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Abstract

In most animals, natural stimuli are characterized by a high degree of redundancy, limiting

the ensemble of ecologically valid stimuli to a significantly reduced subspace of the repre-

sentation space. Neural encodings can exploit this redundancy and increase sensing effi-

ciency by generating low-dimensional representations that retain all information essential to

support behavior. In this study, we investigate whether such an efficient encoding can be

found to support a broad range of echolocation tasks in bats. Starting from an ensemble of

echo signals collected with a biomimetic sonar system in natural indoor and outdoor environ-

ments, we use independent component analysis to derive a low-dimensional encoding of

the output of a cochlear model. We show that this compressive encoding retains all essential

information. To this end, we simulate a range of psycho-acoustic experiments with bats. In

these simulations, we train a set of neural networks to use the encoded echoes as input

while performing the experiments. The results show that the neural networks’ performance

is at least as good as that of the bats. We conclude that our results indicate that efficient

encoding of echo information is feasible and, given its many advantages, very likely to be

employed by bats. Previous studies have demonstrated that low-dimensional encodings

allow for task resolution at a relatively high level. In contrast to previous work in this area, we

show that high performance can also be achieved when low-dimensional filters are derived

from a data set of realistic echo signals, not tailored to specific experimental conditions.

Author summary

We show that complex (and simple) echoes from real environments can be efficiently and

effectively represented using a small set of filters. Critically, we show that high perfor-

mance across a range of tasks can be achieved when low-dimensional filters are derived

from a data set of realistic echo signals, not tailored to specific experimental conditions.

The redundancy in echoic information opens up the opportunity for efficient encoding,

reducing the computational load of echo processing as well as the memory load for storing

the information. Therefore, we predict the auditory system of bats to capitalize on this
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opportunity for efficient coding by implementing filters with spectrotemporal properties

akin to those hypothesized here. Indeed, the filters we obtain here are similar to those

found in other animals and other sensing capabilities. Our results indicate that bats could

exploit the redundancy in sonar signals to implement an efficient neural encoding of the

relevant information.

Introduction

Many natural stimuli encountered by animals are characterized by a high degree of redun-

dancy [1]. Efficient neural encoding retains essential information while reducing this redun-

dancy. By extracting the most crucial aspects of stimuli, the efficiency of sensing is drastically

increased [2]. For echolocating bats, the time of arrival of echoes, which conveys the target’s

distance, is the most relevant sensory information [3]. In addition, the spectral content and

intensity of the echoes also convey essential information for localizing and recognizing targets

[4, 5].

Earlier results from robotic sonar suggest that echo signals, like many other natural stimuli,

are highly redundant. For example, [6] presented a bio-mimetic system that could differentiate

the head and tail sides of a coin. This binaural system reduced the 2.4 ms long, 60 kHz wave-

form at each receiver to a 16-value vector. This corresponded to 0.15 samples per millisecond

instead of the 120 samples prescribed by the Nyquist criterion. Collecting many broadband

echoes (100–30 Khz) in different natural bat habitats [7] demonstrated successful place and

pose recognition based on these echoes. Each echo was represented using a distance-intensity

profile of fewer than 100 samples, or less than 3 samples per millisecond. References [8] and

[9] presented simulations and a robotic model of obstacle avoidance in bats. Their obstacle

avoidance strategy only used the (sign of the) interaural level difference to steer the artificial

bats around obstacles, demonstrating successful albeit simple sensorimotor control using a

highly reduced representation of the echo train.

The previous work, referred to above, showed the possibility to compress echoic informa-

tion in the context of a particular task, e.g., scene recognition [7] or object recognition [6, 10].

However, to be truly useful, efficient encoding must support many different echolocation

based behaviors. Hence, to maximally exploit this apparent redundancy in echo signals, it can

be presumed that bats have evolved efficient and task-independent neural encoding strategies

for extracting relevant echo features. While specific neural encodings in various areas of the

bat’s brain have been studied in great detail, to the best of our knowledge encodings that

explicitly take into account the redundancy in echo signals have not been studied systemati-

cally yet. Here, we set out to devise such an efficient encoding scheme for echo signals.

First, we collect a large sample of representative stimuli, i.c., echoes from different indoor

and outdoor environments, and convert them to cochleograms, as proposed by Lutz Wiegrebe,

to whose memory we dedicate this paper [11]. Next, we employ Independent Component

Analysis to derive a set of filters that most efficiently encode the ensemble of cochleograms.

This same approach has been used to good effect in other sensory domains, including visual

[12] and auditory [13] perception. The resulting filters can be interpreted as the spectrotem-

poral receptive fields of a set of hypothetical neurons [14]. We find that 25 filters can be used

to encode 99% of the variance in the cochleograms derived from echoes collected in various

environments. Next, we present simulations showing that these filters retain sufficient infor-

mation to complete several sonar-based tasks on which bats have been tested before. In partic-

ular, we show that the filters allow for accurate object recognition, monaural target localization
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(range and elevation), and scene recognition. Crucially, we show that high performance across

a range of tasks can be achieved when low-dimensional filters are derived from echo signals

not tailored to specific sonar-based tasks.

These results show that the (lossy) compression performed by the filters provides a substan-

tial reduction in the amount of echoic information that needs to be encoded, processed, and

stored while retaining the crucial aspects of the stimuli. The proposed filters have been derived

on theoretical grounds, but, as discussed, evidence from auditory and visual encoding in both

bats and other animals supports their biological plausibility.

Methods

Overview

The overall approach of the current study is as follows (also depicted in Fig 1). We start by

collecting echoes (N = 1014) in 21 natural bat habitats and indoor environments. While not

intended to be exhaustive, this dataset covers a broad range of environments containing

human-made and natural reflectors of varying complexity that bats might conceivably encoun-

ter. Using a functional model of the auditory periphery of the bat [11], we convert the echoes

to cochleograms. The information in the cochleogram is a good approximation of that con-

tained in the neural activity at the auditory nerve [15]. Next, based on this database of ecolog-

ically relevant cochleograms, we derive a set of filters for encoding the cochleogram using the

technique of Independent Component Analysis [16].

Fig 1. General outline of the approach of this paper. Top Echoes collected in various environments are converted to cochleograms using a model of

the auditory periphery [11]. From these cochleograms, we derive a set of 25 independent components (=filters) using Independent Component

Analysis (ICA). Using these components as a basis for cochleogram encoding allows compressing each cochleogram into a set of 25 values (=filter

outputs). Middle To test whether these 25 filters retain sufficient information to explain the behavior of bats in a range of psychophysical tasks, we

model four experiments. For each of these experiments, we generate phantom echoes based on the impulse responses as used in the bat experiments.

Next, we convert these phantom echoes to cochleograms and add internal noise. These cochleograms are then encoded with the 25 filters derived from

the echo database. Finally, a neural network is trained to assess whether this encoding retains sufficient information to achieve a similar discrimination

performance as the bats. Bottom In addition to modeling four bat experiments, we also test whether the encoding retains enough information to

memorize and recognize the 21 locations at which the data were collected.

https://doi.org/10.1371/journal.pcbi.1009052.g001
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To verify that this encoding retains the relevant spectrotemporal echo information useful to

a bat, we simulate several previously published behavioral discrimination experiments with

bats. In our experiments, we generate echoes similar to those used in the bat experiments and

encode the associated cochleograms with the proposed efficient encoding scheme. We then

use neural networks to assess whether the information retained by this compressive encoding

is sufficient to attain a performance level comparable to that of the bats in the discriminations

experiments. See [17] for a similar approach. As a final test, we also assess whether the infor-

mation retained by the encoding is sufficient to memorize and discriminate between the

cochleograms collected at the 21 different locations, a capability required for place, and scene

recognition by bats [7].

Deriving an efficient cochlear encoding

We collected echo data using a sonar data acquisition device mounted on a tripod (Fig B in S1

Text). The device consisted of a Sensecomp 7000 broadband emitter. A 1-millisecond FM-

pulse sweeping down from 70 kHz to 30 kHz (hyperbolic sweep) was used. This band corre-

sponds to the lower frequency range used by many species of bats in echolocation [18]. The

device featured two Knowles microphones. However, in this study, only one of the micro-

phones was used. Echoes recorded by the microphone were sampled at 360 kHz.

Echoes were collected in several outdoor and indoor environments. Outdoors, we enson-

fied hedgerows, dense vegetation, plants, tree foliage, and shrubs. Indoors, data were collected

in various rooms of a private residence, in lab spaces at the University of Cincinnati, and inside

a barn. We selected these locations to include simple (human-made) reflectors and highly

complex stochastic reflectors (e.g., leafy foliage). In total, we collected 1014 echoes, 500 of

which were collected indoors. Echoes were collected in batches of 30 to 50 at 21 different loca-

tions. Some examples of the locations we used are shown in Fig 1. The echoes had a duration

of 19 ms, corresponding with a maximal range of 3.2 m (=343m/s × 0.019/2) for a speed of

sound of 343m/sec. The duration of 19 ms was dictated by the size of the onboard memory of

the data acquisition device. Stilz and Schnitzler [19] found, that depending on atmospheric

conditions, echolocation frequency, and the dynamic range of the sonar system, the maximum

range for extended backgrounds such as a forest edge can be as short as 2.4m. Therefore, we

propose that the chosen echo length while at the lower end falls within the ecologically relevant

range.

While collecting data, the position and orientation of the ensonification device were

changed between subsequent emissions. We moved the device pseudo-randomly through each

space by displacing it by about 20 centimeters between measurements and turning it up to 90

degrees. For each position and orientation of the device, three measurements were taken in

succession, separated by 1 second.

The echoes, for each of the three repeats, were converted into cochleograms using the func-

tional model of the middle and inner ear processing in the bat, as proposed by Wiegrebe [11]

(see Fig 1). We averaged across the cochleograms for the three repeats to increase the signal-

to-noise ratio. The middle and inner ear processing model consists of a bank of gammatone fil-

ters followed by half-wave rectification and exponential compression. Finally, each frequency

channel’s output is low pass filtered with a cut-off frequency of 1 kHz. As the bat has knowl-

edge of its emission and as we ignore possible Doppler-shifts (hyperbolic FM sweeps are maxi-

mally Doppler-shift resilient [20, 21]), the frequency modulation present in each subecho the

cochleograms consist of can be compensated for by a ‘dechirping’ operation. Through this

‘dechirping’ mechanism, we shift the response in each cochlear frequency channel in time to

align the responses (see Fig 1). A similar compensation mechanism is included in both the
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SCAT model proposed by Saillant et al. [22] and the model proposed by Wiegrebe [11], imple-

mented through autocorrelation. In the current study, the 20 center frequencies for the gam-

matone filter bank were spaced by Equivalent Rectangular Bandwidths [23]. An example of a

cochleogram is shown in Fig 1. The center frequencies are listed in S1 Text.

Next, each cochleogram Sj, j = 1, � � �, N is converted into a vector xj by concatenating the

columns of the cochleogram. The efficient encoding we propose assumes that this observed

vector xj can be written as a linear mixture of basic components,

xj ¼
XN

i¼1

cj;i �Ψi ¼ A � cj ð1Þ

with the basic components Ψi, i = 1, � � �, N making up the columns of the matrix

A = [Ψ1 Ψ2 � � �ΨN] and cj a vector of statistically independent weights with the i-th com-

ponent of this vector denoted by cj,i. Given the dataset of cochleograms, the ICA technique

will determine the matrix A that minimizes the multi-information, a generalization of

mutual information measuring the statistical dependence between multiple variables, of

the weights cj. By inverting the concatenating operation performed on the cochleograms,

we can interpret the basic components Ψi, i = 1, � � �, N, just like the cochleograms, as func-

tions of time t and frequency f. In this paper, we use the FastICA [24] algorithm as imple-

mented by the scikit-learn Python package [25] to derive the basic components from the

set of collected cochleograms.

In principle, the set of weights cj encodes the cochleograms without loss, i.e., the dimen-

sions of the vectors xj and cj are the same. However, in this paper, our goal is to assess whether

a reduced set of basic components Ψi, i = 1, � � �, M with M� N can capture sufficient spectro-

temporal information to successfully support a broad range of typical echolocation tasks.

Hence, before the ICA proper is applied, the cochleograms first undergo a preprocessing step

consisting of the removal of the mean cochleogram and principal component analysis (PCA).

Projecting the cochleograms onto their principal components removes linear correlations and

allows, by dropping dimensions with low variance, a dimensional reduction. The PCA per-

formed on the cochleogram dataset showed that 25 components could capture over 99% of

the variance in the cochleograms. Next, after mapping the cochleograms onto this reduced

25-dimensional Principal Components space, the 25 independent components representing

the data best are determined. As this preprocessing step is included in the FastICA implemen-

tation, we refer to both these processing steps as ICA in Fig 1.

An example of a cochleogram Sj converted to its 25 dimensional representation cj is given

in Fig 2.

Modeling behavioral data

To demonstrate that this compressive encoding retains sufficient information to explain bats’

behavior in various experiments, we modeled four previously published behavioral experi-

ments. In modeling each of these, we employed the same approach outlined in Fig 1.

We generated artificial echoes according to the same procedure used in each behavioral

experiment. Three out of four of the behavioral experiments considered used a phantom target

paradigm. In these experiments, the bat’s emission was recorded using a microphone and con-

volved in real-time with a target impulse response. The result was played back to the bat. We

generated impulse responses mimicking those used in the experiments and convolved them

with the same emission signal used to collect the real sonar echoes, i.e., a 1-millisecond FM-

pulse sweeping down from 70 to 30 kHz. The fourth experiment used real targets (i.e., small

beads). We approximated those as reflecting a simple copy of the incident emission.
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These artificial echoes were converted to cochleograms employing the same model [11]

used to process the ensonification data. Internal noise (see below for details) was added to the

cochleograms before encoding them using the 25 independent components derived from the

echo database. Next, we ascertained that this encoding retained essential spectrotemporal

information. We did this by training neural networks on the compressed encoding of the

cochleograms to determine discrimination thresholds that can be compared to the behavioral

findings reported in the earlier studies.

For each experiment modeled, we constructed a separate training and testing data set. The

training set was always used exclusively to train the neural network, whereas all performances

reported here are exclusively based on the separate test set. For some experiments, we wanted

to test whether the neural network could generalize from the training set. In this case, the

training and the test set have been generated with different parameter settings. We will discuss

this where appropriate.

The networks consisted of a 25 node input layer matching the dimension of the 25 indepen-

dent component space. We used two hidden layers, each with 50 nodes. The number of nodes

Fig 2. Example of a cochleogram from the ensonification data. Its 25D representation is shown in the center of the

figure. At the bottom the reconstructed cochleogram (from the 25D represention) is shown. The reconstructed version

is a smoothed version of the original. (m.u.: model units).

https://doi.org/10.1371/journal.pcbi.1009052.g002
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was selected for computational convenience, and we did not attempt to optimize the networks’

size. The hidden layer neurons were Rectified Linear Units. The networks had one output

node, with a sigmoid activation function. The experiments we modeled used two-alternative

forced-choice (2AFC) tasks. Therefore, we trained the networks to generate an output = 1 for

inputs corresponding with a rewarded stimulus and output = 0 for inputs corresponding with

a non-rewarded stimulus. The loss function was the absolute difference between the desired

and actual activation of the output node. The training was done using RMSProp (Root Mean

Square Propagation), as implemented in Keras [26].

Noise model. We added Gaussian (zero mean) noise to the cochleograms before applying

the compressive encoding to model the effects of internal noise on the bat’s decision process

[11, 27]. To derive the variance of the noise, we employed the calibration procedure proposed

by [27], i.e., we established the noise level that resulted in similar echo intensity discrimination

performance as reported for bats. Reference [28] summarizes intensity discrimination thresh-

old experiments, citing Just-Noticeable Difference (JND) values for echo intensity ranging

from 1 to 5 dB. We chose to use a value at the upper end of that range, i.e., 5 dB, as this same

value (for 70% correct decisions) was reported in phantom target experiments similar to the

ones we will be simulating [29].

In particular, we generated a cochleogram Sref corresponding with a reference echo ampli-

tude. A second cochleogram S+5 was generated with an echo amplitude 5 dB higher than the

reference amplitude. Next, we iteratively searched for the level of Gaussian noise, N ð0; sÞ, that

allowed telling S+5 apart from Sref for 70% of the noise realizations. The value of σ that allowed

for 70% correct decisions was approximately 0.1 (S1 Text). A cochleogram with added noise is

shown in Fig 1. Using σ = 0.1 gives the cochleograms in this paper a dynamic range of about

42 dB, i.e., the maximum value across all cochleograms is approximately 15.

In the remainder of this paper, all simulated echoes were generated with the same reference

amplitude. In those cases where amplitudes of echoes were varied, the amplitude roving was

done around the reference value.

Experiment 1: Encoding temporal information. To assess whether the compressive

encoding retained sufficient temporal information, we mimicked the experiments that quanti-

fied the just noticeable difference in echo delay in bats (see [30] for references). For example,

in the experiments described by Denzinger and Schnitzler [31], the bats were rewarded for

discriminating a phantom target echo at a fixed delay from echoes with a longer and variable

delay.

We modeled this absolute delay discrimination experiment by generating target impulse

responses consisting of a single impulse. The rewarded target impulse response was fixed at a

delay of 11 ms. Unrewarded target impulse responses were shifted backward from 1000 μs to

50 μs relative to the fixed target. We applied amplitude roving by randomly varying the echo

amplitudes over a 30 dB range to exclude overall echo-level cues. The resulting echoes were

converted to cochleograms, noise was added, and the result was encoded with the 25 filters

derived above.

Experiment 2: Encoding simple reflector descriptions. To assess whether the compres-

sive encoding retained sufficient information about simple target impulse responses, we inves-

tigated the discrimination of stimuli containing two echoes separated by varying time delays,

as proposed in [32]. In these experiments, Megaderma lyra were presented with phantom tar-

gets defined by an impulse response consisting of two impulses separated by a variable time

delay ranging from 1.3 to 26 μs. In some of the experimental conditions, these two echoes had

unequal strength. These short time delays, falling within the cochlear frequency channels’ inte-

gration time, result in a notch in the phantom targets’ spectral image. Indeed, assuming the

received echo x(t) consists of two delayed copies of the call e(t) with the second one possibly
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amplified/attenuated with respect to the first one,

xðtÞ ¼ eðtÞ þ aeðt � tÞ; ð2Þ

the spectrum of such an echo can be written as

Xð f Þ ¼ Eðf Þ � ð1þ a exp � j2pf tÞ; ð3Þ

with E(f) the spectrum of the emission. This spectrum contains notches at frequencies f −,

assuming no phase shift between echoes, that depend on the time delay τ

f � ¼
ð2mþ 1Þ

2

1

t
; ð4Þ

with m an integer. The depth of the notch depends on the ratio a of the leading and trailing

echo amplitudes with maximum depth achieved for a = 1. In the original experiments, bats

were trained to discriminate a stimulus with a reference time delay 7.77 μs (or reference notch

frequency of 64.4 kHz) from stimuli with different time delays (or notch frequencies).

In keeping with the study by Schmidt [32], we generated stimuli consisting of two echoes

with the delay τ between them varied such that the corresponding notch falls in the interval

from 16 to 70 kHz (2 kHz steps), corresponding with the passband of our sonar system. As in

the most challenging of the original study’s experimental conditions, the leading echo’s ampli-

tude was set 6 dB lower than the trailing echo’s, resulting in less pronounced notches. Similar

to the previous experiment, we applied amplitude roving by randomly varying the two echoes’

amplitudes over a 30 dB range. The delayed echoes were again converted to cochleograms,

noise was added, and the results were mapped onto the same 25 independent components (or

filters).

Note that irrespective of whether the spectral image is used directly by the bats to solve this

task, as concluded by Schmidt [32], or whether this spectral image is transformed into a time-

domain representation of the target impulse response first, as suggested by in references [22,

33], the loss of spectral information will harm discrimination performance in this experiment.

Hence, while the previous experiment studied how the proposed compressive encoding pre-

serves temporal information, this experiment tests how well spectral information is preserved.

Experiment 3: Encoding scale-invariant reflector descriptions. To assess whether the

compressive encoding retained sufficient information about more complex target impulse

responses as well, we mimicked an experiment on scale-invariant reflector recognition. In this

experiment, Firzlaff et al. [34] trained bats to discriminate echoes resulting from two different

impulse responses consisting of 12 impulses each. After the bats had been trained to distin-

guish between these two successfully, they presented the bats with scaled versions of the target

impulse responses mimicking decreased or increased reflector sizes. Scaling entailed multiply-

ing the impulse amplitudes with the square of the scale factor (area of target scales as the square

of linear scale factor) and compressing or expanding the target impulse responses along the

time axis with the scale factor. As the bats could still discriminate between scaled versions of

the original target impulse responses, the experiments showed that the bats could generalize

from the trained target impulse responses to their scaled versions.

Similar to the approach taken by Firzlaff et al. [34], we generated two impulse responses

consisting of 12 impulses randomly distributed over a 1.86 ms time interval. Scaled versions of

these two impulse responses were generated using the same scaling procedure and the same

range of scale factors applied in the bat experiments, i.e., a scale factor ranging from 0.65 to

1.5. We applied 15 different scalings in this range. Again, the impulse responses were con-

verted to noisy cochleograms before encoding them using the same 25 filters. To mimic the
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original study’s experimental design, we trained the neural network to discriminate the

impulse responses at scale 1. Next, we tested the neural network’s ability to generalize this dis-

crimination to the scaled versions.

Experiment 4: Encoding spectral information. To assess whether the compressive

encoding retained sufficient spectral information for spatial localization of targets, we modeled

the elevation discrimination experiments reported in references [5, 35]. As in other mammals,

the pinnae of bats generate acoustic cues that aid the localization of echo-producing reflectors.

Experiments have shown that the spectral cues imposed by the pinnae are particularly impor-

tant for localization in the vertical plane, for example, [5, 35–37].

To the best of our knowledge, no phantom target experiments have been used to test bat’s

elevation discrimination performance. Therefore, we cannot exactly duplicate a particular

experimental setup. Instead, we generated cochleograms using the head-related transfer func-

tion (HRTF) of Phillostomus discolor [38, 39] of echoes from virtual targets at azimuth = 0

degrees and varying elevation angle between -20 degrees and 20 degrees. This interval repre-

sents the interval of best elevation discrimination found by Lawrence, Simmons and Wotton

[5, 35]. We trained the neural network to return a 0 when the 25D input vector was derived

from echoes filtered with the HRTF for negative elevations and a 1 for echoes filtered with the

HRTF for positive elevations. While this setup differs from the bat experiments referred to

above to determine the vertical angular acuity, we propose that it also provides an estimate of

the vertical angular acuity. Furthermore, even if the performances in the real and simulated

experiments are not directly comparable, solving this discrimination task for target positions

close to the horizontal plane will require the neural network to distinguish subtle location-

dependent HRTF cues showing that the compressive encoding retains those cues.

Memorizing acoustic signatures

In previous work, we established that cochleograms contain sufficient information to recog-

nize scenes and sonar poses (location and orientation) [7]. In this experiment, we assessed

whether the measured cochleograms would still allow place recognition after being projected

into the compressed independent components space. To test this, we trained a neural network

to associate each of the 25D-vector encodings (see Fig 1) of the empirically collected echoes

with the location at which they were collected.

The network used for memorizing acoustic signatures differed from those used in modeling

the 2AFC behavioral experiments. This network had three hidden layers with 50, 100, and 50

Rectified Linear Units. The output layer had 21 units, each corresponding to one of the 21

locations where acoustic data was collected. The output layer had a softmax activation func-

tion. This activation function normalizes the neurons’ output into a probability distribution.

Therefore, the output of this network could be interpreted as a probability distribution across

the 21 locations. Categorical Cross Entropy was used as a loss function, and optimization was

performed using the Adaptive Moment Estimation (adam) algorithm [40].

Results

Basic components

Fig 3A–3D visualizes four of the basic components Ψi, i = 1, � � �, 25, derived from the echo

database. As is clear from this figure, the components show Gabor-like properties along the

time dimension. Each component is sensitive to a given delay (or distance) and shows some

suppression for shorter and longer delays. Note that because of the ‘dechirping’ operation per-

formed before calculating the cochleograms, all the filters’ Gabor-like responses are vertically

oriented.
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To investigate the spectral properties of this set of components, we calculate for each com-

ponent and each frequency channel the mean value along the time dimension (see Fig 3E),

and likewise, for the temporal properties, we calculate for each component and for each time

the mean value along the frequency dimension (see Fig 3G). As can be seen from Fig 3E, the

frequency responses of the components are centered on the range of frequencies most salient

in the echoes, i.e., a band around 35 kHz to which the sonar is most sensitive. However, indi-

vidual components differ somewhat in the frequency to which they are most sensitive. Some

components exhibit a similar center-surround characteristic along the frequency axis, as is

apparent along the time axis. They are most (least) sensitive to specific frequencies (with

some having multiple peaks in their frequency response) and have a region of inactivation

(activation) above or below this range, as illustrated by the time-average of two selected com-

ponents shown in Fig 3F. These two components are most sensitive to different frequencies

and have a suppressed frequency region as well. Note that these differences in frequency

response allow the set of independent components to encode the spectral properties of the

cochleograms.

Fig 3G shows that the components also differ in the delay or distance to which they are

most sensitive. This figure shows that the 25 components each have a slightly different best

time or distance response. There is a tendency for the components to be most sensitive to

shorter time delays. A histogram (Fig 3H) of the best distances (delays) of the 25 components

confirms this. Also, the components respond at a faster time-scale at shorter distances and

tend to become slower at longer distances, as can be seen in Fig 3A–3D. This can be under-

stood by noting that absorption in air is higher for higher frequencies. Hence, high-frequency

contributions to real echoes will be more pronounced at shorter distances and become less so

as the distance increases. These high-frequency contributions will stimulate the high-fre-

quency channels of the cochleogram, and because of the larger bandwidths of these channels,

this will result in a faster overall cochlear response. Indeed, from the Gammatone filterbank

responses shown in Fig 1 (red = high frequency channels, blue = low frequency channels), we

note that the low-frequency channels have a much slower response time than the high-fre-

quency channels, see [11]. This indicates that the independent components we derived from

Fig 3. The basic components and their properties. a-d Selected examples of independent components. e The frequency response of the 25

components (ordered according to most sensitive frequency). For each component, its time-average as a function of frequency is plotted. f The

frequency response of two selected components (i.e., two columns from panel e). g The temporal response of the 25 components (ordered according to

most sensitive delay or distance (=343 × delay/2), with speed of sound 343m/sec). For each component, its frequency-average as a function of distance

(time) is plotted. h Histogram of the best distances (times) of the 25 components.

https://doi.org/10.1371/journal.pcbi.1009052.g003
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the real echoes have correctly captured the physical constraints shaping the spectrotemporal

cues present in the cochleograms.

The derived components encode the spectrotemporal information in the cochleograms by

being most sensitive to different time delays and frequencies. The filters exhibit evident cen-

ter-surround characteristics along the time axis: they have a best delay surrounded by suppres-

sion regions. Similar, though somewhat less pronounced, features also emerge along the

frequency axis.

Modeling behavioral experiments

Fig 4 shows the results from modeling the four behavioral tasks. As can be ascertained from

Fig 4A, when mimicking echo delay discrimination experiments by feeding the compressed

encodings into a neural network, the just-noticeable difference (JND) in echo delay is about

12 μs.

The JND in echo delay of the model is smaller than the JND values observed in the litera-

ture. However, it should be noted that the range of values reported for JND in echo delay is

substantial and depends on the specific experimental conditions. Goerlitz et al. [30] quote a

range of 36 to 167 μs, across experiments. In their experiments, Goerlitz et al. [30] found values

of about 20 to 25 μs for the bat Glossophaga soricina. The neural network’s performance shows

that the compressive encoding retains sufficient temporal information to perform temporal

discriminations, at least as good as the bats’.

Fig 4B shows that the neural network was also able to discriminate between different notch

locations (or time delays between two impulses) when mimicking the experiments of Schmidt

[32]. In particular, the network’s performance was closest to the experimental condition in

which the bats scored best, i.e., when the trailing and leading echo amplitudes were the same.

However, in our simulations, these amplitudes differed by 6 dB. The bats’ performance for

this, more challenging, experimental condition is also plotted in Fig 4B. Note that the notch’s

reference location (=rewarded stimulus) falls in the center of the blue shaded region, which

shows the mean spectrum of all echoes from the database. To make this happen, we shifted the

corresponding rewarded delay from 7.77 μs in the bat experiment to 10 μs in the simulation.

Fig 4. All red curves depict neural network performances. Grey data shows behavioral data taken from previously published experiments. (a) The

results from modeling a delay discrimination task, e.g., as described by Denzinger and Schnitzler [31]. In gray, we depict the range of discrimination

thresholds found in the literature ([30] and references therein). (b) Results from mimicking the frequency notch (or internal delay) discrimination

experiments by Schmidt [32]. This panel shows the behavioral results of two experimental conditions tested. In one condition, the leading and the

trailing echo had equal amplitudes. The amplitudes differed by 6 dB in a second condition, making discrimination harder for the bats (see text). (c)

Firzlaff et al. [34] trained bats to discriminate two phantom objects (scale 1). Next, the bats were able to generalize and discriminate between scaled

versions of these objects. The neural network was able to make the same generalization but for scale = 1.5. A second network trained on a subset of

scaled phantom objects (red dots) could better interpolate to intermediate scales. (d) Results from training a network to discriminate between phantom

echoes coming from above and below the horizon. This results in an estimate of the vertical angle acuity that is better but comparable to the value

measured in the behavioral experiments conducted by Lawrence, Simmons and Wotton [5, 35].

https://doi.org/10.1371/journal.pcbi.1009052.g004
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This was done to ensure that the notch fell within the sonar system’s frequency range for the

entire interval of tested delays. The neural network’s discrimination curve shows that encoding

the cochleogram using only 25 components does not hamper the successful completion of this

discrimination task. Indeed, the performance of the neural network is similar but uniformly

better than that of the bats.

From the results shown in Fig 4C, we conclude that similar to the bats in the scale-invariant

object recognition experiments described in [34], the neural network learned to discriminate

the two (complex) target impulse responses at scale 1 reliably. This discrimination capability

seems to generalize to scaled versions of the same target impulse responses, except for

scale = 1.5. Only at the largest scale, the network’s performance is notably lower than that

observed in bats.

The variability in performance as a function of the scale indicates that the independent

components we derived are not scale-invariant representations. However, when cochleograms

(and derived representations) are not scale invariant, for bats to be nevertheless able to per-

form scale-invariant object recognition, the relevant information should still be contained in

these representations. To demonstrate that further processing could still extract scale-invariant

reflector information from our compressive encoding, we trained a second neural network to

discriminate between target impulse responses scaled with factors 0.65, 1, and 1.5. Note that

the only difference with the previous simulation is the presentation of a broader range of

examples during the neural network’s learning phase. As is clear from the results shown in Fig

4C, the network trained on these three scaled variants of the original target impulse responses

can generalize its discrimination capability to other intermediate scales. Hence, this suggests

that the encoded cochleograms do indeed retain sufficient information to derive a scale-invari-

ant representation. How bats might accomplish this is beyond the scope of this paper.

Finally, the encoded cochleograms also retained the spectral information required to per-

form elevation discrimination. As shown in Fig 4D, the neural network was able to discrimi-

nate (75% criterion) angles as little as 1–2 degrees above or below the horizon. This is

somewhat better but corresponds well with the 3-degree discrimination threshold observed by

Lawrence, Simmons and Wotton [5, 35].

Place recognition

The results shown in Fig 5 indicate that the encoded cochleograms also retained sufficient

information to allow a neural network to classify each echo as belonging to the location at

which it was collected. The network did experience some difficulties assigning a few encoded

cochleograms to their respective locations. Analysis of the confusion matrix reveals that the

network mostly confuses somewhat similar locations. For example, echoes collected in one

room of a private residence were assigned to another room. Also, echoes from one field site

were classified as another field site.

Discussion

From cochleograms of ensonification data collected in various bat habitats and indoor envi-

ronments, we derived an efficient encoding based on 25 independent components. These

independent components can be conceptualized as neurons with particular spectrotemporal

receptive fields whose output yields a compressed description of the cochleograms [14]. Apply-

ing this encoding to a cochleogram is not lossless, as was shown in Fig 2. Reconstructing a

cochleogram from its encoded representation results in a smoothed version of the original.

However, this loss of information does not impede performance on the tasks modeled in this

paper. Despite being highly compressive, the encoding retains essential information to support

PLOS COMPUTATIONAL BIOLOGY Efficient encoding of spectrotemporal information

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009052 June 28, 2021 12 / 21

https://doi.org/10.1371/journal.pcbi.1009052


Fig 5. Performance of the neural network memorizing the class membership (=location) of each encoded

cochleogram. The bottom panel visualizes the confusion between classes. The arrows show how often members of one

class were erroneously attributed to another class. The color and brightness of the error reflect the number of errors.

From this graph, it can be seen, for example, that members of Field 3 were most commonly mistakenly classified as

Garden 1.

https://doi.org/10.1371/journal.pcbi.1009052.g005
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several critical sonar-based tasks: precise ranging, spectral discrimination, target discrimina-

tion, and scene recognition.

A similar conclusion, i.e., echoic information can be highly compressed while still allowing

for good task performance, was reached by several other studies. One bat echolocation study

[17] describes a PCA-based compression of the spectral information contained in the emission

and the external ear transfer functions of Eptesicus fuscus. Following the same approach as

here, the compressed encoding of monaural echo information (a mapping onto 8 PCA compo-

nents) was used as input into an artificial neural network that estimated azimuth and elevation

of the echo direction. The authors conclude that the vertical acuity reached by the network was

close to that of bats and mostly limited by the coarsely sampled emission and hearing patterns

used to derive the PCA encoding. Also, as already mentioned in the introduction, several

robotic sonar studies similarly concluded that significant compression could be achieved with-

out compromising task performance [8, 9, 41, 42].

The main difference between this study and these previous studies is that the set of filters

used in the proposed compressive encoding is not custom-built for one particular task but is

derived from a database of ecologically valid echo signals. This approach reasons that a sonar

system, biological and artificial, can profit from learning the ensemble’s statistical structure of

echo signals it receives from its environment as this will allow it to represent this structure

with optimal efficiency. As shown by the results above, a sufficiently accurate representation of

this structure is the only requirement for successfully completing the same tasks that can be

performed using the information contained in the raw received signals. Our finding that a lim-

ited set of filters can efficiently and effectively encode echoic information has implications for

the efficiency of information processing and suggests a potential efficient neural implementa-

tion for sonar processing. Below, we discuss both implications of the current results.

Information processing implications

To estimate the data reduction rate accomplished by the encoding, we estimate the number of

bits required to encode a cochleogram and compare it with the number of bits required to

encode the 25 filters’ outputs. In this study, a cochleogram consists of 140000 floating-point

numbers (20 frequency channels × 7000 samples). However, the low pass filter in the model of

Wiegrebe [11] allows reducing the effective sample rate needed to represent the cochleograms.

Assuming that the 1 kHz low-pass filter in the cochlear model is an ideal low-pass filter,

completely removing all frequency components above 1 kHz, only 2 kSamples/sec would be

required to fully encode the information in each frequency channel of the cochleogram.

Hence, at 360 kSamples/sec, the cochleograms are oversampled by a factor of 180. Note that

the low-pass filter in the model is not ideal and does not remove all frequency content above 1

kHz. Therefore, in practice, sampling at a somewhat higher Nyquist rate is required.

Next, we need to determine how many bits are required to encode the samples of a cochleo-

gram. Shannon’s source coding theorem specifies that a cochleogram containing a large num-

ber N of independent and identically distributed samples with each sample S(tj, fk) having an

entropy H(S) = −∑i pi � log2(pi) can be compressed into N � H(S) bits with negligible risk of

information loss [43]. From the empirically derived distribution pi of the cochleogram values

(Fig D in S1 Text) we estimated H(S) = 4.40 bits. As this value depends on the quantization

used, we chose to encode the sample values as doubles. The information capacity IS of a

cochleogram would then be about 3422 bits,

IS ¼
140000 samples� 4:40 bits per sample

180 oversample factor
ð5Þ
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However, not all cochleogram samples are identically distributed, as can be seen from Fig C

in S1 Text showing the average cochleogram derived from the database. Indeed many samples

contain hardly any energy (and, thus, information). As a first and rough approximation to the

real value of IS we limited the samples to be encoded to those belonging to the region of the

average cochleogram where the values attained at least 20% of the maximal value (see also Fig

C in S1 Text). On average, this retained 114,212 samples per cochleogram, resulting in a more

accurate estimate of IS = 2792 bits

IS ¼
114; 212 samples� 4:40 bits per sample

180 oversample factor
ð6Þ

This estimate assumes temporal and spectral independence between samples of the

cochleogram. However, nearby samples of the cochleograms are highly correlated. Removing

these redundancies allows for more efficient encoding. Indeed, in this study, we showed that

the cochleograms could be encoded using only 25 independent and identically distributed

coefficients without compromising performance in a broad range of echolocation tasks. Using

the same quantization used for the cochleogram samples, we can again calculate the entropy of

each of those coefficients H(C) based on the empirically derived distribution of their values

(see Fig D in S1 Text). With H(C) = 13.29 bits this results in an information capacity IC of the

compressed encoding given by IC = 25 × 13.29 = 332 bits.

While several approximations were introduced to derive these values, they indicate that the

cochlear output’s informational load can be reduced by roughly 90% through compressive

encoding. Despite this large reduction in information content, the simulations reported above

show that this compressed representation is sufficient to solve a broad range of sonar-based

discrimination tasks. The possibility of reducing the informational load while retaining essen-

tial information should allow highly efficient processing, memorization, and retrieving of

sonar-based percepts in bats. Because processing more (complex) information is expensive,

both in terms of metabolism and the required neural substrate [2, 44], the ability to extract the

relevant information also results in decreased costs to the animal.

Physiological implications

Our modeling results show that complex and simple echoes can be effectively represented as

the sum of a few components (filters). This was demonstrated by showing that the compo-

nents retain sufficient information to address several echolocating tasks. This indicates that,

at least in principle, the bat could encode the echoic information present at the cochlear

nucleus level (modeled here by the cochleograms) using a set of similar components at some

higher up stage in the auditory pathway. And use the result to address the echolocation tasks

we model.

Evidence from other sensory domains shows that filters are a common way to encode sen-

sory input efficiently. Most famously, so-called simple cells in the primary visual cortex of

mammals have been described as applying filters to an image, the output of which determines

its response (spike rate) [45]. The receptive fields of these cells have been likened to Gabor fil-

ters [46] having optimal localization in both the spatial and the spatial-frequency domains

[47], and, therefore, provide an efficient edge encoding scheme [46].

Filters for efficient encoding of sensory information have not only been found in the visual

pathway but also the auditory pathway of several mammalian species. In particular, Andoni

et al. [48] reported on inferior colliculus cells in the bat Tadarida brasiliensis whose receptive

fields have some similarity to the filters we derived. The cells’ responses to communication

calls could be predicted from filters with similar spectrotemporal receptive fields, or non-linear
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combinations thereof [49]. In other mammals as well, neurons with similar spectrotemporal

receptive fields have been found (See [50] for references).

If a set of filters can be used for efficient processing of echoic information, could these filters

be implemented neurophysiologically? An extreme interpretation of the current results would

be that bats require only 25 neurons (or a similarly small number) with the right spectrotem-

poral responses to echolocate successfully. A more biologically plausible suggestion is that the

bat approximates this sparse coding of echoic information by having populations of neurons

that, as an ensemble, extract components from the echoic input. The pooled output of these

ensembles could be used by other centers to support decision-making or flight control. In this

view, motor control or decision-making could be based on reading out 25 (or a similarly small

number) of auditory pathway populations.

Assuming that the filters could be implemented as populations of cells allows for a lot of free-

dom in the response properties of the individual neurons in each ensemble. For example, [48]

performed a similar analysis on social calls of bats than we did on sonar data. These authors

derived a set of theoretical filters. They found that some individual cells responded as predicted

by the theoretical filters. However, in their follow-up paper [49], they found other cells to act as

if they implemented non-linear combinations of the theoretical filters. This indicates that at

least in the encoding of social calls, the auditory system exploits the input signals’ mathematical

properties, decomposing them into independent components, which is an effective encoding

strategy. However, their results also indicate that this decomposition is less straightforward than

the theoretical filters derived through Independent Component Analysis or similar techniques.

The receptive fields of the neurons observed by Andoni et al. [48] and others do not encode

delay or distance information as these aspects are irrelevant for interpreting communication

sounds. Instead, they capture those spectrotemporal features relevant to represent the ensem-

ble of communication calls. In contrast, the filters we derive here encode the time-of-arrival

(distance) of the echoes and their spectral content. As such, we consider the proposed filters to

be analogous to those observed in Tadarida brasiliensis (and other species) but optimized for

encoding sonar information by representing the primary cues for a sonar system: delay and

spectral information. While such filters have not been directly observed, their required prede-

cessors exist in echolocating bats’ auditory pathway.

Frequency selective cells are prevalent throughout the auditory pathway of bats, which is

largely tonotopically organized [51]. Poon et al. [52] reported the inferior colliculus of the FM-

bat Eptesicus fuscus to be tonotopically organized. See also [53, 54] for frequency tuned IC cells

in Eptesicus fuscus. Frequency selective cells are present up to the cortex, where tonotopically

organized areas have been found in several species (See Kossl et al. [55] for references). Target-

distance selective cells have been found in the inferior colliculus of Pteronotus parnellii, a

CF-FM bat [56] as well as in the inferior colliculus of an FM bat Eptesicus fuscus [54]. The audi-

tory cortex of several CF-FM bats contains echo distance maps [55]. Such organized maps

have been also found in some species of FM bats, Carollia perspicillata and Phyllostomus dis-
color [57, 58] but not in others [59–61], see Kossl et al. [62] for a review. Interestingly, target-

distance selective neurons in both CF-FM and FM bats show broader delay-tuning when

being selective to longer target-distances [63]. This feature is also present in the basic compo-

nents reported in the present paper, which show increasing response time (i.e., respond to a

broader range of target-distances) with increasing distance (see Fig 4E–4H).

Cells with selective delay and frequency responses are sufficient predecessors for establish-

ing populations of cells with spectrotemporal receptive fields mimicking those of the filters

we propose here. Moreover, as both frequency selectivity (already present on the level of the

cochlea) and delay selectivity co-exist from the IC upwards, the filters could be established at

various processing stages. This would also be in line with neural processing concepts along the
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ascending auditory pathway [64]. According to these concepts, auditory feature extraction

occurs on lower stages of the auditory pathway up to the inferior colliculus. In the auditory

cortex, these features are then organized into auditory objects or sensory maps. However, it

should be mentioned here that top-down feedback could influence feature extraction and spec-

tro-temporal filter properties. Typically, frontal cortical areas are thought to be involved in

top-down control of sensory processing [65–68] and decision making [69].

Conclusion

We have shown that complex echoes from real environments can be efficiently and effectively

represented using a small set of filters. The redundancy in echoic information opens up the

opportunity for efficient encoding, reducing the computational load of echo processing and

the memory load for storing the information. Therefore, we predict the auditory system of

bats to capitalize on this opportunity for efficient coding by implementing filters with spectro-

temporal properties akin to those hypothesized here.

Supporting information

S1 Text. Fig A. Results from the procedure used to determine a realistic level of internal noise

also used in references [7, 11, 27]. As described in the main text, for each level of noise σ we

determined P½
P

C6 þN s >
P

C0 þN s�, using a Monte Carlo approach. This graph gives

the probability P[�] as a function of noise level σ. The value of σ at which P[�] = 0.75 was taken

as the noise level throughout this paper. Fig B. Ensonification device. The custom-built device

consisted of two Knowles microphones embedded in a 3D printed housing and a Sensecomp

7000 emitter. The device was mounted on a tripod. Fig C. Average cochleogram, derived from

the ensonification data. b Binarized average cochleogram showing where samples are at least

20% of the maximum value. Fig D. (Left) Distribution of the values of the cochleograms col-

lected in this paper. (Right) Distribution of the 25 filter output values for all ensonification

data echoes used in the this paper. As the value of the entropy H(S) depends on the quantiza-

tion used, we encoded all samples as doubles for this calculation.
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distance computations in the auditory cortex of echolocating bats. Nature communications. 2013; 4

(1):1–11. PMID: 24107903

64. Nelken I. Processing of complex stimuli and natural scenes in the auditory cortex. Current

opinion in neurobiology. 2004; 14(4):474–480. https://doi.org/10.1016/j.conb.2004.06.005 PMID:

15321068

65. Duncan J. An adaptive coding model of neural function in prefrontal cortex. Nature reviews neurosci-

ence. 2001; 2(11):820–829. https://doi.org/10.1038/35097575 PMID: 11715058

66. Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Annual review of neuroscience.

2001; 24(1):167–202. https://doi.org/10.1146/annurev.neuro.24.1.167 PMID: 11283309

67. Everling S, Tinsley CJ, Gaffan D, Duncan J. Selective representation of task-relevant objects and loca-

tions in the monkey prefrontal cortex. European Journal of Neuroscience. 2006; 23(8):2197–2214.

https://doi.org/10.1111/j.1460-9568.2006.04736.x PMID: 16630066

PLOS COMPUTATIONAL BIOLOGY Efficient encoding of spectrotemporal information

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009052 June 28, 2021 20 / 21

https://doi.org/10.1523/JNEUROSCI.4342-06.2007
http://www.ncbi.nlm.nih.gov/pubmed/17475796
https://doi.org/10.1523/JNEUROSCI.1306-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/22090479
https://doi.org/10.1371/journal.pcbi.1002594
https://doi.org/10.1371/journal.pcbi.1002594
http://www.ncbi.nlm.nih.gov/pubmed/22807665
https://doi.org/10.1007/BF00228875
https://doi.org/10.1007/BF00228875
http://www.ncbi.nlm.nih.gov/pubmed/2311706
https://doi.org/10.1007/s003590050159
https://doi.org/10.1152/jn.00160.2018
http://www.ncbi.nlm.nih.gov/pubmed/29924708
https://doi.org/10.1111/ejn.12801
http://www.ncbi.nlm.nih.gov/pubmed/25728173
https://doi.org/10.1016/j.neubiorev.2010.12.015
https://doi.org/10.1016/j.neubiorev.2010.12.015
http://www.ncbi.nlm.nih.gov/pubmed/21238485
https://doi.org/10.1152/jn.00595.2009
https://doi.org/10.1152/jn.00595.2009
http://www.ncbi.nlm.nih.gov/pubmed/19906883
https://doi.org/10.1152/jn.00860.2016
http://www.ncbi.nlm.nih.gov/pubmed/28275060
https://doi.org/10.1152/jn.1993.70.5.1988
http://www.ncbi.nlm.nih.gov/pubmed/8294966
http://dx.doi.org.proxy.libraries.uc.edu/10.1038/364620a0
http://dx.doi.org.proxy.libraries.uc.edu/10.1038/364620a0
http://www.ncbi.nlm.nih.gov/pubmed/8350920
https://doi.org/10.1016/0006-8993(88)90176-X
http://www.ncbi.nlm.nih.gov/pubmed/3401773
https://doi.org/10.1016/j.conb.2013.08.016
https://doi.org/10.1016/j.conb.2013.08.016
http://www.ncbi.nlm.nih.gov/pubmed/24492081
http://www.ncbi.nlm.nih.gov/pubmed/24107903
https://doi.org/10.1016/j.conb.2004.06.005
http://www.ncbi.nlm.nih.gov/pubmed/15321068
https://doi.org/10.1038/35097575
http://www.ncbi.nlm.nih.gov/pubmed/11715058
https://doi.org/10.1146/annurev.neuro.24.1.167
http://www.ncbi.nlm.nih.gov/pubmed/11283309
https://doi.org/10.1111/j.1460-9568.2006.04736.x
http://www.ncbi.nlm.nih.gov/pubmed/16630066
https://doi.org/10.1371/journal.pcbi.1009052


68. Fritz JB, David SV, Radtke-Schuller S, Yin P, Shamma SA. Adaptive, behaviorally gated, persistent

encoding of task-relevant auditory information in ferret frontal cortex. Nature neuroscience. 2010; 13

(8):1011. https://doi.org/10.1038/nn.2598 PMID: 20622871

69. Gold JI, Shadlen MN. The neural basis of decision making. Annual review of neuroscience. 2007; 30.

https://doi.org/10.1146/annurev.neuro.29.051605.113038 PMID: 17600525

PLOS COMPUTATIONAL BIOLOGY Efficient encoding of spectrotemporal information

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009052 June 28, 2021 21 / 21

https://doi.org/10.1038/nn.2598
http://www.ncbi.nlm.nih.gov/pubmed/20622871
https://doi.org/10.1146/annurev.neuro.29.051605.113038
http://www.ncbi.nlm.nih.gov/pubmed/17600525
https://doi.org/10.1371/journal.pcbi.1009052

