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Abstract

Although osteosarcoma (OS) is a rare cancer, it is the most common primary malignant

bone tumor in children and adolescents. BRCAness is a phenotypical trait in tumors with a

defect in homologous recombination repair, resembling tumors with inactivation of BRCA1/

2, rendering these tumors sensitive to poly (ADP)-ribose polymerase inhibitors (PARPi).

Recently, OS was shown to exhibit molecular features of BRCAness. Our goal was to

develop a method complementing existing genomic methods to aid clinical decision making

on administering PARPi in OS patients. OS samples with DNA-methylation data were

divided to BRCAness-positive and negative groups based on the degree of their genomic

instability (n = 41). Methylation probes were ranked according to decreasing variance differ-

ence between two groups. The top 2000 probes were selected for training and cross-valida-

tion of the random forest algorithm. Two-thirds of available OS RNA-Seq samples (n = 17)

from the top and bottom of the sample list ranked according to genome instability score

were subjected to differential expression and, subsequently, to gene set enrichment analy-

sis (GSEA). The combined accuracy of trained random forest was 85% and the average

area under the ROC curve (AUC) was 0.95. There were 449 upregulated and 1,079 downre-

gulated genes in the BRCAness-positive group (fdr < 0.05). GSEA of upregulated genes

detected enrichment of DNA replication and mismatch repair and homologous recombina-

tion signatures (FWER < 0.05). Validation of the BRCAness classifier with an independent

OS set (n = 20) collected later in the course of study showed AUC of 0.87 with an accuracy

of 90%. GSEA signatures computed for this test set were matching the ones observed in the

training set enrichment analysis. In conclusion, we developed a new classifier based on

DNA-methylation patterns that detects BRCAness in OS samples with high accuracy.

GSEA identified genome instability signatures. Machine-learning and gene expression
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approaches add new epigenomic and transcriptomic aspects to already established geno-

mic methods for evaluation of BRCAness in osteosarcoma and can be extended to cancers

characterized by genome instability.

Author summary

Osteosarcoma (OS) is the most common primary malignant tumor of bone in children

and young adults with poor prognosis for patients with refractory or metastatic disease. A

common feature, so-called BRCAness, exists in multiple cancers including OS and is char-

acterized by homologous recombination deficiency. Tumors exhibiting BRCAness have

been shown to respond to therapy with PARP inhibitors. Currently, BRCAness is mostly

assessed by the genomic instability score. This method based on the DNA sequencing

requires normal tissue DNA as control and is vulnerable to subjective interpretation of

"genomic scarring" events. In this study, we implemented a classifier based on DNA meth-

ylation patterns. It is capable of detecting BRCAness in OS samples and does not require

control tissue DNA. Therefore, it has the potential to support clinical decision making on

administering PARPi in OS patients. We further corroborated the presence of BRCAness

in OS by detecting homologous recombination signatures through gene expression

analysis.

This is a PLOS Computational Biology Methods paper.

Introduction

Osteosarcoma (OS) is the most common primary malignant tumor of bone in children and

young adults [1]. There is a critical need for highly effective treatment, since, despite efforts to

improve outcomes, the three-year survival rate for patients with metastatic or recurrent disease

is below 20% [2].

Genomic instability and mutagenesis are characteristics of human cancers that can arise

from deficient DNA repair processes. One such process, homologous recombination (HR),

leads to error-free repair of double strand breaks with homologous strand. BRCAness is a phe-

notypical trait in tumors resembling the phenotype of tumors with BRCA1/2 mutations char-

acterized by homologous recombination deficiency (HRD) [3]. The inability of the HR

pathway to maintain the genome integrity leads to its instability. OS is characterized by com-

plex genomic variations such as single nucleotide variations and large structural alterations

[4].

Recently, we showed that a high percentage of OS displays molecular features resembling

BRCAness, i.e. the majority of OS harbors defects in HR repair either due to loss of function in

BRCA1/2 or to mutations in other HR pathway genes [4,5].

Within the concept of synthetic lethality, PARP inhibitors (PARPi) trap PARP1/DNA

nucleoprotein complexes and stall the replication fork advancement [6,7]. This induces a

DNA damage response and HR repair, involving BRCA1/2 and “BRCAness” proteins, as the

optimal DNA repair process for repairing and restarting replication forks. However, in the

absence of functional HR repair, cells use DNA non-homologous repair processes which

potentially induce large-scale genomic rearrangements leading to tumor cell death [8]. Tumors

exhibiting BRCAness (BRCAness-positive) were shown to be sensitive to PARPi. Development
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of cytotoxic therapies inducing programmed cell death is an important component of antitu-

mor treatment.

There are several methods to assess BRCAness based on genomic large-scale rearrange-

ments or transcriptional profiles [9–12]. The myChoice method is based on so called genomic

scars, i.e. calculating the HRD score by summing up 3 different indicators of genomic instabil-

ity, namely, large-scale state transition (LST), telomeric allelic imbalance (TAI) and loss of het-

erozygosity (LOH) [13–15]. Telli et al. evaluated the combined HRD score, defined as the

unweighted numeric sum of LOH, TAI, and LST [9]. They also tested the predictive power of

the HRD score threshold derived by analyzing HRD scores in a training cohort of breast and

ovarian tumors with known BRCA1/2 status. Tumors with HRD score� 42 indicated HR defi-

ciency, the patients were more likely to respond to platinum-containing therapy [9]. Another

approach uses mutational signatures derived from single nucleotide variation patterns where a

distinctive signature indicates BRCAness in the sample [16].

Several types of methods were developed to assess the real-time status of HRD. Several gene

expression profiling (GEP) panels focusing not only on HR but also on cell cycle and DNA

repair were developed. For example, a 93-gene GEP panel for predicting the response to plati-

num therapy in ovarian cancer was established [17]. None of the GEP panels were evaluated

exclusively in the context of PARPi susceptibility. In fact, one GEP was evaluated with a che-

motherapy drug, paclitaxel, with or without concurrent PARPi (veliparib) or cisplatin admin-

istration [18]. Another GEP was retrospectively evaluated on patients treated with platinum-

based chemotherapy data where a molecular score was generated based on the expression of

23 genes involved in the platinum-induced DNA-damage repair pathways [17].

To obtain real-time HRD readout without defining the underlying cause of HRD and con-

structing a GEP panel, a functional ex vivo test was developed for breast and ovarian cancers

utilizing the ability of crucial HR protein RAD51 to form detectable foci at the double strand

break sites after cell irradiation of fresh tumor biopsies and primary cells [19–21]. Still, this test

is cell-cycle dependent and requires fresh samples [19]. Thus, the best method to assess BRCA-

ness and to predict response to PARPi in clinical setting has yet to be defined.

Predictive biomarkers will assist in stratification of patients most likely to benefit from

PARPi and will channel patients with HR-proficient tumors into non-PARPi treatments, thus

minimizing side effects.

In this study we developed a new BRCAness classifier based on DNA methylation patterns

predicting BRCAness in OS. Gene expression analysis identified HR signatures corroborating

the presence of BRCAness in OS and providing an opportunity to develop an OS GEP panel

for predicting PARPi susceptibility. This approach can be extended to other cancers character-

ized by BRCAness with genome instability.

Materials and methods

Ethics statement

Ethics committee approval for conducting the study, use of consent forms and scientific evalu-

ation of the data were obtained from Heidelberg University Hospital’s review board. The

approval was granted by the named board (S-502/2013). All patients or their legal guardian

signed a written informed consent.

Tissue collection and DNA extraction

All next generation sequencing (NGS) and DNA-methylation array data were generated and

obtained within the scope of the INdividualized Therapy FOr Relapsed Malignancies in Child-

hood (INFORM) project [22]. Here is a brief description of the INFORM methodology

PLOS COMPUTATIONAL BIOLOGY DNA methylation classifier detects BRCAness in OS

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009562 November 11, 2021 3 / 24

https://doi.org/10.1371/journal.pcbi.1009562


including OS, described in detail in [22].Only patients with relapsed or refractory osteosar-

coma between the ages 2–30 were included in the study. Based on histological assessment the

content of tumor in the tumor material must be higher than 40%. Fresh frozen samples of

tumor material and of its matching control were quality assessed before their molecular

analysis.

DNA sequencing, quality control and read alignment

For the whole-exome sequencing (WES) the paired-end libraries were prepared with the Agi-

lent SureSelectXT Human V5 kit. Low-coverage whole-genome sequencing (lcWGS) was pre-

pared with the exclusion of the enrichment step in SureSelectXT Human V5 kit. RNA-Seq

paired-end 100 bp from poly(A)+ RNA was obtained with Illumina TruSeq RNA Kit v2 on an

Illumina HiSeq2500 only tumor reverse DNA library. The mean coverage WES was 165-fold

for the tumor and 117-fold for the control, WGS coverage was 3.4-fold for the tumor and

2.5-fold for the control. Average number of RNA sequencing reads was 135 million reads.

Quality control, trimming and filtering of FASTQ-files was done with PRINSEQ

(ver.0.20.4) [23].Reads were aligned in SAM format with the BWA-MEM algorithm (bwa ver.

0.7.16a) [24]. A full 1000genomes phase2 reference genome sequence hs37d5 was used for

alignment. Sam-files were converted to bam-files, sorted by coordinates and PCR duplicates

were removed with the MarkDuplicate subprogram of the Picard software suite (ver. 2.16.0)

[25].Bam-files were indexed with samtools [26]. For the final indel realignment, the Genome

Analysis Toolkit module (ver.3.8) (GATK) was used [27].

Genomic scars’ method

Based on the previous studies, NGS-based assay myChoiceHRD (Myriad Genetics) was devel-

oped to estimate the degree of so called genomic scar HRD score, i.e. a score combined of

counts of specific genomic events such as loss of heterozigosity (LOH), telomeric allelic imbal-

ance (TAI), large-scale transitions (LST) and BRCA1/2 sequences. HRD-LOH score is repre-

sented by the number of LOH regions longer than 15 Mb [15].HRD-TAI is a number of allelic

imbalance regions extending to subtelomeres not crossing the centromere and longer than 11

Mb [9,13]. The HRD-LST score was defined as the number of break points between regions

longer than 10 Mb after filtering out regions shorter than 3 Mb [14]. Furthermore, the

HRD-LST score cutoff between intact and deficient samples was modified based on the sam-

ples’ ploidy [28]. myChoiceHRD represents the sum of these three scores, i.e. HRD-LOH,

HRD-TAI and HRD-LST. In order to estimate the HRD score in an initial set of 22 OS

INFORM samples, genomic scarring events were counted manually, relying on human visuali-

zation via Nexus CN software (BioDiscovery, Inc) and the myChoice score was calculated by

summing up HRD-LOH, HRD-TAI and HRD-LST events. XY chromosomes’ genomic scar-

ring events were omitted.

Automation of HRD score assessment with NexusCN and Control-FREEC/

HRDtools

In order to automate and remove the human interpretation of genomic scarring events which

might cause significant fluctuations in HRD scoring, we employed the NexusCN feature Per-
cent of Genome Changed (PGC) which shows what percent of the genome has aberrations. The

filter data options were set as follows: remove gains smaller than 10000 kb, remove losses
smaller than 10000 kb, remove all allelic imbalance calls, remove all LOH calls. Since we use

only lcWGS, TAI and LOH calls were not considered.
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To calculate PGC with open source software we used Control-FREEC (version 11.4.3) and

HRDtools (version 0.0.1) software [29]. Control-FREEC was developed as a tool for detection

and enumeration of copy-number alterations (CNA), TAI and LOH using NGS data [30].

Briefly, from tumor-control bam-files we generated pileup-files using samtools mpileup [26].

Then, we ran Control-FREEC with pileup-files as an input. We post-process Control-FREEC

output to make it compatible with HRDtools. We modified HRDtools so that it can closely fol-

low myChoice HRD genomic size filtering (LOH = 15 Mb, LST = 10 Mb, TAI = 11 Mb).Modi-

fied HRDtools provided in the output the width of CNA, TAI and LOH. Dividing summed up

width by the length of the haploid genome (3,234,834,689—bases GRCh37.p13) we obtained a

PGC score.XY chromosomes were not considered for the overall PGC score.

DNA-methylation arrays

The tumor DNA-methylation profile was assessed with Illumina HumanMethylation450 and

Epic BeadChip (482,421/850,000 CpG sites, respectfully) according to the manufacturer’s

instructions. There were 43 DNA methylation arrays of OS generated within the INFORM

project. Analysis and processing of 450k and Epic arrays were done with an integrated analysis

pipeline, R package ChAMP, which includes filtering low quality probes based on detection P-

values, chromosomal location and presence of single nucleotide polymorphisms in the probe

sequence. For filtering and processing the default values were kept [31]. In order to utilize

both 450k and Epic arrays we used the function convertArray from R package minfi [32]. This

function converts EPIC into 450k arrays by dropping probes that differ between two array

types (Modified champ.load function from package ChAMP with incorporated convertArray
method in Supplement). After obtaining beta-values, defined as the ratio of a probe fluores-

cence intensity over the overall intensity, beta-values were further normalized with Beta MIx-

ture Quantile dilation (BMIQ) adjusting the beta-values of type II design probes into a

statistical distribution characteristic of type I probes. BMIQ was suggested as the preferred

methods for case—control, tumor—normal or, in our case, BRCAness negative—positive

dataset processing. BMIQ was shown to be more effective at removing unwanted technical

bias than other normalization methods [33]. Methylation probes were annotated with Human-

Methylation450 v1.2 manifest (Illumina).

Setting the threshold for BRCAness positive samples

A tumor with a myChoice score above 42 was considered HRD/BRCAness-positive [9]. Nex-

usCN PGC score above 32, FREEC-HRDtools PGC score above 28 were considered as BRCA-

ness-positive after matching PGC scores to myChoice scores. Throughout this study we used

the NexusCN PGC score, as the original calculation of the myChoice score for OS samples was

done with NexusCN assistance. 43 OS INFORM samples were grouped to two classes of 26 and

17 samples, i.e. BRCAness-positive and BRCAness-negative group, respectively, based on the

threshold of a NexusCN PGC score of 32 which corresponds to a myChoiceHRD score of 42.

Feature selection and testing class structure

First, variances of each probe were calculated within the BRCA positive (var_pos) and negative

(var_neg) training group. var_all was computed for each sample regardless of the grouping. It

can be represented as Δ-variances = var_all–(var_pos + var_neg) [34]. Probes were ranked in

descending order according to Δ-variances and the top 2,000 probes (features) were selected

for further random forest (RF) training and validation.

Since the number of predictors was considerably larger than the number of samples and to

avoid importance bias caused by multiple highly correlated probes [35], only one probe was
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retained from probes correlated above 0.8. As a result, only 2.7% (54 probes) of the original

probe (feature) set of 2000 probes remained. We used 41 sample set and uncorrelated predic-

tors further in the training and testing of the RF. Correlated probes were included in the bio-

logical functional analysis but excluded from the RF training and validation stages.

To test whether we found a real class structure in the data, the corresponding null distribu-

tion was estimated by permuting the labels in the data and by enumerating the number of pos-

itive Δ-variances. Our grouping based on PGC and HRD scoring had 3,685 positive Δ-

variances. The labels were permuted 1000 times and every time the number of probes with

positive Δ-variances was counted. In 30 out of 1000 runs only a single probe had positive Δ-

variance, the rest of the runs had zero positive Δ-variance probes. This result supports our

approach to OS sample grouping and our assumption that only probes with positive Δ-vari-

ances are informative.

Random forest

To identify the predictive set of probes underlying BRCAness we utilized a machine learning

approach, random forests, using the R randomForest package (version 4.6–14) in R [36–38].

For the most part, we followed a predictive modelling approach and the R script described in

Valletta et al. with parameters modified for our dataset [39]. For RF training our unbalanced

set of samples was stratified for class balancing. As input variables for our models we used the

intensity of methylation probes. The response variable, i.e. the outcome to be predicted, was

sample assignment either to BRCAness-positive (’Yes’) or to BRCAness-negative group (’No’)

as it was defined by the NexusCN PGC score. The number of trees was set to 10000, 32 vari-

ables were tried at each node and the minimum node size was set to 3. The tree depth limit

was not set. Uncorrelated predictors were run through a predictive modelling pipeline, where

an additional statistical significance of selected features was computed with a modified

mProbes/xRF feature selection method [39–41]. However, all uncorrelated probes showed

high predictive power by having high statistical significance after introducing predictors with

randomly shuffled values. All uncorrelated predictors were used in RF for training and testing.

Accuracy evaluation

To assess model predictive accuracy, we used RF internal error estimation, i.e. out-of-bag

(OOB) error and the receiver operating characteristic (ROC) curve [37].The feature selection

algorithm was used internally in a five-fold cross-validation loop. The OOB error confusion

matrix generated by RF has been used for accuracy estimation.The area under the ROC curve

(AUC) was computed for each fold. The average AUC was computed with combined TP/FP

events generated in each fold [39]. The 5-fold CV RF models were not kept. The final RF

model was trained on the entire dataset of 41 samples. Accuracy was reported as (TP+TN) /

(TP + TN + FP + FN) x 100. Combined accuracy was computed when TP, FP, TN and FN

events obtained in each fold of CV were combined together, e.g. if TP1 is TP of fold 1 CV, then

TP1 + TP2 + TP3 + TP4 + TP5 = TP_comb. The average (combined) AUC was computed

with TP_comb and FP_comb events. The heatmaps and dendrograms were generated with

unsupervised hierarchical clustering using Euclidean distance and Ward.D2 clustering

method.All plots and statistical tests were performed with statistical software R [38].

RNA-Seq

For alignment and generation of bam-files, a splice-aware RNA-Seq aligner, STAR (ver.

2.7.1a), has been used with default settings [42]. The number of reads mapping to genes (fea-

tures) from bam-files were calculated with htseq-count which is a part of the HTSeq
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framework (ver. 0.9.1) [43].Non-unique reads, secondary, supplementary alignments and

reads overlapping more than one feature were discarded. Gene reference GTF file was

obtained from UCSC/hg19 annotation archive. Read counts were transformed using the

DESeq2 framework with regularized logarithm (rlog). rlog transformation generates data on a

log2 scale normalized to library size. DESeq2 was used to obtain set of DE genes [44]. Nor-

mally, several biological replicates are required for DESeq to identify genes differentially

expressed above biological noise. Here, we treated BRCAness-positive and BRCAness-negative

OS samples similarly to biological replicates for the purpose of capturing profoundly expressed

genes between two classes. After all, most of the changes in gene expression between these two

classes can be explained by the genetic heterogeneity of samples rather than random biological

noise. Thus, BRCAness-positive and BRCAness-negative samples were grouped conditional

on the presence or the absence of BRCAness characteristics. Gene differential expression was

considered statistically significant with fdr< 0.05.

Gene set enrichment analysis

A pre-ranked list of all genes based on logFC sign and 1/p-val was analyzed by the gene set

enrichment analysis tool (GSEA ver. 4.0.2) [45,46]. The enrichment was evaluated using

Molecular Signatures database (MSigDB) sets, namely Hallmark set, KEGG (MSigDB ver.7.0)

[47–49]. Enrichment was considered significant if the gene set family wise error rate (FWER)

was less than 0.05. GSEA particular settings were set to classic enrichment statistics, no normal-
ization mode, mean of probes. Differentially expressed upregulated and downregulated sets of

genes with fdr< 0.05 were uploaded to the gene set enrichment web-tool Enrichr [50]. Enrich-

ment was considered significant if the gene expression signature had fdr< 0.05.

Results

HRD score evaluation with NexusCN and Control-FREEC/HRDtools

We simplified the computation of HRD scores with PGC in order to separate samples to

BRCAness-positive and BRCAness-negative groups for further RF training and validation.

We observed a strong correlation of PGC with canonical HRD (LST + TAI + LOH). Spear-

man rho correlation between the myChoice HRD score and the NexusCN PGC, and between

the myChoice HRD score and the FREEC-HRDtools PGC were 0.92 (p-val = 1.3e-09) and

0.86 (p-val = 3.2e-07), respectively. Spearman rho correlation between the FREEC-HRDtools

PGC and the Nexus CN PGC was 0.91 (p < 2.2e-16) (Fig A in S1 File). Since the correlation

between the myChoice HRD score and the NexusCN PGC was higher and did not require

human intervention, we continued with the NexusCN PGC as a BRCAness score replacing

the myChoice HRD score except validating independent test set where we used the FREE-

C-HRDtools PGC, since the NexusCN software was no longer available. Overall, we showed

that the PGC approach is suitable for separation of samples to two groups. However, using

PGC as an alternative to the canonical HRD score requires testing it on a large number of

tumor samples, such as ovarian cancer which was initially used to develop and test HRD

scoring.

Analysis and filtering of sample set

First, we analyzed a full dataset of 43 samples where methylation probes were ranked in the

order of decrease of Δ-variance and the top 2000 probes were selected for further training and

testing of the RF machine learning algorithm in order to build a model discriminating between

BRCAness-positive and BRCAness-negative classes of OS samples. The results of this model
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testing and training evaluated with ROC curves and confusion matrices are shown (Fig 1A

and Fig B in S1 File and Table 1).

The inherited noisiness of the OS samples provided negative Δ-variances for the majority of

probes. In the 43 sample set we have only 1,055 probes with positive Δ-variance (~0.25%) and

Fig 1. ROC curves for each cross validation fold (dashed-black line) and the mean ROC curve (solid black line) for random forest models fitted (A) to 43

samples and (B) to 41 samples where two samples, HD_00J and I047_005 were removed (the dashed diagonal line represent AUC = 0.5, i.e. classification at

random). (C) ROC curve for independent validation test (AUC = 0.87) (n = 20).

https://doi.org/10.1371/journal.pcbi.1009562.g001
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426,520 probes with negative Δ-variances. With this settings taking the top 2000 probes led to

misclassification of two samples at unsupervised hierarchical clustering (Fig 2A).

In order to maximize the number of informative predictors with positive Δ-variances, with-

out significantly reducing the number of samples, we computed the number of probes with

positive Δ-variances by removing one sample at a time from the 43 sample set and re-calculat-

ing the number of positive variances (Fig 2B and Table A in S1 File). Subsequent removal of

two samples, I047_005 and HD_00J, in BRCAness positive and in BRCAness negative group,

correspondingly showed the largest number of probes with positive Δ-variances. These two

samples were the ones misclassified at unsupervised hierarchical clustering (Fig 2A).

Therefore, we assumed that the negative Δ-variances decreased the accuracy of the predic-

tion and only probes with positive Δ-variances were informative. After removal of samples

I047_005 and HD_00J, unsupervised hierarchical clustering correctly grouped 41 samples and

the number of probes with positive Δ-variances increased to 3685 (Fig 2C). The accuracy esti-

mated by AUC and confusion matrices improved for the 41 OS sample set shown in Fig 1B

and Fig B in S1 File and Table 1 as well as grouping in hierarchical clustering (Fig 2C).

The OOB error evaluates model performance on data not participating in the training of

RF.However, due to selection bias the OOB error computed on a model fitted on the features

selected just once might lead to overfitting and yield over-optimistic error estimation [51]. To

avoid this bias, a Δ-variance feature selection algorithm was used internally in a five-fold cross-

validation loop [39]. Within each fold, feature selection was conducted de novo. The model fit-

ted using the selected features anew each time and was tested against the fold set aside.

During a five-fold cross-validation loop the feature selection, i.e. selection of 2000 top

probes was performed independently according to the filter method as opposed to the wrapper
method. The filter method picks up inherent properties of the features based on univariate sta-

tistics [52]. Since 1/5 of the samples were excluded from training and left for testing purposes,

i.e. not participating in computing of Δ-variances, the set of 2000 probes was fluctuating after

each iteration. The 41 sample set showed improved accuracy evaluated with AUC and confu-

sion matrix (Fig 1B and Fig B in S1 File and Table 1). Unsupervised hierarchical clustering of

uncorrelated 246 probes/predictors, extracted after each cross-validation loop in the course of

the feature selection and, subsequently, merged into a non-redundant set, channeled OS sam-

ples to corresponding BRCAness-positive and BRCAness-negative groups (Fig 3A). Also, cor-

rect grouping was observed when 4052 probes correlated to and including these 246 probes

(rho > 0.8), were merged (Fig 3B) and subjected to unsupervised hierarchical clustering. A

pipeline for data processing, RF classifier training and validation is shown in Fig C in S1 File.

The ROC curve is a plot visualizing the true positive (TP) rate against the false positive (FP)

rate at various threshold settings. The average of the area under the ROC curve (AUC) across

Table 1. Confusion matrices of each cross validation and average fold for random forest models.

RF models Actual

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold Average

Predicted Predicted Predicted Predicted Predicted Predicted

No Yes No Yes No Yes No Yes No Yes No Yes
afitted to 41 samples No 2 1 2 1 2 1 4 0 3 0 13 (81%) 3 (19%)

Yes 1 4 2 3 0 5 0 5 0 5 3 (12%) 22 (88%)
bfitted to 43 samples No 1 2 3 0 3 0 2 2 1 3 10 (59%) 7 (41%)

Yes 0 5 1 4 1 4 1 5 0 5 3 (12%) 23 (88%)

aAccuracy = (22+13)/(22+13+3+3) x100 = 85% (samples I047_005 and HD_00J removed)
bAccuracy = (23+10)/(22+13+3+7) x100 = 77%

https://doi.org/10.1371/journal.pcbi.1009562.t001
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Fig 2. Initial unsupervised hierarchical clustering of 2000 probes (A) in all available 43 samples and (C) in 41 sample set after removal of two

samples (HD_00J and I047_005). Note that these two samples were clustered incorrectly. Lower part in heatmap (A) shows probes with very low

intensities across all samples yielding delta variances with negative values. Brown band: BRCAness-positive, blue band: BRCAness negative samples. (B)

Barplot shows the number of positive Δ-variances re-computed after excluding each sample consequently from 43 sample set. Red—BRCAness

negative, green—positive samples, Y-axe—number of positive Δ-variances. Subsequent removal of HD_00J and I047_005 gives the largest increase in

the number of positive Δ-variances.

https://doi.org/10.1371/journal.pcbi.1009562.g002
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all 5 CV folds with 43 samples was 0.88 (Fig 1A). However, after removing two samples,

I047_005 and HD_00J, the average AUC increased to 0.95 (Fig 1B). Also, the combined accu-

racy after 5-fold CV increased from 77% to 85% in 41 sample set compared to 43 sample set

(Table 1). Keeping in mind that maximum AUC is 1.0 when prediction is 100% accurate and,

AUC is 0.5 with random prediction, the average AUC of the DNA-methylation based RF clas-

sifier 0.95 demonstrates accurate prediction of BRCAness in OS samples. Additionally, the RF

classifier trained on 41 OS samples was validated with an independent OS test set (Fig 1C).

The arrangement of samples in order of increase of PGC, the measure of BRCAness

obtained from genomic NGS data, shows a pattern of probe intensity decrease with increase of

PGC (Fig D in S1 File). This suggests that gene expression is repressed through higher DNA-

methylation in BRCAness negative samples and, conversely, in BRCAness positive samples

expression of certain genes are upregulated. However, we cannot exclude the possibility that

the reason for lower DNA methylation signal in BRCAness positive samples was simply

because of massive genome alterations affecting DNA sites of methylation.

In line with a standard operating procedure for RF, we assigned a fraction of RF votes as a

measure of DNA repair defect, where a fraction of RF votes> 0.5 classifies a sample as BRCA-

ness positive.

RNA-Seq sample selection and differential expression analysis

In order to assess heterogeneity of RNA-Seq samples, Principle Component Analysis (PCA)

was applied (Fig E in S1 File). The overlap of ellipses denoting the confidence interval showed

Fig 3. Unsupervised hierarchical clustering of samples and probes in 41 sample set. (A) 246 probes identified as important non-correlated predictors

combined after 5-fold cross validation and (B) 4052 probes correlated to and including 246 probes discriminate between BRCAness-positive and BRCAness-

negative samples. BRCAness-positive and BRCAness-negative samples indicated by brown and blue horizontal bars at the top, correspondingly. Please note, for

the final RF model, used for validation with independent test set (n = 20), all 41 samples were used as one training set. This set yielded 54 uncorrelated probes out

of 2000 probes.

https://doi.org/10.1371/journal.pcbi.1009562.g003
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poor separation of the two groups. As we expected, the two samples, HD_00J and I047_007

(already removed in RF), were far away from their corresponding clusters, and for this reason

these RNA-Seq samples were excluded from subsequent consideration. Out of 41 OS samples

used in methylation classifier, 31 samples had RNA-Seq data. To avoid samples in the "grey

zone", i.e. around the border line separating BRCAness-negative group from BRCAness-posi-

tive group, we selected 2/3 of the top samples with the highest score from the BRCAness-posi-

tive group and 2/3 of the bottom samples with the lowest score from the BRCAness-negative

group ranked according to Nexus PGC and used their corresponding RNA-Seq data if they

were available. This approach excludes overlapping and border line samples. This approach

yielded 13 BRCAness-positive and 7 BRCAness-negative RNA-Seq samples. To assess the het-

erogeneity of RNA-Seq samples, unsupervised hierarchical clustering was applied (Fig 4A). It

shows each individual RNA-seq sample (leaf) joined by the branches. The height represents

the distance value from the input Euclidean distance matrix. One can consider the first split in

the dendrogram to be the two largest distinct groups, with more groups forming at each subse-

quent split down the dendrogram. In Fig 4, the demarcated boxes in red and cyan represent

two groups obtained by cutting the dendrogram at even height. Moving top-down, the group

in the red box and I007_018 are separated from the rest of the groups at the top level. Thus, it

is expected to find most difference between sets of samples separated at the top level. Consider-

ing the right side of the first split, the outlier I007_018 is separated from the group of samples

in the red box and hence it is not included in the final set of RNA-seq samples. A similar ratio-

nale was applied to I062_007, even though I062_007 belongs to the same class as the samples

in the cyan box. BRCAness-positive RNA-Seq MS-00A was excluded from the stretch of

BRCAness-negative samples. Unsupervised clustering and PCA of the remaining 17 RNA-Seq

samples, 12 BRCAness-positive and 5 BRCAness-negative, showed that two clusters were well-

separated (Fig 4B and Fig E in S1 File). Subsequently, these 17 RNA-Seq samples were used for

differential expression (DE) and gene set enrichment analyses (GSEA).

There were 1,528 significantly DE genes consisting of 449 genes upregulated in BRCAness-

positive group and 1,079 genes downregulated. Among the genes upregulated in BRCAness-

positive versus BRCAness-negative OS tumors were genes important in DNA replication,

DNA repair, cell cycle regulation such as BLM, BRCA1, EME1, ERCC1, EYA1, FANCB, H2AX

Fig 4. Dendrogram showing the results of our hierarchical cluster analysis of (A) 20 RNA-Seq samples selected from two thirds top and

bottom of the OS sample list arranged according to PGC score; and (B) 17 remained RNA-Seq samples used for DE analysis and GSEA.

BRCAness-positive samples are denoted by red color and BRCAness-negative by cyan color. Leaves representing excluded samples are denoted

with ’x’. The demarcated boxes in red and cyan represent two groups obtained by cutting the dendrogram at even height and used further in DGE

and GSEA. The height of a group is defined by Ward’s method.

https://doi.org/10.1371/journal.pcbi.1009562.g004
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(aka H2AFX), HIST1H2BC, HIST1H2BD, HIST1H2BN, LIG3, POLD2, POLH, RPA3, SMUG1,

TIPIN, TOP3A, TIMELESS. Of note, the upregulated histone H2AX was extensively studied as

a DNA damage response factor. The change between γH2AX dephosphorylation and H2AX

phosphorylation marks the switch between cell repair and apoptotic responses, correspond-

ingly [53]. γH2AX foci formation correlates with a double strand break induced by irradiation

exposure [54].

The majority of the gene expression signatures downregulated in BRCAness-positive versus

BRCAness-negative OS tumors were those associated with the immune response indicating

the level of activity of the immune cells in the OS microenvironment. The genes related to

adaptive immunity such as T cell receptor genes (CD3E, CD3D, CD3G) and B cell genes

(CD79A, CD83) as well as genes of the major histocompatibility complex (MHC) such as

HLA-DOB, HLA-DQA1, HLA-DQB1 were significantly downregulated in BRCAness-positive

OS tumors. The NF-kB, composed of a family of genes (NFKB1, NFKB2, RELB, REL), an

important transcription factor related to T-cell activation and cytokines expression, was signif-

icantly downregulated or showed strong tendency towards downregulation in BRCAness-pos-

itive versus BRCAness-negative OS tumors. Expression of genes specific to cytotoxic activities

mediated by T cells, such as CXCR3, PRF1, KLRF1, GZMH, GZMK was also significantly

reduced in BRCAness-positive OS tumors as well as expression of the genes associated with

immune response and proinflammatory cytokines (IL1A, IL18, CCL11, CCL22, CCL13)

(Table A in S2 File).

Gene set enrichment analysis

The Broad Institute GSEA tool reported gene sets with a positive enrichment score, i.e. gene

sets that display enrichment at the top of the pre-ranked list, were hallmark dna repair, kegg
dna replication, kegg mismatch repair, kegg homologous recombination (Table 2 and Fig F in S1

File). Genes contributing most to the enrichment results in gene sets related to DNA repair

and damage tolerance are listed in Table B in S1 File. The second portion of the GSEA report

Table 2. Enrichment results for gene sets.

GSEA NAME SIZE ES NES NOM p-val FDR q-val FWER p-val

Positive enrichment score KEGG_DNA_REPLICATION 30 0.639 0.639 0.000 0.000 0.000

KEGG_MISMATCH_REPAIR 22 0.490 0.490 0.000 0.001 0.003

KEGG_HOMOLOGOUS_RECOMBINATION 26 0.482 0.482 0.000 0.001 0.004

KEGG_ONE_CARBON_POOL_BY_FOLATE 17 0.427 0.427 0.001 0.004 0.023

KEGG_RNA_POLYMERASE 28 0.426 0.426 0.000 0.003 0.023

Negative enrichment score KEGG_ASTHMA 23 0.705 -0.705 0.000 0.000 0.000

KEGG_GRAFT_VERSUS_HOST_DISEASE 36 0.674 -0.674 0.000 0.000 0.000

KEGG_ALLOGRAFT_REJECTION 33 0.669 -0.669 0.000 0.000 0.000

KEGG_TYPE_I_DIABETES_MELLITUS 39 0.602 -0.602 0.000 0.000 0.000

KEGG_AUTOIMMUNE_THYROID_DISEASE 33 0.578 -0.578 0.000 0.000 0.000

KEGG_HEMATOPOIETIC_CELL_LINEAGE 80 0.549 -0.549 0.000 0.000 0.000

KEGG_RENIN_ANGIOTENSIN_SYSTEM 16 0.547 -0.547 0.000 0.000 0.000

KEGG_INTESTINAL_IMMUNE_NETWORK_FO 43 0.492 -0.492 0.000 0.001 0.003

KEGG_COMPLEMENT_AND_COAGULATION_ 61 0.487 -0.487 0.000 0.001 0.004

KEGG_CELL_ADHESION_MOLECULES_CAMS 122 0.468 -0.468 0.000 0.001 0.005

KEGG_PRIMARY_IMMUNODEFICIENCY 34 0.453 -0.453 0.000 0.001 0.009

KEGG_LINOLEIC_ACID_METABOLISM 22 0.428 -0.428 0.001 0.002 0.021

KEGG_LEISHMANIA_INFECTION 69 0.427 -0.427 0.000 0.002 0.023

https://doi.org/10.1371/journal.pcbi.1009562.t002
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showed results for gene sets with a negative enrichment score, i.e. gene sets that display enrich-

ment at the bottom of the pre-ranked list. Those signatures included hallmark allograft rejec-
tion, kegg asthma, kegg graft versus host disease, kegg allograft rejection (Table 2 and Fig G in S1

File). Genes contributing most to the enrichment results in gene sets related to immune system

disease category are listed in Table C in S1 File. Asthma, allograft rejection, and graft versus
host disease signatures reflect downregulation of MHC classes I and II which in turn reduces

responsiveness of anti-tumor immune cells and is typical tumor evasion of the immune

response [55,56] (GSEA results in the supplement).

As additional GSEA we applied the web-tool Enrichr (https://amp.pharm.mssm.edu/

Enrichr/) where statistically significant upregulated and downregulated genes were uploaded

as separate gene sets. Enrichr with upregulated genes and KEGG database reported Fanconi

anemia pathway and HR, both pathways share most of genes such as BRCA1, POLD2.Enrichr

with the Reactome database reported multiple signatures related to HR and DNA-repair such

as homology directed repair, DNA double-strand break repair. For the set of downregulated

genes Enrichr reported MHC II genes in graft-versus-host-disease, allograft rejection and in

other signatures (Enrichr results in the supplement).

Validation of classifier with independent test set

Already after training BRCAness classifier, we obtained OS samples (n = 20) through

INFORM ongoing collection of samples with relapsed or refractory osteosarcoma. This test set

was used for validation of BRCAness classifier. Samples were separated to BRCAness-positive

(n = 14) and BRCAness-negative (n = 6) groups based on FREEC-HRDtools PGC score. New

methylation data arrays were normalized together with training set. Subsequently, trained

model was applied to test set for classification. Only single sample in each group was misclassi-

fied (Table 3). The validation with independent OS set resulted in AUC of 0.87, accuracy of

0.9, sensitivity and specificity of 0.93 and 0.83, correspondingly (Fig 1C). Differential expres-

sion analysis was performed with the RNA-Seq test set where all samples classified as BRCA-

ness-positive (n = 14) and BRCAness-negative (n = 6) were grouped conditional on the

presence or the absence of BRCAness characteristics, tested for DE, ranked, and subsequently

analyzed for pathway enrichment. For the set of upregulated genes Reactome database

reported multiple signatures related to HR and DNA-repair such as homologous DNA-pairing
and strand exchange, homology directed repair through homologous recombination, DNA-dou-
ble strand break repair and homology directed repair (Table D in S1 File). KEGG database

reported cell cycle, dna replication signatures as well as signatures related to DNA-repair, spe-

cifically, mismatch repair (fdr < 0.05), homologous recombination repair (fdr< 0.05) for the

set of upregulated genes. For the set of downregulated genes KEGG reported MHC II genes in

graft-versus-host-disease, allograft rejection and in other signatures including apoptosis

(Table E in S1 File). Matching signatures were observed in training set GSEA.

Table 3. Test set confusion matrix.

a Test set Actual Predicted

No Yes

n = 20 No 5(83%) 1(17%)

Yes 1(7%) 13(93%)

aAccuracy = (5+13)/20 x100 = 90%; Sensitivity = 13/(13+1)x100 = 93%; Specificity = 5/(5+1)x100 = 83%.

https://doi.org/10.1371/journal.pcbi.1009562.t003
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Discussion

As OS is the most common primary malignant bone tumor in adolescence with a low rate sur-

vival for recurrent and metastatic disease in patients there must be efficient treatment of

relapses in place and, ideally, a reliable approach to predict if the treatment will be successful

[1,2]. OS shows complex patterns of genomic variations with a high amount of inter- and

intratumoral heterogeneity, probably responsible for treatment failure in a subgroup of

patients [57]. The structural variations in OS affect BRCA1/2 and their binding partners which

are involved in HR repair [4]. Mutations of these binding partners can be functionally equiva-

lent to BRCA1/2 mutations and also result in HRD. Thus, loss of function in genes involved in

HR repair can lead to BRCAness resulting in increased vulnerability to PARP1 inhibition [3].

Earlier, ’BRCAness’ tumors, i.e. tumors with traits resembling BRCA mutant tumors were

identified in breast and ovarian cancers [58,59]. These tumors were shown to respond to ther-

apy with PARPi due to HRD [60,61]. It was demonstrated by Kovac et al. that the majority of

OS fulfills the criteria for BRCAness and that OS cell lines showing these characteristics

respond to PARPi [4].

In order to measure BRCAness, several genomic tests have been developed using breast and

ovarian cancer datasets [9,10]. The myChoice HRD composite score utilized the genomic

scars’ method based on large genomic rearrangements, namely HRD-LOH, HRD-LST and

HRD-TAI [15]. There is also a mutational signature method built on single nucleotide varia-

tion patterns [16].The weakness of the genomic scars’ method is that it does not necessarily

reflect the actual BRCAness status of the tumor, nevertheless it is widely accepted in clinical

practice. Also, the HRDetect method based on high coverage whole genome sequencing

employs both mutational signatures and genomic alterations [29,62].

Several approaches for detecting the real-time status of HRD were developed. Transcrip-

tional profiles with GEP panels focused on HR were evaluated in ovarian and breast cancer for

sensitivity to platinum therapy, but not specifically in relation to PARPi susceptibility [17]. In

breast cancer, the GEP panel profile included genes found not only in signatures of DNA repli-

cation, repair but also in signatures of cell cycle, cellular assembly and maintenance as well as

metabolic signatures [18].

In another approach, primary cancer cells were subjected to ionizing radiation-induced

damage and the HR response was accessed by the number of RAD51 nuclear foci. Though

these ex vivo tests for ovarian and breast cancers can determine real-time HR status, they are

highly cell-cycle dependent and require fresh samples [19,20].

This study reports a DNA methylation-based classifier trained on samples classified with the

genomic scars/myChoice method.This classifier detects BRCAness in OS samples with high

accuracy and assigns a BRCAness score to the sample. To the best of our knowledge, DNA-

methylation data was used for BRCAness detection and BRCAness scoring for the first time.

There are DNA methylation-based RF classifiers developed for different purposes such as

classification of cancers, which can be misclassified through histological analysis. Wu et al.

developed a genome-wide DNA methylation-based classifier to differentiate between osteosar-

coma, Ewing sarcoma, and synovial sarcoma [34]. The other work was aimed at developing a

DNA methylation-based classification tool for categorization of soft tissue and bone sarcomas

representing a broad range of subtypes and age groups [63]. Another DNA-methylation classi-

fier was implemented to assist in diagnosing brain neoplasms by discriminating between pri-

mary and metastatic brain tumors, identifying the tissue of origin of the brain metastases, and

discriminating their subtypes [64].

In order to develop the classifier, we used the Random Forest (RF) algorithm. Briefly, the

RF classifier belongs to the ensemble-based learning methods. There are training and
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classification stages in the RF algorithm. In the training stage, multiple decision trees are gen-

erated and a bagging algorithm is applied to each tree in the forest. Bagging constantly picks

random samples with a replacement from the training set and fits trees to these samples.Each

tree is grown without pruning. The classification stage consists of gathering the majority vote

across decision trees, i.e. combining predictions from all models. In other words, RF combines

the predictions of many decision trees into a single model. We chose RF among others for the

following reasons: 1) RF is computationally inexpensive and fast. It was already widely used in

various domains of data science; 2) RF is resistant to overfitting because of its voting strategy

mentioned above. In contrast, a decision tree classifier might become fitted to the training

data together with any associated noise. This would prevent such a model from predicting the

independent test data; 3) in RF we can still trace how each feature was contributing to the pre-

diction model. This characteristic of RF can be important for clinical acceptance which often

requires a high degree of transparency in terms of how a specific decision is made. This is an

advantage of RF over “black-box” decision making such as a neural network algorithm.

Using methylation array probes as predictors has several advantages over using NGS.

Microarray platforms have been in use for a longer time than NGS and the methods are more

standardized in terms of technology, allowing rapid genome-wide methylation analysis. Other

advantages include less complicated and labor-intensive sample preparation and the ability to

process a high number of samples. NGS data used as an input for myChoice HRD and PGC

scoring is more suitable for discovery purposes. Its analysis requires both tumor and control

(normal tissue) data. Obtaining control sample might be problematic for certain cancers. In

samples with the low tumor cell content, coverage might be too low to capture genomic rear-

rangements. Turnaround time can be too long for diagnostic purposes and costs associated

with data handling and storage, bioinformatics analysis can be too high. With appropriate

equipment, methylation arrays can be processed locally, in the lab, without sending sample to

large sequencing center.Usually, clinicians are more comfortable with stable, proven technol-

ogy, straightforward data analysis and ease of regulatory approval.

Importantly, in this study we demonstrated that 54 probes, i.e. approximately 0.01% of all

probes on a 450K DNA-methylation array, were sufficient to predict BRCAness with high

accuracy in the test OS set. This shows that the predominant majority of the approximately

450,000 probes are uninformative or redundant for the discrimination of BRCAness in OS.

This notion allows scaling down DNA-methylation BRCAness test adjusting it to different

lower throughput platforms without deteriorating test accuracy. The scaled-down test of 54

CpG sites does not require array equipment and could be a solution for small diagnostic labo-

ratories providing a much shorter turnaround time [65]. The NGS testing of a small number

of CpG sites could offer higher multiplexing and better sequencing depth providing better res-

olution for some problematic CpG sites. There are several lower throughput technologies that

can be used for interrogation of tens to hundreds of CpG sites simultaneously, such as methyl-

ation-iPLEX assay which can produce DNA methylation data from a DNA sample in a single

workday [66]. With quantitative methylation-specific PCR method one would expect a lower

cost per sample per CpG site [67]. Also, droplet digital PCR is considered to be a valuable tech-

nology for accurate methylation detection in clinical samples with its higher precision, greater

accuracy, and technical simplicity over conventional quantitative PCR [68].

Our results show that the DNA-methylation RF classifier can identify BRCAness in a man-

ner that is not only accurate and time effective but also cost-effective, since processing of meth-

ylation arrays for the RF classifier does not require sequencing of control tissue DNA.

Although BRCAness in OS was previously shown on the genomic level with HRD score and

mutational signatures as well as OS susceptibility to PARPi [4,69], on the gene expression level

genome instability signatures including homologous recombination were identified for the

PLOS COMPUTATIONAL BIOLOGY DNA methylation classifier detects BRCAness in OS

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009562 November 11, 2021 16 / 24

https://doi.org/10.1371/journal.pcbi.1009562


first time in OS. The low frequency of OS tumors truly deficient in BRCA1/2, in contrast to

breast and ovarian cancers, implies that the increased presence of BRCAness in OS arises from

alterations in other genes of the HR pathway, each of which contributes to HRD [4]. Suscepti-

bility of OS cell lines to PARPi broadly correlated with their level of genomic instability, and

cells exhibiting high sensitivity to PARPi scored higher in the HRD score, i.e. in a measure of

genomic instability [69]. Taking this into account we expect that the degree of DNA-repair

defect obtained with the DNA-methylation classifier can be used as a measure of PARPi

response.

Currently, our study has several limitations. There is a potential to improve the accuracy of

prediction by increasing the number of OS samples and by re-training the RF model using

only Illumina Epic arrays with >850,000 CpG probes. In this study, we converted all Epic

array probes to Illumina 450K probes. This array has only 450,000 CpG sites throughout the

genome because we used both types of arrays. Such a reduction in the number of probes

decreases the predictive accuracy of the classifier. Furthermore, this classifier was trained and

validated on samples segregated based on the genomic scars’ method, i.e. on large scale geno-

mic rearrangements accumulated over certain time. In this regard genomic scars might exhibit

HRD status which does not reflect the current state of BRCAness in tumor. However, the rela-

tion between the dynamics of the scars’ accumulation and real-time HRD status was not

explored to the best of our knowledge, yet. Nevertheless, the genomic scar method is the most

common method of HRD detection commercialized by Myriad Genetics and approved by the

U.S. Food and Drug Administration for clinical use. Clearly, the prediction accuracy does not

exceed those of the myChoice HRD / NexusCN PGC method since the classifier was trained

and evaluated on OS samples separated with the aforementioned method to BRCAness-posi-

tive/-negative subsets. Having more advanced methods in hand for categorizing OS samples,

e.g. a functional ex vivo test with enough samples for training and evaluation, we could use

methylation arrays of corresponding samples for the classifier which offers a straightforward

framework. Another possible limitation is that the classifier was trained and validated only

with INFORM samples which are relapsed or refractory OS samples. Hence, it is likely that for

BRCAness detection in primary OS tumors this classifier should be re-trained and re-

validated.

Though, preliminary data on the antitumor activity of DNA-damaging drugs and PARPi in

combination showed encouraging results in osteosarcoma [70] as well as in other ongoing

clinical studies with PARPi (e.g. NCT03155620, NCT02813135), in the past the response to

PARPi was not systematically studied in OS patients. Hence, an unambiguous cut-off score in

OS for defining BRCAness was not available. Thus, reproducing the HRD test with the BRCA-

ness threshold of� 42 determined for ovarian cancer seemed to be a reasonable approach to

group OS samples to BRCAness-positive and negative ones [9].

We want to emphasize that the degree of BRCAness obtained with our RF classifier should

not be considered as an explicit indication to administer PARPi in OS. Nevertheless, the only

method so far approved by the U.S. Food and Drug Administration for clinical use is the Myr-

iad Genetics method of HRD detection, i.e. the genomic scar method. In particular, the FDA

approved PARPi, niraparib, for patients with advanced ovarian, fallopian tube, or primary

peritoneal cancer treated with at least three chemotherapy regimens and whose cancer is asso-

ciated with HRD-positive status determined by the Myriad’s myChoice HRD scoring method.

With the increase of the OS PARPi sensitivity clinical data volume we will be able to establish

the threshold of PARPi susceptibility in OS with our RF classifier.

In GSEA we expected that homologous recombination and other related signatures would

be detected in downregulated genes of BRCAness samples, i.e. in gene sets with a negative

enrichment score. Contrary to our expectations, these signatures were detected in upregulated
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genes. This could be a sign of genetic compensation in HR repair pathway, i.e. changes in

RNA level in an attempt to functionally compensate for the loss of a function of a certain

"BRCAness" gene [71]. Since we compared a set of unrelated OS samples, where practically

any HR gene can be impaired, the resulting compensation in the form of overexpression can

cover the whole spectrum of HR genes in its ineffective attempt to restore a functional HR

pathway. Indeed, Pitroda et al. found that the degree of genomic instability in carcinoma cells

determined by sensitivity to a specific chemotherapy agent, topotecan, was positively corre-

lated with the overexpression of HR-related genes such as RAD51, BLM, BRCA1, RAD51AP1,

RAD54B, BRCA2, RAD51C [72]. In HR-proficient settings RAD51 and other RAD51-asso-

ciated genes are thought to promote HR. Nevertheless, RAD51 overexpression has been previ-

ously reported in BRCA1/2 mutant cancer cells exhibiting HRD phenotype [73]. Also, the

overexpression of additional genes known to promote various mechanisms required for HR,

including CtIP participating in ssDNA-end resection, PLK1 contributing to 53BP1 and

RAD51 phosphorylation, and XRCC2, XRCC3, PALB2 participating in RAD51 filament

assembly was reported in carcinoma cells with increased genomic instability. These findings

indicated that BRCA-defective cells responded to HR-deficiency by increasing the expression

of a number of HR-related genes [72]. In another study, the upregulation of Polθ and its posi-

tive correlation with expression of many DNA repair genes including TOPBP1, BLM,

RAD54L, FANCI, BRCA1, FANCD2, ATAD5 was reported in HR-deficient epithelial ovarian

cancer cells [74]. In our OS BRCAness-positive gene expression data the majority of the afore-

mentioned genes were significantly overexpressed or showed a tendency towards upregulation

contributing to HR and HR-related signatures obtained in GSEA.

Notably, our GSEA results showed that BRCAness-positive OS tumors exhibited immune

signatures in downregulated genes with a reduction of immune-mediated cytotoxicity and

inflammation. These findings were consistent with a pan-cancer analysis which found that

aneuploidy, i.e. the presence of abnormal number of chromosomes, and a higher prevalence of

large somatic copy number alterations (SCNA), a trait of HRD, were associated with lower

immune cytotoxicity, possibly due to the genomic events disrupting cellular machinery associ-

ated with the recruitment of immune cells [75]. Among the gene sets upregulated in high ver-

sus low aneuploidy tumors were those implicated in DNA replication, cell cycle regulation,

mitosis, and chromosome maintenance. At the same time, this pan-cancer data analysis

showed that the level of aneuploidy and SCNA inversely correlated with cytotoxic immune sig-

natures [75]. Davoli et al. postulated that aneuploidy may weaken some aspects of antigen pre-

sentation in MHC, important for tumor detection by the immune system. In another study,

when BRCA1/2 mutant breast cancers were dichotomized by median HRD score, higher HRD

scores were also associated with lower immunogenicity [76]. This study showed that the HRD-

low subset of breast cancer tumors in a cohort was the most highly immunogenic with the

strongest evidence for CD8-driven T-cell responses [76]. Our findings on these signatures sug-

gest that estimation of BRCAness level might be useful for stratifying OS patients in clinical tri-

als most likely responding not only to PARPi therapy but also to therapy based on immune

checkpoint blockade [77].

In conclusion, we developed and validated an accurate DNA-methylation based classifier

which can rapidly compute a degree of BRCAness in OS samples without the need for high

computational power or high capacity data storage usually required for NGS genomic data

processing. The finding of a HR expression signature is another proof of BRCAness in OS and

the validity of the genomic scars’ method. Also, it can be used to develop a GEP panel for pre-

dicting PARPi susceptibility in OS. Our results demonstrate similar HR and HR-related gene

expression signatures both in the training set categorized by the genomic scars’ method and in

the independent test set categorized by the RF classifier. This serves as a proof of soundness of
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our methylation classifier implementation. A set of differentially expressed genes can be

included in the advanced version of the classifier as an additional feature together with the

mutation status of certain genes, e.g. CDK2/4/6, cyclin E1/D3, RB1, CDKN2A [78,79], moving

towards multi-omics integration, which could not only assist clinicians in making a decision

on PARPi administration, but also improve our understanding of the BRCAness molecular

mechanism. We believe that both the DNA-methylation based classifier and gene expression

signatures could provide a useful aid in decision making on administering PARPi to OS

patients. This approach can be extended to other cancers having the characteristics of genome

instability.

About 50% of OS patients have HR-deficient tumors. Yet, in a recent PRIMA clinical trial

with PARPi olaparib as a first-line treatment of ovarian cancer patients, it was shown that with

current HRD testing 30% of patients may be given unsuccessful PARPi treatment [80]. At the

moment, health care costs are ever-increasing and new treatments are only justified if they are

effective and well targeted. Therefore, the cost of PARPi treatment might influence survival

chances. We envision that a DNA-methylation BRCAness classifier will contribute to the

reduction in PARPi treatment cost by improving the identification of HRD tumors. This will

make PARPi treatment much more personalized, cost-effective, will reduce economic burden

on society and, above all, will decrease the unnecessary toxic and mutagenic burden on

patients.
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