
Citation: Eck, U.; Wechner, M.;

Pankratz, F.; Yu, K.; Lazarovici, M.;

Navab, N. Real-Time 3D

Reconstruction Pipeline for

Room-Scale, Immersive, Medical

Teleconsultation. Appl. Sci. 2023, 13,

10199. https://doi.org/10.3390/

app131810199

Academic Editor: Zhonghua Sun

Received: 10 July 2023

Revised: 7 August 2023

Accepted: 16 August 2023

Published: 11 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Real-Time 3D Reconstruction Pipeline for Room-Scale,
Immersive, Medical Teleconsultation
Ulrich Eck 1,*,† , Michael Wechner 1, Frieder Pankratz 2 , Kevin Yu 1,3 , Marc Lazarovici 2

and Nassir Navab 1

1 School of CIT, Technische Universität München, Chair for Computer Aided Medical Procedures,
Boltzmannstr. 3, 85748 Garching, Germany; michael.wechner@tum.de (M.W.); kevin.yu@tum.de (K.Y.);
nassir.navab@tum.de (N.N.)

2 Medphoton GmbH, Technische Universität München, Karolingerstraße 16, 5020 Salzburg, Austria;
frieder.pankratz@med.uni-muenchen.de (F.P.); marc.lazarovici@med.uni-muenchen.de (M.L.)

3 Institute for Emergency Medicine, Ludwig-Maximilian Universität, Schillerstr. 53, 80336 München, Germany
* Correspondence: ulrich.eck@tum.de; Tel.: +49-89-289-19412
† Current address: Boltzmann Str. 3, 85748 Garching b. München, Germany.

Abstract: Medical teleconsultation was among the initial use cases for early telepresence research
projects since medical treatment often requires timely intervention by highly specialized experts.
When remote medical experts support interventions, a holistic view of the surgical site can increase
situation awareness and improve team communication. A possible solution is the concept of immer-
sive telepresence, where remote users virtually join the operating theater that is transmitted based on
a real-time reconstruction of the local site. Enabled by the availability of RGB-D sensors and sufficient
computing capability, it becomes possible to capture such a site in real time using multiple stationary
sensors. The 3D reconstruction and simplification of textured surface meshes from the point clouds
of a dynamic scene in real time is challenging and becomes infeasible for increasing capture volumes.
This work presents a tightly integrated, stateless 3D reconstruction pipeline for dynamic, room-scale
environments that generates simplified surface meshes from multiple RGB-D sensors in real time. Our
algorithm operates directly on the fused, voxelized point cloud instead of populating signed-distance
volumes per frame and using a marching cube variant for surface reconstruction. We extend the
formulation of the dual contouring algorithm to work for point cloud data stored in an octree and
interleave a vertex-clustering-based simplification before extracting the surface geometry. Our 3D
reconstruction pipeline can perform a live reconstruction of six incoming depth videos at their native
frame rate of 30 frames per second, enabling the reconstruction of smooth movement. Arbitrarily
complex scene changes are possible since we do not store persistent information between frames. In
terms of mesh quality and hole filling, our method falls between the direct mesh reconstruction and
expensive global fitting of implicit functions.

Keywords: telepresence; real-time reconstruction; medical consultation

1. Introduction

Immersive telepresence has been a research domain for many decades, driven by the
vision of enabling experts to collaborate over distance. Steuer [1] defined telepresence as
“the experience of being present in an environment using a communication medium”. The
concept of telepresence encompasses a multitude of different topics, ranging from social,
perceptual, and behavioral to technical aspects of interacting within a remote environment.
An important part of telepresence is digitizing and transmitting a physical space over a
communication medium to allow remote users to join that space virtually.

The computational complexity of reconstructing a dynamic environment in real time
and the bandwidth of the communication medium are typically limiting factors when de-
signing immersive telepresence systems. Some previous works proposed the transmission

Appl. Sci. 2023, 13, 10199. https://doi.org/10.3390/app131810199 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app131810199
https://doi.org/10.3390/app131810199
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5322-4724
https://orcid.org/0000-0001-5240-5681
https://orcid.org/0000-0002-4856-1806
https://orcid.org/0000-0003-2694-810X
https://orcid.org/0000-0002-6032-5611
https://doi.org/10.3390/app131810199
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app131810199?type=check_update&version=1

Appl. Sci. 2023, 13, 10199 2 of 23

of static scene reconstructions to save bandwidth and reduce complexity [2,3] or limited
the transmission to individual participants [4]. Maimone et al. [5] presented a telepresence
system capable of transmitting dynamic environments using multiple RGB-D cameras in a
lab environment.

Researchers explored various methods to capture a physical space using multiple
static cameras and then reconstruct that scene in 3D to transmit it to remote users. Initial
approaches used a sea of cameras [6] to reconstruct the environment using multiview stereo
(MVS) reconstruction methods. Later, RGB-D cameras were used to improve the capturing
of environments in real time with higher fidelity [7,8]. Initially, the environment is captured
as separate clouds of points per camera, either through direct acquisition of depth images
or by processing color image pairs using multiview stereo algorithms. These individual
point clouds are then fused into a common reference frame using intrinsic and extrinsic
parameters [9]. Based on the fused point cloud, either direct visualization methods [10,11]
can be used to display the reconstructed scene, or surface reconstruction algorithms are
used to transform the unordered point cloud into a surface mesh [12]. Depending on the
mode of visualization and the processing steps, remote clients receive point clouds, surface
meshes, depth images, and corresponding texture information from the color video. The
distant physical space is rendered and displayed at the remote clients using some form of
virtual or mixed reality display.

Interestingly, several initially published telepresence systems considered medical
consultation a strong use case [6,13,14]. When considering the need for highly specialized
experts for the various domains of medical interventions that often come with timely
treatment, it becomes evident that enabling medical experts to collaborate efficiently over
distance would be very beneficial. Medical intervention is a dynamic environment with
considerable interaction between stakeholders, patients, and medical equipment. Therefore,
reconstruction methods that assume a static environment do not provide a sufficient context
for remote experts during most medical interventions. To support the local team with their
decision-making process, remote experts would require not only a high-quality view of
the patient but also relevant health indicators, access to imaging data and availability of
instruments, and medical devices such an intraoperative X-ray [13]. Therefore, for medical
consultation, dynamic, room-scale 3D reconstruction in real-time with sufficient detail in
regions of interest is an essential building block for modern telepresence solutions.

In this work, we present a real-time 3D reconstruction pipeline for room-scale, im-
mersive medical teleconsultation (see Figure 1). Similar to FusionMLS [15], our pipeline
performs stateless mesh reconstruction from multiple depth images. Instead of populating
a signed distance volume and applying the marching cubes algorithm [16], our reconstruc-
tion method initially generates an octree from the fused point clouds. It directly extracts
the mesh using an extended version of the recursive dual contouring algorithm [17] that
works on voxelized point clouds instead of signed distance fields. With a voxelized point
cloud, fewer surface samples have to be generated than volumetric signed distance samples
by at least a factor of two using an optimal sparse data structure, where only corners of
sign-changing cells are considered because the vertex generation for the cell interior is
skipped. We can also further exploit the octree structure to efficiently simplify the result-
ing geometries with vertex clustering and connect mixed voxelization resolutions with
dual contouring.

Our contributions are as follows: First, we extend the recursive dual contouring
algorithm by Ju et al. [17] to include all diagonal connections for cells, which enables the
algorithm to be used on point clouds stored in an octree. We define the hole-filling and
connectivity criteria for the point-cloud-based algorithm to build correct surface meshes.
Furthermore, we adapt vertex clustering simplification to include filtering conditions that
preserve the topology and silhouette of nonmanifold, initial surface meshes. We evaluate
the proposed method by comparing the reconstruction quality with existing methods and
provide real-world performance measurements that show that the proposed pipeline can
reconstruct room-scale environments in real time.

Appl. Sci. 2023, 13, 10199 3 of 23

(a) (b) (c) (d) (e)

Figure 1. Overview. Processing steps of the proposed 3D reconstruction pipeline from left to right:
(a) fused point cloud of all depth cameras, (b) voxelization with reconstructed surface normals,
(c) simplification based on vertex clustering of flat surfaces, (d) simplified mesh extracted with dual
contouring for point clouds, and (e) textured mesh with the smallest viewing angle difference to the
color camera.

The remainder of this document is structured as follows. In Section 2, we review
related work and discuss differences between the proposed and existing methods. In
Section 3, we present our proposed pipeline step by step. In Section 4, we introduce our
extensions to apply dual contouring on voxelized point clouds and showcase common
issues (Section 4.2) that generate interior meshes. Based on this observation, we present the
filtering conditions to prevent interior mesh generation during simplification and a method
to preserve nonmanifold edges in Section 5. In Section 6, we compare our reconstruction
to existing offline direct triangulation and implicit surface reconstruction methods and
present performance results for reconstructing a room captured with a ring of six RGB-D
cameras. We finally conclude in Section 7 and present future work in Section 8.

2. Related Work

Within the research domain of immersive telepresence, we review relevant literature
for real-time 3D reconstruction from point clouds, as shown in Figure 2. Over several
decades, researchers explored ways to capture a physical space and transmit it to a distant
location [1] to enable immersive, mixed reality telepresence [6,7,14,18,19]. Most previous
works depend on some form of visual depth sensing. Multiple view stereo algorithms can
be used with calibrated camera pairs [20] to extract surface information by determining the
disparity between two rectified images. Such methods require sufficiently textured surfaces
for the stereo matching and are computationally demanding for real-time processing.
Alternatively, specialized depth sensors with projected infrared patterns [21] or a time-
of-flight camera can directly acquire 2.5D surface point clouds [2,5,8,22]. Structured-light
capture systems project static infrared textures onto surfaces and, therefore, enable the
accurate acquisition of surfaces also from textureless objects and environments. However,
such systems can be quite expensive, can have a limited acquisition frame rate, and require
extensive calibration. Sensors that measure the time of flight (ToF) are typically small
and work well in indoor scenarios. Sufficiently high resolution and frame rates can be
captured with modern ToF sensors such as the Microsoft Azure Kinect camera at a relatively
low price.

Two distinct concepts have emerged for capturing the local environment: a dy-
namic camera for static scenes [2,3,23] and multiple stationary cameras for dynamic
scenes [5,8,15,24,25]. A large body of work exists for capturing static scenes with moving
cameras. Surfaces can be extracted with high quality from moving color images with
known camera poses using the structure-from-motion method [26]; however, the process
is typically offline. Alternatively, simultaneous localization and mapping [27] combines
camera pose estimation and map creation to enable real-time operation. If the camera

Appl. Sci. 2023, 13, 10199 4 of 23

sensor also captures depth images, surface reconstruction can be performed by fusing the
acquired point clouds using the estimated camera poses [28].

Immersive Telepresence

Augmented & Virtual Reality Real-Time 3D Reconstruction Human Computer Interaction

Point Clouds Signed Distance Fields

Figure 2. Literature Review. We review the literature in the relevant areas of real-time 3D reconstruc-
tion using point clouds as input.

If multiple static, calibrated depth cameras capture a scene, the acquired images can
be easily projected into a common reference frame to form an unstructured surface point
cloud. A vast amount of work [29] for the reconstruction of implicit surfaces from point
clouds is available. One popular formulation is radial basis functions [30,31], which are con-
tinuous interpolation functions representing a single smooth and manifold object. Different
approaches, such as Poisson reconstruction [32,33], Fourier-based reconstruction [34,35],
smooth signed distance surface reconstruction [12], or multilevel partition of unity [36],
present different behaviors in terms of robustness, smoothness, and run-time complexity.

Our work focuses on setups consisting of multiple stationary cameras for dynamic
environments to capture a room from multiple perspectives as input for surface reconstruc-
tion algorithms that work in real time. We further aim to simplify the resulting surface
mesh to lower the bandwidth requirements for the communication network while keeping
sufficient surface detail to enable medical teleconsultation.

2.1. Real-Time Dynamic Surface Reconstruction

A real-time reconstruction of dynamic scenes from multiple static RGB-D cameras is a
challenging task [37]. Generally, existing work can be discerned into three general ideas for
generating the surface.

The first family of approaches is based on efficiently performing 2.5D mesh genera-
tion by connecting each backprojected vertex with its neighboring depth pixels, which is
effectively the 2D Delaunay triangulation [38] of the image plane. Overlapping surfaces
need to be combined gracefully with multiple depth cameras like Maimone et al. [5] do
during rendering with quality weights for each depth and RGB camera. Alexiadis et al. [39]
and Meerits et al. [25] also proposed view-independent approaches that purge redundant
triangles and fix the boundary with retriangulation or triangle stitching. Meerits et al. [25]
do not disregard redundant data on surfaces but readjust all vertices using a projection
onto the local least squares surface.

Second, a more complex class of techniques is based on reconstructing a deformable,
canonical model, whose deformations are updated at each frame to facilitate dynamic scene
changes. Finding a model that enables arbitrary scene changes is challenging, and complex
models will be computationally expensive. In the initial work from Zollhoefer et al. [40],
the canonical model was a mesh captured ahead of time. Still, subsequent works [4,41,42]
moved to a more flexible TSDF, reconstructed the canonical model live, and supported
more dynamic deformations. For human performance capture [43,44], limited topological
changes, and small motion or a single RGB-D-camera [45–47], these methods provide a
high-quality reconstruction since knowledge is transferred, and occluded parts can be
reconstructed if seen prior.

Suppose arbitrarily large and complex scene changes are required. In that case,
the third family of approaches discards the idea of the deformation model and builds
a new surface representation from the current set of depth images from scratch. While
many methods for 3D surface reconstruction from point samples [12,32,33,35,48,49] exist,
few are efficient enough to be performed in real time. Maimone et al. [24] presented an

Appl. Sci. 2023, 13, 10199 5 of 23

adapted depth image integration of KinectFusion [23], which segments static and moving
objects. FusionMLS by Meerits et al. [15] has shown a very efficient TSDF reconstruction,
where all SDF samples are generated for each frame and voxel, using neighborhood-based
MLS surface reconstruction [50] using a very efficient neighborhood query that collects
neighbors in each camera’s image space. Subsequently, the mesh is generated using
marching cubes [16]. Our work has similar goals as FusionMLS and provides a stateless
efficient mesh reconstruction using a volumetric domain. Compared with FusionMLS [15],
our approach can generate a simplified mesh and mix different voxel resolutions because
we use dual contouring on a regular, sparse octree instead of marching cubes [16] on a less
sparse two-layer hierarchy with shared boundary voxels.

2.2. Isosurface Extraction

Many of the approaches highlighted in Section 2.1 generate an implicit surface, and
most use marching cubes (MC) on GPUs [16,51] to create the output mesh quickly. Still,
many different methods [52] exist to handle the problem of isosurface extraction.

While the original MC method places vertices at the edges of the signed distance
voxels, dual methods, such as SurfaceNets by Gibson et al. [53], place the vertices of the
final mesh in the cell interior. Dual contouring (DC) allows a better reconstruction of sharp
details because the vertex placement is not restricted to cell edges. Connecting mixed
resolutions is possible using MC but easier with DC because the algorithm can be directly
executed on nonuniform hierarchical data structures like Ju et al. [17] presented for octrees
without any modifications, and like triangle stitching [54]. However, dual contouring
does not guarantee that the resulting surface will be manifold, and the fixes in subsequent
work [55,56] require a significantly more complex algorithm. Since the correct topology is
sometimes more important, the dual marching cubes method of Schaefer and Warren [57]
combines the topology guarantees of MC with sharper detail by placing an additional dual
feature vertex into faces generated with MC. The MC method was recently implemented
using a data-driven approach [58], highlighting how many perspectives exist for solutions.

We chose DC for our work because the strict run-time requirements and the recursive
traversal by Ju et al.[17] are almost as easy to parallelize as regular MC while providing
seamless connections between multiple detail levels. Furthermore, the lack of manifold
guarantees is insignificant since the geometry of multiple depth cameras is highly nonman-
ifold, and many edge cases of nonmanifold geometry cannot be captured.

2.3. Mesh Simplification with Dual Contouring

Since the DC method nicely operates on sparse data structures with mixed resolution,
Ju et al. [17] demonstrated simplification via octree-based bottom–up vertex clustering
with quadratic error functions [59] before mesh extraction, which is much more efficient
than other mesh simplification techniques that generally require the high-resolution mesh
in memory [60]. However, this approach limits simplification opportunities to the octree
structure, which is addressed by enhancing the number of representative vertices per cell
using a more advanced encoding as performed by Zhang et al. [61], who increased the
limit to two vertices per cell. Schaefer et al. [55] later completely removed this limitation by
performing the top–down dual mesh traversal before bottom–up simplification, allowing
a list of representative vertices for different surfaces to be contained in each cell with
accompanying conditions for manifold preservation. However, their procedure is no
longer tail recursive because the results obtained by top–down traversal are required
during bottom–up traversal, causing significantly more data dependencies that reduce
opportunities for parallelization.

Since performance is our most important requirement and we aimed to implement
simplification in GPU kernels [62], we used the octree-based vertex clustering with a single
representative vertex, similar to the original work of Ju et al. [17] due to the simpler
encoding as a proof of concept.

Appl. Sci. 2023, 13, 10199 6 of 23

3. Pipeline Overview

Our processing pipeline for mesh reconstruction consists of five steps (Figure 3). We
only accept a synchronized set of depth images as input, which either requires all images to
match in a certain time window or an exact match if synchronization is handled beforehand
using hardware synchronization. Initially, we use an image-based temporal filter as found
in Realsense SDK [63] to reduce noise on the static parts of the depth images.

3.1. Octree Generation and Voxelization

In our proposed pipeline, the first step uses the depth images and camera calibration
data to project pixels into an octree of all potentially nonempty voxels of configurable voxel
size. Instead of building the octree using bottom–up sorting [64], we build a pointer-based
octree from top–down using a heuristic to determine whether a certain arbitrarily sized
voxel is occupied. For each of the voxel corners of a potentially occupied child node, the
position is projected into each depth camera’s image space and compared with the depth
value of the residing pixel. If any backprojected depth pixel of one of the eight corners
matches up to a query radius threshold defined by the voxel size, it is deemed occupied.
For efficiency, the last leaf occupancy query uses only a circumsphere for the voxel center
instead of querying all eight corners. This method allows false positives and will generate
false negatives if all eight corners of a voxel project into an empty pixel, which is not a
significant issue in our testing.

Since we use a pointer-based octree instead of a hash-map-based data structure, such
as Zhou et al. [64], data locality is better enforced blockwise using stream compaction [65].

Our approach allows mixing arbitrary voxel sizes. For demonstration purposes,
we allow configuring two different low- and high-detail regions separated using an axis-
aligned, user-defined bounding box. The subsequent processing steps for normal estimation
and simplification also allow separate configurations for the different areas.

3.2. Surface Sample and Normal Estimation

For each potentially nonempty leaf of the octree, all points in a configurable neigh-
borhood radius of the voxel center are collected in image space, using the same image
space projection optimization, such as FusionMLS [15]. A surface sample and normal are
generated for each voxel using a neighborhood-based local surface estimation method
for point clouds. In this work, we utilize principal component analysis (PCA) [66] as a
high-speed method and second-degree moving least squares (MLS) [50] for better quality.
We apply statistical outlier removal to filter noise points and false positives by discarding
every voxel, which does not contain enough points in the neighborhood.

The result of the first two steps is equivalent to performing voxelization, statisti-
cal outlier removal, and normal estimation, on the whole, merged point clouds of all
depth cameras, which is part of many open-source libraries for point cloud processing
(e.g., Open3D [67]). Our optimizations that exploit the compute resources of GPUs and
the 2.5D structure of point clouds generated from depth images, which were also used in
previous works [15,25], make the process efficient enough to perform in real time.

3.3. Simplification via Octree-Based Vertex Clustering

As Ju et al. proposed initially [17], the mesh simplification for dual contouring is a
vertex-clustering-based preprocessing step that replaces interior nodes with a leaf contain-
ing the representative sample that is determined by the quadratic error function (QEF) [59],
which minimizes the sum of least squared distances of all given input planes (Section 5).
This function is ill-conditioned in coplanar cases and, therefore, requires robust linear
solvers or high numeric precision. In this work, we use the recently introduced probabilis-
tic extension for QEF by Trettner and Kobbelt [68] for better robustness.

Compared with their work, the conditions for our simplification are required to be more
strict to preserve manifoldness and silhouette (Section 5). Like previous steps, the bottom–up

Appl. Sci. 2023, 13, 10199 7 of 23

simplification is implemented in CUDA using dynamic parallelism to reduce CPU/GPU
overhead by dynamically launching a kernel for all current simplification candidates.

Depth lmage

Camera 1

Depth lmage

Camera n

Timestamp- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

synchronization

GPU(CUDA)

CPU

Temporal
Filter

Temporal
Filter

Octree Generation
and Voxelization

Normal
Computation

(PCA or MLS)

Simplification

QEF Octree Clustering

Ring

buffer

Mesh Extraction Dual

Contouring for Poi nt

Cloud Octrees

Mesh Finalization/
Triangulation

Figure 3. Pipeline Overview. This figure shows the data flow of our reconstruction system. After
temporal filtering, we generate an octree of all nonempty voxels, then surface samples and normals
are found for each voxel. Simplification decimates octree nodes on flat surfaces. Finally, mesh
extraction from the octree is performed using an adapted version of dual contouring for point clouds,
and a GPU-based step called finalization performs quad-triangulation, filters duplicate triangles, and
removes unused vertices.

3.4. Dual Contouring for Point Clouds

The final step extracts the mesh from our data structure using recursive octree traver-
sal initially introduced by Ju et al. [17], which we extend to include diagonal connections
(Section 4.1). This part is performed on the CPU using work-stealing-based simplification
(Section 6.3.1). Since dual contouring generates quad meshes, we perform triangulation, du-
plicate removal, and vertex list compaction in a final series of GPU kernels called Finalization.

3.5. Textured Rendering

Our texturing method Figures 1 and 4) projects each fragment into the image space
of the color cameras to gather the optimal pixel and into the depth cameras to check for

Appl. Sci. 2023, 13, 10199 8 of 23

occlusion, like in shadow mapping. Since we generate a simplified mesh, choosing a camera
per face causes more inconsistencies and discontinuities than dynamically choosing a
camera per pixel (Figure 5). If multiple cameras see the same surface, a selection of strategies
is available. One strategy, to maximize resolution, chooses the camera with the shortest
distance to the observed surface. Since we record the physical shading observed at the color
camera, another strategy can use the camera with the smallest viewing angle difference
between the current eye position and physical camera to prioritize correct shading.

(a) 6-point neighborhood (b) 26-point neighborhood

Figure 4. Neighborhood Sizes. Comparison of the neighborhood sizes and its consequences for 3D
surface mesh reconstruction. The blue board is not aligned with the axes of the world coordinate
system, causing a lot of diagonal connections to be missed in (a) that we consider with our method
in (b).

(a) Per-face camera IDs, selected via majority
vote of each vertex

(b) Per-pixel camera IDs, selected via most
similar viewing angle

Figure 5. Mesh Texturing. Comparison between per-face and per-pixel selection of the optimal
RGB-D camera. Per-face selection is inferior due to the simplified mesh topology.

4. Dual Contouring for Voxelized Point Clouds
4.1. Extension for Diagonal Connections

Dual contouring is an isosurface extraction method for signed distance fields. In the
work of Ju et al. [17], the signed-distance samples and gradients are located at the corners
of each cell. Therefore, a dual quad face is generated for each sign-changing cell edge
with four incident cells. From the perspective of the sign-changing cell, each dual edge
connection is formed across the 6-point neighborhood. The dual vertex is already present
in the cell with voxelized point clouds, but it is not guaranteed that all occupied cells will
neighbor across a shared edge (Figure 4a). Thus, the neighborhood must be extended to
include all sets of four neighboring occupied cells, which share a common corner, i.e., the
26-point neighborhood of a 3D grid (Figure 4b).

Appl. Sci. 2023, 13, 10199 9 of 23

To accommodate the larger neighborhood that must be checked for point clouds,
we extend the recursive procedures of Ju et al. [17], named cellProc, faceProc, and edge-
Proc, with two new procedures, which we also name after the shared primal element,
diagonalEdgeProc and cornerProc.

For cellProc, up to 12 subprocedures of diagonalEdgeProc (Figure 6a) and 32 permuta-
tions of cornerProc (Figure 7) are added to original 8 cellProc, 12 faceProc, and 6 edgeProc
subprocedures. In faceProc, 8 subprocedures of diagonalEdgeProc (Figure 6b) and all
32 combinations of cornerProc (Figure 8a) are added, since they additionally cross through
both nodes. For edgeProc, 14 possible cornerProc combinations that involve all input nodes
are added to the 2 faceProc subprocedures. If 1 of the 4 nodes in cornerProc is not a leaf, a
single recursive case is generated (Figure 8c).

Our diagonalEdgeProc procedure contains at least both involved nodes marked in
green (Figure 6) and the 2 additional nodes neighboring this cell edge, if available because
only 14 of 32 cornerProc cases are handled in edgeProc. The remaining 18 are handled here
since some do not require 4 parent nodes like in Figure 8b. This representation will cause
duplicate recursive calls to cornerProc if all 4 nodes in a primal edge are present, which can
be solved by not calling the recursions on one of the two directions of diagonalEdgeProc.
We chose this encoding for consistency with the original recursion [17]. More optimal
encodings without duplicate cases may exist; e.g., if edgeProc is modified to have optional
nodes, it accommodates all cases of diagonalEdgeProc.

(a) (b) (c)
Figure 6. Diagonal EdgeProc Subprocedures. Three examples of possible diagonalEdgeProc subpro-
cedures: (a) shows 1 of 12 subprocudures in cellProc, (b) shows 1 of 8 subprocedures in faceProc, and
(c) shows 1 of 2 two recursions of diagonalEdgeProc on itself.

(a) (b) (c)
Figure 7. CornerProc Cases. Three examples of possible cornerProc cases in cellProc: there are
(a) 6 cases in total where 2 pairs of nodes share an edge, (b) 24 cases where just 1 of the nodes is not
aligned with the 3 others, and (c) 2 situations where 2 nodes are criss-cross on different sides. In sum,
this amounts to 32 cases.

4.2. Connectivity Properties and Interior Mesh Generation

With the extensions for diagonal connections, all combinations of four voxels sharing
a common corner in the immediate neighborhood are connected. Thus, our method will
only generate holes, where the voxel mesh of all leaf cells would contain holes. One
disadvantage of this approach is the lack of discernability between interior and surface
mesh parts, which is particularly significant if mixed voxel sizes are combined. For a power
of two resolution border 2c, at least 2c + 1 empty, high-resolution voxels must be present
between two surfaces to prevent the closing of the wrong gaps (Figure 9a).

Appl. Sci. 2023, 13, 10199 10 of 23

(a) (b) (c)
Figure 8. CornerProc Subprocedures. Three examples of cornerProc subprocedures: (a) shows 1 of
32 subprocedures in faceProc, (b) shows 1 of 18 subprocedures in faceProc, and (c) is the recursion
for cornerProc.

If the voxel size is uniform, faulty connections still occur, when, for example, a corner
is smoothed and hidden by the additional diagonal face (Figure 9b). Discerning these cases
is challenging because if the exterior connections were not indicated as in the example of
Figure 9b, this case may also be a small manifold object. We omit to filter these cases since
the internal faces in a uniform voxel are limited to crossing a single diagonal voxel.

(a) (b)
Figure 9. Connectivity Properties during Mesh Generation. (a) Faulty internal mesh connections,
which do not follow the underlying surface across a resolution border and (b) in a uniform voxel grid.

If two layers of voxels are supplied as input, a wasteful interior mesh is also generated.
For two close-by opposing surfaces (Figure 10a), which are physically unlikely to capture
with depth cameras, we only allow connections between vertices with normals that are
pointing in the same direction (i.e., only vertices where the angles between all normals of a
face are smaller than e.g., 120°), like that used in other direct meshing methods, such as
greedy projection triangulation by Marton, Rusu, and Beetz [69]. The case in Figure 10b will
happen regardless of noise, if the splitting plane of the octree is badly placed and generates
many insignificant interior triangles. We propose solving this problem by merging vertices
with normals n1, n2 across a dual edge of unit direction d, if

n1 · n2 > cos(δn) and
∣∣∣∣ n1 + n2

‖n1 + n2‖
· d

∣∣∣∣ > cos(δd) (1)

Thus, δn specifies the maximum angle between merged vertices, and δd denotes the
maximum angle between the average normal and the dual edge direction. The two vertices
are merged by moving one to the average position and marking the other as deleted with
reference to update all face indices later. With this step, we can significantly reduce the
number of duplicate triangles if low-quality voxelization is used (Figure 11).

Appl. Sci. 2023, 13, 10199 11 of 23

(a) (b)
Figure 10. Interior Mesh Generation Causes. Two examples of layers of voxels being generated:
(a) shows two close-by opposite surfaces, and (b) visualizes an unfortunate voxel-grid placement for
the surface.

(a) Without merging vertices: 530.788 triangles (b) With merging vertices and δd = δn = 30°:
301.214 triangles

Figure 11. Mesh Simplification Example. Close-up mesh of an unsimplified floor in one of our
reconstruction frames with and without merging vertices. We used a voxel size of 2 cm and PCA
normal reconstruction with a neighborhood radius of 1 cm. The center of the octree is placed on the
floor; thus, the two layers of voxels are generated between the sign-changing split plane.

5. Topology and Silhouette-Preserving Simplification

With vertex-clustering-based simplification, which is popular in tandem with dual
contouring [17,55,61], the resulting mesh is both simplified and requires less computational
resources during extraction.

We use the probabilistic extension of quadratic error functions introduced by Trettner
and Kobbelt [68] for our bottom–up simplification due to better robustness and expose a
single standard deviation σn to configure the normal variance Σn = σ2

n I. The plane position
variance Σp is set to 0 because it does not influence the position of the representative vertex
and only increases the expectancy value of the simplification error.

The formulation for the QEF components A ∈ R3×3, b ∈ R3, and c ∈ R for a single
input plane with position q̄ and normal n̄ as introduced more generally in [68] is therefore

A = n̄n̄T + σ2
n I

b = n̄q̄T n̄ + σ2
n q̄

c = (q̄T n̄)2 + σ2
n q̄T q̄

(2)

In our implementation, calculating the QEF solution x∗ = A−1b was sufficiently stable
with single-precision floating-point numbers and pivoted LU decomposition with nonzero
σn, which is also equivalent to solving the generalized Tikhonov regularization of the
original problem [68].

Appl. Sci. 2023, 13, 10199 12 of 23

5.1. Preventing Interior Faces

Simplifying all internal nodes that do not exceed the simplification error is too aggres-
sive since our approach to dual contouring that greedily connects all immediate neighbors
will generate nonmanifold geometry and internal faces (Figure 9). We prevent the genera-
tion of false internal faces with a simple, but overreaching, heuristic. For each set of empty
child nodes of an internal node (red in Figure 12), the external neighbors (blue in Figure 12)
must be empty to allow simplification. Since the node would be treated as fully occupied
after simplification, the loss of an empty voxel could cause newly formed connections to
neighbor nodes. If the blue nodes of Figure 12 are internal nodes, they are also treated as
occupied to simplify the query. Moreover, suppose an immediate parent node exists at
the preceding depth. In that case, the node is also not simplified because simplification is
performed in parallel in a GPU kernel where the filtering condition cannot consistently
detect it due to a race condition.

(a) (b) (c)
Figure 12. Conditions for Simplification. Visualization of the simplification conditions to prevent the
generation of internal faces. When red child nodes are empty, the neighboring blue nodes must also
be empty. In (a), the neighbor node only shares a single corner, (b) is one of three external neighbors
with a shared edge that requires an additional empty internal node in red, and (c) is one of three
neighbors with a shared face. In total, queries for up to seven external neighbors must be performed
in the worst case.

5.2. Silhouette Preservation

Vertex-clustering-based simplification is not designed to preserve the topology, and
the QEF error is only correct in a valid 2-manifold. Geometry captured from depth images
is highly nonmanifold since many objects will only be seen from one side. If simplification
via vertex clustering is applied trivially on nonmanifold edges and corners, they will be
pulled in, significantly changing the perceived silhouette in rendering (Figure 13).

To address this issue, each point is classified as interior or exterior to detect which
octree nodes must be excluded from simplification. We query the entire 26-point neigh-
borhood for each leaf cell in parallel in a GPU kernel and detect all potentially generated
incident faces. To simplify this query, we use the approximation that four incident faces
per vertex indicate that the vertex is placed in the mesh interior in a quad face, which is
invalid, and exceptions exist (Figure 14a). Furthermore, if three faces are located in the
same 2 × 2 × 2 octant of the neighborhood, the face is also in the interior (Figure 14b). All
permutations of three incident faces are covered with two conditions: if less than three
nodes are empty in the neighborhood described in Figure 14b, the node is an interior node.

Appl. Sci. 2023, 13, 10199 13 of 23

Figure 13. Effects of Vertex Clustering. Close-up wireframe of a simplified mesh, with (blue) and
without (red) filtering the nonmanifold vertices from simplification. The vertices of the red mesh are
slightly pulled towards the mesh interior.

(a) (b)

Figure 14. Exterior Mesh Classification. Two exceptions for the rule of four incident faces per vertex:
(a) is an example of four incident faces that is still located on a nonmanifold edge, and (b) indicates a
case of only three incident faces that is in the mesh interior.

6. Evaluation

We demonstrate the capabilities of our system using a recording of six ceiling-mounted
Azure Kinect DK cameras [70] arranged as a ring, using the NFOV_UNBINNED mode on the
depth camera and the maximum resolution of 640 × 576. The recording captures a room of
5.88 m × 7.15 m for 59 s, where three persons walk around a surgical table with a dummy
head placed on top, and all persons enter and leave the captured domain multiple times.
All performance measurements were recorded on an Ubuntu 18.04 server with 2× Intel
Xeon Gold 5120 14 core CPUs and an Nvidia RTX A6000 GPU. Our build was compiled
using GCC 7.5 and CUDA 11.1.

For our testing, the configuration parameters of the temporal filter [63] are α = 0.15,
δ = 3 cm, and persistence at 3 (valid in last 2 of 4). For mesh extraction, we use 20 CPU
threads and allow a maximum angle difference for vertex normals of 120°, and the pa-
rameters to control vertex merging across a splitting plane are δn = δd = 30◦. While
these parameters are constant, we will evaluate four different sets of voxelization and
simplification settings. The parameter set unsimplified-low-detail uses a 2 cm voxel size and
reconstructs the surface samples using principal component analysis across a neighbor-
hood radius of 1.5 cm. The preset simplified-low-detail adds simplification with a QEF error
threshold of 1× 10−3 and normal standard deviation σn = 0.15. The third preset, simplified-

Appl. Sci. 2023, 13, 10199 14 of 23

high-quality, changes the local surface estimation method to moving least squares [50],
fitting a second-degree bivariate polynomial surface to the local neighborhood. Finally,
the preset LOD uses MLS reconstruction with a neighborhood size of 1.5 cm only for the
OR table in an axis-aligned box with dimensions of 95 × 38 × 180 cm and a simplification
threshold of 1× 10−4. The region outside the box uses voxels that are twice as large with
4cm and performs local surface estimation using PCA with 2.5 cm neighborhood radius
and a simplification threshold of 1× 10−3.

6.1. Comparison with Existing Offline Methods

We compare our implementation with a limited selection of existing, publicly available
implementations for mesh reconstruction. As a primary, direct triangulation method of
the input point cloud, we compare it with ball pivoting [71], which is implemented in
Open3D [67] using ball radii of 1, 2, 3, 4, and 8 cm (Figure 15a). The more optimized greedy
projection triangulation [69], which is part of the PCL point cloud processing library [72],
greedily connects all points in the projected 2D neighborhood using the point’s normals
(Figure 15b). For this method, we used a neighborhood radius of 5 cm, a maximum
surface angle of 45°, a minimum triangle angle of 10°, and a maximum triangle angle
of 120° to find as many connections as possible. For an implicit surface reconstruction
method, we compare it with smooth signed distance surface reconstruction (SSD) [12]
using the implementation of Michael Misha Kazhdan [73] with an octree depth of 10
and SurfaceTrimmer for level 8 or higher to remove all surfaces without many underlying
samples. All methods use the unsimplified, voxelized point cloud generated using the first
frame of our recording and the unsimplified-low-detail preset as their input. Other implicit
surface reconstruction techniques, such as variants of Poisson reconstruction [32,33,49], are
visually very similar to SSD in our particular dataset.

(a) (b)

(c) (d)
Figure 15. Comparison with Existing Approaches. (a) Ball-pivoting algorithm [71] with 177,825
triangles, (b) greedy projection triangulation of Marton et al. [69] with 187,028 triangles in total,
(c) trimmed SSD reconstruction [12] with 398,736 triangles in total, and (d) our approach with multiple
LODs with 49,340 triangles in total.

Appl. Sci. 2023, 13, 10199 15 of 23

Our method generates fewer holes than the other general purpose direct meshing
techniques (Figures 14b and 15a) but cannot fill arbitrarily large gaps like implicit surface
reconstruction (Figure 15c), which also inadvertently fills gaps, such as between the legs
of the person in the background. Since our method also uses the voxelized samples
directly, the resulting surfaces are not as smooth as the reconstruction with SSD since noisy
points are still connected if they are in the immediate neighborhood. Therefore, our mesh
extraction method heavily relies on correct, trustworthy samples from voxelization. Due to
the simplification of flat surfaces, our method generates significantly fewer triangles.

6.2. Simplification Characteristics

Simplification is a key aspect of our proposed method since it saves bandwidth and
subsequent time spent for mesh extraction if many flat surfaces are present in our geometry.
We compare the loss of quality with respect to varying QEF error thresholds (Figure 16).
The probabilistic normal standard deviation σn is fixed at 0.15. As expected and consistent
with previous work on QEF [59,68], the mesh error from simplification is small, even
if the number of triangles is significantly reduced, particularly since many flat surfaces
are present.

(a) 10−4 (b) 10−3

(c) 10−2 (d) 10−1

Figure 16. Evaluation of Simplification Errors. Absolute Euclidean distance in meters between the
unsimplified reference and a simplified mesh with varying QEF error thresholds. Computation and
visualization were performed with CloudCompare [74].

The simplification process reduces the total uncompressed memory requirement
for mesh storage in this scene by approximately 40% (Table 1); thus, an uncompressed
streaming application would only require 91 MiB/s instead of approximately 223 MiB/s net
bandwidth at 30 meshes per second. The total run time for simplification is at least 10 ms

Appl. Sci. 2023, 13, 10199 16 of 23

due to the expensive neighborhood query at the lowest octree level to detect nonmanifold
edges (Section 5.2).

Table 1. Simplification Benchmarks. Simplification run time and resulting mesh size for the first
frame of our recording (Section 6). The memory requirement is calculated by assuming a simple
indexed mesh representation requiring 24 bytes per vertex for position and normal and 12 bytes
per triangle.

QEF Threshold GPU (ms) Vertices Triangles
Memory (MiB)

rel. abs.

0 0 117,228 414,820 100% 7.43

1× 10−5 10.88 117,055 409,582 99% 7.37

5× 10−5 10.65 87,338 295,169 72% 5.38

1× 10−4 10.97 72,736 239,102 59% 4.4

1× 10−3 11.16 57,611 169,441 44% 3.26

1× 10−2 12.3 53,933 157,055 41% 3.03

6.3. Performance Characteristics
6.3.1. CPU Scaling

While most of our pipeline is performed on GPUs, we perform the extended recursive
mesh extraction (Section 4.1), which has significantly more procedures to perform than
the original work by Ju et al. [17] on CPU using task-based parallelization. We use a
simple work-stealing-based scheduler with randomized victim selection based on the
work-stealing queue of Lê et al. [75] with the modification to steal tasks in batches of 32 to
reduce overhead.

Even though the scheduler has significant overhead (Figure 17a), we can hit our target
run time of 31 ms with 14 cores for extracting an unsimplified mesh and 9 cores using a
simplified mesh. We chose 31 ms rather than 33 ms for 30 FPS to accommodate CPU/GPU
memory copies and mesh finalization, which takes less than 1 ms of GPU time in our
measurements (Table 2).

Table 2. Pipeline Benchmarks. Run time of each processing stage using the simplified-low-detail preset.
GPU times captured using the NVIDIA Nsight Compute gpu__time_active metric. Approximately
1500 samples recorded for our entire recording (Section 6).

Processing Stage
Run Time (ms)

Min. Avg. Max.

Temporal filter (6 images) 0.065 0.125 15.147

Octree generation 0.527 5.691 5.839

PCA surface sample reconstruction 0.012 11.642 41.65

Simplification 0.096 10.814 11.677

mesh extraction (14 CPU cores) 30.347 37.809 55.196

Mesh finalization 0.783 0.825 0.882

6.3.2. Full System Performance

To process a stream of depth images in real time, our method must keep up with
the recording speed of 30 frames per second. Our playback system feeds images into the
reconstruction pipeline as fast as possible, allowing observed frame rates above 30 FPS,
which we achieve on average through our recording using the LOD preset, and only misses
by 2 FPS for unsimplified- and simplified-low-detail (Table 3), which is due to a slight CPU
bottleneck (Table 2) in mesh extraction.

Appl. Sci. 2023, 13, 10199 17 of 23

The latency figures (Table 3) are larger than necessary due to our usage of a ring
buffer (Figure 3) that queues up to 2 frames to fully saturate the mesh extraction process.
If the mesh extraction is not saturated and, therefore, no frames are queued up, like
in the LOD preset, latency is the sum of all serial processing steps (Table 2) with some
communication overhead.

1 5 10 15 20
0

20

40

60

80

100

CPU Threads

Ef
fe

ct
iv

e
ut

ili
za

ti
on

[%
]

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
CPU Threads

20

40

60

80

100

120

140

160

ru
nt

im
e

[m
s]

31

CPU runtime of dual mesh-extraction

(b)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
CPU Threads

20

40

60

80

100

120

ru
nt

im
e

[m
s]

31

CPU runtime of dual mesh-extraction (with simplification)

(c)
Figure 17. Mesh Extraction Benchmarks. CPU scaling measurements of our mesh extraction:
(a) effective utilization calculated as a fraction of time spent on tasks relative to the total active CPU
time, (b) box plot of the total run time with respect to multiple CPU threads using the unsimplified-
low-detail preset and (c) simplified-low-detail preset. Using all samples of our recording (Section 6). Box
plot whiskers denote the 99th percentile of 1728 measurements.

Appl. Sci. 2023, 13, 10199 18 of 23

Table 3. System Performance. Full system performance using a selection of preset settings
(Section 6.3.2).

Preset Name
Frames per Second Latency (ms)

Min. Avg. Max. Min. Avg. Max.

unsimplified-low-detail 26.1 28.3 31 110 272 305

simplified-low-detail 26.1 28.3 31.3 185 274 303

simplified-high-detail 14.5 24.6 29.6 99 111 192

LOD 17.3 31.8 51.2 45 68 140

7. Discussion

Instead of using a signed distance field as an intermediate representation, we directly
generate each voxel cell’s representative vertices and surface normal using well-understood
point cloud voxelization and local surface estimation [50,66]. With this decision, we effec-
tively only reconstruct data ultimately used in meshing. However, since dual contouring
on an SDF does not consider diagonal neighborhoods in the voxel grid, we must extend
the recursive traversal to include all 32 diagonal quad face cases (Section 4.1). Furthermore,
to utilize simplification, we require an exhaustive condition for the preservation of the
connectivity (Section 5.1) and a nonmanifold edge detection (Section 5.2) to preserve the
original silhouette.

However, extending the neighborhood also causes unwanted, accidental interior faces
constrained by the voxel size (Figure 9b). A manual fix-up of poorly aligned voxel layers is
also necessary (Figure 10b), which would not be an issue with implicit surfaces encoded as
a signed distance field.

While our method is not intended to compete with general-purpose surface recon-
struction methods due to limited hole filling, which requires dense input point clouds to
generate a voxelization without holes, our performance results, room size, and number
of cameras are on par with the FusionMLS [15] stateless reconstruction system while also
performing the simplification of flat surfaces. The efficiency of the task-based CPU par-
allelization (Figure 17a) of our current prototype can be further improved using better,
state-of-the-art lightweight task scheduling systems [76].

8. Conclusions and Future Work

We presented a stateless surface reconstruction method, which is scalable and effi-
cient enough to reconstruct a full room in real time with sufficient quality for immersive
teleconsultation. Our method generates a mesh directly from voxelized point clouds. We
extended the formulation of Ju’s recursive dual-mesh traversal [17] for cases of the diagonal
neighborhood and showed how to encode these cases. Like in the original dual-contouring
meshing, manifoldness is not guaranteed, which appears in our application if surfaces are
too close to resolve correctly in the voxel grid. Holes are only filled if the voxelization itself
does not contain holes, and we presented a way of merging or separating close-by surfaces
if the grid for voxelization is suboptimally aligned. We also specified additional conditions
for safe simplifications, such that no interior faces are generated.

Since we use a dual-meshing method, multiple detail levels with mixed resolutions for
voxels are possible, and seamless connections are formed for the final mesh, which makes
the method very versatile. Due to the voxel-clustering-based simplification of the octree,
the output mesh is much smaller compared with other mesh reconstruction techniques,
such as marching cubes or direct 2.5D meshing of all depth pixels [5,15], particularly if the
geometry consists of many flat surfaces. Moreover, since simplification is a predecessor of
mesh generation, the workload for the subsequent mesh generation is significantly reduced.
Given the right parameters, we can provide a reconstruction of a simplified mesh from
geometry captured with six fixed, partially overlapping depth cameras in real time directly,
without a canonical model or more expensive out-of-order processing steps. The quality of

Appl. Sci. 2023, 13, 10199 19 of 23

our reconstruction is better than applying an existing direct-meshing method directly after
voxelization, but not as smooth and hole-free as implicit surface reconstruction because we
still use the points obtained by voxelization directly.

Currently, we use a per-pixel screen space texturing method for the final mesh to
demonstrate our system (Section 3.5), which is prone to errors with slight misalignments
of the calibration and requires high-quality depth images. The integration of existing
work for consistent texturing [77–79] would be very beneficial to increase visual fidelity
and consistency, which is vital for medical telepresence since many features and tools
are too small to resolve with geometry using depth cameras. The enhancement of depth
images [80–83] could also significantly increase the quality of our visual result and the
time warping procedure presented in FusionMLS [15] to merge depth images at different
recording timestamps better.

While our method generates a simplified mesh, we currently do not compress the repre-
sentation during transport, requiring us to use a gigabit connection. Mesh compression [84]
libraries, such as Google/Draco [85], add a lot of latency for the large-scale meshes we
use. Exploiting the spatiotemporal coherence [86] would yield best compression ratios, and
since our mesh is not arbitrary, but generated from an octree, the data structure could be
potentially exploited to more efficiently find the relevant frame-to-frame deltas in future
works. Furthermore, DNN-based image segmentations for static and dynamic sections,
like in Yang et al. [87], have the potential to further reduce the load of dynamic updates
through the system by either completely splitting the pipeline, such that no connecting
faces between the static and dynamic parts (e.g., feet on the floor) are formed, or through
intelligently combining the octrees before mesh extraction to generate seamless connections.

Currently, our filters for simplification are very restrictive since only one representative
vertex is contained in each cell. Encoding extensions for multiple vertices per cell, like
Zhang et al. [61] presented, would further extend the opportunities for simplification if
they are adapted to the highly parallel GPU execution model.

Author Contributions: Conceptualization, U.E. and M.W.; methodology, U.E. and M.W.; software,
U.E., M.W. and F.P.; validation, U.E., M.W., F.P., K.Y. and M.L.; resources, M.L. and N.N.; writing—
original draft preparation, M.W. and U.E.; writing—review and editing, U.E.; visualization, M.W.;
supervision, U.E. and N.N.; project administration, U.E. and M.L.; funding acquisition, U.E. and M.L.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the German Federal Ministry of Education and Research (BMBF),
Grant Nos. 16SV8092, 16SV8090, 16SV8088.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Steuer, J. Defining Virtual Reality: Dimensions Determining Telepresence. J. Commun. 1992, 42, 73–93. [CrossRef]
2. Weibel, N.; Gasques, D.; Johnson, J.; Sharkey, T.; Xu, Z.R.; Zhang, X.; Zavala, E.; Yip, M.; Davis, K. Artemis: Mixed-reality

Environment for Immersive Surgical Telementoring. In Proceedings of the Extended Abstracts of the 2020 CHI Conference on
Human Factors in Computing Systems, Honolulu, HI, USA, 25–30 April 2020; pp. 1–4.

3. Stotko, P.; Krumpen, S.; Hullin, M.B.; Weinmann, M.; Klein, R. SLAMCast: Large-Scale, Real-Time 3D Reconstruction and
Streaming for Immersive Multi-Client Live Telepresence. IEEE Trans. Vis. Comput. Graph. 2019, 25, 2102–2112. [CrossRef]
[PubMed]

4. Dou, M.; Khamis, S.; Degtyarev, Y.; Davidson, P.; Fanello, S.R.; Kowdle, A.; Escolano, S.O.; Rhemann, C.; Kim, D.; Taylor, J.; et al.
Fusion4d: Real-time performance capture of challenging scenes. ACM Trans. Graph. (ToG) 2016, 35, 1–13. [CrossRef]

http://doi.org/10.1111/j.1460-2466.1992.tb00812.x
http://dx.doi.org/10.1109/TVCG.2019.2899231
http://www.ncbi.nlm.nih.gov/pubmed/30794183
http://dx.doi.org/10.1145/2897824.2925969

Appl. Sci. 2023, 13, 10199 20 of 23

5. Maimone, A.; Fuchs, H. Encumbrance-free telepresence system with real-time 3D capture and display using commodity depth
cameras. In Proceedings of the 2011 10th IEEE International Symposium on Mixed and Augmented Reality, Basel, Switzerland,
26–29 October 2011; IEEE: Manhattan, NY, USA, 2011; pp. 137–146.

6. Fuchs, H.; Bishop, G.; Arthur, K.; McMillan, L.; Bajcsy, R.; Lee, S.; Farid, H.; Kanade, T. Virtual Space Teleconferencing Using a Sea
of Cameras. In Proceedings of the 1st International Conference on Medical Robotics and Computer Assisted Surgery (MRCAS
’94), Pittsburgh, PA, USA, 22 September 1994 ; pp. 161–167.

7. Fuchs, H.; State, A.; Bazin, J.C. Immersive 3D Telepresence. Computer 2014, 47, 46–52. [CrossRef]
8. Beck, S.; Kunert, A.; Kulik, A.; Froehlich, B. Immersive Group-to-Group Telepresence. IEEE Trans. Vis. Comput. Graph. 2013,

19, 616–625. [CrossRef] [PubMed]
9. Beck, S.; Froehlich, B. Volumetric Calibration and Registration of Multiple RGBD-sensors into a Joint Coordinate System. In

Proceedings of the 2015 IEEE Symposium on 3D User Interfaces (3DUI), Arles, France, 23–24 March 2015; pp. 89–96.
10. Zwicker, M.; Pfister, H.; van Baar, J.; Gross, M. Surface Splatting. In Proceedings of the 28th Annual Conference on Computer

Graphics and Interactive Techniques, New York, NY, USA, 1 August 2001; SIGGRAPH ’01, pp. 371–378. [CrossRef]
11. Kawata, H.; Kanai, T. Image-Based Point Rendering for Multiple Range Images. In Proceedings of the 2nd International

Conference on Information Technology and Applications, Salt Lake City, UT, USA, 15–17 June 2004; pp. 478–483.
12. Calakli, F.; Taubin, G. SSD: Smooth signed distance surface reconstruction. Comput. Graph. Forum 2011, 30, 1993–2002. [CrossRef]
13. Söderholm, H.M.; Sonnenwald, D.H.; Cairns, B.; Manning, J.E.; Welch, G.F.; Fuchs, H. The Potential Impact of 3d Telepresence

Technology on Task Performance in Emergency Trauma Care. In Proceedings of the 2007 International ACM Conference on
Supporting Group Work, New York, NY, USA, 4–7 November 2007; GROUP ’07, pp. 79–88. [CrossRef]

14. Welch, G.; Sonnenwald, D.H.; Fuchs, H.; Cairns, B.; Mayer-Patel, K.; Yang, R.; Towles, H.; Ilie, A.; Krishnan, S.;
Söderholm, H.M.; et al. Remote 3D medical consultation. In Virtual Realities; Springer: Berlin/Heidelberg, Germany,
2011; pp. 139–159.

15. Meerits, S.; Thomas, D.; Nozick, V.; Saito, H. FusionMLS: Highly dynamic 3D reconstruction with consumer-grade RGB-D
cameras. Comput. Vis. Media 2018, 4, 287–303. [CrossRef]

16. Lorensen, W.E.; Cline, H.E. Marching Cubes: A High Resolution 3D Surface Construction Algorithm. SIGGRAPH Comput. Graph.
1987, 21, 163–169. [CrossRef]

17. Ju, T.; Losasso, F.; Schaefer, S.; Warren, J. Dual contouring of hermite data. In Proceedings of the 29th Annual Conference on
Computer Graphics and Interactive Techniques, San Antonio, TX, USA, 23–26 July 2002; pp. 339–346.

18. Orts-Escolano, S.; Rhemann, C.; Fanello, S.; Chang, W.; Kowdle, A.; Degtyarev, Y.; Kim, D.; Davidson, P.L.; Khamis, S.;
Dou, M.; et al. Holoportation: Virtual 3D Teleportation in Real-Time. In Proceedings of the 29th Annual Symposium on User
Interface Software and Technology, New York, NY, USA, 16–19 October 2016; UIST ’16, pp. 741–754.

19. Pejsa, T.; Kantor, J.; Benko, H.; Ofek, E.; Wilson, A. Room2Room: Enabling Life-Size Telepresence in a Projected Augmented Reality
Environment. In Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing,
New York, NY, USA, 27 February–2 March 2016; CSCW ’16, pp. 1716–1725.

20. Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision, 2nd ed.; Cambridge University Press: New York, NY,
USA, 2003.

21. Collet, A.; Chuang, M.; Sweeney, P.; Gillett, D.; Evseev, D.; Calabrese, D.; Hoppe, H.; Kirk, A.; Sullivan, S. High-Quality Streamable
Free-Viewpoint Video. ACM Trans. Graph. 2015, 34, 1–13. [CrossRef]

22. Roth, D.; Yu, K.; Pankratz, F.; Gorbachev, G.; Keller, A.; Lazarovici, M.; Wilhelm, D.; Weidert, S.; Navab, N.; Eck, U. Real-time
mixed reality teleconsultation for intensive care units in pandemic situations. In Proceedings of the 2021 IEEE Conference on
Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), Virtual, 27 March–3 April 2021; IEEE: Manhattan, NY,
USA, 2021; pp. 693–694.

23. Izadi, S.; Kim, D.; Hilliges, O.; Molyneaux, D.; Newcombe, R.; Kohli, P.; Shotton, J.; Hodges, S.; Freeman, D.; Davison, A.; et al.
KinectFusion: Real-time 3D Reconstruction and Interaction Using a Moving Depth Camera. In Proceedings of the UIST ’11 24th
annual ACM Symposium on User Interface Software and Technology, Santa Barbara, CA, USA, 16–19 October 2011; ACM: New
York, NY, USA, 2011; pp. 559–568.

24. Maimone, A.; Fuchs, H. Real-time volumetric 3D capture of room-sized scenes for telepresence. In Proceedings of the 2012
3DTV-Conference: The True Vision-Capture, Transmission and Display of 3D Video (3DTV-CON), Zurich, Switzerland, 15–17
October 2012; IEEE: Manhattan, NY, USA, 2012; pp. 1–4.

25. Meerits, S.; Nozick, V.; Saito, H. Real-time scene reconstruction and triangle mesh generation using multiple RGB-D cameras.
J. Real-Time Image Process. 2019, 16, 1–13. [CrossRef]

26. Schonberger, J.L.; Frahm, J.M. Structure-from-motion revisited. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 4104–4113.

27. Durrant-Whyte, H.; Bailey, T. Simultaneous localization and mapping: Part I. IEEE Robot. Autom. Mag. 2006, 13, 99–110.
[CrossRef]

28. Newcombe, R.A.; Izadi, S.; Hilliges, O.; Molyneaux, D.; Kim, D.; Davison, A.J.; Kohi, P.; Shotton, J.; Hodges, S.; Fitzgibbon, A.
Kinectfusion: Real-time dense surface mapping and tracking. In Proceedings of the 2011 10th IEEE International Symposium on
Mixed and Augmented Reality, Basel, Switzerland, 26–29 October 2011; IEEE: Manhattan, NY, USA, 2011; pp. 127–136.

http://dx.doi.org/10.1109/MC.2014.185
http://dx.doi.org/10.1109/TVCG.2013.33
http://www.ncbi.nlm.nih.gov/pubmed/23428446
http://dx.doi.org/10.1145/383259.383300
http://dx.doi.org/10.1111/j.1467-8659.2011.02058.x
http://dx.doi.org/10.1145/1316624.1316636
http://dx.doi.org/10.1007/s41095-018-0121-0
http://dx.doi.org/10.1145/37402.37422
http://dx.doi.org/10.1145/2766945
http://dx.doi.org/10.1007/s11554-017-0736-x
http://dx.doi.org/10.1109/MRA.2006.1638022

Appl. Sci. 2023, 13, 10199 21 of 23

29. Berger, M.; Tagliasacchi, A.; Seversky, L.M.; Alliez, P.; Guennebaud, G.; Levine, J.A.; Sharf, A.; Silva, C.T. A survey of surface
reconstruction from point clouds. In Proceedings of the Computer Graphics Forum; Wiley Online Library: Hoboken, NJ, USA, 2017;
Volume 36, pp. 301–329.

30. Carr, J.C.; Beatson, R.K.; Cherrie, J.B.; Mitchell, T.J.; Fright, W.R.; McCallum, B.C.; Evans, T.R. Reconstruction and representation
of 3D objects with radial basis functions. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive
Techniques, New York, NY, USA, 1 August 2001; pp. 67–76.

31. Zhou, Z.; Fu, Y.; Zhao, J. An efficient method for surface reconstruction based on local coordinate system transform and partition
of unity. Neural Netw. World 2020, 30, 161. [CrossRef]

32. Kazhdan, M.; Bolitho, M.; Hoppe, H. Poisson surface reconstruction. In Proceedings of the Fourth Eurographics Symposium on
Geometry Processing, Sardinia, Italy, 26–28 June 2006; Volume 7, pp. 61–70.

33. Kazhdan, M.; Hoppe, H. Screened poisson surface reconstruction. ACM Trans. Graph. (ToG) 2013, 32, 1–13. [CrossRef]
34. Kazhdan, M. Reconstruction of solid models from oriented point sets. In Proceedings of the Third Eurographics Symposium on

Geometry Processing, Vienna, Austria, 4–6 July 2005; pp. 73–es.
35. Schall, O.; Belyaev, A.; Seidel, H.P. Error-guided adaptive Fourier-based surface reconstruction. Comput.-Aided Des. 2007,

39, 421–426. .: 10.1016/j.cad.2007.02.005. [CrossRef]
36. Braude, I.; Marker, J.; Museth, K.; Nissanov, J.; Breen, D. Contour-based surface reconstruction using mpu implicit models. Graph.

Model. 2007, 69, 139–157. [CrossRef] [PubMed]
37. Ingale, A.K. Real-time 3D reconstruction techniques applied in dynamic scenes: A systematic literature review. Comput. Sci. Rev.

2021, 39, 100338. .: 10.1016/j.cosrev.2020.100338. [CrossRef]
38. Delaunay, B. Sur la sphere vide. Izv. Akad. Nauk SSSR Otd. Mat. I Estestv. Nauk 1934, 7, 1–2.
39. Alexiadis, D.S.; Zarpalas, D.; Daras, P. Real-Time, Full 3-D Reconstruction of Moving Foreground Objects From Multiple

Consumer Depth Cameras. IEEE Trans. Multimed. 2013, 15, 339–358. [CrossRef]
40. Zollhöfer, M.; Nießner, M.; Izadi, S.; Rehmann, C.; Zach, C.; Fisher, M.; Wu, C.; Fitzgibbon, A.; Loop, C.; Theobalt, C.; et al.

Real-time non-rigid reconstruction using an RGB-D camera. ACM Trans. Graph. (ToG) 2014, 33, 1–12. [CrossRef]
41. Newcombe, R.A.; Fox, D.; Seitz, S.M. Dynamicfusion: Reconstruction and tracking of non-rigid scenes in real-time. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 343–352.
42. Innmann, M.; Zollhöfer, M.; Nießner, M.; Theobald, C.; Stamminger, M. VolumeDeform: Real-Time Volumetric Non-rigid

Reconstruction. In Proceedings of the ECCV 2016 European Conference on Computer Vision; Springer: Cham, Switzerland, 2016;
pp. 362–379. [CrossRef]

43. Dou, M.; Davidson, P.; Fanello, S.; Khamis, S.; Kowdle, A.; Rhemann, C.; Tankovich, V.; Izadi, S. Motion2fusion: Real-time
volumetric performance capture. ACM Trans. Graph. 2017, 36, 1–16. [CrossRef]

44. Xu, L.; Su, Z.; Han, L.; Yu, T.; Liu, Y.; Fang, L. UnstructuredFusion: Realtime 4D Geometry and Texture Reconstruction Using
Commercial RGBD Cameras. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 2508–2522. [CrossRef] [PubMed]

45. Guo, K.; Xu, F.; Yu, T.; Liu, X.; Dai, Q.; Liu, Y. Real-Time Geometry, Albedo, and Motion Reconstruction Using a Single RGB-D
Camera. ACM Trans. Graph. 2017, 36, 44a. [CrossRef]

46. Slavcheva, M.; Baust, M.; Cremers, D.; Ilic, S. KillingFusion: Non-rigid 3D Reconstruction without Correspondences. In
Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July
2017; pp. 5474–5483. [CrossRef]

47. Slavcheva, M.; Baust, M.; Ilic, S. SobolevFusion: 3D Reconstruction of Scenes Undergoing Free Non-Rigid Motion. In Proceedings
of the The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018.

48. Ohtake, Y.; Belyaev, A.; Alexa, M.; Turk, G.; Seidel, H.P. Multi-Level Partition of Unity Implicits. ACM Trans. Graph. 2003,
22, 463–470. [CrossRef]

49. Kazhdan, M.; Chuang, M.; Rusinkiewicz, S.; Hoppe, H. Poisson Surface Reconstruction with Envelope Constraints. Comput.
Graph. Forum 2020, 39, 173–182. [CrossRef]

50. Alexa, M.; Behr, J.; Cohen-Or, D.; Fleishman, S.; Levin, D.; Silva, C.T. Computing and rendering point set surfaces. IEEE Trans.
Vis. Comput. Graph. 2003, 9, 3–15. [CrossRef]

51. Dyken, C.; Ziegler, G.; Theobalt, C.; Seidel, H.P. High-speed Marching Cubes using HistoPyramids. Comput. Graph. Forum 2008,
27, 2028–2039. [CrossRef]

52. Newman, T.S.; Yi, H. A survey of the marching cubes algorithm. Comput. Graph. 2006, 30, 854–879. [CrossRef]
53. Gibson, S.F.F. Constrained elastic surface nets: Generating smooth surfaces from binary segmented data. In Proceedings of the

Medical Image Computing and Computer-Assisted Intervention—MICCAI’98; Wells, W.M., Colchester, A., Delp, S., Eds.; Springer:
Berlin/Heidelberg, Germany, 1998; pp. 888–898.

54. Shu, R.; Zhou, C.; Kankanhalli, M.S. Adaptive marching cubes. Vis. Comput. 1995, 11, 202–217. [CrossRef]
55. Schaefer, S.; Ju, T.; Warren, J. Manifold Dual Contouring. IEEE Trans. Vis. Comput. Graph. 2007, 13, 610–619. [CrossRef]
56. Rashid, T.; Sultana, S.; Audette, M.A. Watertight and 2-manifold Surface Meshes Using Dual Contouring with Tetrahedral

Decomposition of Grid Cubes. Procedia Eng. 2016, 163, 136–148. .: 10.1016/j.proeng.2016.11.037. [CrossRef]
57. Schaefer, S.; Warren, J. Dual marching cubes: Primal contouring of dual grids. In Proceedings of the 12th Pacific Conference on

Computer Graphics and Applications, Seoul, Republic of Korea, 6–8 October 2004; pp. 70–76. [CrossRef]
58. Chen, Z.; Zhang, H. Neural marching cubes. ACM Trans. Graph. 2021, 40, 1–15. [CrossRef]

http://dx.doi.org/10.14311/NNW.2020.30.012
http://dx.doi.org/10.1145/2487228.2487237
http://dx.doi.org/10.1016/j.cad.2007.02.005
http://dx.doi.org/10.1016/j.gmod.2006.09.007
http://www.ncbi.nlm.nih.gov/pubmed/18496609
http://dx.doi.org/10.1016/j.cosrev.2020.100338
http://dx.doi.org/10.1109/TMM.2012.2229264
http://dx.doi.org/10.1145/2601097.2601165
http://dx.doi.org/10.1007/978-3-319-46484-8_22
http://dx.doi.org/10.1145/3130800.3130801
http://dx.doi.org/10.1109/TPAMI.2019.2915229
http://www.ncbi.nlm.nih.gov/pubmed/31071018
http://dx.doi.org/10.1145/3072959.3083722
http://dx.doi.org/10.1109/CVPR.2017.581
http://dx.doi.org/10.1145/882262.882293
http://dx.doi.org/10.1111/cgf.14077
http://dx.doi.org/10.1109/TVCG.2003.1175093
http://dx.doi.org/10.1111/j.1467-8659.2008.01182.x
http://dx.doi.org/10.1016/j.cag.2006.07.021
http://dx.doi.org/10.1007/BF01901516
http://dx.doi.org/10.1109/TVCG.2007.1012
http://dx.doi.org/10.1016/j.proeng.2016.11.037
http://dx.doi.org/10.1109/PCCGA.2004.1348336
http://dx.doi.org/10.1145/3478513.3480518

Appl. Sci. 2023, 13, 10199 22 of 23

59. Garland, M.; Heckbert, P.S. Surface Simplification Using Quadric Error Metrics. In Proceedings of the 24th Annual Conference on
Computer Graphics and Interactive Techniques, Los Angeles, CA, USA, 3–8 August 1997; SIGGRAPH ’97, pp. 209–216. [CrossRef]

60. Cignoni, P.; Montani, C.; Scopigno, R. A comparison of mesh simplification algorithms. Comput. Graph. 1998, 22, 37–54. [CrossRef]
61. Zhang, N.; Hong, W.; Kaufman, A. Dual contouring with topology-preserving simplification using enhanced cell representation.

In Proceedings of the IEEE Visualization 2004—Proceedings, Austin, TX, USA, 10–15 October 2004; pp. 505– 512. [CrossRef]
62. Elseberg, J.; Magnenat, S.; Siegwart, R.; Nüchter, A. Comparison of nearest-neighbor-search strategies and implementations for

efficient shape registration. J. Softw. Eng. Robot. 2012, 3, 2–12.
63. Grunnet-Jepsen, A.; Tong, D. Depth post-processing for intel® realsense™ d400 depth cameras. New Technology Group, Intel

Corporation: Santa Clara, CA, USA, 2018; Volume 3.
64. Zhou, K.; Gong, M.; Huang, X.; Guo, B. Data-Parallel Octrees for Surface Reconstruction. IEEE Trans. Vis. Comput. Graph. 2011,

17, 669–681. [CrossRef] [PubMed]
65. Bakunas-Milanowski, D.; Rego, V.; Sang, J.; Chansu, Y. Efficient Algorithms for Stream Compaction on GPUs. Int. J. Netw.

Comput. 2017, 7, 208–226. [CrossRef] [PubMed]
66. Hoppe, H.; DeRose, T.; Duchamp, T.; McDonald, J.; Stuetzle, W. Surface Reconstruction from Unorganized Points. In Proceedings

of the 19th Annual Conference on Computer Graphics and Interactive Techniques, New York, NY, USA, 1 July 1992; SIGGRAPH
’92, p. 71–78. [CrossRef]

67. Zhou, Q.Y.; Park, J.; Koltun, V. Open3D: A Modern Library for 3D Data Processing. arXiv 2018, arXiv:1801.09847.
68. Trettner, P.; Kobbelt, L. Fast and Robust QEF Minimization using Probabilistic Quadrics. Comput. Graph. Forum 2020, 39, 325–334.

[CrossRef]
69. Marton, Z.C.; Rusu, R.B.; Beetz, M. On Fast Surface Reconstruction Methods for Large and Noisy Datasets. In Proceedings of the

IEEE International Conference on Robotics and Automation (ICRA), Kobe, Japan, 12–17 May 2009; pp. 3218–3223. [CrossRef]
70. Microsoft. Azure Kinect DK Documentation, 2022. Available online: https://docs.microsoft.com/en-us/azure/Kinect-dk/

(accessed on 15 July 2023).
71. Bernardini, F.; Mittleman, J.; Rushmeier, H.; Silva, C.; Taubin, G. The Ball-Pivoting Algorithm for Surface Reconstruction. Vis.

Comput. Graph. IEEE Trans. 1999, 5, 349–359. [CrossRef]
72. Rusu, R.B.; Cousins, S. 3D is here: Point Cloud Library (PCL). In Proceedings of the IEEE International Conference on Robotics

and Automation (ICRA), Shanghai, China, 9–13 May 2011.
73. Kazhdan, M. Adaptive Multigrid Solvers (Version 13.72), 2021. Available online: https://www.cs.jhu.edu/~misha/Code/

PoissonRecon/Version13.72/ (accessed on 15 July 2023).
74. CloudCompare (Version 2.10.2) [GPL Software], 2019. Available online: https://www.cloudcompare.org/ (accessed on

15 July 2023).
75. Lê, N.M.; Pop, A.; Cohen, A.; Zappa Nardelli, F. Correct and Efficient Work-Stealing for Weak Memory Models. SIGPLAN Not.

2013, 48, 69–80. [CrossRef]
76. Yang, J.; He, Q. Scheduling parallel computations by work stealing: A survey. Int. J. Parallel Program. 2018, 46, 173–197. [CrossRef]
77. Fu, Y.; Yan, Q.; Yang, L.; Liao, J.; Xiao, C. Texture Mapping for 3D Reconstruction with RGB-D Sensor. In Proceedings of the 2018

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 8–23 June 2018; pp. 4645–4653.
[CrossRef]

78. Huang, J.; Thies, J.; Dai, A.; Kundu, A.; Jiang, C.; Guibas, L.J.; Niessner, M.; Funkhouser, T. Adversarial Texture Optimization
from RGB-D Scans. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA,
13–19 June 2020; pp. 1559–1568.

79. Oliveira, M.; Lim, G.H.; Madeira, T.; Dias, P.; Santos, V. Robust Texture Mapping Using RGB-D Cameras. Sensors 2021, 21, 3248.
[CrossRef]

80. Chen, L.; Lin, H.; Li, S. Depth image enhancement for Kinect using region growing and bilateral filter. In Proceedings of the 21st
International Conference on Pattern Recognition (ICPR2012), Tsukuba, Japan, 11–15 November 2012; IEEE: Manhattan, NY, USA,
2012; pp. 3070–3073.

81. Matsuo, K.; Aoki, Y. Depth image enhancement using local tangent plane approximations. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3574–3583.

82. Liu, S.; Chen, C.; Kehtarnavaz, N. A computationally efficient denoising and hole-filling method for depth image enhancement.
In Proceedings of the Real-Time Image and Video Processing 2016; Kehtarnavaz, N., Carlsohn, M.F., Eds.; International Society for
Optics and Photonics, SPIE: Bellingham, WA, USA, 2016; Volume 9897, pp. 235–243. [CrossRef]

83. Vosters, L.; Varekamp, C.; Haan, G. Overview of Efficient High-Quality State-of-the-Art Depth Enhancement Methods by
Thorough Design Space Exploration. J. Real-Time Image Process. 2019, 16, 355–375. [CrossRef]

84. Maglo, A.; Lavoué, G.; Dupont, F.; Hudelot, C. 3D Mesh Compression: Survey, Comparisons, and Emerging Trends. ACM
Comput. Surv. 2015, 47, 1–41. [CrossRef]

85. Galligan, F.; Hemmer, M.; Stava, O.; Zhang, F.; Brettle, J. Google/Draco: A Library for Compressing and Decompressing 3D
Geometric Meshes and Point Clouds, 2018. Available online: https://github.com/google/draco (accessed on 15 July 2023).

http://dx.doi.org/10.1145/258734.258849
http://dx.doi.org/10.1016/S0097-8493(97)00082-4
http://dx.doi.org/10.1109/VISUAL.2004.27
http://dx.doi.org/10.1109/TVCG.2010.75
http://www.ncbi.nlm.nih.gov/pubmed/20498507
http://dx.doi.org/10.15803/ijnc.7.2_208
http://www.ncbi.nlm.nih.gov/pubmed/37684703
http://dx.doi.org/10.1145/133994.134011
http://dx.doi.org/10.1111/cgf.13933
http://dx.doi.org/10.1109/ROBOT.2009.5152628
https://docs.microsoft.com/en-us/azure/Kinect-dk/
http://dx.doi.org/10.1109/2945.817351
https://www.cs.jhu.edu/~misha/Code/PoissonRecon/Version13.72/
https://www.cs.jhu.edu/~misha/Code/PoissonRecon/Version13.72/
https://www.cloudcompare.org/
http://dx.doi.org/10.1145/2517327.2442524
http://dx.doi.org/10.1007/s10766-016-0484-8
http://dx.doi.org/10.1109/CVPR.2018.00488
http://dx.doi.org/10.3390/s21093248
http://dx.doi.org/10.1117/12.2230495
http://dx.doi.org/10.1007/s11554-015-0537-z
http://dx.doi.org/10.1145/2693443
https://github.com/google/draco

Appl. Sci. 2023, 13, 10199 23 of 23

86. Arvanitis, G.; Lalos, A.S.; Moustakas, K. Fast Spatio-temporal Compression of Dynamic 3D Meshes. arXiv 2021, arXiv:2111.10105.
87. Yang, S.; Wang, J.; Wang, G.; Hu, X.; Zhou, M.; Liao, Q. Robust RGB-D SLAM in dynamic environment using faster R-CNN. In

Proceedings of the 2017 3rd IEEE International Conference on Computer and Communications (ICCC), Paris, France, 21–25 May
2017; pp. 2398–2402.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Related Work
	Real-Time Dynamic Surface Reconstruction
	Isosurface Extraction
	Mesh Simplification with Dual Contouring

	Pipeline Overview
	Octree Generation and Voxelization
	Surface Sample and Normal Estimation
	Simplification via Octree-Based Vertex Clustering
	Dual Contouring for Point Clouds
	Textured Rendering

	Dual Contouring for Voxelized Point Clouds
	Extension for Diagonal Connections
	Connectivity Properties and Interior Mesh Generation

	Topology and Silhouette-Preserving Simplification
	Preventing Interior Faces
	Silhouette Preservation

	Evaluation
	Comparison with Existing Offline Methods
	Simplification Characteristics
	Performance Characteristics
	CPU Scaling
	Full System Performance

	Discussion
	Conclusions and Future Work
	References

