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Abstract: In motion planning for autonomous racing, the challenge arises in planning smooth
trajectories close to the handling limits of the vehicle with a sufficient planning horizon. Graph-based
trajectory planning methods can find the global discrete-optimal solution, but they suffer from the
curse of dimensionality. Therefore, to achieve low computation times despite a long planning horizon,
coarse discretization and simple edges that are efficient to generate must be used. However, the
resulting rough trajectories cannot reach the handling limits of the vehicle and are also difficult to
track by the controller, which can lead to unstable driving behavior. In this paper, we show that the
initial edges connecting the vehicle’s estimated state with the actual graph are crucial for vehicle
stability and race performance. We therefore propose a sampling-based approach that relies on
jerk-optimal curves to generate these initial edges. The concept is introduced using a layer-based
graph, but it can be applied to other graph structures as well. We describe the integration of the curves
within the graph and the required adaptation to racing scenarios. Our approach enables stable driving
at the handling limits and fully autonomous operation on the race track. While simulations show
the comparison of our concept with an alternative approach based on uniform acceleration, we also
present experimental results of a dynamic overtake with speeds up to 74 m/s on a full-size vehicle.

Keywords: motion planning; autonomous vehicles; racing; sampling; dynamic obstacles

1. Introduction

Level 5 autonomous driving requires the safe handling of extreme situations in an un-
limited operational design domain (ODD). One approach to address this and advance
the state of the art is autonomous racing. Here, the autonomous driving software can
be evaluated in a limited safe ODD in highly dynamic environments, and the findings
can be generalized to road traffic scenarios [1]. While single-vehicle racing already poses
a challenge due to the high speeds involved, autonomous multi-vehicle driving requires
even more advanced planning concepts. The main challenges here are the high speeds and
the dynamic environment. To handle these, motion planning must meet the following three
requirements: First, trajectories close to the handling limits must be planned to fulfill time
optimality, and it is necessary that these trajectories can be easily tracked by the controller.
Second, a sufficiently long planning horizon is required to ensure recursive feasibility,
i.e., that a feasible solution can be found in the next planning cycle. Third, low computation
times are essential to allow fast reactions in the highly dynamic environment.

1.1. Related Work

In motion planning, a fundamental distinction is made between path and trajectory
planning. While a path contains only spatial information such as the position and heading
of the vehicle, a trajectory additionally takes into account temporal information such as
time, velocity and acceleration. A further distinction is made between global, local and
behavioral planning. We stick here to the definition in [2], which puts the terms in the
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context of racing. Global planning provides an optimal path or trajectory around the entire
race track without considering opposing vehicles, where the optimization objective can be
time [3,4] or geometric properties as curvature [5]. This optimal trajectory, also referred
to as racing line, is usually determined offline and serves as the target for local planning.
As an optional intermediate stage between global and local planning, there is behavioral
planning, in which high-level maneuvers are planned that can reduce the search space
of the local planning. Finally, the local planning itself takes into account the dynamic
environment and plans collision-free trajectories with a limited planning horizon. [2]

There are several options to classify the local planning methods. We follow the catego-
rization according to Paden et al. [6], which distinguishes between variational methods,
incremental search techniques and graph search methods. In variational methods, as used
in [7,8] for racing scenarios, a cost function is minimized by numerical optimization. It is
advantageous that the state space is not discretized, but due to the non-convex structure of
a local planning problem, the global optimal solution is not necessarily found. Therefore,
these methods are often used for the re-optimization of already planned rough trajecto-
ries [9]. Incremental search techniques gradually build a progressively finer graph through
sampling. These approaches are probabilistically complete, but computation time is in
general not bounded. Most of these methods are based on rapidly-exploring random trees
(RRT) [10], such as the RRT* [11] and RRTX [12]. For racing, an application is presented
in [13]. Graph search methods are used to perform a search for the optimal solution within
a graph, allowing them to find a global discrete-optimal solution also for non-convex prob-
lems. Often, these approaches are used only for path planning with a subsequent different
velocity planning approach, since adding temporal dimensions to the graph can lead to
the curse of dimensionality [14]. In order to achieve acceptable computation times despite
the additional temporal dimensions, it is necessary to use a coarse discretization and a
simplified edge structure. However, this is at the expense of the controller performance,
as it has difficulty tracking such coarse trajectories. In addition to the classical graphs
with a subsequent graph search, the sampling-based planning methods also belong to the
category of graph search methods. For example, Werling et al. [15] generate jerk-optimal
trajectories by sampling in the lateral and longitudinal direction. However, the resulting
quartic or quintic polynomials used there allow only for simple maneuvers, which prevent
complex movements with long planning horizons.

Stahl et al. [16] propose a graph-based local planning approach for racing scenarios.
They discretize the race track by spatial nodes arranged in layers and connect them by edges
generated out of cubic polynomials. However, since only the spatial domain is discretized,
it is a path planning approach that requires subsequent velocity planning. While this
path-velocity decomposition (PVD) is not critical for known static environments, it leads
to conservative behavior in dynamic environments. Especially at high speeds, a large
area of the race track would have to be blocked to avoid collisions. Planning based on
a spatio-temporal graph, where the path and velocity profile are generated simultaneously,
does not exhibit this conservative behavior.

McNaughton et al. [17] present an approach to extend a spatial graph with temporal
dimensions for trajectory planning on highways. Instead of discretizing the temporal
dimensions, they introduce intervals. Edges whose terminal states are in the same interval
are reduced to a single edge, limiting the number of edges that need to be generated, coun-
tering the curse of dimensionality. The edges of the graph are generated online by sampling
uniform accelerations on fixed paths, resulting in discontinuous acceleration profiles. As we
will show, the coarse structure of the resulting trajectories has a disadvantageous effect on
vehicle stability and race performance and thus requires adaptation to the racing scenario.

1.2. Contribution and Outline of the Paper

Graph-based trajectory planning approaches have the elementary advantage of be-
ing able to find the global discrete-optimal solution to non-convex problems. However,
approaches that use PVD can lead to conservative behavior in dynamic environments, so
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extending a spatial graph by the temporal dimensions is desirable. In order to achieve both
a sufficiently long planning horizon and a low computation time despite the added dimen-
sions, a coarse graph discretization and simple constructed edges that can be generated
efficiently must be chosen. For example, the approach in [17] to extend a spatial graph is
based on fixed paths with uniform acceleration profiles within an edge. The simplicity
of these edges allows for a long planning horizon, but it leads to coarse trajectories that
cannot reach the handling limits of the vehicle and are difficult to track accurately by the
controller, which can affect vehicle stability.

In this paper, we address this problem by treating the initial edges which connect
the estimated state of the vehicle to the actual graph differently from the remaining edges
within the graph. Since the initial edges correspond to the part of the planned trajectory that
is actually traversed, they are decisive for the race performance and stability of the vehicle.
The remaining edges are not affected and can have a simpler structure to obtain a long
planning horizon and low computation times. We propose a sampling-based approach
to generate the initial edges for racing scenarios, which are based analogously to [15] on
the idea of jerk-optimal curves. We introduce our approach using the graph structure
in [16], but it can also be applied to other graph structures by slight adjustment of the end
conditions. The main contributions of this paper lie in the following aspects:

1. The main idea is to treat the initial edges differently from the other edges in a spatio-
temporal graph. Our sampling-based approach for the generation of the initial edges
uses jerk-optimal curves, whose smoothness reduces lateral acceleration deflections
and thus increases vehicle stability, especially during braking maneuvers.

2. We propose a concept for the selection of the end conditions of the jerk-optimal curves
in order to adapt the initial edges to the racing scenario and thus get closer to the
handling limits of the vehicle. We introduce the concept using the already proposed
graph structure described in [16].

Our approach has been tested on a full-size race car within the software stack of the
TUM Autonomous Motorsports team at the events of Indy Autonomous Challenge (IAC)
and the Autonomous Challenge at CES (AC@CES), where both single- and two-vehicle
races have been held. At the IAC on October 2021, high-speed laps were accomplished
on the Indianapolis Motor Speedway (IMS) with an average speed of 60 m/s. In addition,
an evasion maneuver with static obstacles was performed at a speed of 30 m/s. At the
AC@CES in January 2022, overtaking maneuvers with speeds of up to 74 m/s were achieved
on the Las Vegas Motor Speedway (LVMS), which is shown in Figure 1.

Figure 1. The Dallara AV-21 race cars of the TUM Autonomous Motorsports and TII EuroRacing
team during the AC@CES on the LVMS.

The remainder of this paper is structured as follows: In Section 2.1, the Frenét frame
and the graph structure used here are introduced followed by the planning framework
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in which our concept is embedded in Section 2.2. The necessary identification of the start
state from which the initial edge generation starts is described in Section 2.3. The detailed
explanation of our proposed sampling-based approach for the generation of the initial
edges is given in Section 2.4, and the results are shown in Section 3. While the architecture
of the entire software stack used for the results is briefly described in Section 3.1, simulative
and experimental results are shown in Sections 3.2 and 3.3. Finally, the proposed approach
is discussed in Section 4, and future work is addressed.

2. Material and Methods
2.1. Frenét Frame and Graph Structure

Our concept is introduced using the spatial graph structure proposed in [16] that
covers the closed race track. However, it should be noted that our approach can be applied
to other graph structures with minor modifications. The graph used here is generated
along a reference line, which is defined as a sampled curve [xr(s), yr(s), θr(s), κr(s)] pa-
rameterized by arc length s. The position r(s) = (xr(s), yr(s)) of the reference line is given
in Cartesian coordinates. θr(s) is the angle for the corresponding arc length and κr(s) is the
curvature. The spatial graph is defined in the Frenét coordinate system, which is given by
the tangential and normal vector tr, nr along the reference line. In this frame, each point
p(s, d) on the race track can uniquely be described by the longitudinal progress s along the
reference line and the lateral distance d to it [18]:

p(s, d) = r(s) + d · nr(s) (1)

The spatial nodes of the graph are generated perpendicular to the reference line with
a fixed lateral distance at specific longitudinal progressions sm, where m denotes the index
of the discrete longitudinal coordinate (Figure 2a). We define a layer Lm as the set of
all spatial nodes with the same progress sm. A spatial node ni is defined by the vector
[xi, yi, θi] consisting of the individual position and heading, where i is the index of a spatial
node in the layer. The heading θi is determined by linear interpolation between the heading
of the according track boundary and the heading of a predefined racing line. In addition to
the layers on the race track, layers can also be generated in the pitlane to allow operation in
the pit. In case of a necessary entry or exit to or from the pitlane, it is possible to switch
between the race track and pitlane layers.

s d

Lm+1
Lm Lm−1

(a)

v

t

v

t

v

t

Initial edges E0

Start state

(b)
Figure 2. Used graph structure and initial edges. (a) Spatial nodes (black dots) of the graph are placed
on layers perpendicular to the reference line (dashed line). (b) Initial edges E0 connecting the start
state to the initial layer Linit in both the spatial and temporal dimensions.

In [16], the nodes of one layer are connected to those of the subsequent layer by spatial
edges, creating a closed graph around the race track and enabling path planning. Trajectory
planning requires an additional extension of the presented spatial graph by the temporal
dimension. However, since our concept is independent of these two steps, we do not
specify those further here.
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The resulting spatio-temporal graph can be used directly for trajectory planning when
the start state of the search matches a node of the graph. However, since in reality, the start
state will not be exactly on a node, it must be connected to the spatio-temporal graph before
the actual graph search. The initial edges E0 connecting the start state to the graph in both
spatial and temporal dimensions are exemplarily shown in Figure 2b. The layer chosen to
generate the initial edges E0 is referred to as the initial layer Linit and may change at each
planning cycle. Each initial edge, or alternatively a subset of them, can then be expanded
according to a subsequent graph search by generating the remaining edges E1.

2.2. Local Planning Framework

Trajectory planning based on a spatio-temporal graph consists of the three steps
shown in Figure 3. The first step is to identify the start state from which to start the
actual planning process. This does not necessarily have to be the estimated state of the
vehicle. Second, the start state must be connected to the used graph structure by creating
initial edges E0. Since the initial edges in general cover a longer time horizon than the
calculation time of a whole planning cycle, the initial edges are the part of the trajectory that
is actually traversed by the race car and thus are elementary for the vehicle stability and
race performance. Once the start state is connected to the graph, the third step is to search
the remaining graph for the optimal trajectory that satisfies the desired planning horizon.
For this step, a suitable cost function and an efficient graph search algorithm are necessary.

Start state
identification

Initial edge
generation

Graph
search

Estimated
state

Start
state

Initial
edges Trajectory

Figure 3. Framework of the proposed approach for the generation of the initial edges.

In this paper, we address the start state identification (Section 2.3) and in particular the
generation of the initial edges (Section 2.4) for racing scenarios. Our approach generates
several initial edges that allow stable driving close to the handling limits. However,
the initial edges cannot be used without the subsequent graph search, since they do not
satisfy the required planning horizon needed for recursive feasibility [16]. Therefore,
the approach proposed here requires a concept for a subsequent efficient graph search that
finds the solution within the non-convex environment while guaranteeing the required
planning horizon.

2.3. Start State Identification

The selection of the start state is crucial for the overall race performance. Since the
planned trajectory serves as the reference for the tracking controller, the estimated state
of the vehicle cannot be used directly as the start state. This would cause the reference
trajectory to follow the actual vehicle state, which would not allow a control error to
build up and thus provide no incentive for the controller to follow the trajectory. Instead,
as shown in Figure 4, we project the estimated state onto the previously planned trajectory,
allowing a control error to accumulate. However, since the vehicle moves during trajectory
generation, using the projected state as the start state would result in jumping trajectories
between consecutive planning cycles. To avoid this, similar to [19], a part of the previously
planned trajectory is kept constant, and the start state is placed at the end of this constant
part. We keep the part constant that corresponds to the expected computation time required
for the planning cycle, which allows for a continuous transition between two successively
planned trajectories.
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Projected state Start state

Estimated state

Previous trajectory

Constant part

Figure 4. The start state of the trajectory generation is determined by projecting the estimated state
onto the previously planned trajectory and keeping constant the part corresponding to the average
planning calculation time.

2.4. Initial Edge Generation

Our proposed concept for the generation of the initial edges is a sampling-based
approach that connects the start state to the spatio-temporal graph. The generation is
performed in the Frenét frame, so that at the beginning of a planning cycle, the Cartesian
coordinates of the start state have to be transformed into the Frenét coordinates. Using this
start state as initial conditions, we sample end conditions in the Frenét frame to produce
a set of lateral and longitudinal jerk-optimal curves. We rely on jerk-optimal curves since
jerky trajectories can excite neglected high-frequency dynamics in the tracking controller,
resulting in a decrease in vehicle stability. The end conditions of the curves must be chosen
to integrate the initial edges into the graph structure and achieve high performance for
racing scenarios. After the generation, the lateral and longitudinal curves are transformed
back into Cartesian coordinates to perform collision and feasibility checks.

2.4.1. Coordinate Transformation

A trajectory dependent on time t described in Cartesian coordinates consists of the po-
sition (x(t), y(t)), the heading θ(t), the curvature κ(t), the velocity v(t) and the acceleration
a(t). The needed transformation between Frenét coordinates and Cartesian coordinates
[s, ṡ, s̈, d, ḋ, d̈](t) → [x, y, θ, κ, v, a](t) is derived in [15] and can be stated in closed form.
By inverting these equations, the back transformation [x, y, θ, κ, v, a](t)→ [s, ṡ, s̈, d, ḋ, d̈](t)
can also be obtained in closed form with the exception of s. However, the longitudinal
position s can be determined by using a projection method as in [20]. Inaccuracies resulting
from the coordinate transformation can be neglected here due to the low curvatures of the
considered oval race tracks.

2.4.2. Jerk-Optimal Movement

We generate the lateral curves d(t) and the longitudinal curves s(t) each based on a
jerk-optimal movement. This reduces abrupt acceleration changes, which has a beneficial
effect on the system stability. Ref. [21] shows that the curve c(t), which minimizes the cost
functional

J(c(t)) =
1
2

∫ te

t0

...
c 2(t)dt (2)

and satisfies the initial condition [c(t0), ċ(t0), c̈(t0)] at the start time t0 and the fixed end
condition [c(te), ċ(te), c̈(te)] at the end time te, is a quintic polynomial:

c(t) = p5t5 + p4t4 + p3t3 + p2t2 + p1t + p0 (3)

The parameters p0 to p5 can be efficiently computed as shown in [22], which makes
the operation on the vehicle possible. It should be noted that although jerk-optimal initial
edges are generated, the selection of the optimal sequence of edges in the subsequent graph
search can be performed with a different cost function adapted to the racing scenario.
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2.4.3. Integration into Graph Structure

Since the generated polynomials have to be embedded as initial edges in the graph
structure, a simple equidistant sampling of the end conditions is not possible. Instead,
the end conditions must be sampled so that the edges end up in the initial layer Linit
with the appropriate individual position (xi, yi) and heading θi of each spatial node ni.
The initial layer Linit is selected as the first layer that exceeds a speed-dependent minimum
distance in the direction of travel. These distance values increase with rising speed in order
to avoid high curvature values and the associated unfeasible lateral accelerations. They are
determined empirically and stored in a lookup table.

Figure 5 shows schematically the needed spatial end conditions of the initial edges.
The spatial nodes in the initial layer are arranged perpendicular to the reference line
and therefore have the same longitudinal position sm. Hence, the end position of the
longitudinal curve has to be chosen accordingly without sampling. To ensure that the edges
terminate in the nodes, the lateral end position must be sampled according to the lateral
position of each spatial node di, where i is again the index of a spatial node ni in the initial
layer Linit.

Reference line

Start state

sm

d2

∆θ2

Figure 5. Example initial edges (gray lines) connecting the start state (blue dot) with the initial layer
and fulfilling the individual end pose of each spatial node (black dots). Coordinates are shown
exemplarily for the second node.

Analogous to the lateral position, ∆θi = θi − θr(sm) refers to the heading of the i-th
spatial node relative to the reference line. In addition to the position, this individual heading
of a spatial node at the end of an edge must also be guaranteed. This is completed by
correctly specifying the end conditions of the velocity ḋ(te) and ṡ(te). Instead of specifying
the lateral and longitudinal velocities directly, we sample the global velocity to cover the
entire possible velocity range. Finer sampling is applied in the high velocity range due
to the lower engine power at high speeds. For this, we divide the entire velocity range
into two intervals with a different number of equidistant distributed velocity samples:
[v1, . . . , vN , . . . , vN+M]. N denotes the number of samples in the low speed range and M
the number in the high range. To assure the individual heading of a node, each velocity
sample vj is then transformed into the corresponding lateral and the longitudinal velocity
ḋij, ṡij, where j indicates the corresponding velocity sample index. According to the
transformation from Cartesian to Frenét coordinates in [15], the lateral and longitudinal
velocities are obtained by:

ṡij = vj
cos ∆θi

1− κr(sm)di
(4)

ḋij = ṡij[−κr(sm)di] tan ∆θi (5)

With that, the end conditions on the position and velocity are specified, and the end
conditions on time te and acceleration s̈(te), d̈(te) remain.

2.4.4. Performance Improvement for Racing-Scenarios

In sampling-based methods for traffic scenarios, the lateral and longitudinal accel-
erations at the end time te are often set to 0m/s2 for comfort reasons. In the context of a
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racing scenario, however, this is undesirable. For example, in an acceleration maneuver,
the initial edges would have to adapt at an early stage to fulfill the end conditions, resulting
in a loss of race performance. Simple equidistant sampling of the end acceleration and the
end time is also not possible due to the curse of dimensionality and the accompanying com-
puting time. Instead, reducing the number of samples without sacrificing race performance
is desired.

We tackle this problem by determining one suitable pair of end acceleration aij and
end time te,ij for each spatial node ni combined with a velocity sample vj. This avoids
additional sampling of the acceleration dimension besides the spatial node and the end
velocity. The determined acceleration in Cartesian coordinates aij is then transformed into
the corresponding curvilinear accelerations s̈ij and d̈ij serving as end conditions of the
lateral and longitudinal movement. Rearranging the transformation equations from [15],
yields to the following required expressions:

s̈ij =
1

1− κr(sl)di

[
aij cos ∆θi − ḋij

(
κivj − κr(sm)ṡij

)
+
(

κ′r(sm)di ṡ2
ij + κr(sm)ḋij ṡij

)]
(6)

d̈ij =
s̈ij

ṡij
ḋij − ṡ2

ij

[
tan ∆θi

(
κ′r(sm)di + κr(sm)

ḋij

ṡij

)
− 1− κr(sm)di

cos2 ∆θi

(
κi

1− κr(sm)di
cos ∆θi

− κr(sm)

)]
(7)

These equations show that not only the curvature of the reference line κr(sm) but also
its derivative κ′r(sm) with respect to the arc length s must be known. In addition, a curvature
κi at the end of an edge must be specified, which we choose as the curvature of the reference
line on the initial layer Linit.

Determining the end acceleration aij and the associated end time te,ij for each pair of
spatial node ni and velocity sample vj is now the critical part for the race performance. Our
approach to this is based on the consideration that in most racing scenarios, the optimal
behavior is to accelerate or decelerate as much as possible. Therefore, we generate the
initial edges as close as possible to a uniform accelerating edge by choosing the uniform
acceleration and the corresponding end time as end conditions. Unlike fixed spatial
edges with uniform acceleration profiles, this approach retains the advantage of the jerk-
optimality, which reduces the load on the tracking controller.

The uniform acceleration required traversing a path of length ∆sij from a starting
velocity v0 to the desired velocity sample vj within the time Tij = te,ij − t0 can be derived
from the uniform acceleration equations. Accordingly, the end acceleration and end time is
determined by:

aij =
vj − v0

Tij
(8)

Tij =
2∆sij

vj + v0
(9)

For the evaluation of Equation (9), the length ∆sij of an edge is needed. However,
the actual distance cannot be determined, as prior to the generation of an edge, its length is
not known. We therefore perform an additional step to approximate the length ∆sij before
generating the edges. Since the paths of edges ending in the same spatial node are of similar
length, only one length per node ni is determined and employed for all end velocities vj.
For this, a single edge is generated for each spatial node ni, and its length is used as an
approximation of ∆sij. These edges are only used to approximate the path lengths and
are therefore discarded after generation. We choose the end conditions of these temporary
edges such that they end with the pose of the corresponding spatial node ni and with the
maximum velocity vN+M. Furthermore, the end acceleration is set to zero, and the end
time is calculated according to Equation (9) with the Euclidean distance between the start
position and the considered spatial node as the length. The exact selection of these values
is not crucial, since we are only interested in the length.
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The described selection of end accelerations aij and end times te,ij results in initial
edges that resemble uniformly accelerated motion but adhere to the initial conditions while
preserving jerk-optimality. The velocity profiles of these initial edges are shown in Figure 6
for exemplary sampled end velocities vj. It can be seen that the velocity profiles of edges
with similar start and end accelerations are closer to the uniform acceleration. However,
the more the start acceleration deviates from the end acceleration, the more curved the
velocity profile becomes in order to comply with all boundary conditions.

0 0.5 1 1.5 2 2.5 3

0

20

40

60

80

time in s

ve
lo

ci
ty

in
m

/s

Uniform acceleration
Sampling-based approach

Figure 6. Comparison of velocity profiles generated by our sampling-based approach and uniform
acceleration. Exemplarily, several end velocities from 0 to 80 m/s are sampled with a start velocity of
50 m/s and a start acceleration of 10 m/s .

A reduction in computation time for the proposed sampling-based approach can be
achieved by precalculating the transformation of all sampling points. Since the spatial nodes
ni of the graph and the velocity samples vj can be calculated offline, the end conditions for
position and velocity in Frenét coordinates can also be precalculated and stored for online
use. In contrast, the end acceleration aij and end time Tij from Equations (8) and (9) cannot
be precomputed due to the need for the start velocity, which is not known offline. Hence,
the end acceleration and end time including the approximation of ∆sij are determined
online. Since the calculation of (6) and (7) requires more complex calculations, these are
precalculated offline for sampled Cartesian accelerations. As these sampled values do not
match the aij calculated online from (8), we use the end conditions calculated from the
sample closest to aij.

2.4.5. Stopping to Standstill

One challenge with the proposed approach is stopping at arbitrary positions, which
is necessary for fully autonomous operation on the race track. Since the initial edges E0
always end in spatial nodes ni within the layers, it is only possible to specify a velocity of
zero at these spatial nodes. Due to the need to stop at any position in case of a pit stop
or a blocked track, an additional node is generated online with zero velocity and placed
in each planning cycle depending on the current scenario. When the vehicle is requested
to the pitlane, this stop node is placed in the pit, and if static objects block the road, it is
placed in front of these objects.

When a stop is requested and the distance to the stop node falls below a certain
threshold, the local planner solely plans to this node using the initial edges without
a subsequent graph search. However, the initial edge generation has a short planning
horizon, which means that no feasible edges to the stop node can be generated at high
speeds. While this problem does not occur during a pit stop due to the low speeds, in the
case of a blocked road, it is countered by the farsighted graph search, which guides the
initial edges by slowing down early. In case of a stop on the race track due to the race
rules, however, there is no concrete stop position. Instead, the target speed is set to 0 m/s ,
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slowing down the vehicle based on the cost function, and the stop vertex is placed at the
end of the previously planned trajectory in each cycle until a solution to standstill is found.

If the distance between the start state and end node is too small while braking to a fixed
position, our approach leads to unfeasibly high accelerations. We avoid this behavior by
preventing a new planning below a distance threshold of 5 m. Instead, we repeatedly send
the last planned trajectory to the tracking controller until the vehicle comes to a stop at the
desired position.

3. Results

In this section, we show in simulative (Section 3.2) and experimental results (Section 3.3)
how our sampling-based approach for the generation of the initial edges affects vehicle
stability and race performance. All results were obtained using the software stack described
in Section 3.1. The spatial graph was parameterized with a longitudinal layer distance of
75 m and a lateral node resolution of 1.4 m. For our sampling-based approach, 50 velocity
samples and 50 offline calculated acceleration values were used. The minimum planning
horizon was set to 5 s. Our planning approach is implemented in Python 3.8 with single
C-functions. The scenarios were conducted on the LVMS, a 2480 m oval race track with
a curved mainstretch, a straight backstretch and four turns.

3.1. Autonomous Driving Software Architecture

As described in Section 2.2, a graph search must follow the initial edge generation to
meet the needed planning horizon. For all results, an approach analogous to the concept
in [17] is used for the graph search. We rely on this, since it is a well-known concept for
highway scenarios, which is close to the racing scenario. This concept is based on the
efficient generation of edges with uniform acceleration profiles sampled along the fixed
spatial paths computed offline. The cost function used in our graph search is composed
of four weighted terms. The first two terms penalize the spatial and speed deviation
from a predefined global racing line in order to follow the racing line during solo driving.
If a speed limit defined by the race rules exists, this is used instead of the racing line
speed target. For multi-vehicle driving, the third term punishes edges that lie within an
ellipse-shaped area surrounding the predicted opponents. Last, the peak curvature is
weighted, favoring low-curvature overtaking maneuvers. A detailed description of the
search algorithm and the used cost function can be found in [23].

The local planning concept consisting of the proposed sampling-based initial edge
generation and the above graph search is integrated within the overall software stack
of the TUM Autonomous Motorsports team. It is a sequential architecture consisting of
a localization, perception, tracking, prediction, local planning and control module. We
address only the local planning interfaces here and refer to [24] for more details.

Based on the estimated state provided by the localization module and the prediction
of the detected dynamic obstacles by the prediction module, the local planning module
generates a collision-free and feasible trajectory and forwards it to the tracking controller.
The planning of the trajectory also requires information about the race track map, a reference
line and the desired racing line, which are computed in advance by the global planning
module proposed in [4] and the mapping module. Finally, there is the control module,
which is based on a Tube-MPC and is described in [25]. It re-optimizes the planned
trajectory and determines the throttle, steering and braking commands to realize the
behavior specified in the target trajectory.

3.2. Simulation Results

In this section, we compare our sampling-based approach for the generation of the
initial edges E0 with the uniform acceleration approach in [17], which we already use for
the edges E1 within the graph search. Thus, in the comparison approach, the same concept
based on fixed spatial edges with sampled uniform acceleration profiles is used for both
the edges within the graph search and the initial edge generation. We choose to compare
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with [17], since the direct comparison shows the changes that result from a different
treatment of the initial edges compared to a simpler initial edge generation. In contrast
to the uniform acceleration approach, the proposed sampling-based approach achieves
jerk-optimal transitions that take the initial conditions into account. Another advantage of
our approach is the individual paths for each initial edge. Unlike in [17], where different
acceleration profiles are based on the same underlying path, in our approach, each path
is unique, since the spatial and temporal information are generated simultaneously by
combining the lateral and longitudinal movement. This adjusts the path to match the
temporal information, resulting in lower lateral accelerations.

We compare the proposed sampling-based approach with the uniform acceleration
approach in three different scenarios related to race performance and vehicle stability.
For the uniform acceleration approach, 50 equidistant distributed acceleration values were
applied for each spatial edge generated. All scenarios were simulated on an 8-core AMD
Ryzen 7 Pro 4750U laptop with 1.7 GHz and 32 GB RAM.

3.2.1. Single-Vehicle Driving

First, we consider single-vehicle driving on the racing line with no speed restrictions,
which allows for the fastest possible lap. Starting with a standing start followed by twenty
flying laps, the resulting lap times are shown in Table 1. The corresponding velocity v
and lateral acceleration ay profiles are shown in Figure 7 for the standing start lap and
the first flying lap (beginning at 2480 m). It can be seen that the starting behavior of
our sampling-based approach is not as performant as the uniform acceleration approach,
resulting in a higher lap time. This is because high acceleration profiles can be generated in
the uniform acceleration approach from the beginning, regardless of the start acceleration
of 0 m/s2. The sampling-based approach, on the other hand, produces a transition from
zero acceleration to higher accelerations. However, since only flying starts are decisive in
the competition formats of IAC and AC@CES, this disadvantage at standing starts was not
pursued further.

Table 1. Lap time comparison for single-vehicle driving on the LVMS.

Standing Start Lap Flying Lap (Mean/Variance)

Uniform acceleration 47.814 s 30.431 s/0.001 s2

Sampling-based approach 51.854 s 30.001 s/0.004 s2
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Figure 7. Comparison of our sampling-based approach and the uniform acceleration approach for a
standing start and a flying lap on the LVMS.

In the case of flying laps, the sampling-based approach results in higher speeds,
especially in the turns, and thus lower lap times. Higher speeds in the curves can be
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achieved due to the previously described simultaneous generation of spatial and temporal
information and the accompanying lower lateral accelerations. Furthermore, the lateral
acceleration profile shows that the use of the sampling-based approach also leads to
a steadier behavior of the vehicle in the curves. Particularly at the exit of the fourth
curve (2200 m and 4600 m), the uniform acceleration shows strong deflections, which even
lead to a lateral acceleration contrary to the direction of the curve. Since the uniform
acceleration approach leads to higher lateral accelerations, no sufficiently curved edge
can be found in the corresponding planning cycles that does not exceed the friction limits,
leaving only barely curved edges.

3.2.2. Braking Maneuver

Braking to standstill or decelerating to a lower speed is essential for race track op-
eration. For example, after a fast lap, it is necessary to slow down to a lower speed in
order to drive safely into the pitlane. For an exemplary braking maneuver from 75 m/s to
a target speed of 30 m/s , the resulting velocity v and lateral acceleration ay profiles are
shown in Figure 8. Although the velocity profile during deceleration looks similar for both
approaches, significant oscillations can be observed in the lateral acceleration profile of
the uniform acceleration approach. These lateral deflections become larger as the start and
target speed difference increases, which can ultimately lead to unstable vehicle behavior.
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Figure 8. Sampling-based approach and uniform acceleration approach comparison for a braking
maneuver from 75 m/s to 30 m/s on the mainstretch of the LVMS.

If the same maneuver is performed without a subsequent tracking controller, but with
an exactly assumed tracking, these lateral oscillations do not occur to the same extent.
The oscillations are therefore not planned by the uniform acceleration approach, but result
from the interference of the planned trajectories and the Tube-MPC, which has difficulty
tracking the rough trajectories despite re-optimization. The sampling-based approach,
on the other hand, creates smoother trajectories that are easier to track by the controller,
resulting in a more stable driving behavior.

3.2.3. Object Evasion

Static obstacles on the race track require a quick reaction and safe evasion. The behav-
ior during such a maneuver is examined here using the scenario from Figure 9 with two
static objects arranged on opposite sides. Since the difficulty of object evasion increases
with rising ego velocity, the described scenario is run with velocities in steps of five in
the interval from 25 m/s to 65 m/s in each case twenty times. Furthermore, the detec-
tion range has a decisive influence on the difficulty, so we compare the behavior at a low
range of 100 m and a higher range of 200 m. It should be noted that a global racing line
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within the inner half of the track (upper half in Figure 9) is used, forcing an outward and
inward movement.

15
m

5.5 m

5.5 m

100 m

Figure 9. Evasion scenario with two obstacles (gray) on the backstretch of the LVMS (not to scale).

All tested evasive maneuvers were successful, i.e., collision-free. In addition to this
success rate, the average absolute control error between the re-optimized target by the
Tube-MPC and the actual lateral acceleration ay is crucial, as this is an indication of vehicle
stability (Figure 10). It is noticeable that for higher target speeds, the actual vehicle speed
is slightly higher than targeted. This is not due to the planned trajectories but to the
Tube-MPC, which tends to drive faster than planned at high speeds. Furthermore, it can
be seen that with a detection range of 200 m, the sampling-based approach leads to lower
control errors than the uniform acceleration approach at the same range. This is particularly
noticeable at high speeds. With a detection range of 100 m, however, another effect can be
observed. While at lower speeds, the sampling-based approach leads again to lower errors
than the uniform acceleration approach, this changes above a speed of 45 m/s . This is due
to the lower computation time of the uniform acceleration approach and the associated
ability to react faster to environmental changes. Higher computation times and thus less
remaining distance to react lead to higher lateral accelerations and larger control errors.
However, the results shown here cannot be generalized to every evasion maneuver. Due to
the fixed layers in the spatial graph, the planning behavior depends on the position of the
obstacles relative to the layers, so the overall behavior may differ.
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Figure 10. Mean absolute lateral acceleration control error per run (dots) using the sampling-based
approach and the uniform acceleration approach with different ideally assumed detection ranges for
the evasion maneuver shown in Figure 9. The lines represent the average values of the means.

3.3. Experimental Results

The proposed approach was evaluated in single- and two-vehicle scenarios on a full-
scale autonomous race car at IAC and AC@CES. For all events, the Dallara AV-21 race car
(Figure 1) was used, which is based on a modified version of the Indy Lights chassis. It
includes an 8-core Intel Xeon E-2278GE CPU with 64 GB RAM, with the local planning
module running on one core. The planner achieves an average computation time of 95 ms
for a whole planning cycle using the discretization described at the beginning of Section 3.
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Since the highest speeds were achieved during the final of the AC@CES on the LVMS, we
present only these results.

The final of the AC@CES was an overtaking competition in which two vehicles alter-
nate overtaking maneuvers at increasing speeds. The vehicle to be overtaken must drive as
the defender on the inside of the race track and maintain a certain speed. The overtaking
vehicle must follow the defender with a longitudinal distance of more than 30 m and over-
take the defender after entering the passing zone. Due to the distance to be maintained
before the actual overtaking process, the detection range does not have a major impact on
the local planner, in contrast to the results from Section 3.2.3.

The actual velocity v and lateral acceleration ay profiles of the last two overtaking
maneuvers of the TUM Autonomous Motorsports team are shown in Figure 11. In addition,
the target speed, which is used in the cost function, and the period in which passing is
allowed are indicated. Braking despite increased target speeds (s ≈ 700 m and s ≈ 6100 m)
results from the passing restriction. In this case, the target speed is invalidated and the
distance to the opposing vehicle is maintained instead. If passing is allowed, the respective
overtaking maneuver is initiated and the target speed is targeted accordingly. The deviation
between actual and target speed after the acceleration process does not result from the
planned trajectory but from the control error within the Tube-MPC. Figure 11 shows that
the entire competition consists of acceleration, deceleration and overtaking maneuvers
at high speeds. By using the proposed sampling-based approach for the generation of
the initial edges, the advantageous behavior shown in Section 3.2 can be achieved in the
individual maneuvers with respect to vehicle stability and race performance.
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Figure 11. Last two overtaking maneuvers during the final of AC@CES on the LVMS. The permitted
passing period is marked in red. The black vertical line indicates the time step shown in Figure 12.

The planned motion of the time step marked in Figure 11 with an ego speed of up to
74 m/s is shown in Figure 12. The defender is predicted with a constant speed of about
65 m/s on the inside of the race track. The sampling-based approach connects the start state
to the chosen initial layer with an horizon of 1.7 s, while the minimum planning horizon
of 5 s is achieved by the subsequent graph search. The resulting trajectory performs an
overtaking maneuver due to the cost function, which penalizes edges close to the dynamic
obstacle. With the graph search based on uniform accelerations, the rough course of the
trajectory is noticeable for times from 1.7 s. In contrast, at the beginning of the trajectory,
i.e., at the initial edge, a smooth transition of the longitudinal acceleration ax curve can be
recognized. A video of the final overtaking maneuver and other scenarios from the IAC
and AC@CES can be found in [26].
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Figure 12. Predicted opponent velocity and planned ego motion for the time step marked in Figure 11.
The end of the initial edge and the minimum planning horizon of 5 s are indicated by black verti-
cal lines.

4. Discussion and Conclusions

This paper addresses the challenges of online graph-based trajectory generation for
racing scenarios. The proposed sampling-based approach for the generation of the initial
edges connecting the vehicle’s estimated state with the actual graph enables smoothly
planned trajectories and thus stable driving at high speeds close to the handling limits of
the vehicle. The approach is independent of the used graph structure and the subsequent
graph search. Thus, the remaining edges within the graph search can be roughly discretized
and have a simplified structure, so that, in addition to stability and race performance,
the requirements on the planning horizon and the computation time can be met. In addition,
our approach allows for holistic operation on the race track through the ability to stop
at arbitrary positions such as the pit. Experiments on a full-scale vehicle show that our
approach can avoid static objects as well as overtake dynamic objects at speeds up to 74 m/s
. Simulative results show that lower lap times on flying starts and lower lateral acceleration
oscillations during braking maneuvers can be achieved, resulting in an increased vehicle
stability. With a detection range of 200 m, our sampling-based approach also results in
smaller control errors and thus more stable evasion maneuvers. However, if only a smaller
detection range of 100 m is available, the higher computing time of the sampling-based
approach impacts more strongly, which in turn leads to larger control errors at high-speed
evasion maneuvers. A reduction of the computation time can be achieved by a heuristic
that samples only a reduced number of end velocities without sacrificing race performance.
For instance, the actually realizable accelerations can be utilized to select only a subset of
all end velocities. A lower computation time would also allow online generation of the
spatial part of the graph. That would make the sampling-approach independent of fixed
layers and thus the planned trajectories independent of the current position.
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