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Abstract

Synaptic changes are hypothesized to underlie learning and memory formation in the brain.

But Hebbian synaptic plasticity of excitatory synapses on its own is unstable, leading to

either unlimited growth of synaptic strengths or silencing of neuronal activity without addi-

tional homeostatic mechanisms. To control excitatory synaptic strengths, we propose a

novel form of synaptic plasticity at inhibitory synapses. Using computational modeling, we

suggest two key features of inhibitory plasticity, dominance of inhibition over excitation and

a nonlinear dependence on the firing rate of postsynaptic excitatory neurons whereby inhibi-

tory synaptic strengths change with the same sign (potentiate or depress) as excitatory syn-

aptic strengths. We demonstrate that the stable synaptic strengths realized by this novel

inhibitory plasticity model affects excitatory/inhibitory weight ratios in agreement with experi-

mental results. Applying a disinhibitory signal can gate plasticity and lead to the generation

of receptive fields and strong bidirectional connectivity in a recurrent network. Hence, a

novel form of nonlinear inhibitory plasticity can simultaneously stabilize excitatory synaptic

strengths and enable learning upon disinhibition.

Author summary

An important task the brain needs to solve is the so-called ‘stability-flexibility problem’.

On the one hand, any representation in the brain, for example a long-lasting memory, has

to be stable for a long time. On the other hand, new representations need to be flexibly

learned at any time. Learning and memory formation are implemented through the plas-

ticity of synaptic connections, which describe how the activity in neurons is translated into

changes of synaptic strength between these neurons. We propose a novel form of synaptic

plasticity at synapses from inhibitory to excitatory neurons as a mechanism to stabilize

learned representations, while a gating signal triggers the learning of new representations.

We identify the dominance of inhibition over excitation and a nonlinear dependence of

inhibitory plasticity on the postsynaptic firing rate as important aspects of our newly pro-

posed plasticity mechanism. Our computational model allows us to uncover the underly-

ing mechanism behind various experimental findings related to synaptic plasticity and

sensory perturbations, and we formulate multiple experimentally-testable predictions.
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Introduction

Learning and memory formation in the brain are hypothesized to be implemented by synaptic

changes undergoing Hebbian plasticity whereby joint pre- and postsynaptic activity increase

the strength of synaptic connections [1, 2]. However, Hebbian long-term plasticity of excit-

atory synapses to other excitatory neurons, referred to as excitatory plasticity, is inherently

unstable [3]. Increasing excitatory synaptic strengths leads to an increase in the firing rates of

excitatory postsynaptic neurons which in turn further increases synaptic strengths. This posi-

tive feedback loop is called ‘Hebbian runaway dynamics’ [4]. To counteract unstable synaptic

growth and control resultant rate dynamics, some form of homeostatic control is needed.

Experimental studies have uncovered multiple homeostatic mechanisms. One prominent

mechanism is synaptic scaling, where synaptic connections onto a given excitatory neuron

potentiate or depress, while preserving relative strengths, to maintain a target level of activity

[5, 6]. An alternative mechanism that has gained much recent attention is heterosynaptic plas-

ticity [7, 8], which occurs both at excitatory and inhibitory synapses that have not been directly

affected by the induction of plasticity [9]. A third plausible homeostatic mechanism with sig-

nificant experimental evidence is intrinsic plasticity which affects the intrinsic excitability of

single neurons by adjusting the distribution of different ion channel subtypes [10, 11].

Various computational studies have benefited from this plethora of experimental evidence

for homeostatic control of firing rates and synaptic strengths, and implemented a range of

computational models from purely phenomenological ones to detailed biophysical ones. Some

relatively straightforward ways to stabilize firing rates and control synaptic strengths in models

include imposing upper bounds on synaptic strengths, applying normalization schemes which

adjust synaptic strengths by preserving the total sum of incoming weights into a neuron [3, 12]

and assuming that the plasticity mechanism modifying synaptic strengths is itself plastic—

called ‘metaplasticity’ [13–16]. These can often be linked to the above experimentally described

homeostatic mechanisms. Computational studies have also begun to uncover the various,

often complementary, functional roles of different homeostatic mechanisms, e.g. of synaptic

scaling versus intrinsic plasticity [16] or heterosynaptic plasticity [9]. However, how exactly

synaptic plasticity and homeostatic mechanisms interact to control synaptic strengths, and yet

enable learning, is still partially unresolved [17–19]. Part of the challenge is that the experimen-

tally measured timescales of synaptic scaling are too slow to stabilize the Hebbian runaway

dynamics in computational models, where much faster normalization schemes are used

instead [16, 20–23]. This is sometimes referred to as the ‘temporal paradox’ of homeostasis

[24–26]. A related problem to the integration of plasticity and homeostasis is the trade-off

between stability and flexibility. While stimulus representations need to be stable, for instance

to allow long-term memory storage, the system also needs to be flexible to allow re-learning of

the same, or learning of new representations [27]. This has been successfully achieved in some

circumstances. For example, implementing metaplasticity in the excitatory connections

through a sliding threshold between potentiation and depression can generate weight selectiv-

ity and firing rate stability [13, 14, 16, 24]. Additionally, heterosynaptic plasticity has been

modeled to stabilize synaptic weight dynamics, while still allowing learning [9, 28–30], includ-

ing behavioral learning [31]. A strong candidate for stabilizing synaptic weights is the induc-

tion of homosynaptic LTP (LTD) together with heterosynaptic LTD (LTP) at nearby synapses,

referred to as the ‘Mexican hat’ profile of homo- and heterosynaptic plasticity [32, 33].

Here, we investigate an alternative, under-explored mechanism to control and stabilize

excitatory synaptic strengths and their dynamics: long-term plasticity of inhibitory-to-excit-

atory (I-to-E) synapses, also referred to as inhibitory plasticity. Experimental paradigms have

characterized diverse forms of inhibitory plasticity, usually via high-frequency stimulation
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[34–36] and via pairing of presynaptic and postsynaptic spikes [37, 38]. Inhibition has been

shown to control the plasticity mechanisms regulating connection strengths between excit-

atory neurons depending on their firing rates [39] as well as precise spike timing [40–42].

Inhibitory plasticity can even dictate the direction of excitatory plasticity, shifting between

depression or potentiation [43]. Computational models have shown that different forms of

inhibitory plasticity can stabilize excitatory rates [44–46]. Given this potential of inhibitory

plasticity to affect so many different aspects of synaptic strength and firing rate dynamics in a

network, it remains unclear what properties are important for achieving stability, while still

enabling neural circuits to learn.

Using computational modeling, we characterize a novel mechanism of inhibitory plasticity

with two key features. First, we propose that inhibitory plasticity should depend nonlinearly

on the firing rate of an excitatory postsynaptic neuron to robustly control and stabilize the

strengths of excitatory synaptic connections made by that neuron. This means that for low

postsynaptic rates, I-to-E synapses should depress, for high postsynaptic rates I-to-E synapses

should potentiate and without any postsynaptic activity undergo no plasticity. This nonlinear

dependence of inhibitory plasticity on the postsynaptic firing rate is sufficient for stability,

without the need for additional homeostatic mechanisms. Second, we require a dominance of

inhibition, which can be reflected in the larger number of synaptic connections, faster plastic-

ity dynamics of inhibitory synapses or overall higher firing rates of inhibitory neurons relative

to excitatory ones. Dominance of inhibition has already been demonstrated in circuits in the

visual cortex which operate as inhibition-stabilized networks (ISNs) [47–49]. A direct conse-

quence from our proposed novel mechanism of nonlinear inhibitory plasticity is the emer-

gence of a fixed ratio of excitatory-to-inhibitory synaptic strengths when input rates are

constant, in agreement with experimental data [37]. Besides stability, our proposed inhibitory

plasticity mechanism can also support flexible learning of receptive fields and recurrent net-

work structures by gating excitatory plasticity via disinhibition [50, 51]. Therefore, our results

provide a plausible solution to the stability-flexibility problem by identifying key aspects of

inhibitory plasticity, which provide experimentally testable predictions.

Results

A linear inhibitory plasticity rule fails to robustly stabilize weight dynamics

To investigate the plausibility of inhibitory plasticity as a control mechanism of excitatory syn-

aptic strengths, we initially considered a model based on a feedforward inhibitory motif prom-

inent in many brain circuits (Fig 1A). Here, a population of presynaptic excitatory neurons

projects to a population of inhibitory neurons and both populations project to a single post-

synaptic excitatory neuron. Such a motif could resemble, for instance, the excitatory input

from the thalamus to excitatory and inhibitory neurons in a primary sensory cortical area [52].

We described the activity of neurons by their firing rates. We considered a network consisting

of an excitatory postsynaptic neuron with a linear threshold transfer function and firing rate

νE, receiving input from NE excitatory presynaptic neurons (each with index j) with firing rates

rE
j through excitatory weights wEE

j , and from NI inhibitory presynaptic neurons (each with

index k) with firing rates nIk through inhibitory weights wEI
k :

tEFR _nE ¼ � nE þ
XNE

j¼1

rE
j w

EE
j �

XNI

k¼1

nIkw
EI
k

" #

þ

; ð1Þ

where []+ denotes a rectification that sets negative values to zero. The inhibitory neurons fol-

low similar dynamics and are driven by the same NE presynaptic excitatory neurons with firing
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rates rE
j through excitatory weights wIE

j and additional external input with firing rate rI
k,

tIFR _nIk ¼ � n
I
k þ

XNE

j¼1

rE
j w

IE
j þ r

I
k

" #

þ

: ð2Þ

Here, tEFR; t
I
FR denote the time constants of the firing rate dynamics. For simplicity, we do not

use subscripts for neuron identity and interpret all variables as mean values and hence can

denote the total excitatory input to the postsynaptic neuron as NEρEwEE and the total inhibi-

tory input as NIνIwEI. The synaptic weights wEE and wEI are plastic according to different plas-

ticity rules (see below).

Experimental studies have shown that the sign and magnitude of excitatory plasticity

depends nonlinearly on the firing rates [53–55]. Inspired by these findings, we implemented

plasticity of E-to-E synaptic connections wEE (or weights) as a nonlinear function of the post-

synaptic rate νE (Fig 1B):

tEw _wEE ¼ rEnEðnE � cEpostÞ: ð3Þ

Fig 1. Linear inhibitory plasticity fails to stabilize weights for high postsynaptic firing rates. A. Schematic of a feedforward inhibitory motif.

A single postsynaptic excitatory neuron with rate νE receives input from NE excitatory presynaptic neurons, with firing rate ρE and weight wEE

and NI inhibitory presynaptic neurons, with firing rate νI and weight wEI. The inhibitory neurons receive external excitatory input with rate ρI

and input from the presynaptic excitatory neurons via wIE. B. Plasticity curve of E-to-E weights ( _wEE, blue) as a function of the postsynaptic rate

νE. The postsynaptic LTD/LTP threshold cEpost is set to 1. C. E-to-E weight change ( _wEE) as a function of the presynaptic excitatory rate ρE for

different I-to-E weights wEI ranging from 0 to 1.5. The presynaptic LTD/LTP threshold cEpre is shown for wEI = 0.75 (vertical dashed line). D.

Plasticity curves of E-to-E ( _wEE, blue) and I-to-E ( _wEI , red) weights as a function of the postsynaptic rate νE. The excitatory and inhibitory LTD/

LTP thresholds are identical (cEpost ¼ cIpost). The black cross marks the postsynaptic rate where the plasticity curves cross beyond which the weight

dynamics become unstable. E. Phase portrait of the dynamics of E-to-E (wEE) and I-to-E (wEI) weights. Gray arrows indicate the direction of

weight evolution over time, points represent three different weight initializations, ½wEE
0
;wEI

0
� ¼ f½1:5; 1:8�; ½1:5; 0:5�; ½2:5; 1�g, and green lines

represent the weight evolution for each case. The two colored points represent initial weights in F. Black line indicates the line attractor and the

dashed line separates stable from unstable initial conditions (Methods, Eq 20). F. E-to-E (wEE, blue) and I-to-E (wEI, red) weights as a function

of time for stable (solid lines, ½wEE
0
;wEI

0
� ¼ ½1:5; 0:5�) and unstable (dashed lines, ½wEE

0
;wEI

0
� ¼ ½2:5; 1�) initial conditions.

https://doi.org/10.1371/journal.pcbi.1010682.g001
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Here, ρE denotes the excitatory presynaptic rate and tEw is the timescale of excitatory plasticity.

We refer to the postsynaptic rate at which the plasticity changes sign as the ‘postsynaptic LTD/

LTP threshold’, denoted by cEpost. If the firing rate νE is smaller than the threshold cEpost, then the

change in synaptic strength is negative leading to long-term depression (LTD), while if νE is

larger than cEpost, then the change in synaptic strength is positive leading to long-term potentia-

tion (LTP) (Fig 1B and S1 Fig). This means that increasing the excitatory postsynaptic firing

rate will lead to potentiation of excitatory weights, and in a positive feedback loop will further

increase the neuron’s firing rate—known as the classical problem of ‘Hebbian runaway

dynamics’.

Hence, we wanted to determine a plausible mechanism to counteract excitatory runaway

dynamics. We postulated that regulating the inhibitory input into the postsynaptic neuron

provides an efficient way to stabilize excitatory weights and firing rates. In our framework,

inhibitory neurons can affect excitatory plasticity in three equivalent ways. (1) The number of

inhibitory synapses NI onto the postsynaptic neuron can change, for example, through the

growth or removal of synapses via structural plasticity. (2) The strength of I-to-E synapses wEI

can change via inhibitory plasticity. (3) Finally, the rate of inhibitory neurons νI can also

change through the external excitatory input to the inhibitory neurons ρI or the excitatory-to-

inhibitory weight wIE. Various experimental studies have revealed that the plasticity of I-to-E

synapses can be induced via the stimulation of the relevant input pathways [34, 35, 43]. Given

this experimental evidence for the plasticity of I-to-E synapses, we examined the influence of

changing the strength of I-to-E synapses, wEI, on the strength and magnitude of E-to-E synap-

ses, wEE (Fig 1C).

We found that stronger wEI weights rates require higher presynaptic excitatory rates to

induce LTP, while weaker wEI weights require lower presynaptic excitatory rates to induce

LTP. This effectively leads to a shift of the threshold between LTD and LTP as a function of the

presynaptic excitatory firing rate as wEI changes. We refer to the presynaptic excitatory firing

rate at which the plasticity changes sign between potentiation and depression as the ‘presynap-

tic LTD/LTP threshold’, denoted by cEpre (Fig 1C). In contrast to the fixed postsynaptic LTD/

LTP threshold, cEpost(Fig 1B), this presynaptic LTD/LTP threshold depends, among others, on

the strength of I-to-E synapses (Fig 1C; Methods, Eq 13).

Rather than hand-tuning the strength of I-to-E synapses, here we propose that a particular

inhibitory plasticity rule can dynamically adjust their strength as a function of presynaptic

inhibitory and postsynaptic excitatory activity. However, the exact form of this plasticity has

not yet been mapped experimentally. Therefore, we first investigated an inhibitory plasticity

rule widely-used in computational models which depends linearly on the postsynaptic rate νE

[44, 56] (Fig 1D, _wEI):

tIw _wEI ¼ nIðnE � cIpostÞ: ð4Þ

Here, tIw denotes the timescale of inhibitory plasticity. As for excitatory plasticity, we refer to

the postsynaptic rate at which inhibitory plasticity changes from LTD to LTP as the ‘inhibitory

postsynaptic LTD/LTP threshold’, denoted by cIpost. This threshold determines the ‘target rate’

of the postsynaptic neuron [44]. If the excitatory postsynaptic neuron fires at higher rates than

cIpost, inhibitory LTP leads to a decrease of its firing rate, while if the neuron fires at lower rates

than cIpost, inhibitory LTD increases its rate. To prevent an unstable scenario where excitatory

(Eq 3) and inhibitory plasticity (Eq 4) push the postsynaptic excitatory neuron towards two

different firing rates, here we assume that the excitatory and inhibitory thresholds are matched

(Fig 1D, cEpost ¼ cIpost).
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To investigate the effect of this ‘linear inhibitory plasticity’ mechanism on the temporal evo-

lution of excitatory and inhibitory synaptic weights, wEE and wEI, we plotted the flow field in

the phase plane wEI vs. wEE (Fig 1E). We found that the interaction of excitatory and inhibitory

plasticity generates a line of stable fixed points (i.e. a line attractor) where both synaptic

weights do not change any more (Fig 1E, black solid line; see Methods). The initial weights

determine whether the weights ultimately converge to the line attractor and stabilize. When

the initial E-to-E weights wEE are much larger than the initial I-to-E weights wEI (Fig 1E, below

the dashed line), the weights become unstable (Fig 1E and 1F). Equivalently, the weights

become unstable when the postsynaptic rate νE is beyond the crossover point of the excitatory

and inhibitory plasticity curves as a function of the postsynaptic excitatory rate (Fig 1D, black

cross). For firing rates beyond this crossover point, the E-to-E weights increase faster than the

I-to-E weights, leading to runaway dynamics.

In summary, our results suggest that a well-known form of inhibitory plasticity with a linear

dependence on the postsynaptic excitatory firing rate can control excitatory weight changes

only for a range of initial conditions. There exists a whole range of initial conditions (specifi-

cally where the E-to-E are larger than the I-to-E weights) where the postsynaptic excitatory fir-

ing rate is sufficiently large and where the weight dynamics explode. This scenario could be

problematic if during normal development in the animal, the E-to-E and I-to-E weights are set

up in this range, and implies the need for careful tuning to prevent unlimited weight growth.

A novel nonlinear inhibitory plasticity rule as a robust mechanism to

stabilize excitatory weights

To ensure weight stability without fine tuning of the initial E-to-E and I-to-E weights, we pro-

posed a novel inhibitory plasticity rule. The rule depends nonlinearly on the postsynaptic rate

νE, similarly to excitatory plasticity (Eq 3, Fig 2A):

tIw _wEI ¼ nInEðnE � cIpostÞ: ð5Þ

As before, to prevent a scenario where the two, excitatory and inhibitory, plasticity rules

push the postsynaptic excitatory neuron towards two different firing rates, we assume here

that the excitatory and inhibitory thresholds are matched cEpost ¼ cIpost. However, as we show

later, this assumption can be relaxed. Differently from the linear inhibitory plasticity rule

(Eq 4), the nonlinear inhibitory plasticity rule ensures that I-to-E synapses do not change in

the case where the postsynaptic firing rate is zero (Fig 2B, beyond gray line), as shown in

experiments where postsynaptic activity or depolarization is needed to induce inhibitory plas-

ticity [43]. Additionally, the nonlinear rule eliminates the region of initial weight configura-

tions in the phase space where the weights grow out of bound; instead the weights converge to

the line attractor (Fig 2B). Indeed, the E-to-E weights, I-to-E weights and the postsynaptic rate

reach a stable configuration over time (Fig 2C). We calculated the condition leading to stable

weight dynamics (Methods, Eqs 14–17) as a function of the excitatory and inhibitory input

rates (νI, ρE), the number of synapses (NE, NI) and the timescale of the plasticity mechanisms

(tEw; t
I
w):

NIðnIÞ
2

tIw
>

NEðrEÞ
2

tEw
: ð6Þ

This condition ensures stable weight dynamics whenever inhibition is more ‘dominant’ than

excitation, either by having more inhibitory synapses (NI), higher inhibitory rate (νI), a faster
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timescale of inhibitory plasticity (tIw) or a combination thereof. From now on, we assume a

faster timescale of inhibitory relative to excitatory plasticity (Methods). An alternative way to

achieve stability involves a feedback connection from the postsynaptic neuron to the inhibitory

population (S2A Fig). In this case, sufficiently strong E-to-I feedforward and feedback weights

guarantee stability in the presence of this feedback inhibitory motif (S2B–S2D Fig).

We found that the line attractor depends on several model parameters (see Methods, Eq 14)

(Fig 2D)

wEI ¼
NErE

NInI
wEE �

cpost
NInI

: ð7Þ

Under the assumption that the LTD/LTP thresholds of excitatory and inhibitory plasticity are

the same, cpost ¼ cEpost ¼ cIpost, we found that the slope of the line attractor can be written as

NEρE/(NIνI), while the intersection of the line attractor with the abscissa can be written as cpost/
(NEρE). Therefore, by changing any of the network parameters we can predict the stable con-

figuration to which the weights will converge.

Taken together, we have proposed a novel form of nonlinear inhibitory plasticity which can

counteract excitatory runaway weight dynamics without the need for fine tuning. The pro-

posed rule eliminates the need for additional homeostatic mechanisms and upper bounds on

Fig 2. A novel nonlinear inhibitory plasticity rule can counteract runaway dynamics of excitatory-to-excitatory

weights. A. Plasticity curves of E-to-E ( _wEE, blue) and I-to-E ( _wEI , red) weights as a function of the postsynaptic rate νE.

The excitatory and inhibitory LTD/LTP thresholds are identical (cEpost ¼ cIpost). B. Phase portrait of the dynamics of E-

to-E (wEE) and I-to-E (wEI) weights. Gray arrows indicate the direction of weight evolution over time, points represent

three different initial conditions of the weights, ½wEE
0
;wEI

0
� ¼ f½1:5; 1:8�; ½1:5; 0:5�; ½2:5; 1�g, and green lines represent

the weight evolution for each initial condition. The two colored points represent initial weights in C. Black line

indicates the line attractor and the gray line separates the space at which the postsynaptic firing rate is zero (no

dynamics) or larger than zero (Methods, Eq 18). C. E-to-E (wEE, blue) and I-to-E (wEI, red) weight dynamics and

postsynaptic rate dynamics (νE, gray) as a function of time for two initial conditions in B, ½wEE
0
;wEI

0
� ¼ ½1:5; 0:5� (solid

lines) and ½wEE
0
;wEI

0
� ¼ ½2:5; 1� (dashed lines). D. The slope and intersection of the line attractor with the abscissa (black

line) depend on the number and firing rates of excitatory and inhibitory neurons and the LTD/LTP threshold.

https://doi.org/10.1371/journal.pcbi.1010682.g002
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the weights to stabilize weight dynamics. Our modeling approach allows us to dissect the exact

dependencies of the stability condition on number of synapses, firing rates and plasticity time-

scales of excitatory and inhibitory neurons.

Dynamic matching of the excitatory and inhibitory postsynaptic thresholds

between LTD and LTP

What happens if the postsynaptic thresholds between LTD and LTP for excitatory and inhibi-

tory synapses are not identical, as might be the case in most biological circuits (Fig 3A)? We

found that this leads to the disappearance of the line attractor (see Methods Eq 14). When the

excitatory postsynaptic threshold is lower than the inhibitory postsynaptic threshold

(cEpost < cIpost), both E-to-E and I-to-E weighs grow unbounded (Fig 3B). E-to-E weights cannot

stabilize as they continue to potentiate ( _wEE > 0) even though the postsynaptic neuron is con-

trolled by the fast inhibitory plasticity and approaches the target rate nE ¼ cIpost (Fig 3C).

Fig 3. Dynamic matching of the excitatory and inhibitory postsynaptic LTD/LTP thresholds. A. Plasticity curves of E-to-E ( _wEE, blue) and I-to-E

( _wEI , red) weights as a function of the postsynaptic rate νE with static, non-identical LTD/LTP thresholds (cEpost ¼ 0:7, cIpost ¼ 1:3). B. Phase portrait of

the dynamics of E-to-E (wEE) and I-to-E (wEI) weights for the scenario with static thresholds in A. Gray arrows indicate the direction of weight

evolution over time, points represent three different initial conditions of the weights, ½wEE
0
;wEI

0
� ¼ f½1:5; 1:8�; ½1:5; 0:5�; ½2:5; 1�g, and green lines

represent the weight evolution for each initial condition. The colored point represents initial weight in C and E-F. Black lines indicate the nullclines

and the gray line separates the space at which the postsynaptic firing rate is zero (no dynamics) or larger than zero (Methods, Eq 18). C. Excitatory

(wEE, blue) and inhibitory (wEI, red) weight dynamics and postsynaptic rate dynamics (νE, gray) for one initial condition in B, ½wEE
0
;wEI

0
� ¼ ½1:5; 0:5�.

The thresholds are static as in A. D. Postsynaptic LTD/LTP thresholds cEpost and cIpost shift dynamically depending on recent postsynaptic rate νE. For

lower postsynaptic rate than the excitatory postsynaptic LTD/LTP threshold (nE < cEpost), cEpost decreases, and for nE > cEpost , cEpost increases. For higher

postsynaptic rate than the inhibitory postsynaptic LTD/LTP threshold (nE > cIpost), c
I
post decreases, and for nE < cIpost , c

I
post increases (see Methods).

E. Evolution of excitatory (cEpost , blue) or inhibitory (cIpost , red) postsynaptic LTD/LTP thresholds for two different initial conditions (cEpost;0 ¼ cIpost;0, full

lines and cEpost;0 ¼ 0:7, cIpost;0 ¼ 1:3, dashed lines). Same initial weight condition as in C, ½wEE
0
;wEI

0
� ¼ ½1:5; 0:5�, but for dynamic thresholds shown in

D. F. Excitatory (wEE, blue) and inhibitory (wEI, red) weight dynamics and postsynaptic rate dynamics (νE, gray) for two different initial conditions

(cEpost;0 ¼ cIpost;0, full lines and cEpost;0 ¼ 0:7, cIpost;0 ¼ 1:3, dashed lines). Same initial weight condition as in C, ½wEE
0
;wEI

0
� ¼ ½1:5; 0:5�, but for dynamic

thresholds shown in D. See E for the legend.

https://doi.org/10.1371/journal.pcbi.1010682.g003
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Therefore, stability of firing rates does not imply stability of synaptic weights, especially in the

case when the postsynaptic thresholds between LTD and LTP are non-equal. In the case of

cEpost > cIpost, E-to-E and I-to-E weights steadily decrease.

Motivated by experimental findings and theoretical considerations that the excitatory

threshold can slide [13, 57], here we proposed that the inhibitory threshold can also be dynam-

ically regulated with both excitatory and inhibitory thresholds shifting into opposite directions

(Fig 3D; see Methods). When the postsynaptic rate is lower than the excitatory postsynaptic

LTD/LTP threshold (nE < cEpost), the excitatory postsynaptic LTD/LTP threshold should

decrease, while when the postsynaptic rate is higher than the threshold (nE > cEpost), the excit-

atory threshold should increase. Similarly, when the postsynaptic rate is higher than the inhibi-

tory postsynaptic LTD/LTP threshold (nE > cIpost), the inhibitory postsynaptic LTD/LTP

threshold should decrease, while when the postsynaptic rate is lower than the threshold

(nE < cIpost), the inhibitory threshold should increase. Eventually, these dynamics lead to the

matching of excitatory and inhibitory LTD/LTP thresholds (Fig 3E). Therefore, the rates and

weights can both be simultaneously stabilized (Fig 3F). The excitatory and inhibitory LTD/

LTP thresholds can be matched, and the postsynaptic firing rate and synaptic weights stabi-

lized also for other initializations of the LTD/LTP thresholds (S3A–S3C Fig). Implementing

this dynamic threshold adjustment process generates different postsynaptic LTD/LTP thresh-

old configurations (Fig 3E) and postsynaptic rates (Fig 3F, gray lines). Therefore, for different

initializations of the LTD/LTP thresholds, a wide variety of stable postsynaptic rates is

possible.

The nonlinear inhibitory plasticity rule can regulate the network response

to perturbations

Excitatory and inhibitory LTD/LTP thresholds can be dynamically matched under most con-

ditions, even if they are unequal (S3 Fig). Therefore, from now on we assumed that they are

equal and static (as shown in Fig 2A). Next, we wanted to investigate how the new nonlinear

inhibitory plasticity rule adjusts the network response following a perturbation. Inspired by

sensory deprivation experiments [53, 54, 58] or direct stimulation of input pathways [59, 60],

we investigated the network response to perturbing the excitatory presynaptic input rate

(Fig 4A).

Independent of the direction of the perturbation, we found that the nonlinear inhibitory

plasticity rule brings the excitatory postsynaptic rate back to the target rate (Fig 4B). The inhib-

itory rate νI also readjusts because the inhibitory population receives input from the perturbed

excitatory population. But the new inhibitory rate is different than the rate before the perturba-

tion (Fig 4B). We found that a perturbation which decreases the excitatory input rate, leads to

the depression of both type of weights wEE and wEI; in contrast, a perturbation which increases

the excitatory input rate leads to their potentiation (Fig 4C). The firing rate response and syn-

aptic weight changes to these perturbations are consistent with previous experimental results

[61–66]. Since we used a threshold-linear neuron model (Eqs 1 and 2), our framework can

even predict the steady values of the E-to-E and I-to-E synaptic weights, as well as their ratio,

by calculating the line attractor in the phase space of wEE and wEI weights as a function of the

perturbed parameter (Fig 4D).

Interestingly, we observed that this adjustment occurs by modulation of the presynaptic

threshold between LTD and LTP for both excitatory and inhibitory plasticity. Decreasing the

excitatory input rate decreases the excitatory presynaptic LTD/LTP threshold, hence limiting

the range of presynaptic firing rates that generate depression. The reduction in the LTD/LTP
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threshold follows from the relatively stronger depression of inhibitory compared to excitatory

weights allowing the excitatory postsynaptic neuron to fire at the target rate even when the

excitatory input is decreased. In contrast, we found that increasing the excitatory input rate

increases the LTD/LTP threshold (Fig 4E). Such a shift in the plasticity threshold for excitatory

synapses based on presynaptic activity has been measured in sensory deprivation experiments

[53, 54, 58], and while restoring vision after sensory deprivation [54, 55] (although depriva-

tion-induced effects occur on much slower timescales than in our plasticity model, see Discus-

sion). Similarly to excitatory plasticity, perturbations in the excitatory input rate also shift the

presynaptic threshold between LTD and LTP for inhibitory plasticity (Fig 4F). Since there is

no experimental evidence for this effect, we propose it as a prediction for the shift between

LTD and LTP for I-to-E weights (wEI) in the presence of these perturbations. Even when

implementing the plasticity rules with dynamic thresholds, performing the perturbations still

leads to stable weight and rate configurations (S3D–S3F Fig).

In summary, the proposed nonlinear inhibitory plasticity can adjust the network response

and synaptic strengths to excitatory input rate perturbations, similar to experimental findings.

We predict that this shift occurs by modulating the presynaptic LTD/LTP thresholds for both

excitatory and inhibitory plasticity.

Fig 4. Nonlinear inhibitory plasticity can regulate the network response to perturbations. A. Schematic of perturbing the excitatory

presynaptic rate in the inhibitory feedforward motif. We use the nonlinear inhibitory plasticity rule with identical excitatory and inhibitory

LTD/LTP thresholds from Fig 2A. B. Effect of increasing (solid lines, rE
disr ¼ 2:5) or decreasing (dashed lines, rE

disr ¼ 1:5) excitatory input rates

from a baseline of rE
base ¼ 2 on excitatory (blue) and inhibitory (red) firing rates. C. Same as B but for the wEE and wEI weights. D. The line

attractor for the baseline input rE
base and two input perturbations rE

disr. E. E-to-E weight change _wEE as a function of the presynaptic excitatory

rate ρE for the baseline input rE
base and for two input perturbations rE

disr. F. I-to-E weight change _wEI as a function of the inhibitory rate νI for the

baseline input rE
base and for two input perturbations rE

disr.

https://doi.org/10.1371/journal.pcbi.1010682.g004
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The nonlinear inhibitory plasticity rule affects the excitatory-to-inhibitory

weight ratio

We next wanted to investigate plausible functional roles of the newly proposed nonlinear

inhibitory plasticity besides controlling excitatory and inhibitory firing rates and weights.

Given our ability to calculate the steady states of the weights having used a linearly rectified

neuron model (Fig 4D), we studied the ratio of E-to-E and I-to-E weights:

RE=I ¼
wEE

wEI
¼

NInIwEI þ cpost
NErEwEI

¼
NIðNErEwIE þ rIÞwEI þ cpost

NErEwEI
ð8Þ

with νI = NEρEwIE + ρI (Methods). For strong I-to-E weights wEI, the E/I weight ratio approxi-

mates to:

RE=I
1
¼

NInI

NErE
¼

NIðNErEwIE þ rIÞ

NErE
ð9Þ

(Fig 5A, inset; see Methods). Therefore, the E/I weight ratio is mainly determined by the ratio

of excitatory and inhibitory input rates and the number of synapses, and is independent of the

plastic synaptic weights (wEE and wEI). A fixed E/I weight ratio can be reached when the input

Fig 5. The nonlinear inhibitory plasticity rule maintains an excitatory-to-inhibitory weight ratio. A. The steady state E/I weight ratio REI
1

as a

function of the presynaptic excitatory rate ρE. Inset: RE/I approaches the steady state NIνI/(NEρE) (dashed line) for large I-to-E weights. B-F Based on

a random initial weight configuration drawn from a uniform distribution in the range of [0, 3], excitatory and inhibitory plasticity was induced for

100 ms. Extreme initial E/I ratios (RE=I before > 12) were excluded from the analysis. B. Phase portrait of the dynamics of E-to-E (wEE) and I-to-E

(wEI) weights. Gray arrows indicate the direction of weight evolution over time, colored points represent three different weight initialization,

½wEE
0
;wEI

0
� ¼ f½1:5; 1:8�; ½1:5; 0:5�; ½2:5; 1�g, colored lines represents the weight evolution for each case and the cross marks the weights after plasticity

induction. The firing rates dynamics are similar as in Fig 2. C. E/I ratio before and after plasticity induction. Crosses indicate examples in B. Gray

dashed line indicates the identity line and gray line indicates RE=I
1

. D. E-to-E weight change ΔwEE versus I-to-E weight change ΔwEI after plasticity

induction in percent of initial synaptic weights. Dashed gray line indicates initial I-to-E weight strength and crosses indicate examples in B. E. E-to-

E weight change ΔwEE as a function of E/I ratio RE/I before plasticity in percent of initial weights. Dashed gray line indicates initial E-to-E weight

strength and crosses indicate examples in B. F. Same as E but for I-to-E weight change ΔwEI.

https://doi.org/10.1371/journal.pcbi.1010682.g005
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rates are constant. The E/I ratio decreases as the presynaptic excitatory rate ρE increases (Fig

5A; Eq 8). This can be explained by considering that a higher excitatory input rate ρE generates

more excitatory LTP (Fig 1C), which is counteracted by even more inhibitory LTP to stabilize

weight dynamics. Analytically, this corresponds to a line attractor with a steeper slope (Figs 2D

and 4D for increasing ρE) since the E/I ratio RE=I
1

corresponds to the slope of the line attractor

(Fig 2D; Methods).

Inspired by experiments [37], we evaluated the E/I ratio RE/I before and after inducing

excitatory and inhibitory plasticity for multiple initial weight configurations (Fig 5B and 5C;

Methods). As predicted analytically (Fig 5A), the E/I ratio after plasticity in these simulations

approaches RE=I
1

(Fig 5C), matching experiments in the mouse auditory cortex where inducing

excitatory and inhibitory plasticity generates a fixed E/I ratio [37]. Large E/I ratios before plas-

ticity induction show the most drastic changes, with high postsynaptic firing rates resulting

from dominant excitation needing to be overcome by fast and drastic weight changes by non-

linear inhibitory plasticity. Indeed, we observed that the I-to-E weights exhibit more change

than E-to-E weights (Fig 5D). This suggests that nonlinear inhibitory plasticity affects the E/I

ratio more prominently than excitatory plasticity (Fig 5E and 5F). With the linear inhibitory

plasticity rule [44], a fixed E/I ratio for constant input rates is only reached for initial weights

which ultimately converge to the line attractor (Fig 1E).

Performance of the nonlinear inhibitory plasticity rule under varying

presynaptic input and postsynaptic firing rate

We next investigated the effect of varying the presynaptic input or the postsynaptic firing rate

on the stability of weight dynamics. Adding noise or a sinusoidal input to the postsynaptic fir-

ing rate νE (Methods) maintains synaptic weights within a certain range despite fluctuations

(Fig 6A and 6B). We can understand the weight dynamics by studying how a varying input to

the postsynaptic neuron affects the line attractors in the phase plane of the wEE and wIE

weights. Adding an input to the postsynaptic neuron shifts only the point where the line

attractor intersects the abscissa but does not change the slope (Fig 6C; Methods). Therefore,

the weights remain constrained within a narrow region, without runaway dynamics. Even

when implementing the plasticity rules with dynamic thresholds, adding postsynaptic noise or

sinusoidal input leads to stable weight and rate configurations (S4 Fig).

The picture changes when the presynaptic input rate ρE varies (Methods). Here, both excit-

atory and inhibitory weights begin to slowly drift towards higher values while average firing

rates remain stable (Fig 6D and 6E). The drift is due to a change in the presynaptic rate which

affects the slope of the line attractors (see also Figs 2D and 4D). In the case of presynaptic sinu-

soidal input rate, the weights slowly increase while oscillating between the line attractors (Fig

6F). Therefore, while on a short timescales the interaction of only excitatory and inhibitory

plasticity mechanisms seems to be sufficient to regulate weight and rate stability, we suggest

that additional homeostatic mechanisms are necessary to regulate synaptic weight dynamics

over longer timescales in the presence of noise or variability in the presynaptic input.

Gating of receptive field formation via a disinhibitory signal

What functional implications does the proposed nonlinear inhibitory plasticity rule have on

setting up network circuitry? Other than controlling excitatory and inhibitory rates and

weights, here we wanted to examine if the nonlinear inhibitory plasticity rule can also enable

flexible learning. Various forms of synaptic plasticity have been observed to support receptive

field formation and generate selectivity to stimulus features in the developing cortex [67]. To

investigate the function of interacting excitatory and inhibitory plasticity at the network level,
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we first extended the feedforward circuit motif to two independent pathways with pathway-

specific inhibition (Fig 7A). We found that perturbing the presynaptic excitatory rate of both

inputs in opposite directions, decreasing for input 1 and increasing for input 2, differently

shifts the input-specific excitatory presynaptic LTD/LTP thresholds and establishes different

E/I ratios (Fig 7B). This shift in the model is in agreement with experimental studies in the hip-

pocampus which have shown that the thresholds between the induction of LTD and LTP are

synapse-specific [59, 68]. These results suggest that the control of E-to-E weight dynamics via

nonlinear inhibitory plasticity is input-specific.

Applying disinhibition by inhibiting the inhibitory population is a widely considered mech-

anism to ‘gate’ learning and plasticity [50, 51, 69]. To test the potential of the circuit with non-

linear inhibitory plasticity to learn, we applied a disinhibitory signal by decreasing the external

excitatory input onto the inhibitory populations. We found that this decreases the inhibitory

input onto the postsynaptic neuron and potentiates E-to-E synapses, wEE (Fig 7C, ρI< 1). In

contrast, increasing the input onto the inhibitory populations depresses E-to-E synapses (Fig

7C, ρI> 1). Therefore, disinhibition via perturbation of the inhibitory neurons has the capacity

to induce plasticity at E-to-E synapses and can gate excitatory plasticity.

How do the current results generalize to larger circuits with multiple independent inputs?

In addition to pathway-specific inhibition, in this extended circuit we also introduced an

unspecific inhibitory population (Fig 7D). We presented different inputs to each of ten path-

ways in random order, corresponding to oriented bars in the visual cortex, or different single

tone frequencies in the auditory cortex (Methods). We found that disinhibiting via the

Fig 6. Performance of the nonlinear inhibitory plasticity rule under varying presynaptic input and postsynaptic firing rate. A. Adding

noise to the postsynaptic firing rate. Top: E-to-E (wEE, blue) and I-to-E (wEI, red) as a function of time. Bottom: Postsynaptic rate dynamics (νE,

gray) as a function of time. B. Same as A but after adding a sinusiodal input to the postsynaptic firing rate. C. Left: The line attractors in the wEE

and wEI phase plane at the maximum and minimum of the postsynaptic firing rate after the addition of sinusoidal input (black lines) and the

weight dynamics from B (green). Right: Zoom in of the phase plane. D. Same as A but after adding the noise to the presynaptic input rate. E.

Same as B but after using a sinusoid for the presynaptic input rate. F. Same as C but after using a sinusoid for the presynaptic input rate with

weight dynamics from E (green).

https://doi.org/10.1371/journal.pcbi.1010682.g006
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unspecific inhibitory population does not selectively potentiate E-to-E weights, and hence

does not generate competition among the different inputs. In this case, the selective potentia-

tion of E-to-E weights corresponding to the inputs stimulated at a given time is counteracted

by the potentiation of I-to-E weights specific to the stimulated inputs. This fast cancellation of

any input-specific excitatory plasticity by input-specific inhibitory plasticity generates very

small changes in the postsynaptic firing rate (Fig 7E, bottom). In contrast, equally disinhibiting

Fig 7. Gating of receptive field formation via a disinhibitory signal. A. Two independent inputs onto the same postsynaptic excitatory

neuron. We perturb the presynaptic excitatory rate from input 1 or 2 (rE
disr;1;2). B. Plasticity curve of E-to-E weights for input 1 or 2 ( _wEE

1;2
) as a

function of the presynaptic excitatory rate ρE for different input-specific perturbations rE
disr;1;2. Inset: E/I weight ratio RE/I for different input-

specific perturbations. C. Plasticity curve of E-to-E weights for input 1 and 2 ( _wEE
1;2

) as a function of the external excitatory rate onto the

inhibitory neurons ρI, corresponding to a perturbation rI
disr of the inhibitory populations. Perturbing ρI below 1 Hz (dashed line) is interpreted

as a disinhibitory signal. Inset: We perturb the external excitatory rate onto the inhibitory neurons rI
disr. D. Ten independent inputs onto the

same postsynaptic excitatory neuron with one inhibitory population unspecific to the input (yellow) and ten inhibitory populations each specific

to one input (red). E. Top: Evolution of excitatory weights over time. Purple bars indicate the time window where either the unspecific (yellow)

or all specific (red) inhibitory populations is disinhibited by applying a negative input onto the inhibitory neurons (Methods). Input number

color coded in green. Bottom: Postsynaptic firing rate νE over time. F. Left: Network connectivity of recurrently connected excitatory neurons

(triangles) after disinhibition. The number and the color indicates the input to which each neuron formed a receptive field (10 inputs in total).

The thickness of the connection indicates the strength, only weights above 0.03 are shown. Distance and position of neurons is for visualization

purposes only. Right: Ordered recurrent E-to-E connectivity matrix. Input number color coded in green as in panel E.

https://doi.org/10.1371/journal.pcbi.1010682.g007
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via all ten specific inhibitory populations strongly increases the E-to-E weights corresponding

to only a subset of inputs, a process also called receptive field formation (Fig 7E). In this case,

the selective potentiation of E-to-E weights corresponding to the inputs stimulated at a given

time is counteracted by the potentiation of all unspecific I-to-E weights. Therefore, inhibitory

plasticity does not cancel input-specific excitation. The random presentation order of the dif-

ferent inputs generates input-specific differences in excitatory weights and hence leads to com-

petition. The input-specific potentiation is reflected in the fluctuating postsynaptic firing rate

which increases only when the winning input is presented (Fig 7E, bottom).

Finally, we implemented a network of 30 recurrently connected excitatory neurons where

each neuron in the circuit receives inputs from ten inputs and an unspecific and a specific

inhibitory population (as in Fig 7D). In addition to the feedforward excitatory and inhibitory

synapses, all recurrent E-to-E weights are also plastic. Similar as with a single postsynaptic neu-

ron, we found that each of the excitatory neurons in the recurrent circuit forms a receptive

field by becoming selective to one of the inputs (Fig 7F, left; number next to the neuron). In

addition, strong bidirectional connections form among recurrent excitatory neurons with sim-

ilar receptive fields due to their correlated activity (Fig 7F). This is consistent with strong bidi-

rectional connectivity described in multiple experimental studies [70–72].

In summary, the newly proposed nonlinear inhibitory plasticity rule does not only ensure

stable synaptic weights and activity, but also enables the formation of feedforward and recur-

rent structures upon disinhibition which gates synaptic plasticity.

Discussion

Hebbian excitatory synaptic plasticity is inherently unstable, requiring additional homeostatic

mechanisms to control and stabilize excitatory-to-excitatory weight dynamics [4]. Here, we

proposed a novel form of inhibitory plasticity (Fig 2), which can control excitatory and inhibi-

tory firing rates and synaptic weights and enable stable and flexible learning of receptive fields

in circuit models of the sensory cortex. We identified the dominance of inhibition over excita-

tion (Eq 6) and identical postsynaptic thresholds between LTD and LTP for excitatory and

inhibitory plasticity (compare Fig 2A and Fig 3A–3C) as two necessary features for stabiliza-

tion of weight dynamics in our model. However, the latter requirement can be relaxed with a

suitable dynamic mechanism that enables self-adjusting of the plasticity thresholds in opposite

directions for excitatory and inhibitory plasticity (Fig 3D–3F). This novel form of nonlinear

inhibitory plasticity can also regulate the network response to perturbations of excitatory input

rates (Fig 4). Inhibitory plasticity affects the E/I weight ratio and establishes a fixed E/I ratio

when input rates are constant (Eq 8), in agreement with experiments in the mouse auditory

cortex where inducing excitatory and inhibitory plasticity sets a fixed E/I ratio [37] (Fig 5). We

find that varying the presynaptic inputs or the postsynaptic firing rate differently affects stabil-

ity (Fig 6). Besides stability, the proposed form of inhibitory plasticity enables receptive field

formation following disinhibition to input-specific inhibitory populations and in recurrent

networks supports the formation of strong bidirectional connectivity among neurons with

similar receptive fields (Fig 7), suggesting a possible solution for the stability-flexibility

problem.

Inhibitory plasticity as a control mechanism of excitatory-to-excitatory

weight dynamics

In the last decades, experimental studies have uncovered multiple possible mechanisms to

counteract Hebbian runaway dynamics, including synaptic scaling [5, 73], heterosynaptic plas-

ticity [7, 8], and intrinsic plasticity [10, 11]. At the same time, computational studies have
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included multiple homeostatic mechanisms, some of them the same as the experimental ones,

to stabilize rates and weight dynamics, including upper bounds on the E-to-E weights, normal-

ization mechanisms [3, 12, 16, 20, 21, 23], metaplastic changes of the plasticity function [13–

16, 24], heterosynaptic plasticity [9, 29, 30] and intrinsic plasticity and synaptic scaling [16].

However, the spatial and temporal scales for integrating Hebbian and homeostatic plasticity

continue to be subject of investigation [18, 25, 26]. This is especially the case for synaptic scal-

ing which experimentally operates on timescales too slow to counteract the faster Hebbian syn-

aptic plasticity (hours and days, vs. seconds and minutes). Heterosynaptic plasticity has been

suggested as a more natural solution to the ‘temporal paradox’ problem since it operates on a

similar timescale as Hebbian plasticity [9, 28, 29].

In our study, we instead proposed a novel inhibitory plasticity rule at inhibitory-to-excit-

atory synapses which depends nonlinearly on the postsynaptic firing rate as a solution to the

temporal paradox problem. While nonlinear excitatory plasticity rules have been identified in

experimental studies [53–55], less data is available for inhibitory plasticity. For example, pre-

synaptic stimulation (hyperpolarization) and postsynaptic depolarization, have been shown to

be required for inhibitory plasticity induction [74–77]. Additionally, high-frequency stimula-

tion of presynaptic input pathways has been shown to potentiate inhibitory synapses [34–36].

Finally, the amount of inhibitory LTP has been shown to depend on the postsynaptic rate [43].

We designed our nonlinear inhibitory plasticity mechanism to be consistent with these find-

ings: both, pre- and postsynaptic activity is necessary to induce inhibitory plasticity and the

amount of LTP depends on the postsynaptic rate. Nonetheless, our rule is inconsistent with

some experimental data which found no inhibitory plasticity for very high postsynaptic rates

[43].

Several computational models have explored the functional roles of inhibitory spike-tim-

ing-dependent plasticity (iSTDP) operating at inhibitory-to-excitatory synapses. A commonly

investigated plasticity rule has a symmetric learning window, where pre- and postsynaptic

spikes close in time lead to LTP, and spikes further apart lead to LTD [44]. Similar symmetric

learning windows have been identified experimentally in the auditory cortex [37], in the orbi-

tofrontal cortex [78], and in the hippocampus [77]. Asymmetric learning windows, in which

pre-post spike pairs lead to LTP and post-pre spike pairs lead to LTD have been observed in

the entorhinal cortex [79], and also used in computational studies [45, 46]. For an inhibitory

plasticity rule to successfully stabilize postsynaptic excitatory firing rates, it needs to implement

a negative feedback mechanism whereby for high postsynaptic firing rates the inhibitory syn-

aptic strength increases, while for low rates the inhibitory strength decreases, as is the case for

our rule as well as others [44–46]. The nonlinear inhibitory plasticity we propose in our study

is probably closest to a recent implementation of inhibitory plasticity via the voltage rule [80],

since the voltage rule has a nonlinear dependency on postsynaptic firing rates [81].

Inhibitory plasticity as a metaplastic mechanism

The ability of the proposed nonlinear inhibitory plasticity to control the sign and magnitude of

excitatory plasticity resembles metaplasticity, i.e. a plasticity mechanism that is plastic itself

[13, 15]. We found that input perturbations modulate the excitatory presynaptic LTD/LTP

threshold via a change of the I-to-E weights and inhibitory rates consistent with metaplasticity

(Fig 4). Previous computational work has already suggested that a linear inhibitory plasticity

rule can implement a metaplastic mechanism [56]. What mechanism underlies the sliding

LTD/LTP threshold during the induction of plasticity is still an open question. Some

experimental studies have suggested that inhibition can control the sign and magnitude of

excitatory plasticity [40, 41, 43, 82]. Most intriguingly, it has been shown that application of

PLOS COMPUTATIONAL BIOLOGY Stability and learning by nonlinear inhibitory plasticity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010682 December 2, 2022 16 / 34

https://doi.org/10.1371/journal.pcbi.1010682


gamma-Aminobutyric acid (GABA) can increase the excitatory LTD/LTP threshold, while

blocking GABA can decrease the excitatory LTD/LTP threshold [39], supporting our findings

(Fig 1C).

The metaplasticity of excitatory plasticity was first suggested theoretically with the Bien-

enstock-Cooper-Munro (BCM) rule [13], and was later confirmed in sensory deprivation

and restoration experiments [53, 54, 55, 58]. In the BCM rule, the metaplastic mechanism is

implemented by a sliding LTD/LTP threshold depending on the excitatory postsynaptic rate

[83, 84]. Higher (lower) postsynaptic rates lead to a higher (lower) postsynaptic LTD/LTP

threshold making LTP (LTD) induction harder. Various implementations of the BCM rule

have demonstrated its ability to achieve weight selectivity and firing rate stability without

any inhibitory plasticity [13, 14, 24, 85]. Differently from the BCM model, in our nonlinear

inhibitory plasticity rule the metaplastic sliding of the LTD/LTP threshold cEpre depends on

the presynaptic excitatory rate (Fig 1C), whereas the postsynaptic LTD/LTP threshold cEpost is

fixed (except in Fig 3D–3F and S3 Fig). This apparent difference can be resolved by assuming

that homeostatic mechanisms operate at two different timescales: fast and slow. Slow homeo-

stasis has been linked to synaptic scaling which we (and others, e.g. [57]) hypothesize to be a

possible mechanism behind changes in the postsynaptic threshold. It is usually observed on

the timescales of many hours to days [6, 86, 87] but can also occur on the timescale of a few

hours [88]. Fast homeostasis might be linked to disinhibition and inhibitory plasticity [89],

which is induced on the timescale of minutes [9, 37, 90]. We suggest this is the case during

sliding of the presynaptic LTD/LTP threshold mediated by our inhibitory plasticity rule.

Nonetheless, it is plausible that both, presynaptic and postsynaptic metaplasticity exist in

neuronal circuits. An advantage of achieving homeostasis via inhibitory plasticity, rather

than a direct influence on the E-to-E weights, might be that there is no interference with

stored information in E-to-E connections.

We used the metaplasticity of the nonlinear inhibitory plasticity rule to describe firing rate

and weight changes in the model following perturbations of excitatory input (Fig 4) such as

during sensory deprivation experiments [53, 54, 58]. For example, the decrease in inhibitory

firing rates and weights after decreasing excitatory input in our model is consistent with the

decrease in inhibitory activity following sensory deprivation [69, 87, 91]. Specifically, sensory

deprivation has been shown to depress inhibitory synaptic strengths, decrease in the number

of inhibitory synapses [62–66] (but see [92, 93]) and depress excitatory synaptic strengths [61,

94]. Increasing excitatory input in our model potentiates inhibitory weights, in agreement

with experiments where up-regulating activity potentiates I-to-E synapses [95, 96]. We note

that the plasticity induced by these sensory deprivation experiments occurs on much longer

timescales of hours to days (see e.g. [57, 89]) compared to the shorter plasticity timescales of

seconds or minutes in our model, suggesting that other mechanisms than the proposed non-

linear inhibitory plasticity drive the experimentally observed changes. Moreover, in our model

we instantaneously and permanently change the input firing rate in contrast to the more com-

plex changes in input patterns occurring during sensory deprivation. Therefore, the applied

perturbation in our model could be better related to direct simulation of input pathways when

similarly fast LTD/LTP threshold changes have been measured experimentally [59, 60, 97]).

Key features of the nonlinear inhibitory plasticity rule

For the novel inhibitory plasticity rule to stabilize E-to-E weight dynamics, two key features

need to be fulfilled. First, I-to-E weight changes need to be more ‘dominant’ than E-to-E

weight changes (Fig 2). More dominant means that I-to-E weights need to change with a

higher magnitude at each time step compared to E-to-E weights, for all postsynaptic rates. If
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excitatory plasticity exceeds inhibitory plasticity for a certain postsynaptic rate as in the case of

linear inhibitory plasticity, weight dynamics will be unstable (Fig 1D–1F). In our model, domi-

nance of nonlinear inhibitory plasticity is guaranteed by the condition in Eq 6, which involves

relative number of synapses, presynaptic rates and plasticity timescales of excitation and inhi-

bition to determine stability. Previous experimental work has reported that inhibitory synapses

change more drastically than excitatory synapses [37], but inhibitory plasticity may be delayed

relative to excitatory plasticity [50].

Second, the excitatory and inhibitory postsynaptic LTD/LTP thresholds need to be matched

for stable weight dynamics, whereby excitatory and inhibitory synaptic change occur in the

same direction for a given firing rate (Fig 2A–2C versus Fig 3A–3C). However, implementing

a mechanism that dynamically shifts these thresholds in the opposite directions for excitatory

vs. inhibitory plasticity based on experimental evidence [57], suggests that this match is not

needed at all times. An interesting consequence from this dynamic threshold shift is the ability

to achieve a range of firing rates. A limitation of the suggested dynamic threshold matching

mechanism is that it is non-local whereby the thresholds for all input pathways converge to the

same value. While this can still achieve stable weight dynamics and postsynaptic firing rates

(S3G–S3I Fig; Methods), it can no longer induce competition among different inputs. Future

work needs to investigate whether a different dynamic matching of excitatory and inhibitory

LTD/LTP thresholds, perhaps one that is input-specific, can achieve the stable formation of

receptive fields.

We found that the newly proposed nonlinear inhibitory plasticity rule achieves a fixed E/I

ratio for constant input rates (Fig 5) in agreement with experimental data in the mouse audi-

tory cortex where the induction of excitatory and inhibitory plasticity established a fixed E/I

ratio [37]. We observed that inhibitory plasticity is the more dominant mechanism to achieve

this. The dominance of inhibitory plasticity suggests a possible solution to the temporal para-

dox problem of integrating Hebbian excitatory plasticity and homeostasis [25], eliminating the

requirement for additional fast stabilizing mechanisms in our model. While the relative time-

scales of excitatory and inhibitory plasticity mechanisms remain an open question, most

computational models agree on the need for faster inhibitory than excitatory plasticity dynam-

ics [25, 98].

Our framework is robust when noise or a varying input is added to the postsynaptic firing

rate but not when the presynaptic rate varies (Fig 6). This suggests that additional homeostatic

mechanisms are necessary to robustly counteract drift of synaptic weights when the input or

the firing rates vary.

Functional implications of the nonlinear inhibitory plasticity rule

The interaction of the nonlinear inhibitory and excitatory plasticity in our model and the over-

lap of excitatory and inhibitory LTD/LTP thresholds lead to a fixed E/I weight ratio when

input rates are constant (Fig 5A and 5C and Eq 8). This is consistent with several experimental

studies which have suggested that inhibitory plasticity maintains a stable E/I ratio [9, 37, 43,

50, 96, 99–102]. For example, as our model would predict, some studies have found that the

amount of inhibitory plasticity depends on the E/I ratio before plasticity induction (Fig 5F)

[37, 103]. In these experiments, a change in E/I ratio is observed on the timescale of induction

of plasticity (5–10 min) [37]. When we perturb the excitatory input rate as a model of sensory

deprivation the E/I ratio increases (Fig 5A), consistent with sensory deprivation experiments

[66, 69, 91, 94]. Despite the ability of the new nonlinear inhibitory plasticity rule to establish

and maintain E/I balance, we acknowledge that there are various additional mechanisms that

contribute, including heterosynaptic plasticity [9].
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The emergence of fixed E/I ratio for constant input rates following from the stabilization of

postsynaptic rates driven by the novel inhibitory plasticity rule ensures E/I balance. E/I balance

is more broadly defined as the proportionality of total excitatory and inhibitory input onto a

neuron [104]. In our model, once the neuron fires with a firing rate equal to the LTD/LTP

threshold there is no more synaptic plasticity. To induce further weight changes, an additional

gating signal is necessary that perturbs the postsynaptic firing rate. In our model, there are

three ways to gate plasticity: (1) directly changing the postsynaptic rate (Fig 1B); (2) perturbing

the excitatory input pathway (Fig 4); and (3) perturbing the inhibitory population (Fig 7C).

The idea that inhibition gates excitatory plasticity is well-documented in the experimental lit-

erature [105–107].

Experimentally, both neuromodulation [50, 108] and disinhibitory circuits [51, 90, 109–

111] can directly control the activity of inhibitory neurons and lead to excitatory plasticity.

Based on this, we investigated the gating of plasticity via a disinhibitory signal in the context of

receptive field formation. While receptive field formation has already been demonstrated in

multiple computational studies [13, 45, 56], we propose that it can occur solely from the inter-

action of excitatory and inhibitory plasticity without any additional mechanism to induce

competition among different inputs (Fig 7D and 7E). Recurrently connecting multiple post-

synaptic excitatory neurons and allowing the connections between them to be plastic leads to

receptive field formation of each excitatory neuron in the recurrent circuit and the formation

of strong bidirectional connectivity between neurons with similar receptive fields (Fig 7F).

This is in agreement with various experimental data indicating that similarly responsive neu-

rons are more strongly connected [70–72, 112]. The formation of strongly recurrently con-

nected neurons, often referred to as assemblies, via synaptic plasticity has been shown in

previous computational studies [20–23, 113]. In contrast to our framework, these studies rely

on a fast normalization mechanism in addition to excitatory and inhibitory plasticity to reli-

ably learn assemblies.

We found that gating of receptive field formation via disinhibition depends on the specific-

ity of the targeted inhibitory population to the inputs. While disinhibiting the unspecific popu-

lation does not form receptive fields, disinhibiting all specific inhibitory populations induces

competition between different inputs and forms receptive fields. If inhibitory plasticity coun-

teracts excitatory plasticity in an input-specific way, no competition between input pathways

can emerge because small biases in the E-to-E weights in one input are immediately balanced

by I-to-E weights in the same input. Therefore, disrupting the specific inhibitory populations

allows the strengthening of a subset of inputs. This result is similar to the findings of [56],

where receptive field formation was shown to depend on the specificity of the inhibitory

neurons.

The inhibitory populations in our model can be linked to the two main inhibitory neuron

types in the cortex, somatostatin-expressing (SOM) and parvalbumin-expressing (PV) inhibi-

tory interneurons. Specificity of the inhibitory neuron type to excitatory inputs can be inter-

preted as tuning of the inhibitory neurons to input features. In the visual [114, 115] and the

auditory cortex [116], tuning of SOM interneurons is sharper than PV interneurons, although

conflicting evidence exists [117]. Therefore, in our model the specific inhibitory neuron type

could represent SOM interneurons while the unspecific inhibitory population could represent

PV interneurons. Supporting this interpretation of SOM interneurons being the specific inhib-

itory population, experimental studies find that a suppression of SOM neurons gates excitatory

plasticity [106, 111, 118]. In contrast to this interpretation, the specific inhibitory neurons in

our model might be interpreted as PV neurons. This is supported by experimental evidence

which shows that PV neurons strongly inhibit pyramidal neurons which have similar selectiv-

ity [119].
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Predictions

Using rate-based units in our model enabled us to treat it analytically and offered an in-depth

mechanistic understanding of the involved processes leading to experimentally testable predic-

tions and making our model assumptions falsifiable. A main feature of our model is that inhib-

itory plasticity depends nonlinearly on the rate of the postsynaptic excitatory neuron. This can

be tested experimentally by inducing inhibitory plasticity while varying the rate of an excit-

atory neuron and keeping the inhibitory input to this neuron constant. A second feature of

our model is that excitatory and inhibitory plasticity have an identical postsynaptic LTD/LTP

threshold. This could be tested by inducing plasticity at excitatory and inhibitory pathways

onto the same excitatory neuron, and measuring the LTD/LTP thresholds as a function of the

rate of that neuron.

Based on the perturbation experiment (Fig 4), we can formulate multiple predictions. First,

we hypothesize that the mechanism behind the metaplastic mechanism is a change in the level

of inhibition (see Figs 1C and 4E). Therefore, blocking inhibitory plasticity experimentally

should also disrupt the metaplastic mechanism. Second, we predict that the shape of inhibitory

plasticity as a function of the inhibitory rate is reversed compared to excitatory plasticity, and

perturbations of the excitatory input lead to specific metaplastic changes of inhibitory plastic-

ity. Decreasing the excitatory input should lower the inhibitory LTD/LTP threshold as a func-

tion of the presynaptic inhibitory rate and decrease the inhibitory LTP magnitude (Fig 4F).

Third, since the line of stable fixed point depends on several model parameters (Fig 2C and Eq

7), especially on the excitatory input rate (Fig 4D), we hypothesize that different E/I ratios can

be achieved following input perturbations. Decreasing the excitatory input rate should lead to

higher E/I ratios, while increasing it to lower E/I ratios.

The proposed rule suggests a new functional role of inhibitory plasticity, namely controlling

E-to-E weight dynamics. Therefore, we extend previously studied roles of inhibitory plasticity,

which include the stabilization of excitatory rates [44, 98], decorrelation of neuronal responses

[120], preventing winner-take-all mechanisms in networks with multiple stable states [20] or

generating differences among novel versus familiar stimuli [23]. Recent computational studies

also include novel ways of inhibitory influence, like presynaptic inhibition via GABA spillover

[121], an input-dependent inhibitory plasticity mechanism [122] and co-dependency of excit-

atory and inhibitory plasticity rules [123]. Our model includes a single type of inhibitory plas-

ticity. Yet, recent studies have found that cortical circuits have abundance of different

inhibitory interneuron types and that inhibitory plasticity depends on the inhibitory neuron

type [75–78]. Our result on inhibitory population-dependent effects in gating receptive field

formation suggests that subtype-specific plasticity rules might have non-trivial influences on

the network, as some recent models have proposed [78, 124]. Furthermore, other homeostatic

mechanisms will influence the stability of weight dynamics, E/I ratios and the effect different

perturbations have on the network dynamics.

Conclusion

Taken together, our study proposed a novel form of nonlinear inhibitory plasticity which can

achieve stable firing rates and synaptic weights without the need for any additional homeo-

static mechanisms. Moreover, our proposed plasticity is fast, and hence could provide a solu-

tion to the temporal paradox problem because it can counteract fast Hebbian excitatory

plasticity. Functionally, our proposed inhibitory plasticity can establish and maintain a fixed

E/I ratio for constant input rates at which the postsynaptic firing rate is exactly at the LTD/

LTP threshold. For such postsynaptic firing rates, no synaptic plasticity is induced, i.e. plastic-

ity is “off”. Perturbing the postsynaptic firing rate, e.g. via disinhibition, can act as a gate,
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turning plasticity “on”. This enables the competition among input streams leading to receptive

field formation in feedforward and recurrent circuits. Therefore, our nonlinear inhibitory plas-

ticity mechanism provides a solution to the stability-flexibility challenge.

Methods

Rate-based model

We studied rate-based neurons to allow us to analytically investigate the dynamics of firing

rates and synaptic weights in the model. In the feedforward motif (Fig 1A), we considered a

network consisting of one excitatory postsynaptic neuron with a linear threshold transfer func-

tion and firing rate νE, see Eq 1. The inhibitory neurons also follow a similar dynamics, see Eq

2. All parameters are given in Table 1. In the mean-field sense, the number of neurons can be

traded-off with the rates or the synaptic weights, hence we assume NE = NI = 1 (Table 1).

Rate-based plasticity

For the plasticity of E-to-E synaptic weights wEE, we used a learning rule that depends nonli-

nearly on the postsynaptic rate νE (Fig 1B) [53–55]:

tEw _wEE ¼ rEnEðnE � cEpostÞ: ð10Þ

Here, tEw is the timescale of excitatory plasticity, which can be also thought of as the inverse of

the learning rate, with correcting units Hz2. This timescale is much longer than the timescale

of the neuronal dynamics. The plasticity changes sign at the ‘postsynaptic LTD/LTP threshold’,

cEpost. During experimental induction of plasticity, low frequency stimulation (1,3 or 5 Hz)

induces LTD, while high frequency stimulation (10–20 Hz) induces LTP [53]. Therefore, a nat-

ural value of the LTD/LTP threshold is between 5 and 10 Hz. We chose 1 Hz as the LTD/LTP

threshold (Table 1), nonetheless, our findings will still hold with higher LTD/LTP thresholds.

For the plasticity of I-to-E synaptic weights wEI, we used two learning rules. First, we used

an inhibitory plasticity rule common in computational models [44, 56], which depends linearly

on the postsynaptic rate νE (Fig 1D, _wEI):

tIw _wEI ¼ nIðnE � cIpostÞ: ð11Þ

Table 1. Parameter values for figures, ? denotes that values are provided in the figure captions.

Sym. Description Fig 1 Fig 2 Fig 3 Fig 4 Fig 5 Fig 6 Fig 7B and 7C S2 Fig S3 Fig

wEE
0

Initial E-to-E weight ? 1.5 ? 1 0.7 1.5 ?

wEI
0

Initial I-to-E weight ? 0.5 ? 1 0.5 ?

wIE E-to-I weight 0.5 ? 0.5

ρE Presynaptic E rate (Hz) 2 ? 2 ? 2 ?

ρI Ext. E rate onto I neurons (Hz) 0.5 ? 0.5

NE Number of presyn. E neurons 1 ?

NI Number of I neurons 1 ?

t
E=I
FR

Time const. E/I rate dyn. (s) 0.01

tEw Timescale E plasticity (Hz2) 1 0.5 1

tIw Timescale I plasticity (Hz or Hz2) 0.2 1 0.2

cEpost E postsyn. LTD/LTP thresh. (Hz) 1 ? 1 ?

cIpost I postsyn. LTD/LTP thresh. (Hz) 1 ? 1 ?

https://doi.org/10.1371/journal.pcbi.1010682.t001
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Here, tIw denotes the timescale of inhibitory plasticity (or the inverse of the learning rate) with

correcting units Hz, which again is much longer than the timescale of the neuronal dynamics.

As for excitatory plasticity, inhibitory plasticity changes from LTD to LTP at the ‘inhibitory

postsynaptic LTD/LTP threshold’, cIpost, which sets the ‘target rate’ of the postsynaptic neuron

[44]. In our paper, we proposed a novel inhibitory plasticity rule, which also depends nonli-

nearly on postsynaptic excitatory activity just like excitatory plasticity (Fig 2A):

tIw _wEI ¼ nInEðnE � cIpostÞ: ð12Þ

For both inhibitory plasticity rules, we assumed that the excitatory and inhibitory thresholds

are matched (cEpost ¼ cIpost) to prevent excitatory and inhibitory plasticity pushing the postsynap-

tic excitatory neuron towards two different firing rates. The exception for this was the dynamic

mechanism for threshold matching in Fig 3 and S3 Fig.

LTD/LTP plasticity thresholds. As can be see in the equations for excitatory and inhibi-

tory plasticity, the postsynaptic LTD/LTP thresholds, which determine the sign of plasticity as

a function of postsynaptic excitatory activity, are fixed. However, in the main text we also

introduce the concept of a presynaptic LTD/LTP threshold, defined as the presynaptic excit-

atory rate at which no synaptic plasticity is induced. We consider νE at steady state (νE = [NEρE-

wEE − NIνIwEI]+) and assume that the dynamics of the rates are in the region where the transfer

function is linear. Therefore, we can drop the linear rectifier and solve for ρE at which Eq 3 is

zero. We derive the presynaptic LTD/LTP threshold as:

cEpre ¼
cpost þ NInIwEI

NEwEE
: ð13Þ

Stability analysis. To investigate the stability of the weights, we first calculated the

nullclines, where we assumed that the postsynaptic excitatory rate is at steady state

νE = [NEρEwEE − NIνIwEI]+. By setting Eqs 10 and 12 to zero and dropping the linear recti-

fier, i.e. νE = NEρEwEE − NIνIwEI, we can write:

wEI ¼
NErEwEE � cEpost

NInI
;

wEI ¼
NErEwEE � cIpost

NInI
:

ð14Þ

We see that the two equations are identical if cEpost ¼ cIpost. Therefore, only for identical

LTD/LTP thresholds (cEpost ¼ cIpost) a line of fixed points emerges. The fixed points are

½wEE
�
;wEI
�
� ¼ ½x; ðNErEx � cpostÞ=ðNInIÞ�, where we require that x� cpost/(NEρE) to avoid nega-

tive weights. To calculate the stability of the line of fixed points, we calculate the eigenval-

ues. We can rewrite Eqs 10 and 12, as:

_wEE ¼
rE

tEw
ðNErEwEEÞ

2
þ ðNInIwEIÞ

2
� 2NENIrEnIwEEwEI � NErEwEEcpost þ NInIwEIcpost

� �
¼ f

_wEI ¼
nI

tIw
ðNErEwEEÞ

2
þ ðNInIwEIÞ

2
� 2NENIrEnIwEEwEI � NErEwEEcpost þ NInIwEIcpost

� �
¼ g

ð15Þ

where we drop the linear rectifier by assuming that the dynamics of the rates are in the

region where the transfer function is linear. We find that the entries of the Jacobian matrix
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at the fixed points are:

J� ¼

@f
@wEE

@f
@wEI

@g
@wEE

@g
@wEI

0

B
B
B
@

1

C
C
C
A
¼

NEðrEÞ
2cpost

tEw
�
NIrEnIcpost

tEw

NErEnIcpost
tIw

�
NIðnIÞ

2cpost
tIw

0

B
B
B
B
B
@

1

C
C
C
C
C
A

: ð16Þ

The trace of the Jacobian is TrðJ�Þ ¼
NEðrEÞ2cpost

tEw
�

NI ðnI Þ2cpost
tIw

and the determinant is zero Det(J�)
= 0, therefore we find that the eigenvalues are:

l1;2 ¼
1

2
TrðJ�Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TrðJ�Þ
2
� 4DetðJ�Þ

q� �

¼
TrðJ�Þ;

0:

(

ð17Þ

This means that if Tr(J�) < 0, the system is stable. Reordering this condition leads to the sta-

bility condition derived in the main text as Eq 6. By reordering the terms in the nullclines

given in Eq 14, we derive the line attractor equation as given in the main text in Eq 7.

The nonlinear excitatory and inhibitory plasticity rules have a fixed point when the postsyn-

aptic excitatory firing rate is νE = 0. Therefore, in the phase plane of wEE and wEI weights there

is a region where the total inhibitory input is larger than the total excitatory input, NEρEwEE<

NIνIwEI, resulting in no postsynaptic firing (Fig 2B, above gray line). The line equation separat-

ing the space with and without weight dynamics is:

wEI ¼
NErEwEE

NInI
: ð18Þ

In the case of the linear inhibitory plasticity rule, stability depends on the initial weights. The

line which separates stable from unstable initial weights can be calculated by taking the ratio of

Eqs 10 and 11 and equating that to the slope of the line attractor (Eq 7):

_wEI

_wEE
¼

tEwn
I

tIwr
EðNErEwEE � NInIwEIÞ

¼
NErE

NInI
ð19Þ

which leads to:

wEI ¼
NErE

NInI
wEE �

nItEw

NEðrEÞ
2
tIw
; ð20Þ

which is the equation of the dashed line in Fig 1E. The slope of the line attractor is the same for

linear and nonlinear inhibitory plasticity.

In Eqs 13–20, the inhibitory firing rate can be replaced by its steady state value νI = NEρEwIE +

ρI. For the stability condition (Eq 6) this leads to:

NIðNErEwIE þ rIÞ
2

tIw
>

NEðrEÞ
2

tEw
: ð21Þ

and for the line attractor (Eq 7) to:

wEI ¼
NErE

NIðNErEwIE þ rIÞ
wEE �

cpost
NIðNErEwIE þ rIÞ

: ð22Þ
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The perturbations of the presynaptic firing rate rE
disr in Fig 4 are defined as instantaneous

and permanent increases or decreases from the initial presynaptic firing rate rE
base.

Dynamic threshold matching

The equations for the dynamics of the postsynaptic LTD/LTP thresholds in Fig 3D–3F and S3

Fig are:

tcEpost
_cEpost ¼ _wEE

tcIpost
_cIpost ¼ � _wEI

ð23Þ

and therefore cEpost increases (decreases) if the postsynaptic neuron fires at nE > cEpost (nE < cEpost)
and cIpost decreases (increases) if the postsynaptic neuron fires at nE > cIpost (nE < cIpost). The

amount of increase or decrease of the postsynaptic thresholds is scaled by the amount of plas-

ticity induction, and we used a timescale of tE=Ic ¼ 2 ms, which is faster than the timescale of

excitatory and inhibitory plasticity (Table 1). We point out that modifications in the LTD/LTP

thresholds lead to changes in the induction of plasticity as well as the postsynaptic firing rate.

For two different initializations of the postsynaptic thresholds, cEpost < cIpost and cEpost > cIpost,
the synaptic weights, postsynaptic firing rate and postsynaptic threshold dynamics can be sta-

bilized (Fig 3D–3F and S3A–S3C Fig). The same also holds when applying input perturbations

(S3D–S3F Fig). For multiple input streams (S3G–S3I Fig), the dynamic postsynaptic LTD/LTP

thresholds change based on the total excitatory (or inhibitory) weight change, leading to a

non-local sliding mechanism which is independent of the input stream. A condition for the

stabilization is that the weights do not reach their lower bounds at zero, because zero weights

prevent plasticity and promote the continuous increase of LTD/LTP thresholds preventing

firing rates from stabilizing.

E/I ratio

We can calculate the E/I weight ratio RE/I in Eq 8 by rewriting Eq 14 and dividing one of the

nullclines by wEI. For large weights, or in mathematical terms for wEI!1, the E/I ratio

becomes limwEI!1RE=I ¼ RE=I
1
¼ NInI

NErE
. This derivation is only valid for NI(NEρEwIE + ρI)wEI�

cpost. Therefore, the parameters of the input firing rates ρE and ρI, the synaptic weights wEI and

wIE, as well as number of excitatory and inhibitory neurons NE and NI need to be chosen

appropriately. This inequality is satisfied for the parameters in Fig 5 when the steady state syn-

aptic weights wEI are sufficiently large (Table 1).

The existence of a fixed E/I ratio for constant input rates can be directly related to the line

attractor. The line attractor (Eq 7) expresses the I-to-E weight wEI as a multiple of the E-to-E

weight wEE minus the offset term cpost/(NIνI). Therefore, the ratio of excitatory to inhibitory

weight strengths, RE/I (Eq 8), can be expressed as the sum of two terms: one constant term

equal to the slope of the line attractor, which is independent of the E-to-E and I-to-E weights,

wEE and wEI, and a second term, called an offset, which depends on wEI. When this weight is

sufficiently large, the offset term can be ignored, leading to an E/I ratio, RE=I
1

, independent

from the E-to-E and I-to-E weights.

In the feedforward circuit (Fig 1A), we can write:

RE=I
1
¼

NInI

NErE
¼

NIðrI þ wIErEÞ

NErE
¼

NI

NE

rI

rE
þ wIE

� �

: ð24Þ

Assuming that NE = NI, for larger excitatory input rate ρE the E/I ratio reaches RE=I
1
� wIE (see
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Fig 5A, where wIE = 0.5). Therefore, the E/I ratio has a lower bound which depends on the

strength of the connection from the excitatory to inhibitory population.

In Fig 5, we link our model to the experimental findings on how the interaction of excit-

atory and inhibitory plasticity can lead to fixed E/I ratios [37]. In [37], the authors induce plas-

ticity with a spike-pairing protocol, in which pre-post spikes elicit excitatory LTP, while post-

pre spikes elicit LTD. Inhibitory LTP was induced for short time differences between the pre-

and postsynaptic spikes (independent of the order of the spikes) and inhibitory LTD for longer

time differences of the spike pairs. Since in the experiments the presynaptic stimulation was

done with a stimulation electrode, the excitatory and inhibitory inputs did not have to be func-

tionally related. In the model, we randomly drew initial E-to-E and I-to-E weights and induced

plasticity for a limited amount of time (100 ms) based on the rate-based plasticity rules (Eqs 10

and 12). We choose 100 ms so not all synaptic weights have reached the line attractor yet and

so we can compare the E/I ratios reached in our model to those measured experimentally [37]

which would most likely also not be in steady state.

The E/I balance can also be defined by the total excitatory input divided by the total inhibi-

tory input onto the postsynaptic neuron:

RE=I
tot ¼ ðNEwEErEÞ=ðNIwEInIÞ: ð25Þ

This leads to:

RE=I
tot ¼ ðNIðNErEwIE þ rIÞwEI þ cpostÞ=ðNIðNErEwIE þ rIÞwEIÞ: ð26Þ

However, since we calculate the E/I balance at steady state, the total E/I balance is equal to the

weight E/I balance multiplied by a constant, i.e.:

~RE=I ¼ RE=INErE=ðNInIÞ: ð27Þ

Therefore, the results in Fig 5 also hold with this alternative E/I ratio definition.

Noise and sinusoidal input

In Fig 6, we add a varying input either by modifying the presynaptic input rate ρE or adding an

additional term to the postsynaptic neuron (adding ρadd to Eq 1):

tEFR _nE ¼ � nE þ ½NErEwEE � NInIwEI þ radd�þ: ð28Þ

In the case of postsynaptic noise (Fig 6A), ρadd is a normally distributed random variable with

mean zero and standard deviation 0.01. In the case of additional sinusoidal input to the post-

synaptic neuron (Fig 6B), ρadd(t) = 0.25 � sin(0.01t). Recalculating the slope of the line attractor

(Eq 7) based on Eq 28 leads to:

wEI ¼
NErE

NInI
wEE �

cpost � radd

NInI
; ð29Þ

meaning that ρadd only affects the intersection, but not the slope of the line attractor. We note

that the line attractor is calculated at steady state firing rates, meaning that the line attractor

will actually never be reached by a varying input.

In the case of presynaptic noise (Fig 6D), we add a normally distributed random variable

with mean zero and standard deviation 0.3 to the presynaptic firing rate ρE. For the sinusoidal

input (Fig 6E), we chose ρE(t) = 2 + 0.5 � sin(0.01t).
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Gating of receptive field formation and recurrent clustering

Here, we explore a feedforward network with multiple inputs and two inhibitory neuron pop-

ulations (Fig 7C). To form receptive fields, we provide a random patterned input to the net-

work. An input pattern is defined by a high firing rate of 4 Hz at a subset of four excitatory

input neurons for a time of 100 ms. In Eqs 1 and 2, this is reflected by a subset of the NE inputs

having rE
m ¼ 4 Hz, where m corresponds to the presynaptic neurons being part of the respec-

tive input pattern. After a time of 100 ms, a new subset of four excitatory neurons fire at high

firing rates. We then disinhibit the postsynaptic neurons by inhibiting either the total unspe-

cific or specific inhibitory populations for 60 s by inducing an inhibitory input of 2 onto the

respective inhibitory neuron population (we set rI
spec ¼ � 2 or rI

unsp ¼ � 2). Disinhibition needs

to be applied for a sufficiently long time to ensure that inhibitory plasticity can induce compe-

tition and form receptive fields. We model the release of disinhibition for the specific inhibi-

tory population as slow and gradual over a time course of 100 s to avoid complete silencing of

the postsynaptic excitatory neurons. We also note that here we used instantaneous integrators,

i.e. tEFR ¼ t
I
FR ¼ dt (Table 2), because we only wanted to focus on the interaction of excitatory

and inhibitory plasticity in the model, though see [125].

For the recurrent circuit, we connected recurrently 30 postsynaptic neurons with feedfor-

ward circuits with specific and unspecific inhibition as described above (see also Fig 7D and

7E). In addition to feedforward excitatory and inhibitory weights, also recurrent excitatory

weights were plastic based on the plasticity mechanism of Eq 10. We allowed the input pat-

terns to each of the recurrent excitatory neuron to be correlated. Initial recurrent excitatory

weights were randomly drawn from the interval [0,0.18]. We calculated the mean weight per

input pattern and chose the maximum of those to be the input to which the neurons formed

a receptive field. The clustering graph in Fig 7F (left) was done with the digraph function in

Matlab where the distance between neurons is only used to visualize clusters of neurons with

similar tuning.

Table 2. Parameter values for Fig 7E and 7F.

Symbol Description Fig 7E Fig 7F

wEE
0

Initial E-to-E weight 0.03 [0,0.18]

wEI
spec;0 Initial specific I-to-E weight 0.01

wEI
unsp;0 Initial unspecific I-to-E weight 0.01

wIE
spec Specific E-to-I weight (fixed) 0.2 0.002

wIE
unsp Unspecific E-to-I weight (fixed) 0.02 0.001

ρE Presynaptic E rate (Hz) 1

rI
spec External E rate onto specific I neurons (Hz) 0

rI
unsp External E rate onto unspecific I neurons 0

NE Number of presyn. E neurons (Hz) 40

NI
spec Number of specific I neurons 20

NI
unsp Number of unspecific I neurons 20

tEFR Timescale for E neuron model (s) 0.0001

tIFR Timescale for I neuron model (s) 0.0001

tEw Timescale for E plasticity (Hz2) 1

tIw Timescale for I plasticity (Hz2) 0.2

cEpost E postsyn. LTD/LTP threshold (Hz) 1

cIpost I postsyn. LTD/LTP threshold (Hz) 1

https://doi.org/10.1371/journal.pcbi.1010682.t002
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The simulations were performed using Matlab programming language. Euler integration

was implemented using a time step of 0.1. Code implementing our model is available here:

https://github.com/comp-neural-circuits/Nonlinear-inhibitory-plasticity.

Supporting information

S1 Fig. Plasticity of excitatory-to-excitatory synapses as a function of presynaptic and post-

synaptic firing rates. Excitatory plasticity _wEE (Eq 3) is normalized to the maximum value of

long-term potentiation (1) and the maximum value of long-term depression (−1), respectively.

(EPS)

S2 Fig. Feedback inhibitory motif leads to additional stability. A. Schematic of the feedback

inhibitory motif. The inhibitory population receives input from the presynaptic excitatory

population with weight strength wIE
FF and the excitatory postsynaptic neuron with weight

strength wIE
FB. B. Plasticity of E-to-E ( _wEE, blue) and I-to-E ( _wEI , red) weights as a function of

the postsynaptic rate νE. The excitatory and inhibitory LTD/LTP thresholds are identical

(cEpost ¼ cIpost). C. E-to-E (wEE, blue) and I-to-E (wEI, red) and rate dynamics of the postsynaptic

(gray line) and the inhibitory population (gray dashed line) as a function of time. D. Stability

of weight dynamics as a function of the excitatory-to-inhibitory weights wIE
FB and wIE

FF. Star indi-

cates the values shown in panel C.

(EPS)

S3 Fig. Dynamic matching of the excitatory and inhibitory postsynaptic LTD/LTP thresh-

olds and networks response to input perturbations. A. Postsynaptic LTD/LTP thresholds

cEpost and cIpost shift dynamically depending on the recent postsynaptic rate νE. For lower postsyn-

aptic rate than the excitatory postsynaptic LTD/LTP threshold (nE < cEpost), c
E
post decreases, and

for nE > cEpost, c
E
post increases. For higher postsynaptic rate than the inhibitory postsynaptic

LTD/LTP threshold (nE > cIpost), c
I
post decreases, and for nE < cIpost, c

I
post increases (see Methods).

B. Evolution of excitatory (cEpost, blue) or inhibitory (cIpost, red) postsynaptic LTD/LTP thresh-

olds for initial conditions cEpost;0 ¼ 1:3, cIpost;0 ¼ 0:7. C. Excitatory (wEE, blue) and inhibitory

(wEI, red) weight dynamics and postsynaptic rate dynamics (νE, gray) for the initial condition

cEpost;0 ¼ 1:3, cIpost;0 ¼ 0:7. D. Effect of increasing (solid lines, rE
disr ¼ 2:5) or decreasing (dashed

lines, rE
disr ¼ 1:5) excitatory input rates from a baseline of rE

base ¼ 2 on excitatory (blue) and

inhibitory (red) firing rates. E. Same as D but for the cEpost and cIpost weights. F. Same as D but for

the wEE and wEI weights. G. Plasticity curve of E-to-E weights for input 1 or 2 ( _wEE
1;2

) as a func-

tion of the presynaptic excitatory rate ρE for different input-specific perturbations rE
disr;1;2. H.

Evolution of excitatory (cEpost , blue) or inhibitory (cIpost, red) postsynaptic LTD/LTP thresholds

for the case in G. I. Excitatory (wEE, blue) and inhibitory (wEI, red) weight dynamics for the

case in G. Compare A-C to Fig 3, D-F to Fig 4 and G-I to Fig 7B.

(EPS)

S4 Fig. Performance of the nonlinear inhibitory plasticity rule under varying postsynaptic

firing rate with dynamic excitatory and inhibitory LTD/LTP threshold matching. A. Add-

ing noise to the postsynaptic firing rate. Top: E-to-E (wEE, blue) and I-to-E (wEI, red) as a func-

tion of time. Middle: Excitatory (cEpost, blue) and inhibitory (cIpost , red) postsynaptic LTD/LTP

threshold as a function of time. Bottom: Postsynaptic rate dynamics (νE, gray) as a function of

time. B. Same as A but after adding a sinusiodal input to the postsynaptic firing rate.

(EPS)

PLOS COMPUTATIONAL BIOLOGY Stability and learning by nonlinear inhibitory plasticity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010682 December 2, 2022 27 / 34

https://github.com/comp-neural-circuits/Nonlinear-inhibitory-plasticity
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010682.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010682.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010682.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010682.s004
https://doi.org/10.1371/journal.pcbi.1010682


Acknowledgments

We thank all members of the ‘Computation in Neural Circuits’ group, and specifically Yue

Kris Wu, for useful discussions and comments on the manuscript.

Author Contributions

Conceptualization: Christoph Miehl, Julijana Gjorgjieva.

Formal analysis: Christoph Miehl.

Funding acquisition: Julijana Gjorgjieva.

Investigation: Christoph Miehl.

Project administration: Julijana Gjorgjieva.

Software: Christoph Miehl.

Supervision: Julijana Gjorgjieva.

Visualization: Christoph Miehl.

Writing – original draft: Christoph Miehl, Julijana Gjorgjieva.

Writing – review & editing: Christoph Miehl, Julijana Gjorgjieva.

References
1. Hebb DO. The organization of behavior; a neuropsychological theory. Wiley; 1949.

2. Abbott LF, Nelson SB. Synaptic plasticity: taming the beast. Nature Neuroscience. 2000; 3:1178–

1183. https://doi.org/10.1038/81453 PMID: 11127835

3. Miller KD, MacKay DJC. The Role of Constraints in Hebbian Learning. Neural Computation. 1994;

6:100–126. https://doi.org/10.1162/neco.1994.6.1.100

4. Turrigiano GG, Nelson SB. Homeostatic plasticity in the developing nervous system. Nature Reviews

Neuroscience. 2004; 5:97–107. https://doi.org/10.1038/nrn1327 PMID: 14735113

5. Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB. Activity-dependent scaling of quantal

amplitude in neocortical neurons. Nature. 1998; 391(6670):892–896. https://doi.org/10.1038/36103

PMID: 9495341

6. Turrigiano GG. The Self-Tuning Neuron: Synaptic Scaling of Excitatory Synapses. Cell. 2008;

135:422–435. https://doi.org/10.1016/j.cell.2008.10.008 PMID: 18984155

7. Lynch GS, Dunwiddie T, Gribkoff V. Heterosynaptic depression: a postsynaptic correlate of long-term

potentiation. Nature. 1977; 266(21):737–739. https://doi.org/10.1038/266737a0 PMID: 195211

8. Chistiakova M, Bannon NM, Chen JY, Bazhenov M, Volgushev M. Homeostatic role of heterosynaptic

plasticity: models and experiments. Frontiers in Computational Neuroscience. 2015; 9. https://doi.org/

10.3389/fncom.2015.00089 PMID: 26217218

9. Field RE, D’amour JA, Tremblay R, Miehl C, Rudy B, Gjorgjieva J, et al. Heterosynaptic Plasticity

Determines the Set Point for Cortical Excitatory-Inhibitory Balance. Neuron. 2020; 106(5):842–854.

https://doi.org/10.1016/j.neuron.2020.03.002 PMID: 32213321

10. Desai NS, Rutherford LC, Turrigiano GG. Plasticity in the intrinsic excitability of cortical pyramidal neu-

rons. Nature Neuroscience. 1999; 2(6):515–520. https://doi.org/10.1038/9165 PMID: 10448215

11. Debanne D, Inglebert Y, Russier M. Plasticity of intrinsic neuronal excitability. Current Opinion in Neu-

robiology. 2019; 54:73–82. https://doi.org/10.1016/j.conb.2018.09.001 PMID: 30243042

12. Oja E. Simplified neuron model as a principal component analyzer. Journal of Mathematical Biology.

1982; 15(3):267–273. https://doi.org/10.1007/BF00275687 PMID: 7153672

13. Bienenstock EL, Cooper LN, Munro PW. Theory for the development of neuron selectivity: orientation

specificity and binocular interaction in visual cortex. The Journal of Neuroscience. 1982; 2(1):32–48.

https://doi.org/10.1523/JNEUROSCI.02-01-00032.1982 PMID: 7054394

14. Gjorgjieva J, Clopath C, Audet J, Pfister JP. A triplet spike-timing-dependent plasticity model general-

izes the Bienenstock-Cooper-Munro rule to higher-order spatiotemporal correlations. Proceedings of

PLOS COMPUTATIONAL BIOLOGY Stability and learning by nonlinear inhibitory plasticity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010682 December 2, 2022 28 / 34

https://doi.org/10.1038/81453
http://www.ncbi.nlm.nih.gov/pubmed/11127835
https://doi.org/10.1162/neco.1994.6.1.100
https://doi.org/10.1038/nrn1327
http://www.ncbi.nlm.nih.gov/pubmed/14735113
https://doi.org/10.1038/36103
http://www.ncbi.nlm.nih.gov/pubmed/9495341
https://doi.org/10.1016/j.cell.2008.10.008
http://www.ncbi.nlm.nih.gov/pubmed/18984155
https://doi.org/10.1038/266737a0
http://www.ncbi.nlm.nih.gov/pubmed/195211
https://doi.org/10.3389/fncom.2015.00089
https://doi.org/10.3389/fncom.2015.00089
http://www.ncbi.nlm.nih.gov/pubmed/26217218
https://doi.org/10.1016/j.neuron.2020.03.002
http://www.ncbi.nlm.nih.gov/pubmed/32213321
https://doi.org/10.1038/9165
http://www.ncbi.nlm.nih.gov/pubmed/10448215
https://doi.org/10.1016/j.conb.2018.09.001
http://www.ncbi.nlm.nih.gov/pubmed/30243042
https://doi.org/10.1007/BF00275687
http://www.ncbi.nlm.nih.gov/pubmed/7153672
https://doi.org/10.1523/JNEUROSCI.02-01-00032.1982
http://www.ncbi.nlm.nih.gov/pubmed/7054394
https://doi.org/10.1371/journal.pcbi.1010682


the National Academy of Sciences. 2011; 108(48):19383–19388. https://doi.org/10.1073/pnas.

1105933108 PMID: 22080608

15. Yger P, Gilson M. Models of Metaplasticity: A Review of Concepts. Frontiers in Computational Neuro-

science. 2015; 9(138). https://doi.org/10.3389/fncom.2015.00138 PMID: 26617512

16. Wu YK, Hengen KB, Turrigiano GG, Gjorgjieva J. Homeostatic mechanisms regulate distinct aspects

of cortical circuit dynamics. Proceedings of the National Academy of Sciences. 2020; 117(39):24514–

24525. https://doi.org/10.1073/pnas.1918368117 PMID: 32917810

17. Fox K, Stryker M. Integrating Hebbian and homeostatic plasticity: Introduction. Philosophical Transac-

tions of the Royal Society B. 2017; 372:20160413. https://doi.org/10.1098/rstb.2016.0413 PMID:

28093560

18. Turrigiano GG. The dialectic of hebb and homeostasis. Philosophical Transactions of the Royal Soci-

ety B: Biological Sciences. 2017; 372:20160258. https://doi.org/10.1098/rstb.2016.0258 PMID:

28093556

19. Yee AX, Hsu YT, Chen L. A metaplasticity view of the interaction between homeostatic and hebbian

plasticity. Philosophical Transactions of the Royal Society B. 2017; 372:20160155. https://doi.org/10.

1098/rstb.2016.0155 PMID: 28093549

20. Litwin-Kumar A, Doiron B. Formation and maintenance of neuronal assemblies through synaptic plas-

ticity. Nature Communications. 2014; 5 (5319). PMID: 25395015

21. Zenke F, Agnes EJ, Gerstner W. Diverse synaptic plasticity mechanisms orchestrated to form and

retrieve memories in spiking neural networks. Nature Communications. 2015; 6 (6922). https://doi.org/

10.1038/ncomms7922 PMID: 25897632

22. Montangie L, Miehl C, Gjorgjieva J. Autonomous emergence of connectivity assemblies via spike trip-

let interactions. PLoS Computational Biology. 2020; 16(5):e1007835. https://doi.org/10.1371/journal.

pcbi.1007835 PMID: 32384081

23. Schulz A, Miehl C, Berry MJ II, Gjorgjieva J. The generation of cortical novelty responses through

inhibitory plasticity. eLife. 2021; 10:e65309. https://doi.org/10.7554/eLife.65309 PMID: 34647889

24. Zenke F, Hennequin G, Gerstner W. Synaptic Plasticity in Neural Networks Needs Homeostasis with

a Fast Rate Detector. PLoS Computational Biology. 2013; 9(11):e1003330. https://doi.org/10.1371/

journal.pcbi.1003330 PMID: 24244138

25. Zenke F, Gerstner W, Ganguli S. The temporal paradox of Hebbian learning and homeostatic plastic-

ity. Current Opinion in Neurobiology. 2017; 43:166–176. https://doi.org/10.1016/j.conb.2017.03.015

PMID: 28431369

26. Zenke F, Gerstner W. Hebbian plasticity requires compensatory processes on multiple timescales.

Philosophical Transactions of the Royal Society B: Biological Sciences. 2017; 372(1715):20160259.

https://doi.org/10.1098/rstb.2016.0259 PMID: 28093557

27. Fusi S. Computational models of long term plasticity and memory. arXiv. 2017; https://doi.org/10.

48550/arXiv.1706.04946.

28. Chen JY, Lonjers P, Lee C, Chistiakova M, Volgushev M, Bazhenov M. Heterosynaptic Plasticity Pre-

vents Runaway Synaptic Dynamics. Journal of Neuroscience. 2013; 33(40):15915–15929. https://doi.

org/10.1523/JNEUROSCI.5088-12.2013 PMID: 24089497

29. Volgushev M, Chen JY, Ilin V, Goz R, Chistiakova M, Bazhenov M. Partial Breakdown of Input Speci-

ficity of STDP at Individual Synapses Promotes New Learning. The Journal of Neuroscience. 2016; 36

(34):8842–8855. https://doi.org/10.1523/JNEUROSCI.0552-16.2016 PMID: 27559167

30. Kirchner JH, Gjorgjieva J. Emergence of local and global synaptic organization on cortical dendrites.

Nature Communications. 2021; 12:4005. https://doi.org/10.1038/s41467-021-23557-3 PMID:

34183661

31. Chasse R, Malyshev A, Fitch RH, Volgushev M. Altered heterosynaptic plasticity impairs visual dis-

crimination learning in adenosine A1 receptor knock-out mice. Journal of Neuroscience. 2021; 41

(21):4631–4640. https://doi.org/10.1523/JNEUROSCI.3073-20.2021 PMID: 33849950

32. White G, Levy WB, Steward O. Spatial overlap between populations of synapses determines the

extent of their associative interaction during the induction of long-term potentiation and depression.

Journal of Neurophysiology. 1990; 64(4):1186–1198. https://doi.org/10.1152/jn.1990.64.4.1186

PMID: 2258741
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