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Abstract: Mountain lakes are unique and often isolated freshwater habitats that harbour a rich biotic
diversity. This high conservation value may be reflected by diatoms, a group of algae that is known
for its reliability as a bioindicator, but which has not been studied extensively in mountain lakes of
the northern European Alps. In this study, the conservation value of these lakes was assessed by
characterizing the number, share, and abundance of diatom Red List (RL) taxa and their relationship
with environmental variables, diatom α and β diversity (assemblage uniqueness). For this purpose,
linear regression models, generalized linear models, and generalized additive models were fitted and
spatial descriptors were included when relevant. Of the 560 diatom taxa identified, 64% were on the
RL and half of these were assigned a threat status. As hypothesized, a decreasing share of RL species
in sediment and littoral samples at higher trophic levels was reflected by higher total phosphorous
content and lower Secchi depth, respectively. Species-rich lakes contained a high number of RL
taxa, contrasting our hypothesis of a logarithmic relationship. In turn, RL abundance increased
with uniqueness, confirming our initial hypothesis. However, some of the most unique sites were
degraded by fish stocking and contained low abundances of RL species. The results demonstrate the
importance of oligotrophic mountain lakes as habitats for rare freshwater biota and their vulnerability
in light of human impact through cattle herding, tourism, damming, and fish stocking. Additional
conservation efforts are urgently needed for mountain lakes that are still underrepresented within
legal conservation frameworks. Species richness and uniqueness reflect complementary aspects of
RL status and thus should be applied jointly. Uniqueness can indicate both pristine and degraded
habitats, so that including information on human impacts facilitates its interpretation.

Keywords: rare species; bioindication; diatom diversity; uniqueness; eutrophication; fish stocking;
small lakes; top-down control

1. Introduction

In light of the global biodiversity crisis, it is crucial to prioritize conservation on a
global, regional, and local scale so that limited resources can be used effectively [1–6]. While
aquatic biodiversity in freshwater habitats is decreasing rapidly [7], conservation measures
lag behind those taken to preserve and restore terrestrial and marine ecosystems [8]. Within
the European Union, the “Water Framework Directive” (WFD) that was implemented in
2000 aims to prevent the deterioration and enhance the status of aquatic ecosystems [9].
WFD Annex II provides a non-mandatory minimum size limit for reporting the ecological
status of lakes of 50 ha, which is applied by most member states [10]. Accordingly, of the
presumed 600,000 lakes and ponds in Europe [11], the ecological status was reported for
less than 20,000 lentic water bodies [12]. This low sufficiency in reporting for small lakes
can be assumed to be accompanied by a lower degree of restoration measures applied at
these sites. However, small lakes are known to have a disproportionately high biodiver-
sity relative to their size [13]. This may be due to their collective higher habitat diversity
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compared to a single large lake, as demonstrated for littoral macroinvertebrates [14]. This
is especially true for small and isolated mountain lakes, which contribute to the overall
biodiversity through their highly adapted biota [15,16]. Due to their remoteness, many
of these environmentally unique lakes are still pristine [17]. This makes mountain lakes
important sentinels for indirect pressures due to global change [18]. In turn, dramatic
consequences for these ecosystems can arise through direct pressures, such as cattle herd-
ing [19], hut construction [20], and tourism [21], which often lead to the eutrophication
of mountain lakes, while fish stocking disturbs their food webs and internal nutrient re-
cycling [22–26]. These direct pressures may be amplified by climate change [20,27–30],
which is particularly pronounced in mountain regions such as the European Alps [31,32].
Therefore, it is important to preserve undisturbed oligotrophic mountain lakes and to
restore degraded ones.

Diatoms (class Bacillariophyceae) are considered bioindicators that mirror ambient
habitat conditions, including nutrient levels [33], pH [34], and water temperature [35].
They reliably indicate eutrophication [36], acidification [37], and consequences of climate
change [28]. Moreover, diatoms constitute a significant portion of algal biodiversity, with a
known species richness of 10,000–12,000 [38]. Projections of the actual diversity range from
20,000 [39] to 200,000 [40]. This known yet still hidden diversity, along with their indicator
function, makes diatoms ideal conservation targets within aquatic ecosystems.

The recently updated Red List for diatoms in Germany [41] can be a valuable reference
to assess the conservation value of mountain lakes. The threat status of RL species incorpo-
rates their spatial restrictedness, rarity, as well as long- and short-term population trends,
and thus the likelihood of their local extinction. On a continental scale, rare taxa may simply
be captured by conserving species-rich regions [42], whereas it may be more important to
preserve high β diversity to prevent species extinction on a regional scale [43,44]. A high
restrictedness and rarity of a taxon should lead to a high contribution to the uniqueness
of a site, which in turn reflects its local contribution to β diversity [45]. This is especially
important in small lakes with typically high turnover rates, i.e., high β diversity [14].
Consequently, RL species may be effectively conserved by targeting unique assemblages.
However, this approach requires the investigation of additional environmental parameters
since uniqueness may also reflect degraded habitats [45–47]. Generally, a high number
and share of RL diatoms is indicative of rare freshwater habitats [48], which are typically
oligotrophic or dystrophic in central Europe [49]. Diatoms can therefore help to identify
important refugia for a broader group of threatened freshwater species. Mountain waters
are naturally oligotrophic habitats. Accordingly, the application of the diatom RL in the
southern European Alps has revealed high shares of RL taxa in mires [50], springs [51],
streams [52], and lakes [53]. This has allowed important insights concerning the interaction
between diatoms and catchment geology [54,55], water chemistry [56], bryophytes [51],
stream flow regime [52,57], and geodiversity [55]. The conservation value remained mostly
unknown, especially regarding the updated RL from 2018, for lakes from the northern
European Alps. Hence, the aim of this study is (1) to identify the environmental correlates
of RL species in this region and (2) to investigate whether α diversity and uniqueness
of diatom assemblages reflects the richness, share, and abundance of Red List diatoms
(hereafter called “RL indices”). Specifically, we hypothesize that: (1) lake trophic status
is negatively correlated with RL indices based on previous findings for springs, mires,
and lakes from the southern Alps; (2) a positive logarithmic correlation exists between
diatom α diversity and RL species richness. This is based on the assumed increasing
diatom species richness with lake trophic level [58–60], which will in turn lead to a lower
share of RL taxa (Hypothesis 1). Finally, we hypothesize (3) that the uniqueness of diatom
assemblages has a positive correlation with RL indices and is highest in either unimpaired
and environmentally unique lakes or in impaired lakes.
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2. Materials and Methods
2.1. Study Site

Most lakes in this study are located on lime bedrock and therefore are well-buffered,
as reflected by their pH values of between 8 and 9 (Tables 1 and S1). The altitudinal
gradient comprises the vegetation zones of montane forest (750–1400 m asl), subalpine
forest (1400–1700 m asl), and alpine meadows (1700–2500 m asl, Figure 1).

Most lakes were formed by cirque glaciers, they are typically small (<3 ha) and
shallow (<10 m), consisting of one main basin (Table 1). Two of the lakes are karstic,
they are almost round and deeper compared to their surface area than the other lakes.
One of these lakes (SieG) can be considered an outlier in terms of water chemistry due
to a strong groundwater influence, resulting in a very high conductivity. Depending on
the mountain group, different geological settings can be found in the dataset. A rough
structuring reveals that the studied lakes in the “Berchtesgadener Alpen”, “Chiemgauer
Alpen”, “Rofangebirge”, “Karwendel”, and “Mieminger Kette” are mainly on limestone
that consists of calcium carbonate (CaCO3), while in the “Lechtaler Alpen” they are on
dolomite (CaMg(CO3)2). In the “Wettersteingebirge”, they are partly on dolomite and partly
on limestone, and in the “Allgäu” and “Bayerische Voralpen” limestone, dolomite, and
marl are often closely interlaced. Seven lakes are stocked with fish according to personal
communications of the lake owners or publicly available data (see Supplementary Material).
Various lakes are influenced by either intensive cattle herding (traces of trampling and
excretion near the lake), tourism, damming, or a combination of these factors based on
observations in the field. The relative strength of these influences is not known.
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Table 1. Ecologically important morphological, physical, and chemical parameters were assessed for 43 mountain lakes in the northern European Alps ranging from
760 to 2469 m asl. The dashed box indicates an outlier lake that is strongly influenced by groundwater inflow. ABT = August bottom temperature, AST = August
surface temperature. For abbreviations of other variables see Table S1. Abbreviations of the main bedrock type (“Geo.”): Ls = Limestone, Do = Dolomite, Ma = Marvel,
Mi = Mixed. Abbreviations of the mountain regions (“Reg.”) are from west to east: A = Allgäu, L = Lechtaler Alpen, M = Mieminger Kette, W = Wettersteingebirge,
K = Karwendel, R = Rofangebirge, V = Bayerische Voralpen, C = Chiemgauer Alpen, B = Berchtesgadener Alpen. Human impact is denoted by “+”: F = Fish stocked
lakes, C = Intensive cattle herding, T = Nearby touristic infrastructure, D = Dammed lakes.

Lake

Alt. Area Depth Sec. NO3 TP Si NH4 Na Ca Mg pH Cond O2 ABT AST DIN:TP Geo. Reg. F C T D

m asl ha m m mg/L µg/L mg/L µg/L mg/L mg/L mg/L µS/cm % ◦C ◦C

Fal 760 1.0 15.0 7.0 1.84 9.0 0.18 17.0 2.11 42.3 6.7 8.0 266.3 96 5.8 12.8 205.4 Ls C
Bic 955 1.4 11.0 4.4 0.76 4.3 0.77 32.3 0.30 49.2 14.7 7.9 360.2 61 8.4 21.7 185.7 Mi V +
Fri 973 1.2 5.5 4.6 0.93 7.2 0.15 83.7 0.48 39.6 5.4 8.6 224.3 110 13.9 18.6 140.1 Ls C
Sut 995 1.4 1.5 1.5 0.67 4.8 0.76 60.8 1.62 41.2 6.7 8.0 280.7 82 14.1 17.5 153.2 Mi V

Laut 1013 12.0 18.0 6.0 0.21 13.5 0.25 50.8 0.10 46.1 16.0 8.6 310.0 102 8.2 16.0 19.3 Do W + +
Fer 1060 10.0 19.5 6.8 0.33 10.1 0.21 43.0 0.10 47.2 18.1 8.1 304.0 102 7.4 15.6 36.9 Do W + +
Mit 1082 3.3 4.7 4.7 0.10 7.5 0.13 34.0 1.23 38.5 18.4 8.2 345.8 101 18.4 22.6 17.4 W

Wild 1136 2.3 2.4 2.4 0.22 8.6 0.19 53.6 0.35 31.6 19.5 8.6 296.8 77 20.9 21.2 31.4 Do W
Tau 1138 3.6 14.6 4.3 0.66 4.4 0.20 126.9 0.49 40.4 4.1 8.0 246.8 64 5.0 21.0 177.4 Ls C +

Hoef 1192 0.6 1.9 1.9 0.47 3.1 0.14 5.3 0.14 20.7 10.1 8.8 220.6 64 14.3 15.2 153.1 A
SieK 1205 0.2 11.3 11.3 0.56 1.0 0.23 99.4 0.36 38.6 10.8 8.2 382.4 130 7.4 8.8 655.2 A
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Roe 1450 1.0 7.6 1.5 2.86 20.4 0.18 78.1 0.86 28.9 3.2 8.2 248.1 120 6.0 16.4 144.2 Ls V  +   

SoiS 1458 4.0 8.2 3.2 0.61 7.9 0.27 13.4 0.33 29.8 3.9 8.3 222.1 112 7.3 15.0 78.7 Ma/Ls V +    

GruO 1474 3.5 6.9 5.0 0.20 8.3 0.13 60.8 0.10 26.5 1.4 8.5 194.5 112 14.1 17.5 31.3 Ls B     

GaiU 1508 3.5 4.1 3.8 0.25 12.0 0.29 9.6 0.18 16.4 10.1 8.9 198.3 72 13.4 16.3 21.3 Do A    + 

1207 0.8 20.2 9.5 0.55 1.0 0.24 3.8 0.51 39.1 11.8 8.1 536.7 118 5.8 10.8 552.8 A

GruW 1393 2.3 5.8 3.7 0.18 14.1 0.18 19.9 0.29 29.7 3.2 8.1 198.6 99 14.0 20.3 13.8 Ma V +
Roe 1450 1.0 7.6 1.5 2.86 20.4 0.18 78.1 0.86 28.9 3.2 8.2 248.1 120 6.0 16.4 144.2 Ls V +
SoiS 1458 4.0 8.2 3.2 0.61 7.9 0.27 13.4 0.33 29.8 3.9 8.3 222.1 112 7.3 15.0 78.7 Ma/Ls V +

GruO 1474 3.5 6.9 5.0 0.20 8.3 0.13 60.8 0.10 26.5 1.4 8.5 194.5 112 14.1 17.5 31.3 Ls B
GaiU 1508 3.5 4.1 3.8 0.25 12.0 0.29 9.6 0.18 16.4 10.1 8.9 198.3 72 13.4 16.3 21.3 Do A +
SoiN 1520 0.3 4.7 4.2 0.77 10.8 0.24 13.9 0.37 36.3 6.8 8.2 251.8 115 5.4 13.4 72.5 Mi V +
SoE 1552 3.0 5.5 4.5 0.61 3.9 0.18 49.3 0.10 31.1 6.6 8.8 177.7 123 7.5 15.0 168.2 Ls K
SoW 1558 3.0 11.5 7.0 0.36 4.5 0.16 82.9 0.10 30.2 6.3 8.3 204.2 91 14.7 14.5 97.8 Ls K + +
DelN 1600 0.6 1.3 1.3 0.37 5.7 0.38 15.1 0.39 35.1 2.8 8.2 223.3 81 11.9 12.6 67.7 Ls K
DelS 1600 0.2 4.2 4.2 0.45 4.6 0.23 16.6 0.22 40.5 5.0 8.8 177.2 67 9.3 14.1 101.9 Ls K
Hoer 1601 0.5 1.8 1.8 0.34 17.3 0.21 20.4 0.37 24.7 1.0 7.9 225.2 90 11.8 15.3 21.1 Mi A +
Fun 1601 2.5 4.5 3.5 0.03 10.3 0.13 44.3 0.10 31.3 4.3 8.4 274.4 91 10.3 14.9 7.0 Ls B +
Seeb 1657 6.3 18.4 6.9 0.52 4.5 0.14 23.3 0.14 27.0 4.4 8.8 165.9 82 6.8 13.8 121.6 Ls M
Scha 1680 3.0 4.4 3.8 0.49 7.2 0.17 19.8 0.10 27.1 4.9 8.7 167.1 114 12.6 16.8 71.2 Ls W
Gug 1725 0.1 1.9 1.9 0.29 4.6 0.23 10.6 0.86 15.0 10.3 9.0 207.3 100 11.8 13.2 64.7 Do A
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Table 1. Cont.

Lake

Alt. Area Depth Sec. NO3 TP Si NH4 Na Ca Mg pH Cond O2 ABT AST DIN:TP Geo. Reg. F C T D

m asl ha m m mg/L µg/L mg/L µg/L mg/L mg/L mg/L µS/cm % ◦C ◦C

GaiO 1769 0.8 2.9 2.7 0.15 3.7 0.24 25.3 0.18 14.6 7.0 8.5 201.0 114 9.5 16.3 46.8 Do A
Zie 1799 3.0 15.1 5.0 0.14 7.6 0.15 26.7 0.10 22.5 1.6 8.2 219.8 107 6.7 13.7 21.5 Ls R
Seel 1809 0.4 5.4 5.4 0.59 7.9 0.12 31.5 0.10 23.8 1.0 8.7 134.2 93 12.4 14.9 79.3 Ls B
Eis 1827 0.7 3.9 3.9 0.24 1.1 0.21 23.3 0.36 16.0 3.6 8.2 192.7 96 6.4 10.4 247.6 Ma A
Dra 1874 5.3 20.7 10.3 0.30 4.0 0.19 19.6 0.10 26.8 3.1 8.6 157.7 97 4.9 11.9 79.9 Ls M
Eng 1876 3.0 17.3 10.4 0.04 4.7 0.59 27.0 0.31 19.8 7.2 8.2 235.6 89 4.9 11.1 14.4 Do A +
Bre 1903 1.5 6.2 6.2 0.37 6.6 0.12 14.0 0.10 26.7 2.8 8.6 150.6 90 4.6 11.4 58.5 Ls M
Stu 1921 3.0 5.1 5.1 0.25 7.7 0.12 19.6 0.10 23.3 1.6 8.8 126.0 112 12.4 16.7 35.4 Ls W

Lauf 2012 0.8 5.6 3.7 0.13 3.8 0.22 24.9 0.19 12.4 6.3 8.3 168.2 99 9.4 14.7 39.1 Do A
Rap 2047 2.3 7.8 5.0 0.04 9.2 0.17 15.9 0.23 21.2 9.3 8.6 205.1 101 11.0 15.6 6.5 Do/Ma A

Grub 2060 0.5 3.5 3.2 0.10 17.0 0.15 17.8 0.18 37.9 2.6 8.6 222.4 73 9.4 13.3 6.9 Ls R
SeeU 2224 2.4 1.7 1.4 0.07 2.5 0.25 21.4 0.99 19.8 9.1 8.8 208.6 113 16.1 17.0 35.7 Do/Ma L
Adl 2294 1.9 1.7 1.7 0.15 1.0 0.13 30.3 0.32 19.4 9.2 8.5 159.6 94 14.0 14.7 183.3 Do L +
Schi 2300 2.0 5.5 3.3 0.34 1.0 0.14 45.7 0.29 19.8 10.1 8.3 164.7 47 7.2 13.1 390.4 Do L

SeeM 2424 0.5 4.1 4.1 0.20 1.5 0.13 67.8 0.14 17.6 9.9 8.7 137.8 122 10.6 11.5 173.2 Do L
SeeO 2469 1.6 13.1 5.8 0.11 7.3 0.18 67.9 0.23 15.4 5.5 8.6 121.4 71 5.5 12.9 24.8 Do L
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2.2. Sampling and Laboratory Procedures

The 43 lakes were sampled twice during the ice-free period, once between June and
mid-August and once between August and November. Hence, 36 lakes were investigated in
2016 and seven lakes in 2017. On the first sampling date, lake bathymetry was determined
with an echo sounder (Lawrence HDS8, Oslo, Norway) and a buoy was subsequently
installed, fixed to a stone at the deepest point of each lake by a rope. Temperature loggers
were mounted on the rope, (Onset Pendant UA-001-64 HOBO, Bourne, MA, USA) 0.5 m
above the ground and 0.5 m below the water surface. To assess the temperature regime
and the mixing type of the lakes, the loggers were exposed in the lakes during most of the
ice-free period. Physical parameters (temperature, oxygen saturation, pH, and electrical
conductivity at 25 ◦C) were measured with a multiprobe (WTW 350, Weilheim, Germany)
in one-meter steps above the deepest point of each lake on both sampling dates. After
measuring the Secchi depth, 0.5 L of a mixed water sample was collected with a hose
sampler from the euphotic zone [61]. One half of the water sample was filtered (0.45 µm)
on-site and stored at 4 ◦C together with the unfiltered rest until further processing in
the laboratory. Another liter of water was taken from the euphotic zone with the hose
sampler and preserved with Lugol’s solution to analyze planktic diatom communities [62].
Periphytic diatom assemblages were recorded by scraping the diatom communities off
five stones, each taken at depths between 20 cm and 50 cm in the northern and southern
littoral zone of each lake, with a single-use toothbrush [63]. Out of all of the sampled lakes,
periphytic diatom samples could be obtained at 34 sites, while no stones were available at
nine sites. On the second sampling date, sediment cores were taken from the deepest point
of each lake with a gravity corer (Uwitec, Mondsee, Austria) to record the sedimentary
diatom communities from all 43 lakes [28].

All chemical analyses were carried out in the laboratory of the Limnological Research
Station Iffeldorf of the Technical University of Munich, Germany. Standard colorimetric
methods were applied to determine the concentrations of total phosphorus [64], nitrate-
N [65], ammonia-N [66], and silica (Nanocolor silica test, Macherey-Nagel, Düren, Ger-
many). The concentrations of major ions (calcium, magnesium, and sodium) were measured
using a cation chromatograph (Thermo Scientific, ICS-1100, Waltham, MA, USA).

Planktic diatom samples (1 L) were filtered with 0.45-µm syringe filters and the residue
on the filters was further processed [67]. The uppermost centimeter of each sediment core
was used to assess the sedimentary diatom assemblages. The residue on the filters of the
planktic samples, the sediment samples, and the littoral samples were processed in the
same way: The diatoms were prepared according to van der Werff and Macan [68]. To
analyze the composition of the diatom samples, 500 valves were identified in each case
using a Leica DNM microscope (Wetzlar, Germany) at 1000× magnification. Eleven of
the 43 planktic samples were excluded from the data analysis because they contained an
insufficient number of valves. Taxa were counted at the species level and, if possible, at
the subspecies level. Individuals that could not be identified were given working names.
Standard literature was used for identification [69–76].

2.3. Data Analysis

Since periphytic diatom assemblages can vary significantly within a lake [77,78],
littoral samples from the northern and southern shore of each lake were pooled to obtain a
more representative indication of the periphytic diatom assemblage. All statistical analyses
were computed for the sedimentary data set (N = 43), the littoral data set (N = 34), and the
planktic data set (N = 32) analogously.

The following parameters were computed to capture the conservation value of each
sample using the current German Red List for diatoms [41]. Community indices were
calculated based on the taxa with a status higher than “not in danger/insufficient data”
(RLD), overall species richness per sample (N), overall abundance per sample (Ab), and
overall abundance of all RLD (AbRL):
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N_rl = sum of RLD
share_rl = N_rl/N
rel_share_rl = AbRL/Ab
weight_rl = rel_share_rl weighted by Red List class

Diatoms were assigned weighting factors ranging from 1 to 7, according to the
threat category ranging from “warning list” to “threatened by extinction”, to calculate
the weight_rl. Environmental predictor variables were selected based on their variance
inflation factors (VIF). These were calculated with the “vif” function from the R package
“usdm” [79]. To reduce multicollinearity among environmental predictors, only variables
with VIFs less than five were included for each individual dataset. Shannon diversity
was calculated within the “vegan” [80] package in R. The uniqueness of diatom assem-
blages was calculated as the local contribution to beta diversity (LCBD) at each site for
Hellinger-transformed abundance data using the R package “beta.part” [45]. This approach
is neutral with regard to ecological prerequisites (e.g., α and γ diversity) and allows the
mathematically correct identification of assemblages’ uniqueness within a larger metacom-
munity. The total variance of a community matrix (Var(Y)) equals the overall β diversity
(BDTotal). This value is the total sum of squares (SSTotal; the sum of squared deviation
for all sites and species from the mean) divided by nSites—1. The LCBD value for each
sampling unit is derived by dividing the sum of squares of each site (SSi) by the total
sum of squares (SSTotal). Accordingly, large LCBD values indicate a high contribution of a
site to the overall β diversity. LCBD was partitioned in the component reflecting species
substitution (Replacement; “Repl”) and the component reflecting species loss (Nestedness;
“Nest”) [81]. The replacement component was the main contribution to BDtotal for all
datasets (sediment: 99.5%, BDtotal_sed = 0.385; littoral: 99.6% BDtotal_lit = 0.282; plankton:
97.0%, BDtotal_pla = 0.359).

In order to test and visually verify the strength of the correlation between RL indices
and the selected environmental and community-based predictor variables, a correlation
plot was generated using the “corrplot” package in R [82]. To account for multiple testing,
p-values were Bonferroni-corrected a priori. Previous work revealed pure spatial effects
and shared effects of environmental and spatial variables on diatom communities within
the lake set [83]. Therefore, the spatial influence on all response and predictor variables
was assessed by calculating Moran’s I autocorrelation coefficient based on latitudes and
longitudes recorded for each lake using the R package “ape” [84].

The normal distribution of response variables was tested by the Shapiro–Wilk test in
the “vegan” package. Linear models (hereafter called “LMs”) were applied for normally
distributed variables that were spatially structured according to Moran’s I p-values. The
spatial structure of model residuals was tested with the “lm.morantest” function from
the “spdep” package [85]. No spatial structure of the residuals was detected in any of the
computed LMs. If variables had a non-normal distribution and no spatial autocorrelation
was indicated, generalized linear models (hereafter called “GLMs”) were applied within
the “vegan” package. Diagnostic plots were checked for structures within model residuals.
Generalized additive models (hereafter called “GAMs”) were developed, and spatial
predictors were included (longitude and latitude) within the package “mgcv” [86] in cases
of non-normal distributed and spatially autocorrelated variables. Variables were fitted with
smoothers and k values and regression splines were fitted to increase model suitability.
Non-significant variables were excluded until each predictor was significant. Reduced and
original models were compared based on Akaike information criterion (AIC) [87] and the
most parsimonious model was selected.

3. Results

Briefly, 560 diatom taxa were recorded across the three diatom assemblages of the
43-lake dataset and 360 taxa (64%) were on the German diatom RL. Of these, 184 (51%)
were assigned a threat status ranging from “warning list” to “threatened by extinction”.
Across the subsets, 276, 240, and 139 taxa were on the RL for sedimentary, littoral, and
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planktic assemblages, respectively. Of these 135, 122 and 64 species were assigned a threat
status for sedimentary, littoral, and planktic assemblages, respectively (Figure S2).

Significant and ecologically meaningful correlations between RL indices and predictor
variables were revealed by Pearson correlations (Figure 2). TP was significantly and
negatively correlated with rel_share_rl for all assemblages. Both variables were spatially
structured (Moran’s p < 0.05, Figure 3a), but no such structure was found in the LM
residuals (p = 0.175, Table 2), suggesting that the spatial structure of both variables was
congruent. LMs confirmed the correlation between TP and rel_share_rl for sedimentary
diatoms (p = 0.002, R2 = 0.20, Figure 4a, Table 2).

For littoral diatoms, the correlation of TP with rel_share_rl became non-significant in
the LM when Secchi depth was included (pTP = 0.182; psecchi = 0.029, Table 2), probably
reflecting the intercorrelation of both variables as predictors of the lake’s trophic state. After
excluding TP, the LM confirmed the positive correlation of rel_share_rl and Secchi depth
for the littoral assemblages (p = 0.009, R2adj = 0.17, Figure 4b, Table 2). Both variables were
spatially structured (Moran’s p < 0.05, Figure 3b) but model residuals were not, indicating
congruence of their distribution in space (p = 0.607, Table 2). TP was not correlated with
any other variable in the dataset and Secchi depth was only correlated with August bottom
temperature, which was not significantly correlated with any other variable (Figure 2). The
significant correlation of TP and rel_share_rl within planktic assemblages turned out to
be mediated by the longitude of the sampled lakes (plon < 0.001, plat = 0.117, pTP = 0.327),
and the final model incorporated longitude as the sole predictor (p < 0.001, R2 = 0.34)
(Table 2, Figure 4c). Accordingly, a marked increase of rel_share_rl could be observed in the
“Allgäu” and “Lechtaler Alpen” lakes in the western part of the study region (Figure 4c, left
of the vertical dashed line; see Table 1 for background information). Finally, magnesium
content was positively correlated with RL indices for all datasets, and it was intercorrelated
with conductivity in the sedimentary dataset and with TP in the planktic dataset (p < 0.05)
(Figures 2 and S1).

Table 2. A significant correlation was detected based on linear regression models (LMs) between the
share of RL species (share_rl) and total phosphorous (TP) and Secchi depth (secchi) for sedimentary
and littoral assemblages, respectively. For planktic assemblages, share_rl significantly decreased with
longitude (lon) based on GAMs. p-values for the Moran-test of LMs residuals and AIC values are
given where relevant. Within GAMs, inclusion of smoothers is indicated by placing the predictor
within “s()”.

Response
Share_rl

pShapiro Model
Type

Predictor pmodel R2adj Res. Df plm.moran AIC

Sediment 0.098 LM TP 0.002 0.20 41 0.175
Littoral 0.931 LM TP 0.056 0.08 32 0.908

LM TP + secchi TP: 0.182 secchi: 0.029 0.19 31 0.923
LM secchi 0.009 0.17 32 0.607

Plankton 0.02 GAM s(lon) +
s(lat) +
s(TP)

lon: <0.001
lat: 0.117
TP: 0.327

0.38 19 −38.4

GAM s(lon) <0.001 0.34 27 −41.3
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Figure 2. Correlations plots for the (a) sedimentary (N = 43), (b) littoral (N = 34) and (c) planktic
(N = 32) diatom dataset. Abbreviations of environmental parameters are explained in Table S1.
Asterisks: *** =̂ p value < 0.001; ** =̂ p value < 0.01; * =̂ p value < 0.05. Point color refers to the
Pearson correlation coefficient.
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Figure 3. Moran’s I p-values for RL indices, assemblage indices and environmental variables plotted
in increasing order for the (a) sedimentary (N = 43), (b) littoral (N = 34) and (c) planktic (N = 32)
dataset. The horizontal dashed line marks a p-value of 0.05, with lower values indicating spatial
autocorrelation based on longitudes and latitudes. Abbreviations of environmental parameters are
explained in Table S1.
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   Figure 4. A significant correlation was detected based on LMs between the share of RL species
(share_rl) and total phosphorous (TP) and Secchi depth (secchi) for (a) sedimentary and (b) littoral
assemblages, respectively. A significant decrease of share_rl with longitude (lon) was found for
planktic assemblages (c) based on GAMs.

GAMs and LMs confirmed the significant and positive correlation between species
richness and N_rl, as indicated by Pearson correlations for sedimentary diatoms (p < 0.001,
R2adj = 0.56) and littoral diatoms (p < 0.001, R2adj = 0.74), respectively (Table 3, Figure 5a,b).
Both variables were not spatially structured within the sedimentary dataset (Moran’s I
p > 0.05). No spatial structure was observed in the model residuals (p = 0.219) for the littoral
dataset, and GAMs revealed an increase of RL species richness (N_rl) for planktic diatoms,
with overall species richness and a negative correlation of N_rl with longitude (p < 0.001,
R2 = 0.81) (Table 3, Figure 5c).

Table 3. A significant correlation between the number of RL species (N_rl) and species richness was
detected for all assemblages based on LMs, GLMs, and GAMs. For planktic assemblages, longitude
(lon) was additionally correlated to N_rl. p-values for the Moran-test of the linear model residuals
and AIC values are given where relevant. If smoothers were included in GAMs, this is indicated by
placing the predictor within “s()”.

Response
N_rl

pShapiro Model
Type

Predictor pmodel R2adj Res. Df plm.moran AIC

Sediment <0.001 GLM species <0.001 0.56 41
Littoral 0.083 LM species <0.001 0.74 32 0.219
Plankton 0.092 GAM s(lon) +

s(lat) +
s(species)

lon: 0.008 lat: 0.826
species: <0.001

0.80 28 −63.00

GAM s(lon) +
s(species)

lon: <0.001 species:
<0.001

0.81 29 −63.02
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4 

 

   Figure 5. The number of Red List species (N_rl) increased with species richness for sedimentary (a),
littoral (b) and planktic (c) assemblages. Longitude (lon) was additionally negatively correlated to
N_rl for planktic assemblages. The color indicates the number of RL taxa.

A positive correlation of assemblage uniqueness (LCBD) and rel_share_rl was revealed
by GAMs for sedimentary diatoms (p = 0.049, R2 = 0.07). Omitting one outlier lake with
extremely high conductivities due to groundwater influence (SieG, Table 1), high LCBD
values resulted in an increasing and a decreasing branch of rel_share_rl values along the
LCBD gradient (Figure 6a). A common feature of five lakes of the lower branch (Bic SoW,
Tau, Laut, Fer) was that they are impacted by fish introduction and in three cases (SoW,
Laut and Fer) by huts, hotels, or restaurants on the shoreline. The negative relationship
between LCBD and rel_share_rl for planktic assemblages (p = 0.010, R2 = 0.18, Table 4,
Figure 6c) probably reflects the intercorrelation of LCBD with species richness (p < 0.001),
which in turn was highly correlated with rel_share_rl (p < 0.001, Figure 2). No significant
correlation of uniqueness and RL indices was found for the littoral diatoms (p > 0.05, Table 4,
Figure 6b).

Table 4. A significant correlation between the abundance share of RL species (rel_share_rl)
and the local contribution to β diversity (LCBD) was revealed by GAMs for sedimentary and
planktic assemblages.

Response
Rel_Share_rl

Model Type Predictor pmodel R2adj Res. Df

Sediment GAM LCBD 0.049 0.07 41
Littoral GAM LCBD 0.420 0.02 32
Plankton GAM LCBD 0.010 0.18 30
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Figure 6. The abundance share of RL species (rel_share_rl) increases with higher uniqueness (repre-
sented by the local contribution to β diversity, LCBD) for sedimentary (a) and decreases for planktic
assemblages (c), while no significant trend was found for littoral assemblages (b). The assumed trend
for unimpaired and impaired lakes is indicated by a dashed and dotted line respectively for the
sedimentary dataset. The dotted box indicates one outlier lake with a strong influence of groundwater
(SieG, Table 1).
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4. Discussion

This study revealed a high proportion and abundance of endangered diatoms in natu-
rally oligotrophic, fishless mountain lakes and underlined their vulnerability to eutrophi-
cation. This finding could be observed for sedimentary, littoral and planktic assemblages,
supporting the broad applicability of the German Red List (RL) for diatoms [41] and con-
firming previous research on the effects of eutrophication on mountain waters [88]. A new
approach was taken by comparing the uniqueness of assemblages and diatom RL indices.
Unique sedimentary assemblages revealed either pristine lakes with high abundances of RL
taxa or lakes with fish stocking and low RL species abundance. In turn, α diversity reflected
only RL richness, but not the share or abundance of RL taxa, thereby losing important
information on mountain lake conservation value.

4.1. Nutrients and the Share of Red List Diatoms

Previous research associated high numbers of RL diatom taxa with oligotrophic or
dystrophic freshwater habitats [49], reflecting the general rarity of these environments
in central and southern Europe [48]. In mountain regions such as the European Alps,
oligotrophic habitats are still abundant, but they are often threatened by eutrophication.
This is especially true of springs [89] and lakes [53]. Our results substantiate these find-
ings by revealing a negative correlation of the share of RL taxa with TP for sedimentary
assemblages. Moreover, a positive correlation between Secchi depth and RL share was
found for littoral assemblages. Both findings indicate the suppression of oligotraphentic
diatom taxa at higher trophic levels. In the lakes of our dataset, the elevated TP levels of
three subalpine lakes (Roe, Hoer, GruW; Table 1), which were surrounded by pastures,
are likely caused by intensive cattle herding. Strong trampling of the grass layer and
excrements near the lakes probably led to the observed eutrophication [19]. Another
important nutrient source includes mountain huts and touristic infrastructure, such as
hotels and restaurants [20,90,91], associated with four lakes in our dataset (Laut, Fer, Fun,
SoW; Table 1). Furthermore, damming can lead to soil mineralization, possibly leading to
the eutrophication of two subalpine lakes (GaiU, SoiN) in our dataset, while a dammed,
high-altitude lake (Adl) remained nutrient poor. This may be related to the thin soil layer
in the alpine region [92] and the consequently lower mineralization potential. In contrast
to previous research on RL diatoms in springs [49], the negative correlation of trophic
level and share of RL taxa was attributed to TP rather than nitrate. This difference may be
due to phosphate limitation of the study lakes, indicated by DIN/TP ratios above 3.4 [93]
(Table 1, range: 7–655). If nitrite had been measured as a further component of DIN in
addition to nitrate and ammonium, the N/P ratios would have been even higher. High
concentrations of inorganic nitrogen in mountain lakes are related to atmospheric dry and
wet deposition [94–96]. This atmospheric input may be less pronounced in springs due
to their smaller surface. Springs may therefore be nitrogen co-limited, causing stronger
responses to a shift in nitrate concentrations. Moreover, some of the studies that identified
nitrate as an important correlate of RL indices did not include TP measurements [97], which
may be autocorrelated with nitrate. Nevertheless, there is empirical evidence that elevated
nitrate levels caused by direct loadings are not always concomitant with an increase of
TP in springs [55]. Overall, our findings confirm the hypothesized negative correlation
between the RL share and the trophic state, while the number of RL taxa and abundance
were not correlated. Our conclusions are in line with those of previous work, namely
that mountain waters need to be better protected from human-induced nutrient inputs
to conserve rare diatom taxa and thereby sustain valuable habitats for a broader range of
biota. An unexpected observation was the positive correlation of magnesium (Mg) with
RL richness across all assemblages (Figure S1). Mg is known to influence diatom commu-
nity composition, e.g., in springs from the Apennines [55] or in petrifying springs from
Lower Belgium [98]. Moreover, some diatoms are closely bound to alkaline conditions with
high Mg contents, such as Achnanthidium dolomiticum Cantonati & Lange-Bertalot [54,76].
Generally, we found high Mg contents in lakes with dolomite-dominated catchments, corre-
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sponding to the chemical composition of dolomite (CaMg(CO3)2). This probably explains
the higher number of RL taxa in the western region, which is rich in lakes on dolomite
bedrock. Previous studies have found a correlation between geodiversity and biodiversity
of springs [55] and streams [99]. In our dataset, RL richness was positively correlated with
total diatom richness, suggesting a possible indirect effect of geodiversity on RL diatom
richness. These results indicate the need for further research on the potentially important
role of dolomite-dominated catchments for diatom α diversity.

4.2. Uniqueness as an Indicator of Fish Stocking

The correlation of RL species abundance and uniqueness was relatively weak for
sedimentary assemblages (R2 = 0.07). This does not necessarily indicate that the metric is of
no use for detecting rare and restricted taxa, but reflects the potential of LCBD to indicate
both pristine and disturbed sites: For fish in the Doubs river in France, the highly unique
sites were either undisturbed and environmentally unique and corresponded to headwaters
with steep slopes or impaired by eutrophication [45]. As hypothesized, a similar pattern
was found for the sedimentary diatom assemblages in our dataset. Whereas the abundance
share of RL taxa generally increased from low to moderate LCBD values, the most unique
sites showed pronounced differences with respect to RL abundances: a group of lakes that
is stocked with fish was highly unique, but had low RL abundances (<10%), while no direct
human pressures are known for two other highly unique lakes, reflected by very high RL
abundances (>40%). This picture is exemplified by the extreme difference in RL abundance
between the adjacent lakes SoE (rel_share_rl: 40.5%) and SoW (rel_share_rl: 0.7%), which
are only about 100 m apart. During hut construction in 1866 on the shore of SoW, the
lake was stocked with Salvelinus alpinus Linné. SoE was not stocked as it experiences
strong changes in water level of up to 9.5 m [20], probably contributing to its ecologi-
cal distinctness [100,101]. This suggests that ecological uniqueness is indicative within
sedimentary diatom assemblages for degraded or pristine and environmentally unique
sites. Importantly, not all pristine sites were unique, reflecting the context dependency
of the metric [47]: unaffected sites with low TP were frequent in our data set. Therefore,
only those lakes that were additionally distinct, e.g., due to water level fluctuations, had
unique assemblages. This is also reflected by one outlier lake (SieG) that has been strongly
influenced by groundwater and is very deep relative to its surface, probably leading to
lower RL abundances in the sedimentary assemblage.

Our results confirm the hypothesized potential of LCBD to identify assemblages
from pristine lake that are environmentally distinct and those from degraded lakes. Thus,
a sound interpretation of the LCBD index is only possible when backed up with basic
environmental data and information on human influence. If this is the case, it can be
helpful in detecting complex ecological interactions, such as the effects of fish stocking in
mountain lakes.

Degradation related to fish stocking may be due to either a change of the nutrient
cycle, i.e., bottom-up effects [23], top-down control due to the selective impact on plank-
tic and benthic invertebrates [102–105], or through a combination of both [106]. Of the
seven fish-stocked lakes in our dataset, only those lakes that are additionally impacted
by intensive tourism (“Lau”, “Fer”) were TP enriched. This indicates that predation is
mainly on zooplankton rather than zoobenthos for the stocked lakes, which would cause
the additional introduction of benthic nutrients into the open water [23], manifested in
elevated TP levels. Permanent fish stocking can contribute to the eutrophication of lakes
through the addition of biomass that will be recycled after the fish die [107]. Moreover,
Pastorino et al. [108] found more than 80% of terrestrial invertebrates in the stomach of
introduced Salvelinus fontinales Mitchill from an alpine mountain lake, possibly leading to
additional allochthonous biomass input. However, these processes should also be reflected
in the TP level, and thus appear of minor importance in the study lakes that are mainly
at lower elevations. Nonetheless, fish feeding on zooplankton also leads to a transfer of
nutrients to algae from previously inaccessible sources, i.e., nutrients stored within the zoo-
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plankton [109,110]. As a consequence, primary production will increase [23]. The observed
low RL abundances in the fish-stocked lakes may be due to this eutrophication effect, which
cannot be detected by TP measurements as the total phosphorous content in the pelagic
zone remains unchanged. The stocked lakes in our dataset commonly contained moderate
to high abundances of the benthic diatoms Staurosirella pinnata (Ehrenb.) D.M.Williams
and Round and Staurosira venter (Ehrenberg) Cleve & Moeller that are tolerant to low light
intensity (range of summed relative abundance: 4–53%) [111]. This indicates an enhanced
pelagic primary production leading to shading of the benthic environment. To enhance
the assessment of primary production, further research in stocked lakes should include
measurements of algal pigments such as chlorophyl a, which were found to be a strong
predictor of fish stocking effects on primary production [23].

The reason for the unique sedimentary diatom assemblages may be top-down con-
trol, i.e., the predation of planktivorous fish on zooplankton and consequently altered
feeding patterns on phytoplankton [112]. In oligotrophic systems, top-down control often
suppresses large zooplankton such as Daphnids [113,114] while it may promote predation-
resistant small zooplankton such as rotifers and cyclopid copepodes [53,113]. The abun-
dance of the zooplankton in turn depends on the trophic state, and a unimodal relationship
along the TP gradient was found for Daphnids [103]. Thus, cascading effects on the phyto-
plankton are complex and likely to be dependent on the trophic level. While most stud-
ies find an effect on phytoplankton species traits and assemblage composition [114,115]
due to the well-documented reduction in size of the zooplankton [104,114,116], the re-
sponse of phytoplankton biomass varies and is dependent on the trophic state of the
lakes [103,106,114,117]. The effect on species composition is indicated through the presence
of the planktic diatom Asterionella formosa Hassall in three of the stocked lakes (relative
abundance: 3–16%). This taxon is not edible by small zooplankton due to its large size
and formation of colonies [118,119]. In turn, the most characteristic feature was the high
planktic diatom proportion of small centrics (four lakes with > 50% centrics), a pattern
documented after the extirpation of large zooplankton [105]. Within our lake set, this
may be caused by enhanced nutrient recycling, which in turn may promote small centrics
such as Cyclotella comensis Grunow, coupled with a stable water stratification [120]. The
high share of centrics and A. formosa Hassall probably explains the high uniqueness of
the stocked lakes as most other lakes had lower abundances of centrics. The only stocked
lake with low LCBD values had a low share of centrics (Eng, 3% of centrics). Within this
alpine lake, low water temperatures and low lake productivity may lead to low fish-density,
enabling the coexistence of large zooplankton with fish [121]. Moreover, weaker top-down
control may be due to the naturally low density of zooplankton [106] in ultraoligotrophic
lakes, possibly leading to the previously observed feeding of fish on terrestrial insects that
settle on the water surface [103,106,108,114,117]. It remains to be seen whether this possible
eutrophication effect will turn the tide for primary producers in this lake, especially since
secondary effects through more stable lake stratification at higher water temperatures may
come into play [120]. To conclude, the response of the sedimentary diatom assemblages to
fish stocking in our dataset may be triggered by both altered nutrient cycling and top-down
effects. The change of nutrient cycling may lead to bottom-up effects that are hypothesized
to interact with the top-down control of fish [106,122].

Unexpectedly, the top-down control in stocked lakes was not reflected by a high
LCBD and low RL abundance of planktic samples. This may be due to the more volatile
character of the lake plankton: short-term interference to the planktic assemblages through
the introduction of benthic diatoms is frequent and depends on the mixing state [123,124].
The high rates of benthics in some samples prove a high importance of this process in
our dataset. Moreover, the strength of fish-mediated pelagic nutrient recycling also varies
during the growing season, with the highest rates occurring during summer, i.e., along with
the highest water temperature [23]. Our sampling period lasted from June until November,
inherently producing temporal variability within the planktic and littoral datasets. Another
reason may be that only five true planktic species had a threat status, making inferences



Diversity 2022, 14, 389 17 of 23

based on planktic assemblages more difficult. Thus, the uniqueness of sedimentary diatom
samples can be used more reliably to detect effects of fish stocking due to their time
integration of environmental conditions [83,125]. Therefore, littoral diatom samples did
not track fish-induced processes in our dataset either. Apart from the temporal variability,
this may be due to stronger predation of fish on zooplankton than on zoobenthos. As the
predation of zoobenthos increases with fish density [23], the response of littoral diatoms
will be more pronounced in eutrophic and low altitude lakes, especially if stocked with
bottom-orientated fish.

Overall, the results suggest that introduced fish have a severe impact on mountain
lakes in the study region, justifying a halt to further stocking and the eradication of
introduced fish, e.g., using gill nets [126]. The success of such measures has been seen
in the Italian Alps and northern America [126,127], where the natural trophic structure
reappeared only a few years after lakes became fishless, followed by a recolonization with
the original species [128]. Finally, the eradication of fish in naturally fishless lakes will
also help to restore associated assemblages outside the aquatic trophic pyramid, such as
herpetofauna, which has been impaired or even eradicated in stocked lakes [129–131], and
is one of the most threatened groups of animals [132,133].

4.3. Diatom Richness and Conservation Value

Diatom richness was positively correlated with RL richness in all assemblages, and it
was additionally negatively correlated with longitude for planktic assemblages. Differences
were detected in the impact of the fish-stocked lakes on the respective correlations. For
littoral diatoms, the variance of the regression was low, and the stocked lakes were close
to the linear regression line. On the other hand, RL richness within sedimentary diatoms
of stocked lakes was lower than would be expected by the linear regression model. This
suggests that in the regression of RL richness on species richness, the model coefficient,
i.e., the slope of the regression line, and the structure within the model residuals are
more informative for sedimentary than for littoral assemblages. This may indicate the
conservation value of a lake. However, the hypothesized logarithmic correlation was
not detected for any of the assemblages, probably because TP was not correlated with
total species richness in our dataset. Therefore, the correlation of RL richness and species
richness appears to be a rather weak metric of eutrophication of mountain lakes. As for
habitat quality, the share of RL taxa was the only metric to track lake eutrophication. Thus,
species richness is also unable to exploit the full potential of the diatom Red List, namely
detecting rare habitats [48], as it was not correlated to the share of RL taxa. Preserving a high
number of RL species is sometimes used as a stand-alone conservation objective and species
richness can be used to assess high numbers of RL species in our dataset. However, this is
probably not the most efficient way to sustain assemblages of rare taxa in the long run, as
overall species richness was not significantly correlated with the abundance of RL species in
sedimentary and littoral assemblages. A species is probably more likely to become extinct
with a smaller population size, due to the pronounced effects of ecological drift [134,135].
Instead, the combination of species richness and uniqueness is suggested, both of which
are complementary components of the assemblages RL status, i.e., RL richness and RL
abundance.

5. Conclusions

This study substantiates the high conservation value of mountain lakes as documented
by a high number, share, and abundance of endangered diatom taxa. The ecological vulner-
ability of the studied lakes in light of eutrophication and fish stocking was demonstrated
through decreased shares and abundances of Red List taxa respectively. It is likely that
entire lake ecosystems may be altered through the effects of eutrophication, due to external
sources and top-down control as well as a change of nutrient cycling through introduced
fish. This necessitates restoration measures, such as a stop to fish stocking, lake fencing, a
decrease of cattle densities, and mitigation of infrastructure impacts. The results call for the
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better inclusion of small mountain lakes within legal frameworks such as the European
Water Framework Directive. Moreover, our findings suggest the broad applicability of
diatoms as bioindicators. Their power to identify endangered freshwater habitats and
threats to their biodiversity significantly enhanced by consideration of regional Red Lists
of diatoms. It is important to calculate the share of Red List taxa and their abundance
per sample as these parameters provide important information on impairments and the
conservation value of lakes, compared to the sheer richness of Red List taxa. From a me-
thodical point of view, diatom-based biomonitoring should include sedimentary samples
wherever feasible, as the temporal integration of environmental conditions makes them
the most robust indicators of eutrophication or fish stocking. Further research may reveal
whether multiple sampling of the littoral and pelagic zone leads to converging results
between both methods. Finally, diatom α diversity and assemblage uniqueness, i.e., the
local contribution to β diversity, were successfully applied to assess the calculated Red
List indices. Both components of species diversity contribute complementary information
about the conservation value of aquatic ecosystems. At least basic information regarding
human disturbance and environmental conditions is necessary for a sound interpretation
of assemblage uniqueness.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/d14050389/s1, Table S1: Average values and variation of the
assessed environmental parameters; Figure S1: The number of RL species (N_rl) increases along the
magnesium (Mg) gradient for sedimentary (a) and (b) littoral assemblages; no significant relationship
was found for planktic assemblages (c). Model parameters are given for GAMs; Figure S2: The
number of diatom taxa according to their threat status within the German Red List (2018) is given
for (a) the complete data set, (b) sedimentary assemblages, (c) littoral assemblages, (d) planktic
assemblages and (e) true planktic assemblages.
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