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Abstract

The success of deep learning in recent years has arguably been driven by the availability of

large datasets for training powerful predictive algorithms. In medical applications however,

the sensitive nature of the data limits the collection and exchange of large-scale datasets.

Privacy-preserving and collaborative learning systems can enable the successful applica-

tion of machine learning in medicine. However, collaborative protocols such as federated

learning require the frequent transfer of parameter updates over a network. To enable the

deployment of such protocols to a wide range of systems with varying computational perfor-

mance, efficient deep learning architectures for resource-constrained environments are

required. Here we present MoNet, a small, highly optimized neural-network-based segmen-

tation algorithm leveraging efficient multi-scale image features. MoNet is a shallow, U-Net-

like architecture based on repeated, dilated convolutions with decreasing dilation rates. We

apply and test our architecture on the challenging clinical tasks of pancreatic segmentation

in computed tomography (CT) images as well as brain tumor segmentation in magnetic res-

onance imaging (MRI) data. We assess our model’s segmentation performance and dem-

onstrate that it provides performance on par with compared architectures while providing

superior out-of-sample generalization performance, outperforming larger architectures on

an independent validation set, while utilizing significantly fewer parameters. We furthermore

confirm the suitability of our architecture for federated learning applications by demonstrat-

ing a substantial reduction in serialized model storage requirement as a surrogate for net-

work data transfer. Finally, we evaluate MoNet’s inference latency on the central processing

unit (CPU) to determine its utility in environments without access to graphics processing

units. Our implementation is publicly available as free and open-source software.
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Introduction

Access to large collections of data remains one of the key challenges in successfully applying

machine learning to many problems in medicine. Common machine learning datasets, such as

ImageNet [1] with >1 million images, are much larger than their counterparts used in medical

studies. Even large recent studies [2, 3] use datasets significantly smaller than ImageNet and

orders of magnitude smaller than the datasets used to train state-of-the-art language models

[4]. Furthermore, current medical studies often source data from only few institutions, thus

preventing the training of representative and unbiased models, suitable for application in a

broad variety of patient collectives [5]. Algorithms trained on single-institutional data have

recently been shown to cause generalization challenges to out-of-sample data [6]. One of

the main hindrances to large-scale, multi-institutional medical data collection, which could

address this challenge, is the strict regulation of patient data, preventing its exchange and man-

dating the development of decentralized learning systems [7].

Federated machine learning [8] allows for collaborative training of algorithms on data from

different hospitals (data silos) or edge devices (such as wearable health sensors or mobile

phones) without the need for central aggregation of said data. In federated learning, a model is

trained in a distributed fashion. Individual models are trained locally on data which never

leaves a participating site (node), and only parameter updates are sent via the network to be

aggregated by the coordinating node (hub-and-spoke topology). Federated learning enhanced

by privacy-preserving techniques [9] such as differential privacy [10] holds the promise of

secure, large-scale machine learning on confidential, medical data.

The utilization of federated learning techniques on the largest possible number of institu-

tions and patients from a diverse geographic, demographic and socio-economic background

will require the development of systems suitable for execution on a broad range of hardware

including mobile devices and systems without graphics processing units, which may be too

expensive for deployment e.g. in the developing world. A further key component of this

democratization is the improvement of system efficiency, as federated learning requires

the frequent transfer of parameter updates over a network. Previous work [11] has mainly

focused on improving communication efficiency in federated learning by compression of

parameter updates or sophisticated update aggregation methods [12, 13]. Other works have

focused on increasing the computational efficiency of model architectures: The MobileNet

family of models [14] utilizes depth-wise separable convolutions and a reduced parameter

count to achieve this goal and target deployment on edge computing/mobile devices. The

EfficientNet model architectures [15] recently proposed attempts to achieve optimal trade-

offs between input resolution, network depth and width for classification performance.

However, the targeted design of small and efficient neural network architectures for the spe-

cific task of semantic segmentation has so far remained under-explored. To the contrary,

deep learning-based segmentation has focused on expanding model size with large ensem-

bles of neural networks [16], rendering them impractical for deployment in the federated

setting.

Here, we introduceMoNet, a very small, shallow, U-Net-derived semantic segmentation

architecture based on efficient multi-scale feature extraction using repeated decreasingly

dilated convolution (RDDC) layers with two global down-sampling operations and a

total of 403,556 parameters. We showcase our architecture’s performance on the challenging

task of pancreatic segmentation as well as brain tumor segmentation and demonstrate

substantial efficiency gains and segmentation performance competitive with much larger

models.
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Methods

Training, validation and independent testing datasets

All neural network architectures presented in this work were trained two different datasets

from the Medical Segmentation Decathlon (MSD) [17]: pancreas and brain tumor segmenta-

tion. A random, consistent 70%/30% training-validation split was employed for both datasets.

For processing, images were bilinearly down-sampled to 256 × 256, and the segmentation

labels were merged yielding a binary segmentation task. To assess out-of-sample generalization

performance on the pancreas dataset, independent validation of the architectures was per-

formed on an unseen, clinical PDAC dataset consisting of 85 abdominal CT scans in the por-

tal-venous phase collected at our institution. For the brain tumor dataset, no in-house clinical

dataset was available. All clinical data were collected according to Good Clinical Practice and

in consent with the Declaration of Helsinki. The use of imaging data was approved by the

institutional ethics committee (Ethikkommission der Fakultät für Medizin der Technischen

Universität München, protocol number 180/17S, May 9th 2017) and the requirement for

informed written consent was waived. The pancreas including the tumor was manually seg-

mented by a third-year radiology resident, then checked and corrected as necessary by a sub-

specialized abdominal radiologist. An exemplary ground truth label mask superimposed on a

CT slice from the training set is shown in Fig 1.

Network architecture

The architecture ofMoNet is depicted in Fig 2. In brief, 4-dimensional input tensors of shape

B × 256 × 256 × 1, with B denoting the batch size, are progressively down-sampled across the

encoder branch of the network using convolutions with a stride length of 2, resulting in an X ×
Y resolution of 64 × 64 in the bottleneck segment of the network. The resulting feature maps

are then progressively up-sampled by transposed convolution (de-convolution) in the decoder

Fig 1. Axial slice of a ground truth pancreas segmentation in an abdominal CT scan (MSD), cropped to show

detail of surrounding tissues.

https://doi.org/10.1371/journal.pone.0255397.g001
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branch resulting in output masks of identical dimensions as the input. Each (de-)convolution

block consists of a 3x3 convolutional layer followed by batch normalization and an exponential
linear unit (ELU) activation. At every stage in the U-Net-like architecture, the convolution

blocks are followed by a repeated decreasingly dilated convolution (RDDC) block (Fig 3), con-

sisting of four successive convolutional blocks as described above, but employing dilated con-

volutions [18] with a decreasing dilation rate (4, 3, 2, 1, respectively). This feature extraction

strategy has been shown to perform well for small objects [19]. Each convolutional block

within a RDDC block is followed by a spatial dropout layer [20]. Finally, residual-type longitu-

dinal (short) connections are employed within each RDDC block and transverse (long) skip

connections are employed between the encoder and the decoder branch to assist signal and

gradient flow as originally described in [21, 22].

Model training

All architectures were trained to convergence using the Nesterov-Adam optimizer [23] with an

initial learning rate of 5 × 10−4 and learning rate decay by a factor 10 upon validation loss

Fig 2. Schematic representation of the MoNet architecture.

https://doi.org/10.1371/journal.pone.0255397.g002

Fig 3. Schematic representation diagram of a RDDC block (top) and the constituent convolutional (bottom).

https://doi.org/10.1371/journal.pone.0255397.g003
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stagnation for� 2 epochs. Weights were initialized using uniform He-initialization [22] and

the Dice loss [24] was used to train all networks. Data augmentation was used in the form of

random rotations up to 10 degrees, random zoom (±0.25) and random pixel shifts of a maxi-

mum magnitude of 0.2 of the image height/width. All architectures were trained to segment

the entire pancreas including the tumor. This approach is owing to the fact that the exact delin-

eation of the tumor border is often times infeasible and supported by literature findings noting

the importance of the peritumoral tissue in PDAC [25–27] and in other tumor entities [28].

To maintain comparability, we also merged the labels in the brain tumor dataset to obtain a

binary segmentation task.

Performance assessment

We comparedMoNet’s performance to the following three U-Net baselines:

• original U-Net [21], 64 base filters (U-Net-64)

• original U-Net [21], 16 base filters (U-Net-16)

• Attention-gated U-Net [29], 2D, 64 base filters (Attention U-Net)

Results

Segmentation performance comparison

MoNet performed similarly or on par with other U-Net variants on the validation dataset (pan-

creas & brain tumor) while outperforming the other U-Net variants in out-of-sample generali-

zation on the independent validation dataset (pancreas only). Results are summarized in

Table 1 and visualized in Fig 4.

Training speed & inference time comparison

To compare the performance ofMoNet in a typical inference setting on CPU, as well as when

performing GPU training. We recorded the time required for doing inference with 150

256 × 256 images on CPU (2.4GHz 8-Core Intel Core i9) and the time per batch when training

on GPU (batch size = 32). All experiments were performed with identical batch size and other-

wise consistent environment for all architectures with N = 5 repetitions.MoNet significantly

outperformed both U-Net-64 and Attention U-Net with regards to inference and training time.

Results are shown in Table 2.

Table 1. Comparison of MoNet with other U-Net variants in two different imaging modalities on the task of pancreas and brain lesion segmentation, CT and MRI

respectively. We report performance on validation sets of the MSD datasets (brain tumor and pancreas) as well as out-of sample generalization performance on an inde-

pendent validation set (IVD), collected and annotated in-house.

Task Architecture Dice Score, MSD Hausdorff Distance, MSD Dice Score, IVD

Pancreas U-Net-64 0.76±0.11 1.86±0.66 0.50±0.2

Pancreas U-Net-16 0.73±0.10 1.96±0.66 0.59±0.2

Pancreas Attention U-Net 0.73±0.10 1.98±0.66 0.37±0.6

Pancreas MoNet (ours) 0.78±0.090 1.78±0.61 0.70±0.1

Brain Tumor U-Net-64 0.78±0.12 2.01±0.38 —

Brain Tumor U-Net-16 0.77±0.12 2.03±0.38 —

Brain Tumor Attention U-Net 0.74±0.15 2.09±0.38 —

Brain Tumor MoNet(ours) 0.77±0.13 2.04±0.39 —

https://doi.org/10.1371/journal.pone.0255397.t001

PLOS ONE Efficient, high-performance semantic segmentation using multi-scale feature extraction

PLOS ONE | https://doi.org/10.1371/journal.pone.0255397 August 19, 2021 5 / 11

https://doi.org/10.1371/journal.pone.0255397.t001
https://doi.org/10.1371/journal.pone.0255397


Serialized model size as an indicator for network traffic in federated

learning

We performed a comparison of the size taken up by the weights ofMoNet and the other U-Net
like architectures. Federated learning requires the frequent transfer of parameter updates over

a network, hence the serialized model size of a given architecture can serve as an estimate of

the amount of network traffic generated when deployed in a federated learning application.

MoNet with its small number of parameters is significantly smaller in size than U-Net-16 and

an order of magnitude smaller than U-Net-64 and Attention U-Net. Results are shown in

Table 3.

Visualization of intermediate activations

To corroborate our hypothesis thatMoNet achieves superior semantic segmentation perfor-

mance due to an improved utilization of its convolutional filters, leading to more information-

rich feature maps, we examined differences between the features extracted by U-Net-64 and

MoNet at early, intermediate and late convolutional layers.MoNet extracts feature maps with

overall higher resolution. Moreover, we found the filter activations at all examined layers of

U-Net-64 to collapse to a region near zero. We thus assume that many of these filters remain

essentially unutilised. On the contrary,MoNet produced non-zero activations at all examined

layers. These results are presented in Fig 5.

Fig 4. Exemplary segmentation results (yellow) of: U-Net-16 (A), Attention U-Net (B),U-Net-64 (C),MoNet (D), on

the pancreas MSD validation set, Ground truth indicated by red outline. Box-plots of Hausdorff distances (E) and Dice

scores (F) computed for the whole pancreas MSD validation set on a per-patient basis.

https://doi.org/10.1371/journal.pone.0255397.g004

Table 2. CPU inference time (sec) for a CT scan of 150 slices and timer per batch (sec) on GPU, both at a resolu-

tion of 256 × 256.

Architecture Inference times(s) (CPU) Time per batch(s) (GPU)

U-Net-64 45.34±1.77 0.747±0.30

U-Net-16 7.03±0.21 0.152±0.11

Attention U-Net 53.30±0.53 0.905±0.12

MoNet (ours) 14.88±0.32 0.462±0.16

https://doi.org/10.1371/journal.pone.0255397.t002
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Discussion

We present an efficient, high-performance U-Net-like segmentation algorithm and show a

substantial reduction in parameter count and expected network traffic in federated learning

applications (indicated by serialized model size). Compared to U-Net-64 and Attention U-Net,
our method achieves a substantial inference latency reduction on CPU hardware, enabling

remote diagnosis applications in centers without GPUs. Furthermore we show reduced train-

ing time on GPU, which could benefit federated training as well as swift fine-tuning when

model personalisation is required. Both are made possible by our method while exceeding or

matching the segmentation performance of all other evaluated algorithms. We thus believe our

architecture to be a promising candidate for utilization in large-scale collaborative medical

imaging workflows and particularly in resource constrained environments.

We chose the tasks of pancreatic segmentation and brain tumor segmentation due to the

poor prognosis and increasing incidence of PDAC [30, 31] and the typically dismal prognosis

of brain tumors [32], both of which mandate the development of enhanced diagnosis and

treatment strategies. Our recent findings suggest that quantitative image analysis can identify

molecular subtypes related to different response to chemotherapeutic drugs [33] or predict

patient survival [34] in PDAC. In all quantitative imaging workflows, automated region-of-

interest definition increases the reliability and validity of such findings, and offers substantial

time savings compared to manual expert-based segmentation. However, the success of auto-

mated segmentation algorithms is constrained by the findings’ poor differentiability from

adjacent structures of similar attenuation/signal, variability in position of the segmentation

target and alterations due to pathology such as edema or other inflammatory changes. Existent

work in deep learning-assisted semantic segmentation of medical images and the pancreas in

particular has focused on expanding previously available architectures such as the U-Net [21]

Table 3. Comparison of storage space occupied by MoNet and other U-Net variants.

Architecture Parameter count Size in memory

U-Net-64 31, 054, 145 118.6 MB

U-Net-16 1, 946, 705 7.6 MB

MoNet (ours) 403, 556 1.8 MB

https://doi.org/10.1371/journal.pone.0255397.t003

Fig 5. Input image (A) and target (B) alongside visualizations of the first 16 channels of intermediate activations for

the given input image produced by early (1), middle (2) and late (3) convolutional layers in U-net (C) andMoNet (D).

Histograms computed for all channels in the feature maps for early (1), middle (2), and late (3) convolution layers for

U-net (E) andMoNet (F).

https://doi.org/10.1371/journal.pone.0255397.g005
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into the three-dimensional context [24] or on improving segmentation results by incorporat-

ing attention mechanisms into the architecture [29]. Other approaches have used complex

ensembles of 2D and 3D models to extract the maximum amount of information in the CT

images [16]. All these modifications however result in a further increase in the (already sub-

stantial) computational requirements of these architectures, rendering such U-Net derivatives

impractical for the utilization in the above-mentioned decentralized learning applications. In

other application domains, i.e. image classification, MobileNet and EfficientNet have demon-

strated strong performance combined with high computational efficiency. MobileNet achieves

this through the utilisation of depth-wise separable convolutions and EfficientNet through

optimal trade-offs between model depth and width. In contrast, our method exploits proper-

ties of the feature space specific to semantic segmentation through the utilization of higher res-

olution feature maps in the bottleneck section of the network, and thus enables competitive

segmentation performance with the state-of-the-art while offering substantial efficiency gains.

Recent work on semantic segmentation provides evidence in favor of architectures performing

image feature extraction at multiple scales by utilizing dilated convolutions instead of relying

merely on the scale-decreasing backbones employed in traditional fully convolutional architec-

tures [19, 35–37]. Our work corroborates this notion, since multi-scale feature extraction com-

bined with larger receptive fields at the same hierarchical level seem to capture both more

robust and higher quality features compared to the fixed kernel size design encountered in tra-

ditional U-Net-like architectures. Moreover, architectures with several down-sampling opera-

tions and/or many filters such as the U-Net (with 4 down-sampling stages) cannot leverage the

large number of parameters sufficiently well to warrant their utilization at least in medical

imaging tasks, typically characterized by small segmentation targets (such as the pancreas or

small tumors). This is substantiated by our results from U-Net-64’s activation histograms,

which were concentrated at a near-zero region.

Our results indicate thatMoNet extracts more robust features that generalize better to out-

of-sample data than the compared methods, as shown byMoNet’s performance on the inde-

pendent validation set and the activation histograms. The poor performance of the 64 filter

U-Net and Attention U-Net in the out-of-sample generalization challenge could potentially be

caused by the overparameterization of these architectures, making them prone to over-fitting

the data-generating distribution of the training data, while the two smaller models(U-Net-16
andMoNet) tested seemed to generalize better to the out-of-sample data, supporting this

hypothesis.

Our work is not without limitations. The generalizability of our findings should be con-

firmed using larger, multi-institutional training and validation sets. Furthermore, we only

compared our algorithm against models based on the use of a single 2D U-Net-style network.

Algorithms such as nnU-Net [16] based on U-Net ensembles offer superior performance, how-

ever at the expense of extremely high computational and post-processing requirements and

thus much slower inference times (especially on CPU). Furthermore implementing and estab-

lishing a real-world federated learning application was out of scope for this study and will be

addressed in future work.

Conclusion

In conclusion, we propose an optimized semantic segmentation algorithm with small size and

low inference latency, particularly suited for decentralized applications such as federated learn-

ing. Our work can benefit both, radiological research and clinical translation of artificial intel-

ligence workflows in medical imaging by providing consistent, high-quality segmentation for

machine learning tasks.
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