types. We will briefly discuss the general underlying bioinformatic procedures
that have to-date been utilized for tissue-of-origin analysis based on the different epigenetic
features of cfDNA molecules.

In most cases, the determination of the tissue-of-origin is done either by finding the
right mixture of cfDNA from the corresponding tissues by deconvolution or by classifying
whether the cfDNA contains the signature of a tissue or a disease. Deconvolution is
performed using either label-free methods or reference-based methods. The reference-
based methods rely on tissue references and use them to find the correct tissue admixture.
The most common machine-learning methods used for cfDNA classification are random
forest, logistic regression and support vector machines.

With the advancement of biotechnological methods, it is now possible to perform
deconvolution and classification using many features instead of focusing on a few selected
mutations. This is a paradigm shift and means that the way data from liquid biopsies is
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processed has to be adapted. The result is an enormous amount of data points per sample
that need to be processed in a way to find the right information. This part of the process
is called featurization or feature engineering. It is often based on the epigenetic feature
measured using, for example, a window approach to combine adjacent CpG sites into
cfDNA methylation data. The main goal is generally to extract the information appropriate
to the research question and thus reduce the number of data points per sample. This process
is called feature selection or dimensionality reduction. Once the data have been selected,
the method of deconvolution or machine-learning is applied.

Understanding biases, such as preanalytical factors and the protocol used, becomes
increasingly important as most methods use references as ground truth for comparison.
When ground truths differ, interpretation of the data becomes much more difficult and can
lead to incorrect assumptions.

An interesting factor for cfDNA is the available epigenetic features that can be used
and differ from the use of cfDNA mutations previously. In most cases, a single epigenetic
feature type, such as e.g., methylation data, is analyzed, with the exception of a few papers
such as Siejka-Zielinska et al., 2021, which used methylation and fragmentation data [54].
Other research groups have used a single epigenetic trait but used a different trait to
verify the gathered information, such as Tang et al., 2017, using methylation data and then
verifying against miRNA expression data [172].

Overall, a wide variety of tissue-of-origin analyses based on distinct epigenetic
features have been developed and their great potential for screening tests have been
demonstrated. However, extensive bioinformatic expertise is needed for the develop-
ment and application of the different sophisticated machine-learning algorithms. Nu-
merous comprehensive databases that are publicly available await to be further analyzed
(e.g., Roadmap Epigenomics Project [68], the ENCODE Project [72,73], the International
Human Epigenome Consortium (IHEC) [74], the Cancer Genome Atlas (TCGA; https:
//www.cancer.gov/tcga, accessed on 11 February 2022), the Gene Expression Omnibus
(GEO) [75], the Gene Transcription Regulation Database (GTRD; http://gtrd.biouml.org, ac-
cessed on 8 June 2022), the Genome-Tissue Expression (GTEx), the BLUEPRINT Epigenome
(https://www.blueprint-epigenome.eu/, accessed on 8 June 2022)). Combining different
approaches based on epigenetic features of cfDNA might advance minimally invasive
liquid biopsies.

3. Conclusions and Future Perspectives

Liquid biopsies based on the analysis of epigenetic cfDNA features significantly
advanced the scope of this minimally invasive approach towards a more sensitive early
detection of multiple types of cancer and detection of various pathologies beyond cancer
(e.g., autoimmune disorders, organ pathologies, systemic inflammation). Analysis of
methylation patterns, nucleosome footprints, histone modifications, and the emerging field
of fragmentomics offers a yet unprecedented potential for clinical implementation of liquid
biopsies, for example as screening methods for pathologies lacking reliable tests or sensitive
and serial monitoring of therapy success. However, larger validation studies, additional
insights on the release mechanism as well as cfDNA biology, guidelines for standardized
preanalytical procedures, and harmonized bioinformatic pipelines are urgently required
prior to broad applicability of epigenetic-based liquid biopsy approaches.

Tissue-of-origin approaches utilizing epigenetic characteristics of circulating nucleic
acids are only at the early stages of development. It is not yet possible to evaluate the full
potential of minimallyinvasive liquid biopsy tests for early detection and serial monitoring.
As research on liquid biopsies continues to evolve, it will become clear which approach(es)
or combination of approaches are best suited for detection of distinct pathologies. In
addition, technical optimization of tissue-of-origin techniques will be performed as research
continues. In particular, possible influences of preanalytical and analytical biases on tissue-
of-origin analysis need to be further elucidated and minimized. Equally importantly, a
comparative validation of the appropriate bioinformatic approach needs to be achieved.

https://www.cancer.gov/tcga
https://www.cancer.gov/tcga
http://gtrd.biouml.org
https://www.blueprint-epigenome.eu/
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Subsequently, focus should be placed on advancing the most promising methods in order
to maximize the benefit to patients. The prerequisite for clinical application is the ability of
an approach to reliably stratify between healthy individuals and the patient cohort. For
this purpose, all of the proof-of-concept studies presented in this review need to be further
validated with larger cohorts in appropriately powered clinical trials and the workflows
need to be standardized to evaluate their performance. Clinical applicability and utility for
different settings (i.e., for disease identification and organ/cell type localization) need to
be rigorously tested. Despite of the large amount of work that still needs to be performed,
tissue-of-origin approaches based on epigenetic characteristics of plasma DNA molecules
hold great promise for precision and targeted medicine.

Taken together, shifting research interest to epigenetic characteristics of circulating nu-
cleic acids considerably boosted the performance of liquid biopsy particularly for detection
of pathologies besides cancer and lays the ground for early and precision diagnostics of a
broad range of diseases.
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