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Simple Summary: High-Z gold nanoparticles show potential as radiosensitizers in the radiother-
apy of cancer. In this paper, we introduce the benefits and procedures for the application of gold
nanoparticles in targeted cancer radiotherapy. Based on microscopic images of the distribution of
antibody-conjugated nanoparticles, we established pharmacokinetic models simulating the biodis-
tribution of nanoparticle conjugates in the tumor and tumor environment in preclinical models.
This information has been implemented in radiation transport Monte Carlo simulation codes for
further investigating physical and chemical enhancement and radiobiological effects, such as DNA
strand breaks and cell survival. Future perspectives and challenges of translating this promising gold
nanoparticle-aided radiotherapy into clinical practice are also discussed.

Abstract: High-Z gold nanoparticles (AuNPs) conjugated to a targeting antibody can help to im-
prove tumor control in radiotherapy while simultaneously minimizing radiotoxicity to adjacent
healthy tissue. This paper summarizes the main findings of a joint research program which applied
AuNP-conjugates in preclinical modeling of radiotherapy at the Klinikum rechts der Isar, Technical
University of Munich and Helmholtz Zentrum München. A pharmacokinetic model of superparam-
agnetic iron oxide nanoparticles was developed in preparation for a model simulating the uptake
and distribution of AuNPs in mice. Multi-scale Monte Carlo simulations were performed on a single
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AuNP and multiple AuNPs in tumor cells at cellular and molecular levels to determine enhancements
in the radiation dose and generation of chemical radicals in close proximity to AuNPs. A biologically
based mathematical model was developed to predict the biological response of AuNPs in radiation
enhancement. Although simulations of a single AuNP demonstrated a clear dose enhancement,
simulations relating to the generation of chemical radicals and the induction of DNA strand breaks
induced by multiple AuNPs showed only a minor dose enhancement. The differences in the simu-
lated enhancements at molecular and cellular levels indicate that further investigations are necessary
to better understand the impact of the physical, chemical, and biological parameters in preclinical
experimental settings prior to a translation of these AuNPs models into targeted cancer radiotherapy.

Keywords: cancers; gold nanoparticles; X-rays; cmHsp70.1; conjugation; targeted radiotherapy;
enhancement effect; pharmacokinetic model; Monte Carlo simulation; radiobiological modeling

1. Introduction

The exceptionally rapid development of the innovative techniques in radiology and
radiotherapy which have followed Wilhelm Conrad Röntgen’s discovery of X-rays at the
end of 19th century has enabled a considerably deeper understanding of human diseases
and improved the treatment and management of patients with cancer [1]. Radiotherapy
remains one of the most common and effective treatment modalities for cancer. It has
been used for both conventional treatments which target and kill malignant cells, and
for improving diagnosis using contrast agents that are based on materials having a high
atomic number (high-Z) [2–5]. As the dose delivered by ionizing irradiation interacting
with high-Z material can be amplified via an enhancement of the photoelectric effect, the
release of so-called Auger electrons and X-ray fluorescence induced electrons can increase
the lethal effect of irradiation at lower doses. Gold, with an atomic number of 79, is the
most studied material in this respect, as its high-Z value makes AuNPs prime candidates as
contrast agents for computed tomography (CT) [6–9]. Regulla et al. [10,11] tested the effect
of a gold foil and the experimental as well as simulation data showed a dose enhancement
factor of up to 150 in the first tissue layer close to the gold foil. In 2004, Hainfeld et al. [12]
applied AuNPs as an agent for a selective amplification of the radiation dose in tumors and
were the first to demonstrate an enhanced radiosensitization effect in tumors of mice that
had been irradiated with kilovoltage (kV) X-rays. In 2005, Cho [13] proposed a theoretical
Monte Carlo (MC) simulation which focuses on the radiation dose deposited by secondary
and Auger electrons around AuNPs after the interaction of gold with X-rays. Since then,
AuNPs have become very popular for studying radiation sensitization not only due to
the strongly enhanced physical dose and beneficial biological effects, but also due to the
presumed biocompatibility and the production of chemical radicals induced by secondary
electrons [14]. This concept is termed as “gold nanoparticle-assisted radiation therapy” or
“gold nanoparticle-aided radiotherapy” [15–17].

Theoretical simulations using different MC codes have since been carried out by many
researchers, with the results demonstrating a physical dose enhancement around AuNPs
after irradiation with various radiation types, such as kV and MV X-rays, protons and heavy
ions, and radionuclides [13,18–27]. After the irradiation of a single AuNP in liquid water
with a very narrow beam, MC simulation studies have shown a dose enhancement factor
(DEF; also denoted as dose enhancement ratio, DER), of up to 64 at a distance of 1 nm [28]
and up to 500 at a distance of 10 nm [29] from the surface of the AuNP. For multiple AuNPs
in liquid water or in the microenvironment of a cell, the DEF ranged between 20 and 75
within a 1 µm water shell in the proximity of the surface of the AuNPs [25,28,29]. This
elevated radiation dose has the capacity to damage cell membranes, induce DNA damage
and consequently result in tumor cell death [30]. Apart from the initial physical tracks,
solvated electrons and other chemical species are produced that can diffuse to distant
locations and attack biological sensitive moieties such as DNA [31–34]. To understand and
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effectively exploit the effects of a targeted uptake of AuNPs into tumor cells in order to
improve radiosensitization in clinical applications, a roadmap which documents the state
of art and future research directions has been outlined [35]. More recently, an updated
roadmap and summary on the high-Z metal nanoparticles in clinical radiation therapy has
been published [28,36].

Multiple experimental studies of AuNPs in different cell lines (in vitro) and mice (in vivo)
using different radiation beams have reported an enhanced biological efficacy [17,37–47]. In
general, irradiation induced effects, such as DNA damage and apoptosis, are enhanced
by the application of AuNPs, and the overall survival of tumor-bearing mice has been
shown to be improved. In addition to kV X-rays, other radiation types, such as megavoltage
X-rays, protons, and heavy ions, have also been applied in combination with AuNPs [48–50].
However, a number of factors, such as the shape, size, precise location of AuNPs, and their
biodistribution in different cell types, are known to affect the dose enhancement effect, and
as a consequence the DEF has to be determined for each individual experimental setup
individually [35,38,48,51]. Furthermore, potential toxic side effects of different types of
nanoparticles have to be considered before they can be applied in clinical practice [52].
However, the translation of AuNPs as radiosensitizers into clinical cancer radiotherapy is
limited by the lack of tumor-specific targets which enable the selective uptake of AuNPs into
tumor cells.

In this regard, the Multhoff laboratory at the Klinikum rechts der Isar, Technical Uni-
versity of Munich (TUM) has previously reported that the major stress-inducible heat shock
protein 70 (Hsp70) is selectively expressed on the membrane of a large range of different
tumor cells, but not on cells in the surrounding healthy tissues [53,54]. Furthermore, stan-
dard treatment procedures, such as radiotherapy and chemotherapy, selectively further
increase the expression density of membrane Hsp70 on tumor cells, but not on normal
cells [55]. Moreover, an elevated Hsp70 membrane density has also been detected on
relapsed tumors, metastases, and highly aggressive tumors such as triple negative breast
cancer cells [56]. The unique monoclonal antibody (mAb) cmHsp70.1 is able to detect
membrane-bound Hsp70 on viable tumor cells and recent work has indicated that follow-
ing binding, cmHsp70.1 antibody conjugated AuNPs are rapidly taken up into membrane
Hsp70-positive tumor cells by endocytosis [57]. Furthermore, stressed glioma cells exhibit-
ing an increased expression of membrane Hsp70 preferentially take up superparamagnetic
iron oxide nanoparticles (SPIONs) that are coupled to the cmHsp70.1 antibody [58]. Mem-
brane expressed Hsp70 therefore provides an ideal tumor-specific antigen for targeting
cmHsp70.1 mAb coupled AuNPs into triple negative breast cancer cells.

Targeted and non-targeted AuNPs have been used as an X-ray contrast agent for
molecular computed tomography (CT) imaging of cancer [59–61], for X-ray fluorescence
computed tomography (XFCT) [61–65] of tumors in mice, as well as for cone-beam XFCT
simulations and experimental studies [66–68]. A high-sensitivity benchtop X-ray fluores-
cence imaging platform for detecting AuNPs inside tumors has been developed and the
feasibility of L-shell XRF-based quantitative imaging of AuNPs at concentrations as low as
0.007 mg/cm3 (7 ppm) in biological tissues and liquid water demonstrated [64]. Recently,
cmHsp70.1 mAb conjugated AuNPs have been used in a spectral CT system to image
accumulated AuNPs in mouse tumors [69].

Herein, we summarize the outcome of studies carried out at the Klinikum rechts der
Isar, TUM and Helmholtz Zentrum München in cooperation with other institutes and
universities and discuss work in progress. These studies are based on the conjugation of
AuNPs with the cmHsp70.1 mAb with the aim of targeting cancer cells to improve tumor
imaging [57]. Second, we present a pharmacokinetic model for SPION nanoparticles in
mice. Parallel to the experimental investigations, we present MC simulation results of the
electron spectra, energy deposition, dose enhancement of single AuNPs in liquid water
after being irradiated with X-rays, as well as simulated doses and biological effects of
AuNPs distributed in cells. Finally, we present a multi-scale methodology to estimate the
enhanced biological effects of AuNPs in a xenograft mouse phantom.
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2. Materials and Methods

In this section, the experimental methods and technologies used for conjugation and
imaging are outlined. We present multi-scale MC simulation methods for dose enhance-
ment and mathematical modeling for pharmacokinetics of nanoparticles in the body of
mice and cell survival fraction.

2.1. Collection of Biological Datasets

The preparation of cmHsp70.1 mAb-functionalized AuNPs and their biological prop-
erties in vitro and in vivo has been previously published [57,69], but is briefly summarized
in the following sections.

2.1.1. Conjugation of AuNPs with cmHsp70.1 mAb

To direct the nanoparticles towards the tumor in vivo, AuNPs were functionalized by
utilizing the cmHsp70.1 mAb (multimmune GmbH, Munich, Germany) which selectively
binds to membrane Hsp70 on tumor cells [57]. Briefly, spherical gold nanoparticles were
coated with polyethylenglycol (PEG)-amine (Nanopartz, Loveland, CO, USA), activated
using maleimide (Pierce, Thermo Fisher Scientific, Rockford, IL, USA), and incubated
with sulfhydryl-activated antibodies. A PEG8 spacer separated the nanoparticles from
the active binding side of the cmHsp70.1 mAb. The size distribution and quality of the
mAb-coupled AuNPs were analyzed by dynamic light scattering (DLS, Zetasizer NanoS,
Malvern Instruments, Malvern, UK).

2.1.2. Analysis of AuNP Uptake

Murine GL261 glioblastoma, 4T1 mammary carcinoma and CT26 colon carcinoma cells
were cultured in RPMI-1640 medium supplemented with 10% (v/v) fetal calf serum (FCS),
2 mM L-glutamine, 1 mM sodium pyruvate, and antibiotics (100 ug/mL streptomycin
and 100 IU/mL penicillin) at 37 ◦C (5% (v/v) CO2, 95% humidity). Cells were placed on
pre-coated poly-L-lysine glass slides and incubated with cmHsp70.1 mAb-functionalized
AuNPs, isotype control IgG1-functionalized AuNPs or non-coated AuNPs (at Au con-
centration 25 µg/mL) for 1, 3, 6, 12, and 24 h at 37 ◦C. Following incubation, cells were
washed with PBS and fixed in 0.5% (w/v) paraformaldehyde (PFA). Nuclei were addi-
tionally stained with Hoechst 33342 (Thermo Fisher Scientific, USA) or DAPI. Cells were
mounted in the fluorescent mounting medium (Dako North America Inc., Carpinteria,
CA, USA) and analyzed using a Leica TCS SP8 confocal microscope (Leica Microsystems,
Heidelberg, Germany) and transmission electron microscopy (TEM).

2.2. Pharmacokinetic Models
2.2.1. Model for SPIONs

SPIONs have multiple applications in cancer therapy and diagnostics [70–74]. We
developed a compartmental pharmacokinetic (PK) model to investigate the biodistribution
of SPIONs after two different injection modes, intratumoral and intravenous [75]. For this,
we initially implanted GL261 glioblastoma cells into the right flank of female C57BL/6
mice. When tumors had reached a volume of 50 mm3, 99mTc-ferucarbotran SPIONs were
injected intravenously and 89Zr-Perimag®-COOH SPIONs were injected intratumorally or
intravenously in different experiments. For each set of experiments, data were collected
for several organs in order to determine the number of SPIONs that reached an organ
at a certain time point. The data from these experiments were used to develop the PK
model, which is a mathematical model based on first-order ordinary differential equations
describing the number of SPIONs in organs over a period of time. The model parameters
were computed using parameter fitting of the experimental data. The model was used to
simulate computation data and validate the model’s accuracy by comparing simulated
and experimental data. Because the hydrodynamic diameter, shape, surface charge, and
Z-potential of the SPIONs and AuNPs were comparable, the images gained in TEM and
spectral-CT can be used to set up the PK model also for AuNPs.
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2.2.2. Proposed Compartmental Model for Biodistribution of Targeted AuNPs in Cells

The data used for the structure of the compartmental model of the intracellular
distribution of the nanoparticles have been generated by quantitative analysis of light
microscopic images, as described previously [57].

According to the mechanism of the cmHsp70.1 mAb-AuNP-conjugate interaction with
tumor cells (Figure 1a), we propose a cellular compartmental model to describe measured
concentrations of AuNPs in the tumor cell membrane and the cytoplasm, as shown in
Figure 1b. The transfer rates (k) can be estimated by fitting the model to the in vitro data.

Figure 1. Developing a compartmental model (b) for analysing the mechanism of uptake of AuNPs
in a cancer cell after integrating the experimental data (a).

2.3. Gold Nanoparticle Based Spectral Computed Tomographic Imaging

The tumor cell-binding cmHsp70.1 mAb-AuNPs, control IgG1-AuNPs, and uncon-
jugated (blanc) AuNPs were injected into mice bearing CT26 subcutaneous (sc) tumors.
Mice were scanned using spectral computed tomography [69]. Briefly, AuNP mediated
images were acquired by a laboratory-based Philips spectral-CT scanner. The technical
establishment of the spectral-CT analysis is described in detail by Schlomka et al. [76].
In short, the axial scans over 360◦ at a beam voltage of 100 kVp were acquired from a
preclinical spectral photon-counting CT system (Philips Healthcare, Hamburg, Germany).
A threshold was set at the k-edge energy of gold to optimally discriminate the signals
of AuNPs. Osirix® MD v10.0.5 software (Pixmeo SARL, Bern, Switzerland) was utilized
for image processing. A normal background signal was measured from various regions
of interest (ROIs) in the spleen. Consequently, the AuNP amounts (µg gold/mm3) were
assessed over the total volumes of the tumors.

2.4. Monte Carlo Simulation of Enhanced Radiosensitization Effect
2.4.1. Spectra of X-rays Used in Simulations

In this work, we applied the SpekCalc program [77] to simulate an X-ray tube with
a tungsten target. In Figure 2, the generated X-ray spectra of 50 kVp, 60 kVp, 80 kVp,
100 kVp, 150 kVp, and 200 kVp were presented. These spectra were implemented into the
MC codes as radiation sources. The parameters utilized for generating the X-ray spectra
are presented in Table 1. The default values of 0.68 and 0.33 were used for the model
parameters ‘Nf’ and ‘P’ in the GUI interface [78].
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Table 1. Main parameters utilized to generate the X-ray spectra.

Parameter Unit Values

Peak voltage kVp 50, 60, 80, 100, 150 and 200

Energy bin keV 0.5

Angle theta degree 20

Air thickness mm 470

Beryllium thickness mm 0.8

Aluminum thickness mm 3.9

Nf 0.68

P 0.33

Figure 2. X-ray spectra generated at (a) 50 kVp, (b) 60 kVp, (c) 80 kVp, (d) 100 kVp, (e) 150 kVp and
(f) 200 kVp using the SpekCalc program [73]. The energy bin width in the energy x-axes in all spectra
is 500 eV.

2.4.2. Dose Enhancement by a Single AuNP

The geometry setup used in the simulation is depicted in Figure 3. One single spherical
geometry filled with gold was used as an AuNP and this was located in the center of a
liquid water volume. The AuNP was supposed as being pure gold, without coating and
not conjugated with other molecules or antibodies. This simple assumption of a pure
AuNP facilitates the comparison of simulated results, as it avoids such effects of the energy
absorption in the coating molecules and the antibodies. Two particle sizes having diameters
of 50 nm and 100 nm were simulated.

A plane-parallel X-ray beam irradiates a spherical AuNP. The central axis of the beam
was aligned to the center of the AuNP. The energy peaks of the X-ray beams were 50 kV
and 100 kV. The beams were sampled from a circular plane (Figure 3a) and a square plane
(Figure 3b) source positioned 100 µm from the AuNP center. The source diameter of the
circular plane and the source perimeter of the square plane were set equal to the diameter
of the AuNP plus 10 nm. These definitions of the sources should increase the interaction
probability of the X-rays with the AuNP. In the same geometrical conditions without an
AuNP, simulations of the interaction of liquid water and X-rays were performed separately.

Energetic electrons escaping from the gold particle were scored as electron spectra
around a single AuNP. To estimate the energy deposition and dose in the nanometer and
micrometer ranges around a single AuNP, we defined 100 and 50 concentric spherical
10 nm-thick and 1 µm-thick shells respectively in liquid water around the surface of the
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single AuNP. Based on these energy depositions in the water shell for both irradiation
methods with and without AuNP, it was possible to calculate the dose enhancement ratio.

In this work, three MC codes, namely PENELOPE-2018 [79], Geant4-DNA [80], and
NASIC [81], were used to calculate the aforementioned quantities. PENELOPE is a con-
densed history simulation code, and Geant4-DNA and NASIC track are structure sim-
ulation codes. The cuff-off energy was set as 50 eV, 10 eV, and 10 eV for electrons and
50 eV, 10 eV, and 10 eV for photons in the simulation codes, PENELOPE, Geant4-DNA,
and NASIC, respectively. The cross section used in PENELOPE and Geant4-DNA is from
the Penelope library and NAISC uses its own electron cross sections in liquid water, and
photons from the Geant4-DNA library. For a more detailed physical list and options used
in the simulation, reference can be made to the comparison exercise work performed by
multiple MC codes within a EURADOS framework [29].

Figure 3. Geometric setup in MC simulation for a single AuNP irradiated with X-ray beams. The
single AuNP with a diameter of 50 nm and 100 nm is placed in a liquid water phantom. X-ray beams
are sampled from (a) a circular planar source and (b) a square planar source. The diameter and the
perimeter of the planer source are equal to the AuNP diameter plus 10 nm. The sampled beams
irradiate the AuNP along the z-axis in a right-handed Cartesian reference system. The distance
between the center of the circular and square planar X-ray sources and the center of the single AuNP
is defined as 100 µm. Energy deposited in the concentric spherical shells of thickness d (10 nm and
1 mm) around the AuNP is scored.

2.4.3. Method for Dose and DNA Strand Breaks for Multiple AuNPs in Cells

Two concentric spheres were used to model a simple cell structure. One sphere
describes the volume of the complete cell of a diameter of 30 µm, the other one for the
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nucleus in the cell center with a diameter of 10 µm. Simulations with multiple AuNPs
were carried out as shown in Figure 4: AuNPs were distributed (a) in the cell surface,
(b) around the surface of nucleus and (c) randomly in cytoplasm [25]. Five sizes of AuNPs
in diameters of 100 nm, 74 nm, 50 nm, 14 nm, and 2 nm were used in the simulation. The
X-ray spectra applied were 60 kVp, 80 kVp, 100 kVp, 150 kVp, and 200 kVp, covering the
energy range of the diagnostic and therapeutic clinical used X-rays [82]. These parallel
X-ray beams were sampled from a circular planar source (diameter of 40 µm) along the
z-axis, which was aligned to the center of the cell. The X-ray beam source is situated at a
distance of 50 µm from the cell center.

Figure 4. AuNPs distributed in cells: (a) AuNPs in the cell surface. (b) AuNPs around nuclei
membrane. (c) AuNPs in cytoplasm.

PARTRAC code [83] was used to simulate the enhancement effects, which can be
divided into two parts: one for the physical quantities obtained directly from the track
structure, such as primary energy, interaction position, and deposition energy etc.; the
other for the biological quantities, which are derived from the superposition of the track
structure and the invoked detailed nucleus model. In simulations, the cutoff energy was
set as 50 eV for photons and 100 eV and 10 eV for electrons in gold and liquid water,
respectively. The radial distribution of average energy deposition within the whole cell
volume was restored. The spherical cell model was divided into 15,000 shells. Each shell
was 1 nm thick. Hence, 1 × 108 primary photons were transported for the simulation of the
physical part. In the biological simulation part, the radiation-induced DNA strand breaks,
including single strand break (SSB) and double strand break (DSB), were simulated for
the three distributions of multiple AuNPs irradiated by the X-ray beams. The number of
primary photons in the biological part was 2 × 109. To quantify the enhancement effect,
an additional set of simulations using the identical condition, but without AuNPs was
performed. The enhancement factor (EF) was therefore calculated as the ratio of a specific
quantity obtained with presence and absence of AuNPs [25].

2.4.4. Multi-Scale Method for Dose, Chemical Radical Generation and DNA Strand Breaks
for Multiple AuNPs in a Xenograft Tumor

A new multi-scale methodology for the calculation of DNA damage induced by
ionized radiation using TOPAS-nBio was developed [84]. TOPAS-nBio is an extension to the
Monte Carlo toolkit TOPAS [85] with a focus on radiobiology. We employed the chemistry
interface of TOPAS-nBio, which builds upon the Geant4-DNA radiolysis models [86,87]. We
aimed to combine existing optimized simulation parameters with a detailed DNA geometry,
while introducing our multi-scale method for a more accurate DNA damage calculation in
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a realistic experimental setup [31,88]. The model included three steps and each step was
connected via phase spaces, which are files storing all particles passing through a chosen
surface with all information which is necessary for continuing the simulation (Figure 5).
The information stored was particle type, energy, location, and momentum. The following
parameters were used in the simulation: cut-off energy: 15 eV, step max: default as 106, the
de-excitation process: fluorescence and Auger process turn on, time step and maximum
time for chemical stage: 0.5 ps and 999,999 ps. Furthermore, chemical radicals encountering
AuNPs are instantly eliminated, meaning that they are unable to produce further DNA
damage. There is a considerable discrepancy between the simulations and reality, where
interactions between chemical radicals and gold atoms persist and can cause reactions [89].

The simulations were started with a voxel model of a 21 g mouse placed in a box filled
with air [90]. To simulate a mammary gland tumor, we defined a small ellipsoid shape close
to one of the hind legs as the tumor and replaced all normal tissue in this area by tumor
tissue. All simulations were performed twice, with one of two types of kVp photon beams
(100 kVp or 200 kVp), which were focused directly to the tumor. The photon spectra were
based on the photon source of the Small Animal Radiation Research Platform (SARRP) [91].
Particles entering the tumor were stored in a phase space file. Since a geometry including a
whole mouse model is too large for simulation of a realistic radiation dose, we repeated
the particles 750 times in the phase space. To increase variance, these duplicated particles
were placed on a randomly selected position on the tumor surface, with the momentum
rotated accordingly.

The source for the tumor simulations was the phase space from the first step. An
ellipsoidal liquid water phantom was defined as the tumor and three spheres representing
cells with a diameter of 100 µm were defined at different depths with respect to the
initial source. Particles entering these spheres were stored in three respective phase space
files. Particles in these files were again duplicated 100 times and each duplicate was
rotated randomly.

Figure 5. Multi-scale Monte Carlo simulation for enhancement effects with AuNPs distributed in a xenograft tumor model
irradiated by X-rays [89]. (a) Small Animal Radiation Research Platform (SARRP) with mouse, (b) Simulation setup of the
SARRP with mouse voxel phantom and (c) Computational models of tumor, cell and DNA implemented in TOPAS-nBio.

Cell simulations were performed separately for each of the three depths, each with and
without nanoparticles. We used hybrid nanoparticles, made up of a Fe2O3 core (diameter:
2 nm) surrounded by a gold coating (thickness: 1 nm). The nanoparticles were placed
on random positions with up to 100 nm distance to the cell nucleus, which included a
previously published detailed DNA model [88,92]. Different Geant4 physics models were
used in these simulations. Inside the nanoparticles, Livermore physics were used, whereas



Cancers 2021, 13, 5370 10 of 30

detailed Geant4-DNA physics including chemistry module were used in the rest of the
cell, which was approximated by water. When at least 17.5 eV of deposited energy caused
by physical interactions was scored in a single DNA backbone, it was counted as a direct
strand break [93]. If a hydroxyl radical reached or was produced in the DNA backbone,
it produced an indirect strand break with a probability of 40% [94,95]. Two strand breaks
occurring in a proximity of 10 or fewer base pairs on alternate DNA strands were counted
as a double strand break. All other strand breaks were counted as single strand breaks. We
also scored the number of produced chemical radicals [89].

2.5. Mathematical Modeling of Enhanced Radiobiological Effect

Ionizing radiations excite and ionize water molecules during their path through tissues.
Water is the most abundant component of living beings, so it is of paramount importance
when studying the radiobiological problem. The primary radiation produces secondary
electrons that can interact with DNA directly, inducing single, double, or clustered strand
breaks. The electrons are the dominant source for ionizing and exciting molecules in the
medium and for the induction of direct DNA damages, independent of the primary particle,
from photons to light ions [96]. Low electrons deposit their energy in very small regions
and thereby increase the likelihood of more complex DNA damage. This is the reason
why Auger electrons are biologically effective and must be involved in in vivo studies with
AuNPs. This effect is termed direct physical interaction causing DNA damage.

Once the water molecule has been ionized or excited, it can decay through dissociative
channels, producing reactive chemical species, with the OH* radical being biologically most
important [97]. This radical can attack DNA by hydrogen abstraction, thereby inducing
damage. In addition, secondary electrons can be thermalized and can cause DNA strand
breaks via dissociative attachment. This effect is termed indirect chemical interaction
causing DNA damage. The enhancement effect around AuNPs leads to both direct and
indirect DNA damage [47,98–103].

In addition to DNA being the primary sensitive target in a cell, mitochondria are
regarded as secondary targets for the AuNP-mediated enhancement effect [104,105] since
changes in the mitochondria membrane polarization and oxidation can trigger tumor cell
apoptosis. The low energy electron deposited and induced chemical radicals that can result
in a loss of cell or nuclear membrane integrity further lead to cell death [30].

There are several proposals to model the biological response based on the direct and
indirect damage of DNA and other targets, such as the local effect model (LEM) [106]. This
was used to predict the cellular effect induced by AuNP-enhanced effects [107–109]. In this
study, a mathematical model to estimate the cell survival by using the initial DNA damage
data gained by MC simulation has been proposed.

In the 1970s, according to the theory of dual radiation action, both Kellerer and
Rossi [110] and Chadwick and Leenhouts [111] proposed the linear-quadratic (LQ) model
for the calculation of the cell survival curve. Chadwick and Leenhouts named the LQ
model the DSB model, as it linked the cell death with the DSB yield directly. The DSB
model is described as

S = exp
[
−p
(

αD + βD2
)]

(1)

where the αD represents the number of DSBs proportional to the absorbed dose. These
DSBs are caused by the energy deposition events happening at two close positions when
an ionizing particle passes through a DNA strand; βD2 represents the number of DSBs pro-
portional to the square of the absorbed dose. These DSBs are formed by two independent
ionizing particles passing through the same DNA strand resulting in energy deposition
events at two close locations. Therefore, αD + βD2 represents the number of DSBs generated
in a cell for an irradiation with dose D, and p means the average probability for a DSB to
induce cell death. Thus, Formula (1) can be converted to

S = exp
[
−p
(

αD + βD2
)]

= exp[−p·DSB] (2)
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where the absorbed dose D is replaced by the number of DSBs generated in a cell receiving
a dose D.

Moreover, the ionizing radiation would cause DSBs with different complexities in
each cell, which might represent different probabilities of cell death. Therefore, based on
Formula (2), the input variable DSB is classified according to its complexity. Assuming
there are i kinds of DSBs with different levels of complexity, the formula of the cell survival
curve can be described as

S = q·exp

[
−∑

i
piDSBi

]
(3)

where the DSBi represents the number of DSBs with ith complexity generated in a cell
for a dose D; pi refers to the average probability of cell death caused by a DSB with ith
complexity; q represents the ability of a cell tolerating DSB damages, i.e., the cell’s ability
to repair DSB, which should decrease with the increase of the number of DSBs. Thus, q is
further defined as:

q = q0 + k1·DSB + k2·DSB2 (4)

In this study, all the DSBs are classified into two kinds based on their complexities:
the simple DSB0 means only one strand break point in each complementary strand within
a 10 bp DNA fragment, and the other complex DSBs are defined as DSB*. Therefore, the
final class I and II models for the assessment of cell death in NASIC (nanodosimetry Monte
Carlo simulation code) [81] are expressed as:

S =
(

q0 + k1·DSB + k2·DSB2
)
· exp[−p·DSB] (5)

S =
(

q0 + k1·DSB + k2·DSB2
)
· exp[−p0·DSB0 − p∗·DSB∗] (6)

The values of q and pi can be fitted with the cell survival results measured from radio-
biological experiments, as well as the numbers of DSB or DSBi with different complexity
levels derived from the NASIC simulation of the corresponding experimental irradiation.
The fitted results are shown in Table 2.

Table 2. The fitted results of cell survival model parameters in NASIC.

DSB Class
Q p

R2
q0 k1 (10−3) k2 (10−5) Notation Value (10−3)

I 1.090 5.917 −1.879 p 9.944 0.9893

II 1.037 7.275 −2.296
p0 3.088

0.9987p∗ 30.68

The DSB damage enhancement factor EFDSB is defined as:

EFDSB =
DSBG

DSBNG
(7)

where the DSBG and DSBNG represent the average DSB numbers caused by each source
particle with and without AuNP respectively. The cell survival fraction enhancement factor
EFSF is

EFSF =
SNG
SG

(8)

where the SNG and SG represent the cell survival fractions under the same irradiation
without and with AuNP, respectively. Based on assumptions of S = q· exp[−p·DSB] and
S = q· exp[−p0·DSB0 − p∗·DSB∗], Formula (8) can be further converted to

EFSF = exp[p·DSBNG·(EFDSB − 1)]
or

(9)
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EFSF = exp[(p0a0 + p∗a∗)·DSBNG·(EFDSB − 1)] (10)

In Formulas (9) and (10), the definitions of p, p0 and p∗ are the same as Formulas (5) and
(6); a0 and a∗ are the fractions of DSB0 and DSB* in all the DSBs respectively, which sum up
as 1. NASIC can simulate the numbers of DSBG, DSBNG and a0 in the cell nucleus receiving
different irradiations with different photon energies, AuNP sizes and distributions. Based
on the values of p, p0, and p∗ from Table 2, the cell survival fraction enhancement factor
EFSF can be calculated by Formulas (9) and (10).

3. Results

The biological data provided by the laboratory at the Klinikum rechts der Isar [57,69]
were used for the computational modelling presented. The results of (1) cmHsp70.1 mAb-
AuNP conjugation in vitro and in vivo are initially summarized, followed by our results
of (2) the pharmacokinetic model for SPIONs in mice and cellular compartmental model
for AuNP conjugation; (3) the dose enhancement around a single AuNP and for multiple
AuNPs distributed within a cell; (4) the enhanced cell survival fraction for multiple AuNPs
in cells.

3.1. Visualization of AuNP Conjugates
3.1.1. Bright-Field and TEM Imaging

Three different types of AuNP-conjugates, cmHsp70.1 mAb-AuNPs, and IgG1-AuNPs,
and unconjugated AuNPs were incubated with tumor cell lines 4T1 and CT26 for 24 h at
37 ◦C to simulate the AuNP-uptake [57]. In both tumor cell lines, the uptake of cmHsp70.1
mAb-AuNPs was superior to that of unconjugated or IgG1-control NPs (Figure 6A, [69]).
Figure 6B shows the accumulation of cmHsp70.1 mAb-AuNPs in intracellular vesicles of
4T1 cells after 24 h incubation at a higher magnification [69].

3.1.2. Spectral CT Imaging

AuNPs were injected into mice bearing subcutaneous CT26 tumors and analyzed by
spectral CT imaging, postmortem [69]. The mouse injected with cmHsp70.1 mAb-AuNPs
showed the highest concentration of AuNPs (4.4 µg/mm3) with a high content at the tumor
core (Figure 7E,F). In the mouse injected with control IgG1-AuNPs a lower content of Au
(3.3 µg/mm3) was detected inside the tumor (Figure 7C,D). In the mouse injected with
unconjugated AuNPs, a concentration of 4.3 µg Au/mm3 was detected. However, the
distribution was largely dispersed over the whole tumor with a main focus at the tumor
core (Figure 7A,B) [69]. The spectral-CT images show the distribution of different AuNPs
in tumors which were used for MC simulation [89].
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Figure 6. AuNP uptake in cancer cells, in vitro [69]: (A) Uptake of AuNPs, IgG1-AuNPs and
cmHsp70.1 mAb-AuNPs in cytoplasm and around the nucleus in 4T1 and CT26 tumor cells [69].
TEM images: (B) of cmHsp70.1 mAb-AuNPs in 4T1 tumor cells, scale bar, 1 µm. Copyright of Cancers
(Basel) 2020, 12, 1313; doi:10-3390/cancers12051331 [69].

Figure 7. Spectral-CT imaging [69]: upper row for axial view and bottom row for sagittal view.
(A,B) unconjugated AuNP in CT26 tumor; (C,D) IgG1-AuNP in CT26 tumor and (E,F) cmHsp70.1 mAb-
AuNP in CT26 tumor. Copyright of Cancers (Basel) 2020, 12, 1313; doi:10-3390/cancers12051331 [69].



Cancers 2021, 13, 5370 14 of 30

3.2. Pharmacokinetic Model Developed for SPIONs

The pharmacokinetic model based on the PET and SPECT images of SPION nanopar-
ticles coupled with 89Zr and 99mTc is illustrated in Figure 8. The transfer rate of the
compartmental model is presented in Table 3. The SPIONs are circulating via the blood to
the main organs and tissues and return to the blood. This is denoted as a recycling kinetic
system. Transfer from stomach to colon through intestinal tract is a non-recycling system.
As we do not have any experimental data on urinary excretion from the mice, no urine
excretion pathway of SPIONs is included in the model [75].

Figure 8. A compartmental model for the pharmacokinetics of biodistribution of SPIONs in mouse.

Table 3. Systemic transfer rates (k) from and to blood and the transfer rates in the alimentary tract in
mouse [75].

Systemic Circulation Transfer Rate to Blood (h−1) Clearance Rate from Blood (h−1)

Tumor 327.4 40.06

Liver 0.1159 5.067 × 10−4

Spleen 9.78 × 10−4 1.409 × 10−5

Kidneys 3.804 15.66

Colon 0.7151 689.6

Stomach 7.411 896.0

Lungs 1.903 148.5

Small intestine 68.93 59.41

Muscle 194.2 62.39

Bone 62.6 38.58

Skin 9.38 27.58

Brain 5.439 795.6

Heart 2.416 490.5
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Table 3. Cont.

Systemic Circulation Transfer Rate to Blood (h−1) Clearance Rate from Blood (h−1)

Alimentary tract

Donor Receptor Transfer rate (h−1)

Liver Small intestine 4.947 × 10−4

Stomach Small intestine 64.71

Small intestine Colon 3.447

Colon Excretion 4.244 × 10−3

The pharmacokinetic model can achieve a time dependent distribution of SPIONs in
different organs (Figure 9). This model can be transferred to a model for AuNPs in mice,
thereby enabling an irradiation which is adapted to the accumulation of AuNPs in each
organ in order to attain the optimal dose enhancement inside the tumor and to reduce the
dose in normal organs.

In the nanometer ranges, after irradiation with 50 kVp X-rays (Figure 11a,c), the energy
deposition (ED) in the water shells around the 100 nm AuNP surface is greater than that
of 50 nm AuNPs. With an AuNP present, the ED ranges from 0.4 eV/photon in the first
10 nm-thick water shell to 0.1 eV/photon in the 16th 10 nm-thick water shell for the 100 nm
AuNP in comparison to 0.2 to 0.06 eV/photon for the 50 nm AuNP. Without AuNP, the ED
in the water shell is very flat. For 100 nm AuNP, the ED starts from 7 × 10−4 eV/photon
and increases slowly to 2 × 10−3 eV/photon, and for 50 nm AuNP, the ED starts from
5 × 10−4 eV/photon and increases to 2 × 10−3 eV/photon. For the cases of irradiation by
100 kVp X-rays (Figure 11b,d), the ED in the water shell around the 100 nm AuNP surface
is also greater than the 50 nm AuNP both in nanometer and in micrometer ranges and
with and without AuNP. In the presence of a AuNP, the ED ranges from 0.2 eV/photon
in the first 10 nm-thick water shell to 0.05 eV/photon in the 20th 10 nm-thick water shell
for the 100 nm AuNP in comparison to 0.1 to 0.04 eV/photon for 50 nm AuNP. Without
AuNP, the ED in the water shell is also very flat, for 100 nm AuNP, the ED starts from
4 × 10−4 eV/photon and increases slowly to 2 × 10−3 eV/photon, and for 50 nm GNP, the
ED starts from 3 × 10−4 eV/photon and increases to 2 × 10−3 eV/photon.

Figure 9. Cont.
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Figure 9. Comparison of model predictions and measured biodistribution data in mice for tumor, blood, liver, spleen,
kidneys, muscle, bone and intestine. The red dots and error bars represent the mean values of the measured biodistribution
data at a single time point and the standard deviations, respectively. The black curves predict the biokinetic retentions
of SPIONs in mice by the pharmacokinetic model and model parameters k. shown in Table 3. The y-axes present the
percentages of the retained dose per gram after injected amount of SPIONs directly in tumor. “Intestine” denotes the
contents of the small intestine in mice. Because of a very low retention fraction, say, <0.1% at each time point, the respective
plots for other organs and tissues, such as lungs, skin, heart, colon, etc. are not shown here [75].
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Figure 10. Electron spectra around the AuNP: (a) A single AuNP of 50 nm diameter irradiated by 50 kVp X-rays; (b) A
single AuNP of 50 nm diameter irradiated by 100 kVp X-rays; (c) A single AuNP of 100 nm diameter irradiated by 50 kVp
X-rays; (d) A single AuNP of 100 nm diameter irradiated by 100 kVp X-rays.

In the micrometer range, after irradiation with 50 kVp X-rays (Figure 12a,c), for 100 nm
AuNP, the ED starts from 14 eV/photon at the first 1 µm-thick water shell and decreases to
1 eV/photon at 30th 1 µm-thick water shell. It is slightly greater than that for the 50 nm
AuNP from 7 to 1 eV/photon at the same water shells. In the absence of AuNP, the ED
starts from 0.1 eV/photon at the first and increases to about 1 eV/photon at the 30th
water shell for both water nanoparticles. This is understandable, because the ED scored
in the 1 µm-thick water shells is less influenced by the 50 nm and 100 nm spheres. For
the case irradiated by 100 kVp X-rays (Figure 12b,d), for 100 nm AuNP, the ED starts
from 6 eV/photon at the first 1 µm-thick water shell and decreases to 0.7 eV/photon
at 40th 1 µm-thick water shell. This is slightly greater than the ED for 50 nm AuNP
from 3 to 0.7 eV/photon at the 30th 1 µm-thick water shell. In the absence of AuNP, the
ED starts from 0.1 eV/photon at the first 1 µm-thick water shell and increases to about
0.7 eV/photon at 30th water shell for both water nanoparticles. As mentioned before, this
is understandable, because the ED scored in the 1 µm-thick water shells is less influenced
by the 50 nm and 100 nm spheres.
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Figure 11. Energy deposition in the 10 nm-thick water shells from surface of the AuNP in the nanometer range: (a) A single
AuNP of 50 nm diameter irradiated by 50 kVp X-rays; (b) A single AuNP of 50 nm diameter irradiated by 100 kVp X-rays;
(c) A single AuNP of 100 nm diameter irradiated by 50 kVp X-rays; (d) A single AuNP of 100 nm diameter irradiated by
100 kVp X-rays. The lower curves are for the energy deposition without AuNP.

Taking into account both AuNPs and X-rays (Figures 11 and 12), the ED of 100 nm
AuNP irradiated by 50 kVp X-rays reaches the highest value, and 50 nm irradiated by
100 kVp X-rays the smallest values. The ED of 50 nm AuNP irradiated by 50 kVp X-rays and
100 nm AuNP irradiated by 100 kVp X-rays are close each other. For WNP, the ED values
are very similar for both AuNP sizes and X-rays, however, the ED of AuNPs irradiated by
50 kVp X-rays are slightly greater than that irradiated by 100 kVp X-rays.

As shown in Figure 13, in the case of a 50 nm AuNP irradiated by 50 kVp X-rays and
100 kVp X-rays, the DER is about 220 and 180 within the first 10 nm-thick water shell,
respectively. In the case of a 100 nm AuNP irradiated by 50 kVp and 100 kVp X-rays, the
mean DER within the first 10 nm thick water shell is about 600 and 400, respectively.

As shown in Figure 14, in general, in the first 20 µm ranges, the DERs for the AuNP
with a diameter of 100 nm are greater than that of the AuNP with a diameter of 50 nm. In
distances over 20 µm, the DERs decrease to approximately 1. This indicates that, in the case
of AuNPs with diameters of 50 nm and 100 nm after an irradiation with 50 kVp X-rays, the
dose enhancement becomes less significant.

There is a difference of ED for a single AuNP irradiated by X-rays sampled from
circular and square planar sources (Figures 11 and 12 upper curves). The ED for a circular
planar source is slightly greater than that for a square planar source. However, there is
no difference of the ED for WNP (Figures 11 and 12 lower curves). Therefore, the DER
simulated for a circular planar source is slightly larger than that for a square planar source
(Figure 13).
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Figure 12. Energy deposition in micrometer range from surface of AuNP: (a) A single AuNP of 50 nm diameter irradiated
by 50 kVp X-rays; (b) A single AuNP of 50 nm diameter irradiated by 100 kVp X-rays; (c) A single AuNP of 100 nm diameter
irradiated by 50 kVp X-rays; (d) A single AuNP of 100 nm diameter irradiated by 100 kVp X-rays. The lower curves are for
the energy deposition without AuNP.

Figure 13. Dose enhancement ratio in the concentric spherical 10 nm-thick water shells from the surface of a single AuNP
irradiated by X-rays: (a) A 50 nm diameter AuNP irradiated by 50 kVp X-rays; (b) A 50 nm diameter AuNP irradiated by 100 kVp
X-rays; (c) A 100 nm diameter AuNP irradiated by 50 kVp X-rays; (d) A 100 nm diameter AuNP irradiated by 100 kVp X-rays.
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Figure 14. Dose enhancement ratio as a function of the diameter, in the concentric spherical 1 µm-thick water shell distant
from the AuNP surface. (a) A single AuNP with a diameter of 50 nm irradiated with 50 kVp X-rays; (b) A single AuNP with
a diameter of 50 nm irradiated with 100 kVp X-rays; (c) A single AuNP with a diameter of 100 nm irradiated with 50 kVp
X-rays; (d) A single AuNP with a diameter of 100 nm irradiated with 100 kVp X-rays.

3.2.1. Enhancement Effect of Multiple AuNPs in Cellular Models

In Figure 15, we present the radial distributions of the average energy deposition
and the corresponding enhancement effects for the multiple 100 nm diameter AuNPs
distributed in cells and irradiated by 60 kVp X-rays. For the (b) distribution shown in
Figure 4, a significant peak of energy depositions can be seen within the few hundred
nanometers extension from the nucleus surface shell which was distributed by AuNPs.
The curve for the AuNPs randomly distributed in cytoplasm is relatively flat and only
slightly above the curve in the case of without AuNPs (Figure 15a). Enhancement effects
showed the highest value of 10 for AuNPs distributed around the nucleus surface, with a
fluctuant part close to the center (Figure 15b). For AuNPs that are randomly distributed in
the cytoplasm, the enhancement factor ranges from 1 to 2, with an average value about
1.1 [25].

We defined DNA strand breaks induced by direct physical tracks and indirect chemical
radicals as a biological enhancement effect endpoint (Figure 16). The enhanced radiosensi-
tization effect is caused by AuNPs which were distributed in the cellular environment and
were irradiated by X-rays. There are several other factors which were not taken into account
in the simulation that can influence the enhancement effect. However, the presented results
imply that the irradiation condition of AuNPs distribution on the nucleus surface by the
60 kVp X-rays may reach the most effective enhancement effect in the various distributions
of multiple AuNPs in cells and the x-ray irradiation sources [25].
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Figure 15. Radial distributions of (a) energy deposition and (b) enhancement factor within the cell volume for the case of
multiple 100 nm diameter AuNPs irradiated by 60 kVp X-rays.

Figure 16. Enhancement factor of induced total DSB as a function of the size of multiple AuNPs in cells. (a) Multiple AuNPs
under different distributions in cells and irradiated by 60 kVp X-rays. (b) Multiple AuNPs were distributed around the
nucleus surface and irradiated by various X-rays, from 60 to 200 kVp.

3.2.2. Enhancement Effect of Multiple AuNPs in Xenograft Tumor Model

Dose enhancement at cellular levels is small for both X-ray irradiations. DER for
200 kVp is about 1.5 and only 1.1 for 100 kVp. The enhancements ratios of chemical
radical and DSB in both X-rays are at a similar level, respectively (Figure 17b). The DER
of DSB obtained within TOPAS-nBio is comparable to the results simulated by PARTRAC
code [25]. Figure 17a showed the DERs of various chemical radicals produced around
AuNPs. Generally, the radicals produced by 200 kVp are much more enhanced than that of
100 kVp X-rays. It is shown that more radicals OH and H2 are produced than others [89].
This information is crucial to understand the contribution of chemical enhancement to the
biological enhancement.
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Figure 17. Enhancement ratio of (a) dose in to nucleus, produced chemical radicals and total DSB and of (b) different
chemical radicals produced when a fixed number of AuNPs are distributed around nucleus irradiated by 100 kVp and
200 kVp X-rays from the front direction.

3.3. Modeled Enhanced Radiobiological Effect—Cell Survival Fraction

Without AuNP in cells, the calculated cell survival fraction, based on MC simulated
DSBs, is in good agreement with the experimental results [41] (Figure 18a). However, as
AuNPs are widely distributed in cells, the increase of DSBs in simulations is smaller than
shown in experiments (Figure 18b). The main reason for this phenomenon is that the
current simulation assumes that all AuNPs were randomly distributed in the cytoplasm,
and only 10~20% of AuNPs can enhance the radiation sensitization effect in the nucleus,
however, the real distribution of AuNPs in the cell is yet unknown. To realistically assess
the radiation sensitization effect of AuNPs in cells, the biological dynamic process and
biodistribution of AuNPs in the cellular environment need to be considered in the MC
simulation and radiobiological modeling.

Figure 18. Comparison of calculated cell survival fractions based on the cell death mode I (S = q· exp[−p·DSB]) and II
(S = q· exp[−p0·DSB0 − p∗·DSB∗] ) proposed in Section 2.5 with experimental results. The irradiation source is 220 kVp
X-rays. (a) Without AuNP; (b) 6000 AuNPs with a diameter of 50 nm which are randomly distributed in the cytoplasm.

4. Discussion

The conjugation of AuNPs to cmHps70.1 antibody provides a promising tool to
selectively target tumor cells for a potential AuNPs-aided targeted cancer radiotherapy in
the future. The in vivo and in vitro microscopic images of the distribution of cmHsp70.1-
AuNP-conjugates within cancer cells [57,69] enabled the setup of cellular compartmental
models to estimate the kinetic behavior of AuNPs after in vivo application. To overcome
the limits of the model to small animals, continuum models for nanoparticle transport may
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be successfully applied, such as that reported by Wirthl et al. [112]. In that case, larger
domains, such as multiphase tumor growth and longer time scales, can be investigated.
This information can be used in the MC simulation for quantifying the radiation dose,
chemical radicals, and the biological dose enhancement effect. Such dose and chemical
enhancement information can be used to assess the experimental radiobiological effects,
and response relationships may be established for clinical translation of this high potential
radiosensitizer AuNPs in radiotherapy treatment planning.

In traditional therapy, the dose–effect relationship is mainly based on the dose in a
macroscopic scale. However, the AuNP-aided radiotherapy depends on many physical
characteristics, such as composition, size, shape, coating and concentration, degree of up-
take, and subcellular localization within a cell. Therefore, the heterogeneity of dose at nano-
and micro-macroscopic levels strongly impacts the dose–effect relationship. Specifically,
the DER in different scales shows different results depending on the targets, organs, tissues,
cells, and DNA.

The DER for a single AuNP irradiated with a very narrow kVp X-ray beam in the nano-
and micrometer ranges showed a greater value, e.g., 500 with the first 10 nm water shell
around the surface of the single AuNP. However, this high DER value should be corrected
to a lower value because of the narrow X-ray beam which is merely 10 nm greater than the
size of a single AuNP. A correction method is proposed for reducing the higher DER to
a lower value [113]. However, this correction method underestimated the DER, because
only the photon interactions from a broader beam with liquid water were considered.
These photons can interact with AuNP and produce further Auger electrons and X-ray
fluorescence electrons. Therefore, the corrected DER value irradiated with a narrow beam
may be 40–50 for a single AuNP irradiated with a broader X-ray beam. These values are
similar to the results with multiple AuNPs and a broader X-ray beam [23,28]. However,
these data must be tested and validated by further MC simulations with a broader X-ray
beam and the phase-space file method. Furthermore, the new cross sections [95,114] for
gold interaction with photons and electrons in the lower energy range should be integrated
into the commonly used MC codes, like Geant4-DNA, so that a much more precise energy
deposition around the surface of the AuNP may be obtained.

DER at the cellular level is generally low due to the greater scoring volume because
energy contributing to the dose enhancement originates from electrons with lower energy.
The enhanced energy will be averaged over the total cellular volume. Therefore, in the
authors’ opinion, the DER in cellular level is not an appropriate index for the dose–effect
relationship, because the cell death and killing represent later effects of intimal damages
to DNA and other organelles in cells, which receive energy in the hundred nanometer
range. In multi-scale MC simulations of the radiobiological effects, the physicochemical
and chemical module has not yet been fully implemented. Therefore, the contributions
to enhancement effects from the radiation induced chemical radical damage to DNA
and other molecular structures need further investigations. Furthermore, there are other
enhancement effects induced by irradiations with X-rays, such as charge transfer [115],
enhanced permeability and retention [116], and surface plasmons [117], which can cause
further radiation-induced damage. These effects can now be simulated with the newly
published Geant4-DNA-Au package [114], which includes a plasmon excitation model
implemented into the MC code Geant4-DNA.

Besides the real dose in the macroscopic scale and the sub-tissue dose as well as the
microscopic dose, there are many other challenges in accurate treatment planning with
AuNPs in radiotherapy, such as the concentration of AuNP in macroscopic scale. One
challenge is to ensure the accurate transfer of AuNP-conjugates to the cancerous cell via the
circulation system. Radiobiological experiments with different AuNPs-conjugates must be
carried out to provide the real enhancement effects under different physical, chemical, and
biological conditions. The enhanced radiation dose adopted in the present study is only
a very first step in the simulation of all radiobiological effects. Only solid experimental



Cancers 2021, 13, 5370 24 of 30

radiological results and real time imaging controls of the distribution of AuNPs in the
tumor can provide enough data to translate targeted AuNP therapies into clinical practice.

In conclusion, further experimental research activities are necessary to accelerate the
translation of AuNPs in targeted clinical cancer radiotherapy.

1. Dose enhancement of a single AuNP in liquid water irradiated by a broad beam. These
values might be used for the dose enhancement of multiple AuNPs in liquid water.

2. Dose enhancement of a single AuNP coated with different tumor-specific antibodies,
such as cmHsp70.1 in combination with an irradiation using a broad X-ray beam to
assess the reduction of the dose enhancement [118,119].

3. Evaluation of the radiation-induced chemical radicals contributing to the enhance-
ment effects of multiple AuNPs to the biological effects with advanced chemical
module-implemented MC simulations.

4. The cellular or molecular compartmental model for the heterogeneous uptake and
distribution of AuNP-conjugates on the cell membrane and in the cytoplasm.

5. Radiobiological experimental setup and defined endpoint results with injections of a
controlled amounts of AuNPs with known shape composition and surface modifica-
tions, in vivo.

6. Further advanced optical imaging technique for initial dynamic process of AuNPs in
cells prior to and after irradiation.

5. Conclusions

AuNP conjugated to tumor-targeting antibodies or other molecules can improve
radiotherapy by reducing the total radiation dose and thereby minimizing radiotoxicity to
neighboring organs at risk. This paper summarizes the progress and main results of a joint
gold nanoparticle-aided radiotherapy program.

Based on existing datasets obtained by our group, a pharmacokinetic model was
developed that describes the distribution of SPIONs in mice and it demonstrated the
feasibility of the model for AuNPs in mice. A Monte Carlo radiation transport simulation
was performed on a single AuNP and multiple AuNPs in multiple scales, i.e., in tumors,
cells and at the molecular level, to provide the enhanced radiation dose and chemical
radicals in close proximity to AuNPs. Furthermore, a mathematical model was established
to predict the biological responses to doses enhanced by AuNPs irradiated with X-rays.

Images showed the distribution of AuNPs in the cancer and its microenvironment
observing an accumulation of cmHsp70.1-AuNPs inside the tumor core [69]. Further, time-
dependent cellular imaging of AuNPs is needed to develop a pharmacokinetic model for
predicting the biodistribution of AuNP-conjugates at the cellular level. Simulated radiation
dose enhancement for a single AuNP demonstrated enhanced dose effects. However, the
simulated chemical radicals and DNA strand breaks for multiple AuNPs and multiple
target scales showed only a moderate enhancement effect. The modeling of radiobio-
logical enhanced effects of AuNPs can predict the cell survival and may guide ongoing
radiobiological experiments with AuNP-conjugates.

We could predict the biodistribution of nanoparticles in small animals using a phar-
macokinetic model. Simulated enhancement effects derived from the physical dose and
chemical radicals showed that conjugated AuNPs have the potential to be translated in
targeted radiotherapy in the future. However, many physical, chemical, and biological
parameters still need further investigation.

6. Patents

Stefan Stangl and Gabriele Multhoff for the patent: Peptide-based compounds and
their uses for tumor imaging and targeting. EP14172984 Klinikum Rechts der Isar, Technis-
che Universität München. 2014.
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