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Abstract: Artificial neural networks have gained increasing importance in many fields, including
quantitative finance, due to their ability to identify, learn and regenerate non-linear relationships
between targets of investigation. We explore the potential of artificial neural networks in forecasting
financial crises with micro-, macroeconomic and financial factors. In this application of neural
networks, a huge amount of available input factors, but limited historical data, often leads to over-
parameterized and unstable models. Therefore, we develop an input variable reduction method
for model selection. With an iterative walk-forward forecasting and testing procedure, we create
out-of-sample predictions for crisis periods of the S&P 500 and demonstrate that the model selected
with our method outperforms a model with a set of input factors taken from the literature.

Keywords: early warning system; financial crisis; neural networks

1. Introduction

Recently, artificial neural networks have been widely and successfully employed in
solving classification and regression problems in finance and many other fields. One of
their main advantages is that they are able to capture complex, non-linear interactions (see,
e.g., [1]). This is what other traditional financial economic tools often fail to handle (see,
e.g., [2,3]). In this article, we are particularly interested in the potential of neural networks
for forecasting financial crises with micro-, macroeconomic and financial factors. To create
an early warning system based on neural networks for the stock market, many economic
and financial factors which could be used as input data are available. On the other hand,
the time frame on which such a model can be fitted is very limited. As a consequence, there
is the risk of over-parameterization and unstable models. These problems are mentioned
explicitly in [4,5]. As stock market investments are subject to high risk, and a huge amount
of money might be at stake, the reliability and robustness of forecasting models are crucial
features in early warning systems. To solve these problems, we develop an input variable
selection method and we test this approach using a walk-forward testing procedure based
on global and sequential estimations in an extending window. This procedure allows
us to extract a large part of the information from the input data set, while we still avoid
over-parameterized models.

With our results, we contribute to the literature on early warning systems for the stock
market and to the literature on the application of neural networks in financial time series
forecasts. Neural networks and deep learning models were successfully used in financial
modeling for various tasks (see, e.g., [1] or [6] for an overview). The applications include
the prediction of financial market movement directions (see [7]), the construction of optimal
portfolios (see [8]) and trading strategies (see [9]), predicting techniques for the equity
premium (see [2]) or exchange rates (see [10,11], as well as the quantification of enterprise
risk (see [12]) and the examination of risk management tools (see [13]).

In the area of early warning systems for stock market crises, existing approaches
include methods from machine learning and other areas. Among these are the pure
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identification of market crises based on Markov-switching models, as suggested by [14].
Extensions incorporate input variables to receive an appropriate forecast (see, e.g., [15]).
Using the Akaike information criterion (AIC), [15] selects a logistic regression model from
a larger set of input factors to forecast stock market regimes. A comprehensive overview of
various methods and publications for early warning systems can be found in [5]. These
approaches include machine learning, in particular neural networks. For example, [16]
presents a machine learning forecasting model for financial crises based on three input
factors for the forecast. However, the choice of the input factors is not based on an objective
method here.

As pointed out above and in the mentioned literature, we observe that neural networks
are well-suited to detect and depict non-linear relations between input data and time series
which shall be predicted. With this ability, the model is less subjective than a forecasting
model with the structure being defined by a human expert. Unfortunately, as the examples
show, achieving this objectivity is far more difficult when it comes to the selection of the
input variables itself. An objective variable selection process for a regression model is
presented in [15]. One common technique to reduce input factors in neural network models
is based on the output sensitivity (see e.g., [17,18]). The underlying idea is to remove input
factors which do not contribute much to the output. However, this creates, in particular
for financial data, the problem that variables which do not change much from one month
to another, but which might provide valuable information over an economic cycle (such
as key interest rates from central banks), or factors with a lower frequency of publication,
could be disregarded.

Faced with the described challenges of the application of neural networks for financial
time series analysis, we aim to demonstrate an efficient method of input factor reduction and
a rigorous testing mechanism. By pruning variables that have less explanatory significance
compared to others, we enable our neural network to avoid unfavorable local minima,
mitigate over-parameterization, get closer to the globally optimal points, and return a more
stable network (see, e.g., [17,19]). We begin by introducing the method for the determination
of the financial crises for the S&P 500 index in Section 2. Afterwards, we present the whole
set of micro-, macroeconomic and financial input factors in Section 3, to which we apply
our input factor reduction method. The architecture of the neural networks we use and
our input factor reduction method, are introduced in Section 4. In Section 5, we apply this
method to select a subset of the input factors (from Section 3) to forecast crisis states (as
introduced in Section 2). The chosen models are tested using a walk-forward testing of
out-of-sample predictions in Section 6. We conclude in Section 7.

2. Determination of Financial Crises

Most current neural network approaches to financial prediction problems aim at
predicting price movements, either from historical prices, or based on a set of variables
(see [4]). However, future market prices are difficult to predict from the history. Moreover,
price predictions are not equal to investment decisions, indicating that translating price
predictions into investment solutions requires an additional manual layer (see [9] for more
details). On the contrary, an accurate prediction of economic states based on the financial
time series not only serves as a direct signal for the market participants, but can also be
easily transmitted to investment strategies.

We follow a numerical and heuristic procedure proposed in [20] to determine economic
crisis states based on a stock index. This method is also used in [21]. The authors of [22]
apply a different method and state that it leads to similar results as the method from [20].
The parameters which we use as thresholds are also taken from [20]. We found that the
method is robust with respect to changes in the parameters of plus or minus 2%.

First, we divide the time series of all daily observations of the stock index (B1, . . . , BT)
in blocks separated by days on which the respective stock index reaches a half-year high.
A half-year is defined to be 120 days or 26 weeks. This set of all days reaching half-year
highs, i.e., 26 week highs,
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26wh := {t ∈ {120, . . . , T} : Bt = max{Bt−119, . . . , Bt}}. (1)

Second, we screen each period between two elements of 26wh, i.e., the interval
[26whi, 26whi+1], for a possible crisis. A crisis day between two 26-week-highs represents a
minimum loss of 20% relative to the stock index at the beginning of this period. The set of
core crisis days in the interval [26whi, 26whi+1] is correspondingly defined as:

CCDi = {t ∈ {26whi, . . . , 26whi+1} : Bt/B26whi
≤ 0.8}. (2)

There are two possible calculation results: CCDi = ∅ or CCDi 6= ∅:

1. If CCDi = ∅, we move on to the next interval [26whi+1, 26whi+2] and repeat (2) to
obtain the next possible set of core crisis days CCDi+1.

2. If CCDi 6= ∅, we say that there is a crisis in this interval. Note that the existence of
core crisis days by itself does not define the crisis period.

To determine the crisis period in this interval, we further define the starting and end
days. We set the starting day of the crisis as the last day on which the 10% loss level relative
to the stock index at 26whi is reached, i.e.,

tStart = 1 + max {t ∈ {26whi, . . . , CCDi[1]} : Bt/B26whi
> 0.9}, (3)

where CCDi[1] refers to the first day in the i-th set of core crisis dates CCDi.
For the end day of a crisis, we first denote tLow as the day of the lowest index value

before the next 26 week high is reached, i.e.,

tLow = min {t ∈ {26whi, . . . , 26whi+1} : Bt = min {B26whi
, . . . , B26whi+1

}}. (4)

In normal cases, the end day of the crisis is tLow, i.e., tEnd = tLow. However, if a stock
market upswing after the lowest index value is followed by a new downturn, we extend
the crisis period if the new downturn is at least 10% below the upswing’s highest value.
The crisis is extended to the day of the lowest index value of the new downturn tDown.

Two days are required for the determination of tDown, namely the latest possible
starting day of the new 10% downturn, tDownStart, and consequently the latest possible end
day of this downturn, tDownEnd. These two days are defined as follows:

tDownEnd = max {t ∈ {tLow, . . . , 26whi+1} :

∃ t̃ ∈ {tLow, . . . , t} : Bt/Bt̃ ≤ 0.9}.
(5)

tDownStart = max {t ∈ {tLow, . . . , tDownEnd : BtDownEnd /Bt ≤ 0.9}}. (6)

Then, tDown will be defined as:

tDown = min {t ∈ {tDownStart, . . . , tDownEnd} :

Bt = min {BtDownStart , . . . , BtDownEnd}}.
(7)

We examine the data with Equations (4)–(7) for each crisis period to determine whether
such exception exists and tDown is defined. If so, tEnd = tDown. Otherwise, as mentioned
before, tEnd = tLow.

In our application, the examined index time series consists of the daily closing prices
of the S&P 500 index from 1 January 1971 to 31 May 2021. The S&P 500 index and the
determined crisis periods based on the described method are shown in Figure 1. Specifically,
six crisis periods are identified: 20 November 1973 to 6 December 1974 (1973 oil crisis), 24
August 1981 to 12 August 1982 (early 1980s recession), 15 October 1987 to 4 December 1987
(Black Monday), 12 December 2000 to 11 March 2003 (burst of the dot-com bubble), 21 May
2008 to9 March 2009 (global financial crisis) and 5 March 2020 to 23 March 2020 (COVID-19
crisis). The identified crisis periods match the crises recognized universally by economists
and the public and are considered a reasonable representation of the true crisis periods.
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Figure 1. S & P 500 Daily Closing Price and Identified Crisis Periods.

We further transform the crisis days into a parameter for the determination of the crisis
months, as many of the input factors we use to train our neural networks are published
monthly. We define a month to be in crisis if at least half of the business days in this month
are identified as crisis dates.

In the end, out of the 605 observed months, we identify 62 crisis months, which are:
December 1973 to November 1974 (12 months), September 1981 to July 1982 (11 months),
October 1987 to November 1987 (2 months), December 2000 to February 2003 (27 months),
and June 2008 to February 2009 (9 months) and March 2020 (1 month). They represent
10.25% of the total observed months. Together with the remaining 543 non-crisis months,
they constitute our targeted time series for the forecast.

3. The Economic and Financial Input Factors

Our aim is to build neural networks that use a set of input factors from different
economic and financial categories to make one-month-ahead forecasts for the economic
states. We achieve this by mapping the monthly data of the input factors to the economic
states in the next month. Ideally, we obtain neural networks that can identify the hidden
structure of the data as well as the underlying relationship between the factors and the
economic states, which then provide reliable one-month-ahead forecasts when we include
new data in the future.

Our original list, which contains 25 micro- and macroeconomic and financial factors, is
an adapted version of the one used in [15] covering the period from December 1970 to April
2021. Based on standard stationarity and correlation checks, we make a few adjustments to
the data, e.g., using the relative change of a factor or differences between two factors instead
of the original values. In the end, we develop the list comprised of 25 input factors shown
in Table 1. Last, but not least, to ensure efficient training, we take the min-max standardized
values of these series, which are scaled into the range between 0 and 1 (see [23]).
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Table 1. Complete Variable List Before Input Factor Reduction (see Appendix A, Table A1 for the
data sources).

Abbreviation Variable Description

BAA-AAA Difference: Moody’s Seasoned Baa vs. AAA Corporate Bond Yield
CPIAUCSL Change Relative change of the Consumer Price Index for All Urban Consumers: All Items
FEDFUNDS Effective Federal Funds Rate
GS5-FEDFUNDS Difference: 5-Year Treasury Constant Maturity Rate vs. Effective Federal Funds Rate
GS10-FEDFUNDS Difference: 10-Year Treasury Constant Maturity Rate vs. Effective Federal Funds Rate
HOUST Housing Starts: Total: New Privately Owned Housing Units Started
INDPRO Change Relative change of the Industrial Production Index
M1NS Change Relative change of the M1 Money Stock
M2NS Change Relative change of the M2 Money Stock
OECD CLI Composite leading indicator for OECD + 6 major non-member economies
PAYEMS Change Relative change of the All Employees: Total Nonfarm Payrolls
PMI ISM Manufacturing: PMI Composite Index
PPIACO Change Relative change of the Producer Price Index for All Commodities
PSAVERT Personal Saving Rate
TCU Capacity Utilization: Total Industry
TOTALSL Change Relative change of the Total Consumer Credit Owned and Securitized, Outstanding
TRESEGUSM052N Change Relative change of the Total Reserves excluding Gold for United States
UMCSENT University of Michigan: Consumer Sentiment
UNRATE Civilian Unemployment Rate
VOLATILITY Historical 20-day volatility of the S&P 500
W823RC1 Change Relative change of government social benefits to persons
WTISPLC Change Relative change of the Spot Crude Oil Price: West Texas Intermediate (WTI)
GDP Quarterly Change Relative quarterly change of the Gross Domestic Product
GFDEBTN Change Relative change of the Federal Debt: Total Public Debt
EURO-DOLLAR Euro to US Dollar exchange rate

4. Model Building with Neural Networks

With the time series of the economic and financial factors, as well as the determined
crisis months in hand, we build our forecast models comprised of multiple applications of
neural networks. These models use the monthly economic and financial factors as input
and the one-month-ahead economic states as output. Where monthly data is not available,
or there is a time lag in publication, we consider this by only using data which was already
available at the beginning of the corresponding forecasting period. This means we only
use data which was already available at the beginning of the period for each forecast. On
the one hand, it is our aim to select a model which captures the most important economic
aspects. On the other hand, we want to reduce the total number of input factors from the
data set to avoid overfitting. With 24 variables under consideration, there are, for example,
more than 1.9 million model combinations with 10 selected input factors. In addition,
one needs to determine an appropriate number of variables to be selected. Hence, it is
not practicable to check all possible combinations. To overcome this problem, we suggest
a successive input factor selection approach. In the following section, we introduce the
structure and the training process of the neural networks which we use. In Section 4.2, we
describe the input factor selection procedure.

4.1. Structure of the Neural Networks

Throughout the model-building process, we use feed-forward neural networks with
one input layer, one hidden layer with three neurons, and one output layer. Our neural
networks are built from a data set with the following specifications:

1. The monthly economic states, as defined and determined in Section 2, are our targeted
output variable Y . The realizations of Y form a vector Y = (yt)t=1,...,T . We conduct a
binary classification, so Y only takes the values 0 and 1. Furthermore, we have T = 605
months for the total data set. For the walk-forward forecasting and testing, we train
neural networks for different values of T, i.e., also for shorter periods.

2. The monthly transformed values of the input factors, as listed in Table 1, are our
input variables X . The realizations of X form a matrix X = (Xn)n=1,...,N , where
Xn = (xn,t)t=1,...,T , n = 1, . . . , N are the input factors given to the neural network to
train. Within our model-building approach, we train neural networks with various
values for N, i.e., for different subsets of our total set of input factors.

Figure 2 visualizes our neural networks at a time t (t = 1, . . . , T).
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Figure 2. Feed-forward neural network with one hidden layer.

The training of a feed-forward supervised neural network starts with forward-feeding.
Forward-feeding works in the direction input layer - hidden layer - output layer on the
training dataset (see, e.g., [23]). In this step, at each neuron of the hidden layer and the
output layer, propagation functions and activation functions are applied as follows:

1. At the hidden layer (h = 1):

(a) At neuron k1 (k1 = 1, . . . , 3), we obtain a representation P1
k1,t of the input values

via the propagation function for each t = 1, . . . , T:

P1
k1,t =

N

∑
n=1

w1
n,k1

xn,t , (8)

where w1
n,k1

is the weight between the n-th input variable and the k1-th neuron of
the hidden layer.

(b) Then, the activation function a1(·) at this layer, for which we take the rectified
linear unit function (ReLU), processes P1

k1,t and returns the output of the neuron k1:

P1,+
k1,t = a1(P1

k1,t + c1
k1
) = max{P1

k1,t + c1
k1

, 0} , (9)

where c1
k1

denotes the bias at the neuron k1.

2. At the output layer (h = 2), the outputs from the neurons of the previous hidden layer
are treated as the inputs for the respective propagation functions. Therefore:

(a) At the output neuron, the propagation function has the form:

P2
t =

3

∑
k1=1

w2
k1

P1,+
k1,t , (10)

where w2
k1

is the weight for the k1-th neuron of the hidden layer.
(b) Then, the sigmoid activation function a2(·) at this neuron processes P2

t and returns
the final output of this neuron:

ŷt = P2,+
t = a2(P2

t + c2) =
1

1 + e−(P2
t +c2)

. (11)
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After obtaining the final output at a time t (t = 1, . . . , T), we use a binary cross-entropy
loss function to measure the losses between the outputs from the neural network, (ŷt)t=1,...,T ,
and the real observation of the state-identifier, (yt)t=1,...,T . Since there are far more non-
crisis dates than crisis dates, our classification problem is not well-balanced and there is the
risk that the crisis dates are not sufficiently taken into account during the fitting process.
This is crucial as a crisis forecasting system should work in a reliable way, in particular in
times of crises. To overcome this problem, we use a weighted binary cross-entropy loss function
(see, e.g., [24]), defined as:

` = −
T

∑
t=1

[c1yt log(ŷt) + c0(1− yt) log(1− ŷt)],

where yt is either 0 or 1, indicating which state the real observation is in, and the output ŷt
from the neural network can be interpreted as the probability that this instance is predicted
to be in state 1. c0 and c1 are the weights. Setting a higher value for the weight of the
class to which less data points belong punishes missed classifications in this class. In our
case, we have less crisis dates (class 1) than non-crisis dates (class 0). In order to prevent
the non-crisis dates dominating the training, we set a higher weight for c1 than for c0.
We choose these weights to be inversely proportional to the number of data points of the
corresponding class in the data set (see, e.g., [25]).

We utilize the commonly used back-propagation to minimize the losses from the
weighted binary cross-entropy loss function. Back-propagation computes the gradient of
the loss function at each neuron with respect to its weights and biases, and then updates its
weights and biases by subtracting the product of the gradient and the learning rate γ from
them (see, e.g., [23]).

4.2. Input Factor Selection Process

Due to the huge number of ways to choose many input factors appropriately from the
whole set, we design the selection process in the following way:

1. Ranking of the input factors in a successive procedure.
2. Selecting the number of input factors in the final model.

4.2.1. Ranking of the Input Factors

There are two possible ways to design such a ranking procedure: either by starting
with a model which includes all input factors and by successively pruning variables which
contribute the least to the predictive power, or by starting with an empty model and adding
the most promising input factors successively. The method of reducing the model with all
input factors requires us to fit a very large model to start with. Given the limited horizon
of the time series, such a model might suffer from overfitting. Therefore, we proceed by
successively adding variables to a model, which is empty in the beginning. In addition,
this approach provides the possibility of starting with a set of predetermined input factors,
which is then extended. We use this property for an additional model build-up, in which
we start with the set of input factors from [15] and extend this set further. To create the
ranking of the input factors, we proceed in the following way: The set of the time series of
the input factors is given by {(X1,t)t=1,...,T , . . . , (XN,t)t=1,...,T}. For simplicity, we identify
the N input factors with the set of their indices {1, . . . , N} and denote the set of input
factors which is already chosen for the model by S ⊂ {1, . . . , N}. In the beginning, we set
S = ∅ for the approach which starts with an empty model. If we have predefined input
factors, which shall definitely be part of the final model, we set S to be the corresponding
subset of {1, . . . , N}. The ranking is then done in the following way:

1. For each i ∈ {1, . . . , N}\S, we fit a neural network with input factors S ∪ {i}.
2. The input factor which leads to the model with the lowest value of the loss function in

the previous step is added to S.
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These steps are repeated until S = {1, . . . , N}, i.e., until all input factors are added to
the model. The ranking of the input factors is then determined as the order in which the
factors were added.

While our approach avoids over-fitting due to too many input factors, it does not
completely solve the problem of running into local minima when training the neural
networks. Therefore, we propose to improve the credibility and stability of the model by
combining it with an ensemble method. This aggregation method often delivers improved
accuracy over an individual model and provides better insight into the dataset and the
problem (see, e.g., [26–28]). While ensemble methods were originally designed to aggregate
the output of separately trained models to form one unified prediction (see, e.g., [29]), we
adapt the concept to the task of variable selection. We include this idea by conducting the
selection process for several random seeds. The total ranking of an input factor is then the
average of its rankings across all seeds. We denote the total ranking of input factor Xn by
Φn. Then, we sort and re-index the input factors in ascending order, such that:

Φ1∗ ≤ Φ2∗ ≤ . . . ≤ ΦN∗ . (12)

Using this process, we have determined an order in which the input factors should be
added to the model, where the input factor with the lowest total ranking number is the one
to be added first. However, in the end, we want to obtain a model which does not include
all input factors. We deal with this aspect in the following section.

4.2.2. Selecting the Number of Input Factors in the Final Model

With the total ranking given, we need to determine a point in the ranking from which
we do not include the input factors with a worse ranking anymore.

We adapt the largest gap method for determining which input variables can be pruned
from the list. This method, suggested by [17], can prune a list of variables instead of a
single variable at a time. In [17], the authors first design several measures of sensitivity.
Afterwards, they propose the largest gap method based on the measures of sensitivity,
which paves the way for efficient variable-pruning in a large batch instead of an one-by-one
exclusion. We apply the method to our total rankings instead of sensitivities as in [17].

We define the measure of gap as:

Gn∗ =
Φn∗+1

Φn∗
, f or n∗ = 1∗, . . . , N∗ − 1, (13)

and find the largest gap:
GMAX = max

n∗=1∗ ,...,N∗−1
{Gn∗} (14)

as well as the input factor that presents the largest gap by:

n∗LG = n∗ such that Gn∗ = GMAX (15)

If the outputs for the several seeds at the beginning of the list are very similar (which
is a desired outcome), it could happen that the largest gap comes forth already in the first
factors on the sorted list (Equation (12)). As a result, we suggest that we take the input
factor which presents the largest gap, Gn∗LG

, upon fulfillment of the criterion that 6 ≤ n∗LG.
Alternatively, we would check the second largest gap, third largest gap etc. We define the
associated cut factor as n∗LG. We choose the minimum number of factors to be at least six
as [15] have identified six factors in their model.

5. Application of the Model Selection Procedure

We implement the described model selection process in this section and we test the
results in Section 6. A common split of the data set into a training, validation and test data
set would not suit the nature of time series forecasting, for which one would naturally use
all information available from the past to forecast one future period (see, e.g., [30]). As it is
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our aim to present the best model with respect to all information available, rather than an
outdated model, we train the models based on the whole data set (January 1971 until May
2021) for the input factor selection. Note that, with the limited number of data points (only
62 crisis months), a typical training/validation split would not be feasible. With the finally
chosen model, we perform out-of-sample forecasts on a rolling basis in Section 6. Using
these forecasts, we ensure that the presented model provides good results out-of-sample.
Therefore, this procedure is able to fulfill the purpose of the validation and testing. Each of
the neural networks is trained for 500 epochs, where we use batch sizes of 32 samples. This
means that we only take 32 randomly chosen time points into consideration at once when
calculating the gradient of the loss function and subsequently the updates of the weights
and biases. Repeating this procedure, while excluding the time points which were already
used, one epoch is over when every time point has been considered. In the next epoch, we
start the same process as before, beginning again with 32 random samples from the whole
time series.

We apply the whole model selection and testing approach to two examples. In the
first example, we start with an empty model, so we have S = ∅ initially. We denote this
model as Model 1. In this example, we use the variable list from Table 1 except for the term
spread of the 5-year government bonds versus the federal funds rate, as this factor is highly
correlated with the term spread of the 10-year government bonds versus the federal funds
rate. Including highly correlated input variable in the process creates the risk that one of
the factors gets a very good ranking and one of the factors gets a very bad ranking. If this
happens for some seeds, but for other seeds in reverse order, there is the possibility that
none of the factors is chosen as a final input factor though both factors individually would
be very good. For completeness, we mention that this is not a problem in our case. As
we see later, the term spread of the 10-year government bonds versus the federal funds
rate is not represented in the final model. In the second example, we use the input factors
determined by [15] as a starting set S. In this example, denoted as Model 2, we do not
exclude the term spread of the 5-year government bonds versus the federal funds rate as
both term spreads are among the factors proposed by [15]. The authors of [15] argue that
including both factors captures the concavity of the term structure rather than the steepness.
However, adding the numerically calculated convexity of the term structure as an input
factor could not improve the model in our case.

The order of the input factors with respect to their total rankings is determined based
on model build-ups with 10 seeds in each of the two models. This can be seen in Table 2 for
Model 1 and in Table 3 for Model 2. The associated gaps are also listed in the corresponding
tables. As expected, the largest gaps appear at the top of the tables. This means that the
corresponding factors are consistently on top of the list across the several seeds. In Table 2,
we can observe that the volatility is chosen as the most important factor by the models
from almost all seeds with an average rank of 1.1. However, the high numbers above 20
for the last input factors show that these input factors were consistently regarded as less
important. In total, the large variety of the total rankings shows that the random variable
selection process exhibits good stability. Based on our criterion to choose the largest gap
provided that at least six factors are included in the model, we choose n∗LG = 9, i.e., the
last variable which is included in the final model is the change in the federal government
debt (GFDEBTN Change). Thus, our final model consists of nine input factors. Performing
a principal component analysis, we discover that the first nine principal components
explain 89.7% of the total variance in the data set. This gives us an indication that choosing
nine variables enables us to capture the main characteristics of the data set well. The chosen
input factors reflect various aspects of the financial market and the economy. The volatility
(Volatility), the exchange rate (EURODOLLAR) and the federal funds rate (FEDFUNDS)
capture different areas of the financial market, namely the stock market, international
influences and the central bank policy. The product manufacturing index (PMI) reflects
the current situation of companies, while the consumer sentiment index (UMSCENT),
the personal savings rate (PSAVERT) and the housing starts (HOUST) incorporate the
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situation of the households. The unemployment rate (UNRATE) can be interpreted as a
factor, in which information on consumers and companies is included. Finally, the change
in the government debt (GFDEBTN Change) reflects governmental action. For Model 2,
we observe that the first two gaps are given by 2.12 and 1.28 (see Table 3). While the
largest gap occurs after the first variable, we decide to cut the factors in this model after
the second variable which is added (UMSCENT) for two reasons: first, such a large gap
does not occur later anymore, second, the model has eight input factors in total, which
makes it comparable to the model selected from Table 2, which has nine input factors. Later,
we use Model 2 primarily as a benchmark for Model 1. This means, we add two input
factors in Model 2—the unemployment rate (UNRATE) and the consumer sentiment index
(UMSCENT). While the model from [15] consists largely of financial market indicators,
these two additional factors add information on consumer sentiment (UMSCENT) and
the unemployment rate which includes information on consumers and companies. In the
following, we assess the quality of the out-of-sample predictions for these models. Model 1
represents our suggested input factor selection process. Model 2 serves as a benchmark as
it represents a model which is largely chosen by another input factor selection process and
is only extended by our approach.

Table 2. Selection with initial S = ∅ (Model 1).

Variable Average Ranking Gap to Next Factor

Volatility 1.1 4
PMI 4.4 1.05
EURODOLLAR 4.6 1
UMCSENT 4.6 1.3
UNRATE 5.8 1.31
FEDFUNDS 7.6 1.07
PSAVERT 8.1 1.05
HOUST 8.5 1.01
GFDEBTN Change 8.6 1.3
BAAMinusAAA 11.0 1.08
M3 Change 11.9 1.06
GS10MinusFEDFUNDS 12.6 1.09
TCU 13.7 1.03
PPIACO Change 14.1 1.04
TOTALSL Change 14.7 1.05
WTISPLC Change 15.5 1.02
PAYEMS Change 15.8 1.13
CPIAUCSL Change 17.8 1
W823RC1 Change 17.8 1.01
GPD Change 18.0 1.08
TRESEGUSM025N Change 19.4 1.04
INDPRO Change 20.2 1
OECD CLI 20.2 -

Table 3. Input factors from [15] in S initially (Model 2).

Variable Average Ranking Gap to Next Factor

BAAMinusAAA - -
FEDFUNDS - -
GS5MinusFEDFUNDS - -
GS10MinusFEDFUNDS - -
OECD CLI - -
Volatility - -
UNRATE 1.7 2.12
UMCSENT 3.6 1.28
EURODOLLAR 4.6 1.04
PSAVERT 4.8 1.15
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Table 3. Cont.

Variable Average Ranking Gap to Next Factor

GFDEBTN Change 5.5 1.16
HOUST 6.4 1.09
TCU 7.0 1.16
PMI 8.1 1.09
M3 Change 8.8 1.16
PPIACO Change 9.4 1.09
WTISPLC Change 10.2 1.18
TOTALSL Change 12.0 1.13
GPD Change 13.5 1.06
CPIAUCSL Change 14.3 1.05
W823RC1 Change 15.0 1.01
PAYEMS Change 15.1 1.02
TRESEGUSM025N Change 15.4 1.01
INDPRO Change 15.6 -

6. Walk-Forward Forecasting and Testing

Walk-forward forecasting and testing examines the model on a rolling-forward basis (see,
e.g., [30]). This method utilizes the historical data up to the observed time point to fit the
neural network at this time and tests the network’s forecasting performance (classification
accuracy) comparing the forecasting result for the next time point with the corresponding
crisis classification as determined in Section 2. When the observation of the next time point
becomes available, the same process is repeated with the same set of input factors and
a data set containing one extra observation. As our point of observation moves forward
in time, we continue to acquire more and more historical data to fit our most up-to-date
neural networks, as well as more testing results from the new single tests. In the end, we
investigate the testing results over time to analyze the performance of a series of neural
networks, which reinforces the check on the suitability and effectiveness of the neural
network series’ prescribed architecture and specifications.

Compared to fixed training/test splits, walk-forward testing suits the nature of a
time series prediction better, but it requires us to train the neural network at each time
point. Of course, the period for the walk-forward forecasting and testing should be set long
enough to cover different market situations, such as calm periods and crises. We choose
January 2000 as our starting point for the walk-forward forecasting and testing, meaning
that the first model is trained with the data up to December 1999 (denoted by tVstart) and
with the data available at the end of December; the first forecast which we create is the
one for January 2000. This division ensures that we have enough representations of both
classes for training and for testing the predictions, as it grants 25 crisis months for the first
model estimation and allows, in total, 37 crisis months for the subsequent testing up to
the end of the final tests. Then, we obtain 257 successively estimated neural networks,
each trained at time t = tVstart, . . . , (T − 1), and tested with the next available data at time
t = (tVstart + 1), . . . , T, respectively. This means that each forecast is an out-of-sample
prediction.

It is the core principle of walk-forward testing that, after each month, the model is
adjusted to incorporate the newest information. On the other hand, the new information
from adding only one month is very little compared to the rest of the information, as
the older time points stay the same. Therefore, we should expect only a small change
in the model from one month to another, while the change over a longer period can
be substantial. To incorporate the characteristics of this data structure, we propose a
modified walk-forward testing method that incorporates multiple global estimations as well as
sequential estimations. We conduct global estimations once every 48 months and sequential
estimations monthly between the global estimations. At each global estimation, we train
the model for 750 epochs, where we use a batch size of 32 time points. At each sequential
estimation, we train the model for 500 epochs. During the global estimations, the neural
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network is trained with neutral starting values for the parameters. Then, for the sequential
estimations, we take the parameters of the previous model as starting values and we train
the neural network based on the new input data set with the newest month added. After
each globally-estimated neural network is rebuilt and retrained, sequential estimations
follow until the next global estimation. The sequential estimations take advantage of the
previous results and the fact that the input data set does not change much each month,
whereas the global estimations prevent the model from being stuck in a local minimum,
which might become more unfavorable as the data set grows.

Again, we use an ensembling method: all trainings and predictions are performed for
10 different seeds. As an output, we receive, for each neural network, numbers between 0
and 1, which can be interpreted as probabilities for a crisis. We define that an ensemble
predicts a crisis if the average probability to be in the crisis state across all seeds is at
least 50%. The results of the predictions are listed in Table 4. We observe that Model 1
outperforms Model 2 with respect to all aspects. In particular, we see that Model 1 is good
at predicting crisis states accurately, as only 3 of the 37 crisis months are missed. For an
early warning system, the ability to predict times of crises is crucial. This is an aspect in
which Model 1 very significantly outperforms Model 2, which detects only 56.8% of the
crisis months. Model 1 succeeds here by recognizing 91.9% of the crisis months. On the
other hand, the classification of non-crisis states, for which our model succeeds in 90.5%
of the cases, does not suffer from its good crisis prediction properties. The strength of
our model selection approach becomes even clearer when we compare the results to a
walk-forward forecasting and testing approach for a model which uses the nine factors
with the worst ranking from Table 2. Such a model only predicts 19 of the 37 crisis months
correctly (51.4%) and achieves a total accuracy of 72.8%.

Table 4. Results of the walk-forward forecasting and testing.

Model 1 Model 2

Correct Forecasts 233/257 212/257
Total Test Accuracy 90.7% 82.5%

True Positive (TP) 34/37 21/37
False Positive (FP) 21/220 29/220

True Negative (TN) 199/220 191/220
False Negative (FN) 3/37 16/37

TP in % 91.9% 56.8%
TN in % 90.5% 86.8%

Figures 3 and 4 show the average predicted probability over all seeds for each point
in time. With the method from Section 2, three crises have been identified after year 2000,
which took place from December 2000 to February 2003, from June 2008 to February 2009
and in March 2020. We see that both models capture all of these crises. Moreover, we see
that the models also detect the end of the crises in a timely manner. In addition, we can
observe that both models also recognize smaller stock market setbacks which are not part
of these crisis periods and that, during these setbacks, the probability for a crisis is not
as high as during a major crisis. This is a remarkable feature as the models were neither
directly selected nor directly trained with respect to setbacks outside major crisis periods.
A possible reason for this behavior might be that patterns in financial markets are similar in
times of setbacks and in crisis periods, but they are observed to a smaller extent in smaller
setbacks. Comparing Figures 3 and 4, we see that both models exhibit similar behavior, but
Model 1 separates crisis times and non-crisis times in a more distinctive way.
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Figure 3. One-month-ahead predictions for Model 1.

Figure 4. One-month-ahead predictions for Model 2.

In total, the walk-forward testing shows that our model-building process has suc-
cessfully built neural networks that continuously make reliable out-of-sample forecasts
of financial crises. It also demonstrates an improvement of performance compared to a
traditional model selection method, represented by Model 2 in our example.

7. Conclusions

In this article, we explore the potential of neural networks for forecasting financial
crises with micro-, macroeconomic and financial factors. In order to minimize the input
dimension, we develop an input variable reduction method based on a successive selection
procedure combined with a largest gap analysis.

We demonstrate the model-building process with the forecast of crises determined
from the S&P 500 index. The walk-forward testing shows that our approach is able to create
models which make reliable out-of-sample, one-month-ahead forecasts. We also observe
that our model outperforms a model which consists largely of input factors taken from [15].
Our procedure overcomes different shortcomings which are typically attributed to stock
market early warning systems based on neural networks. Among these are the problems
of over-fitting and unstable models, as described in [2,3]. Although, we do not need to
select input factors based on expert knowledge, such as in [16], their model and ours have
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in common that various segments of the financial markets are considered as an input to
forecast a crisis. Furthermore, we present an alternative to a selection based on sensitivities
(see [17,18]). Our approach suits financial input data sets that include variables with only
minor changes from one period to another. but with larger effects over an economic cycle.
The common strength of the input sensitivity approach and our approach, however, is that
both procedures utilize a gap method to prune a whole set of variables at once.

With the research area on the applications of neural networks being so dynamic, several
questions for further research emerge. Possible extensions of our input factor reduction
approach to comprise more involved structures, such as recurrent neural networks, might
be interesting. Furthermore, while we focus on forecasting financial crises, the question
arises how our model can be used for specific tasks, such as risk and portfolio management
and the construction of quantitative investment strategies.
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Appendix A. Sources of the Input Factors

Table A1. Sources of the Input Factors. Accessed in 20 June 2021.

Input Factor Source

BAAMinusAAA https://fred.stlouisfed.org/series/AAA
https://fred.stlouisfed.org/series/BAA

CPIAUCSL https://fred.stlouisfed.org/series/CPIAUCSL
FEDMINNFRWG https://fred.stlouisfed.org/series/FEDMINNFRWG
FEDFUNDS https://fred.stlouisfed.org/series/FEDFUNDS
GS5 https://fred.stlouisfed.org/series/GS5
GS10 https://fred.stlouisfed.org/series/GS10
HOUST https://fred.stlouisfed.org/series/HOUST
INDPRO https://fred.stlouisfed.org/series/INDPRO
PMI https://www.quandl.com/data/ISM/MAN_PMI
M1NS https://fred.stlouisfed.org/series/M1NS
M2NS https://fred.stlouisfed.org/series/M2NS
PAYEMS https://fred.stlouisfed.org/series/PAYEMS
W823RC1 https://fred.stlouisfed.org/series/W823RC1
PPIACO https://fred.stlouisfed.org/series/PPIACO
PSAVERT https://fred.stlouisfed.org/series/PSAVERT
TCU https://fred.stlouisfed.org/series/TCU
TOTALSL https://fred.stlouisfed.org/series/TOTALSL
TRESEGUSM052N https://fred.stlouisfed.org/series/TRESEGUSM052N
UMCSENT https://fred.stlouisfed.org/series/UMCSENT
UNRATE https://fred.stlouisfed.org/series/UNRATE
WTISPLC https://fred.stlouisfed.org/series/WTISPLC
GDP https://fred.stlouisfed.org/series/GDP
GFDEBTN https://fred.stlouisfed.org/series/GFDEBTN
EUR-USD Datastream
OECD CLI Datastream
S & P 500 Datastream

https://fred.stlouisfed.org/series/AAA
https://fred.stlouisfed.org/series/BAA
https://fred.stlouisfed.org/series/CPIAUCSL
https://fred.stlouisfed.org/series/FEDMINNFRWG
https://fred.stlouisfed.org/series/FEDFUNDS
https://fred.stlouisfed.org/series/GS5
https://fred.stlouisfed.org/series/GS10
https://fred.stlouisfed.org/series/HOUST
https://fred.stlouisfed.org/series/INDPRO
https://www.quandl.com/data/ISM/MAN_PMI
https://fred.stlouisfed.org/series/M1NS
https://fred.stlouisfed.org/series/M2NS
https://fred.stlouisfed.org/series/PAYEMS
https://fred.stlouisfed.org/series/W823RC1
https://fred.stlouisfed.org/series/PPIACO
https://fred.stlouisfed.org/series/PSAVERT
https://fred.stlouisfed.org/series/TCU
https://fred.stlouisfed.org/series/TOTALSL
https://fred.stlouisfed.org/series/TRESEGUSM052N
https://fred.stlouisfed.org/series/UMCSENT
https://fred.stlouisfed.org/series/UNRATE
https://fred.stlouisfed.org/series/WTISPLC
https://fred.stlouisfed.org/series/GDP
https://fred.stlouisfed.org/series/GFDEBTN
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