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Abstract: As today’s society ages, age-related diseases become more frequent. One very common
but yet preventable disease is the development of pressure ulcers (PUs). PUs can occur if tissue
is exposed to a long-lasting pressure load, e.g., lying on tissue without turning. The cure of PUs
requires intensive care, especially for the elderly or people with preexisting conditions whose tissue
needs longer healing times. The consequences are heavy suffering for the patient and extreme costs
for the health care system. To avoid these consequences, our objective is to develop a pressure
ulcer prophylaxis device. For that, we built a new sensor system able to monitor the pressure load
and tissue vital signs in immediate local proximity at patient’s predilection sites. In the clinical
study, we found several indicators showing correlations between tissue perfusion and the risk of
PU development, including strongly reduced SpO2 levels in body tissue prior to a diagnosed PU.
Finally, we propose a prophylaxis system that allows for the prediction of PU developments in early
stages before they become visible. This work is the first step in generating an effective system to
warn patients or caregivers about developing PUs and taking appropriate preventative measures.
Widespread application could reduce patient suffering and lead to substantial cost savings.

Keywords: pressure ulcers; decubitus; bedsore; foot ulcer; machine learning; digital health; AI;
prevention; personalized medicine; continuous monitoring

1. Introduction

In an aging society, the prevalence of age-related diseases rises. Pressure ulcers, also
known as bedsores, pressure injury, or decubitus, are one of these illnesses that already
have a significant negative impact on the healthcare system. To increase readability, the
acronym for pressure ulcers “PU” will be used throughout this work. A PU is defined
as a local tissue or skin damage that occurs as a consequence of applied pressure with
or without additional shear stress. Mainly, PUs emerge at predilection sites such as bony
prominences or during long-term exposure to hard materials. The consequences can reach
from minor skin or tissue damages to large and very painful wounds. PUs rarely occur
in patients with normal sensory function and mobility, since conscious and unconscious
feedback leads to position shifts before irreversible tissue damage occurs. Many risk factors
of PU development are known and tend to arise with age. Major risk factors include
age, sensory impairment (e.g., neuropathy as a consequence of diabetes) or immobility,
for example after surgery [1].
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The main goals of this study are (1) to lower the pain experienced by patients and
(2) to reduce healthcare costs. For that, prophylaxis tools are the most efficient way since
they reduce the need for extensive care. Within the KIPRODE (German acronym for
“AI for the prophylaxis of decubitus”) project [2], we developed a concept to build a
prophylaxis system as shown in Figure 1. At the core of this concept a wearable sensor
system monitors the pressure load applied on the skin as well as vital parameters of the
skin at a predilection site. In order to correlate the sensor data with the skin’s health
condition, a doctor’s assessment must also be recorded. Then, machine learning is used to
find and evaluate an early warning pattern for PUs. The final application should operate
on a smartphone or a wearable device and warn the patient or caregiver if the risk of
PUs rises. This allows for a timely reaction and avoids the severe consequences of a PU.
Especially in ambulatory settings, where regular inspection of predilection sites and turning
or repositioning of the patient cannot be guaranteed, the prophylaxis tool would be of great
use. Our partner MONKS [3] provides the required infrastructure for this work as well as
future implementations with a privacy-secured online tool, that also allows us to run the
data analysis algorithms.

PRESSURE

SpO2 %

TEMPERATURE

MOVEMENT

OK!

EVALUATION OF PATIENT

DATA COLLECTION MACHINE LEARNING

PATIENT WITH 
SENSOR PATCH

PROPHYLAXIS-APP

Figure 1. Concept of our suggested pressure ulcer prophylaxis system: KIPRODE [2].

1.1. Pressure Ulcers Prevalence and Health Care Cost

According to official statistics [4], there were almost five million people in need of care
in Germany in 2021, of whom around 248,000 developed a severe PU (at least grade two)
in the same year [5]. The global incidence of PUs is estimated to be around 3,200,000 in
2019 [6]. Due to the reduced healing ability of older patients and the extensive treatment
required to heal pressure ulcers, the disease poses a major health risk to many individuals.

Additionally, pressure ulcers also lead to a significant economic burden. Even though
only a small amount of data about actual prevention costs exists, Demarre et al. [7] com-
pared several studies on PU prevention in 2015. According to them, the cost for preventive
measures per patient and day varied between €2.65 and €87.57 across different institutions
resulting in enormous expenses if the patients needed to be covered over long time periods.
If prevention fails and a PU needs to be treated, the costs per patient per day can amount
up to €470.49.

Anthony et al. [8] estimated the related health care cost by citing the cost of wounds
(PUs are a part of the cost) in the UK, which amounts up to £5.1bn annually; the treatment
cost of a pressure ulcer of the most severe stage in the US is estimated to be over US$129,000.
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1.2. Pathogenesis of Pressure Ulcers

Pressure ulcers (PUs) are one of the most critical diseases that bedridden individuals
and those with limited mobility can suffer from. The most common predilection sites for
PUs are body areas with little soft tissue between the bone and the skin. Applying pressure
to these areas over an extended period can lead to the formation of a pressure ulcer. Some
of these sites include the skin over the sacrum, coccyx, hips, and shoulder blades, as well
as the skin on the heels, elbows, knees, ankles, and the back of the skull [9]. The basic
mechanisms involved in the development of pressure ulcers are directly influenced by the
pressure or shear force on the skin and underlying tissues [10]. In most cases, the pressure
is generated by the individual’s own body weight or by a medical device in contact with the
skin. The initial pathology in response to any form of pressure is the reduced or interrupted
blood supply to the affected area, causing hypoxia, i.e., reduced oxygen supply of the
tissue. Prolonged pressure load and hypoxia can then cause inflammatory edema, which
increases the pressure on the surrounding tissue and further impairs blood supply [10,11].
These mechanisms lead to ischemic damage to the skin and underlying tissue layers. This
damage increases exponentially with the duration of this condition, leading to larger and
deeper tissue defects [11].

The risk of developing a pressure ulcer depends on numerous factors that can affect
the skin’s resistance to pressure. Some of these factors are a humid microclimate, atheroscle-
rosis, paralysis, neuropathy (e.g., diabetes-related), malnutrition, increased age, BMI > 23,
and hypertension [1,12–14].

PUs have a high risk for recurrence. Patients who already had a PU with or without
surgery show a recurrence risk of up to 80% within the first years after treatment [15]. Very
severe wounds may need to be operated and covered with new skin as the wound may not
heal itself.

1.3. Pressure Ulcer Classification

The classification of pressure ulcers is commonly guided by the severity of tissue
damage and categorized into four stages following the guidelines set by the European
Pressure Ulcer Advisory Panel [16], the National Pressure Injury Advisory Panel [17],
and the Pan Pacific Pressure Injury Alliance [18]. These stages range from simple skin
erosion to deep muscular tissue damage, each requiring different treatment [9,19]. A stage
one pressure ulcer describes a redness of the affected skin (hyperemia) that cannot be
reduced or dissolved by pressure. This patho-mechanism is utilized to diagnose stage one
pressure ulcers using the Phillips finger test.

For the finger test according to Phillips, a professional presses a finger to compress
the red (hyperemic) skin of a patient and examines the spot where the finger is pressed.
If there is no visual indication for a reduction of the hyperemia after the finger is removed,
the Phillips finger test is considered positive, indicating a stage one PU. A stage two
pressure ulcer is described as partial destruction of the skin in the pressure-exposed area
that can reach down to the dermis. Commonly a flat, light red sore bed without scabs or
layering is visible through these lesions. To be classified as a stage three PU, the lesion must
be deep enough to clearly expose subcutaneous fat, while not revealing any visible bone,
tendons, or muscle. A stage four pressure ulcer is only diagnosed when the affected area
has severe tissue damage, showing the underlying bone, muscle, and tendon structures.
Scabs and plaque are often present in these wounds as well.

1.4. Current Approaches for Pressure Ulcer Prevention

Regular inspection of predilection sites and turning or repositioning of the patient are
clinical standards for preventing pressure injuries in hospitals. The literature frequently
mentions turning intervals of two hours, but this guideline appears to be based more on
economical considerations than on scientific findings [1,20]. To identify high-risk patients,
hospitals often use risk assessment scales such as the Braden scale to implement suitable
prevention programs [21].
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Lechner et al. [22] summarize the outcome of 332 studies about the prevention of PUs.
They conclude that several preventive measures exist that reduce pressure exposure on
predilection sites. However, they also point out the lack of PU prevention methods with
high accuracy, do not mention personalized wearable monitoring systems and state the
need for further research. Furthermore, they mention the heterogeneity of study outcomes,
which consequently makes comparisons difficult [22]. A possible solution for that are
“core outcome sets (COS)” that define a minimum of standardized outcomes every study
should provide (COMET [23]). Their list of 68 outcome domains needs further compression
to enable better comparison of future studies and is an ongoing project as stated by the
authors [22].

According to Roaf [24], the prevention of PUs is a problem of “economic feasibility
rather than a lack of preventive knowledge”. The high economic costs stem from the
extensive effort required for manually monitoring the risk of PUs and taking preventive
measures by hand. Technical assistance might ease the manual work and lower the cost.
The majority of technical systems emphasize ways to prevent damaging skin pressure, such
as using soft bedding or encourage frequent patient movement. Sheets or mattresses to
measure the patient’s position, movement (e.g., [25–27]) or pressure (e.g., [28,29]) are often
used to derive PU risk estimations. Another team of researchers tried to monitor patient
positions in the bed with the help of wearable beacons, i.e., small wireless transceivers,
and multiple sensors distributed in the room [30]. Special beds, mattresses or room installa-
tions share the disadvantage of requiring installation. This limits their use in ambulatory
or wheelchair settings.

The advantage of wearable prophylaxis systems is their potential usage in the am-
bulatory setting and the ability to individually monitor patients during the whole day.
Cicceri et al. [31] present a mobile, low-cost PU prevention tool based on motion measure-
ments. A similar approach is used by Monroy et al. [32] who take advantage of motion
data from an inertial sensor. However, those systems only try to estimate the risk of PUs
by movement analysis. This is only a substitute measurement for the primary cause of
PUs, which is long-term pressure or shear forces on the skin as described in Section 1.2.
Silva et al. [33] reach a similar conclusion in their recent review on PU prevention methods:
most intelligent and sensor-based approaches to prevent PUs are focusing on the classifica-
tion of patients’ lying positions and may even lack real clinical studies. Furthermore, only
very few approaches in the scope of their review actually integrate sensor-based data.

The authors could not find any preventive tools that focus on the actual PU devel-
opment. As presented in Section 1.2, the most likely reason for the development of a PU
is reduced tissue perfusion or skin that is pressurized over a long period of time. Hence,
the most promising solution in our opinion is to monitor the tissue blood oxygenation
during pressurization, to effectively prevent PU development. One comparable approach
is used in Panahi et al.’s [34] study, which monitors SpO2 levels at diabetic foot ulcers,
but focuses on wound healing and not prediction.

1.5. Tissue Blood Oxygenation—Measurement Methods

The pressure ulcer risk factor discussed above, tissue perfusion, correlates with tissue
blood oxygenation (SpO2). Hence, we want to quantify the actual tissue SpO2 and use
it to predict the occurrence of PUs. SpO2 measurements are not commonly applied for
different types of tissue apart from the wrist or fingers, even though sensors theoretically
permit monitoring different body sites. These measurements are often referred to as skeletal
muscle oxygen saturation (StO2) and have different levels of precision, depending on the
measured depth [35]. Other studies have used this technology to study tissue oxygenation
in skeletal muscle, monitor compartment syndrome, or assess patients with lower-extremity
arterial disease [36]. On the other hand, measuring blood-oxygenation with SpO2-trackers
is well established as the noninvasive standard in modern healthcare and lifestyle such
as smartwatches. Many studies have shown the accuracy of these devices, leading to
their widespread use. One such study is provided by Lauterbach et al. [37] or the recent
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experiment by Kang et al. [38], showing a clear and precise correlation between inspired air-
oxygenation and blood-oxygenation. Due to the widespread availability and adaptability of
these SpO2 sensors, we considered them for the new application of local tissue-oxygenation
monitoring. Having a temperature monitoring device directly adjacent to the SpO2 monitor
is an integral part of our systems design. Studies have shown the strong correlation between
tissue temperature and oxygen saturation in extremities, with lower tissue temperature
leading to lower blood-oxygenation in that area [39].

1.6. Research Hypothesis

The underlying hypothesis for this research is that the development of a PU due
to prolonged high skin pressure is indicated by insufficient tissue perfusion and can be
detected before visible skin damage occurs by measuring the skin’s vital signs: local
tissue oxygen saturation (SpO2) and skin temperature. To test the research hypothesis,
we developed a wearable sensor device that continuously monitors these parameters at
a predilection site. Figure 2 displays the proposed system architecture. Its development,
verification, results from a clinical study and the evaluation of an early warning pattern are
described hereafter.

Figure 2. Schematic application of our KIPRODE-system as introduced in [40].

2. Materials and Methods

This study investigates the development of pressure ulcers (PUs) with the goal to
predict their early occurrence. Therefore, the following section introduces the developed
electronics for data acquisition as well as the study population for the human trials (see
ethical approval at the end). The acquired data presents an entirely new set of vital
sign trends combined with pressure load measurements taken directly on the skin and is
published on request [41]. The results generated in this study can be reproduced with the
publicly available software [42].

2.1. Sensor System and Electronics

Since we want to record vital signs and pressure measurements in local proximity to
the PU predilection sites of a human body, we had to develop a new sensor system. Usually,
vital sign trends of interest are only recorded with a finger pulse oximeter, in a smartwatch
or an ear thermometer (SpO2, HR, temperature), but not at body tissue elsewhere. The au-
thors are not aware of any standard measurement for pressure load at predilection sites
related to PUs.

Figure 3 displays the KIPRODE sensor system: as shown in Figure 3a, it consists of
the main electronic (1), the pressure sensor foil (2) and sensor node (3). The latter is a
button-shaped device measuring SpO2 in the adjacent tissue, heart rate (HR), and skin or



Bioengineering 2023, 10, 1125 6 of 33

local tissue temperature, respectively. The pressure sensor foil is a thin and flexible foil,
with a thickness of less than a millimeter, measuring 6.5 cm on each side and equipped with
25 force-sensitive elements. Those are conductive, printed elements with a linear resistance
changebased on the applied force that can be measured analogously. Technically, it is a
measurement of force per area. However, due to the consistent element size and for the
sake of simplicity in terminology (relating to pressure ulcers and pressure measurement),
we continue to use the phrase. Combined, both devices can fit in the palm of a hand. These
measuring devices are connected to a shared box by separate cords, that are between 25 cm
and 35 cm in length. The box measures approximately 10 cm · 6.5 cm and contains the
hardware required to run the system, such as the microcontroller and sensor control as well
as a rechargeable battery and SD card to save measured data. The small size allows for
continuous, highly targeted measurements without imposing a significant burden on the
patient or the medical staff.

(a) (b)

Figure 3. KIPRODE sensor system and its application at a control group patient: the sensor node and
pressure sensing foil are located in close proximity to each other at a predilection site. (a) KIPRODE
sensor system: (1) main electronics: battery powered data acquisition (2) pressure sensor foil (3) sensor
node: reflective pulse oximeter and infrared thermometer. (b) Sensor applied at a patient: the
hip (trochanter) is a predilection site for PUs due to the thin skin over the bones. (©Fraunhofer
EMFT/Bernd Mueller).

The main electronic consists of a microcontroller that calls every sensor (pulse oximeter,
skin temperature and pressure) in a periodic interval (5 min for the pressure sensor and
1 min for all others) and saves the data onto an SD card. In a next development stage,
the data should be sent via Bluetooth to a connected device. For ease of engineering and
due to the absence of compatible smartphones during the trials, we opted to use SD storage.

For manufacturing, first the circuit boards are assembled and tested. That comprises
the main board (1) with most electronic components and the sensor node (3) holding the
skin temperature sensor and pulse oximeter. The pressure sensor foil (2) has a pin header to
easily connect it with the electronics. All wire connections are implemented with adjusted
cords and protected against impacts of touch as well as humidity with heat shrink tubing
of different sizes. To enable the exchange of broken wires or damaged sensors, the wires
are plugged into the main electronics that reside in a plastic housing (white in Figure 3a).
The gray colored plastic element implements our strain-relief system to protect the plugs
from external strain when a patient pulls the cords. The cords are wrapped around the
plastic element such that it takes external strain. A white plastic cover is then screwed onto
the main housing in (1) to complete the electronic system.

The pulse oximeter is the MAX30102 chip from Analog Devices [43] and represents a
common state-of-art device that is used in many smartwatches. Ahmad et al. [44] report a
high accuracy of this pulse oximeter module comparing it with hospital patient monitoring:
SpO2 measurements align with 97.6%. A pulse oximeter consists of at least two LEDs,
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an infrared and a red one. These LEDs send light pulses onto and into the skin, which are
partially reflected. Oxygen-saturated blood molecules show a different reflection pattern
than those not carrying oxygen. By analyzing the reflection pattern of both LEDs, one can
determine the oxygen saturation of the blood. In well-known finger-tip devices, the light
passes through the whole finger and the pattern of light that passes through the finger is
analyzed. This method is limited to body sites where only a short distance through the
skin has to be overcome such as fingers or toes. A reflexive pulse oximeter as used here,
on the other hand, measures the light reflection and thus can be placed anywhere on the
skin. Depending on the type of local blood circulation, one can read the tissue oxygenation
at several locations of the body. Since we want to investigate the blood circulation at the
hip (trochanter) and back (sacral), this method was selected. The authors are not aware of a
similar approach to determine tissue oxygenation at the trochanter and hence develop this
new method and validate its performance in Section 3.1. Skin temperature measurements
are performed by a MLX90632 sensor from Melexis [45]. It obtains temperature readings
via infrared measurements eliminating the need for direct skin contact. According to the
manufacturer, it gives an accuracy of ±0.2 °C in the human body temperature range.

Data streams from our KIPRODE system for around six hours are presented in Figure 4.
Figure 4a shows all relevant sensor values continuously, whereas Figure 4b displays the five
by five sensor elements of the pressure sensor foil for different moments that are marked
with red lines above. Especially, SpO2 measurements can be easily disturbed and lead to
measurement noise, for example because of patient movement or distracted scattering due
to a changed sensor distance to the skin; a moving average filter is used to mitigate noise
(more details in Section 2.5.1).

Additionally, we calculate a validity factor for each reading that analyzes the raw val-
ues of each light sensor and only gives a validity statement if the values appear reasonable.
The positive outcome is that we can read tissue blood oxygenation at predilection sites
(here: the trochanter) with acceptable quality and reliability as shown in Section 3.1.

2.2. Data Pipeline

Within the project, we collected time continuous sensor data as well as corresponding
medical data from the physicians. The medical data contains physical data, relevant
preexisting conditions, vital sign data recorded by the medical staff as well as dates and
results of the Phillips finger tests (see Section 1.3).

All recorded data needs safe and privacy-ensuring transfer and storage. Therefore,
we utilize the so-called “Pflegekonsil” which is an online database for medical data in the
German healthcare system and is provided by our partner Monks [3]. It holds several
privacy proofing certificates. Their online system provides various levels of access, ensuring
that only registered physicians can identify patients and see their personal data. During the
study, the medical study personnel reads the acquired sensor data from SD cards and
uploads it into the “Pflegekonsil”. There, Fraunhofer researchers only have access to fully
anonymized data, comprised of sensor data streams from the KIPRODE sensor system
as well as the medical diagnosis and physical data. In future developments, this should
happen automatically via a connected device such as a smartphone.

2.3. Medical Data Acquisiton

The study was carried out by the clinic and polyclinic for plastic surgery and hand
surgery at the Rechts der Isar clinic in Munich (MRI). The study was designed to primarily
include bedridden patients that are likely to stay in the stationary clinical setting for
up to two weeks. Because these patients are bedridden, they have an increased risk
of developing pressure ulcers during their stay, compared to mobile patients. Eligible
patients are selected and invited to participate by medical doctors working in the plastic
surgery team at the clinic. Participating patients got a profile including physical data and
preexisting conditions. During the study, we documented their daily vitals obtained with
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gold-standard measurements (blood pressure, HR, blood oxygen saturation at the finger
tip, and body temperature in the ear) together with corresponding timestamps.
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Figure 4. Sensor data acquired by the KIPRODE system. Shown here is the recording of one night
of a control group member. (a) Vital parameters and sum of pressure data; the latter represents the
total pressure load on the sensor foil. (filter parameters: Appendix A.1); (b) pressure foil sensor data
acquired at the time point indicated by the red rectangles shown in the Figure above. Each sector
represents one of the 25 equidistant sensing elements.

To identify the best position for the sensor placement, every patient was individually
examined and asked about their preferred lying position. Based on those results we
attached the two sensing devices (vital signs and pressure sensors) on the predilection site
experiencing the highest pressure, meaning that the patient was lying on that site for a
large majority of the time. The chosen sites were most commonly the sacrum or spina iliaca
superior posterior when the patient’s main resting position was on their back. If patients
had to lie on their side, we typically placed the sensory devices on the trochanter major
facing the bed. The sensory devices were attached with a Mepilex plaster with a gap
of 1–2 cm between each device. We paid special attention to to ensure consistent sensor
placement for each patient.

To maximize the battery run-time and still have quasi-continuous measurements by
the sensor, we had to compromise on the measurement intervals. Given that pressure
measurements require more energy than the other sensors, we used a five-minute sampling
frequency, while the other sensors were read every minute. This was not considered
problematic because pressure changes are less frequent than HR or SpO2 changes in
bedridden patients. For medical classification of the skin health, trained medical personnel
checked the predilection site under the plaster twice every day. The Phillips finger test
was conducted as mentioned above (see Section 1.3) and the result was documented with
timestamps. Given that a positive Phillips finger test characterizes a stage I PU, we can
then evaluate the data since the last negative test, leading to a better understanding of the
exact pathology of the illness. Patients with a positive Phillips finger test were immediately
excluded from the study in order to properly treat the newly developed pressure ulcer.
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2.4. Study Population

The observation of patients in this study was time consuming and required commit-
ment from the patients. Due to discomfort with the sensor system, a number of patients
withdrew from the study. We tried to use as much of their collected data as possible. Every
long-term patient at the MRI was considered a potential participant if their health status
was stable and they where able to contribute. Most of them had to stay for up to two
weeks and were in care because of a wound or operation, hence they have had preexisting
conditions already. Table 1 shows the numbers of participating patients and how long they
contributed to the study. We can see a decrease in numbers from patients that had started
and those who completed the full 10-day duration. While some patients recovered faster
than expected, others expressed discomfort with the sensor system. A revision of the latter
should enhance the comfort of the patients.

Table 1. Study population at the MRI with corresponding length of participation.

Study Duration Patient Group Control Group

Total 60 10

More than 10 days 12 10

More than 5 days 29 10

More than 3 days 44 10

An ideal control group would exhibit physical data very similar to that of the patients
group only without the risk-influencing preexisting conditions. However, creating such a
group would involve elderly individuals who might not be accustomed to electronic devices
and could be challenging to recruit outside the hospital. Therefore, we opted to work with
a healthier group of individuals who responded to our notice in the hospital. This notice
was positioned in the MRI asking for people to join the control group study. Nevertheless,
the control measurements allow for the verification of the system functionality (Section 3.1)
as well as comparisons between healthy subjects and patients with preexisting conditions
(Section 3.2).

The study population can be described by their physical data such as age, height
and weight as well as preexisting conditions. Figure 5 gives an overview of the physical
data and compares patients with the control group. As discussed above, there are some
difference between the control and patient group (see Figure 5a). On average, the control
group is significantly younger and exhibits a lower body mass index, indicating a more
sportive condition. This factor could potentially influence the comparability of the data
and is taken into account during analysis and discussion.

Pulse oximeters measure optically which means that light scattering can influence the
recorded results. This can also occur with higher pigmented skin types and potentially
distort SpO2 records as reported in literature [46,47]. The study was performed in a
hospital in Munich, where the majority of patients have lower skin color types according to
Fitzpatrick scales: most are within Fitzpatrick types 2 and 3.

A more detailed analysis of preexisting conditions within the patient group is pre-
sented in Figure 5b. The graphics show the overall study group with both, control and
patient group. On the far left, one can see that approximately one-fourth of all partic-
ipants had already been diagnosed with diabetes, which is assumed to impact the PU
risk. Another strong risk factor is that almost half of the study group is categorized as
immobile (indicated by the green color); the healthy control group is not immobile (light
blue). Immobile patients are bedridden and only possess limited mobility. Therefore, they
rely on healthcare workers to move them in order to better distribute pressure and prevent
PU development. Those individuals are at higher risk for PU development because turning
happens on a periodic schedule based on experience and not on their actual necessity. This
is an area we aim to address with a PU prediction device. Paraplegic patients are even
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more restricted in their movements and hence need more extensive care. While it might
be feasible to provide such a level of care in a hospital setting, it is difficult to replicate
in patients’ home environments, which is often leading to repeated hospitalization after
release. A pressure ulcer with or without a surgery prior to the study enhances the risk
for a new PU generation; thus we show their frequency in the two graphs on the right in
Figure 5b.
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Figure 5. Overview of the study group including patients and control group with regards to their
physical data and preexisting conditions. (a) Physical data of the control and patient group: the
control group is on average younger and in better physical condition. The results of a Welch’s unequal
variances t-test are reported below each figure, and an asterisk indicates that the differences in means
are statistically significant at the level of α = 0.001. (b) Frequency of preexisting conditions within the
study group; the control group (light blue color) is healthy without any known preexisting conditions
relevant to the study.

2.5. Data Analysis

The following section introduces the data processing steps used to format the data for
machine learning methods. Further insight into these methods can be gained by reviewing
the publicly available software [42].

2.5.1. Preprocessing

First, all data files are uniformly formatted. Then the data of every tested person is
aggregated, missing timestamps are filled up with blank values, and out-of-range sensor
data is deleted. Missing sensor values of the skin temperature, the heart rate, and the
SpO2 are forward-filled to a maximum of five minutes. The amount of valid values in
the preprocessed dataset can be seen in Figure 6a. Since the HR and SpO2 are calculated
from the same raw sensor signals, their proportion of valid values is similar. The used skin
temperature sensor is more reliable, thus almost all temperature values in the preprocessed
dataset are valid.

Next, the data is split into relevant sections. This is performed by introducing a data
quality factor that calculates the fraction of valid sensor data per timestamp. Sections
of data with a data quality factor higher than a preset threshold are marked as relevant.
The distribution of the lengths of relevant sections can be seen in Figure 6b. Lastly, the rel-
evant sections of every patient are saved in a sktime format data frame [48]. The mean
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length of patients’ sections is 990 min, but many datasets are considerably shorter, leading
to a median of 395 min.
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Figure 6. Overview of data quality in the whole dataset with regards to valid measurements.
(a) Amount of valid values in the preprocessed dataset. (b) Distribution of the length of consecutive
valid values in the preprocessed dataset.

2.5.2. Relationship between Skin Temperature and Pressure Loading

The high data quality of the skin temperature measurements allows us to further
investigate how the skin temperature changes in response to varying pressure loads of
different duration. Therefore, we adopt the following approach: first, we locate notable
events in the pressure time series using peak detection algorithms. Subsequently, we group
these events based on their duration using clustering techniques. To examine the skin
temperature reaction to pressure events of different duration, we employ spike-triggered
averaging (STA). This process allows to gain insights into how skin temperature responds
to variations in pressure over varying duration periods; a comprehensive description
follows hereafter.

First, the time series data are smoothed using a Butterworth filter to enhance its
resemblance to a plausible physiological process and to eliminate noise. Clustering is
sensitive to data scales, therefore we standardize the data through z-score normalization
and transform it to have zero mean and unit variance.

After that, we used the popular scipy library [49] to identify pressure peaks. The library
defines a peak as any time-point whose two direct neighbors have a smaller amplitude.
If multiple consecutive points have the same amplitude, the one in the middle is returned.
The detected peaks are then filtered by peak distance (minimal distance between two
peaks), peak prominence (relative height of the peak) and peak width (width at half of the
peak’s prominence). Around the detected pressure events, we extracted 60-min windows,
starting 5 min before and ending 55 min after the pressure event.

To distinguish the temperature reaction to pressure load events of different duration,
we used machine learning-based clustering. There are a multitude of different clustering
techniques for different purposes. We evaluated several time series clustering algorithms
on an annotated subset of our detected pressure events. The best overall performance
was achieved using time series k-means with input scaling and with Euclidean distance
as distance metric. Time series k-means is based on the popular k-means algorithm [50].
It is simple, efficient, performs well, and is used across a wide range of applications.
After randomly initializing K cluster centers, it iteratively assigns each sample to its closest
cluster by minimizing the within-cluster sum-of-squared distances. To adapt the k-means
algorithm for time series, the series are flattened into a table, treating each time index as
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a separate feature. For our analysis, we used the implementation provided by the tslean
library [51]. To determine a number of clusters K that represents the intrinsic structure of
the underlying data, we used the so-called elbow method [52].

To analyze the impact of the detected pressure events on the skin temperature, we
needed a technique that summarizes the temperature measurements after the pressure
events over all the segments in each cluster. More precisely, we wanted to compare how the
skin temperature changes after a pressure event relative to a reference point right before the
pressure event. A suitable approach is spike-triggered averaging (STA) [53]. Our modified
version of the algorithm is described in more detail in Appendix A.2.

3. Results

First, we verify the sensor validity by comparing the measured values with the clinical
reference and common sense in Section 3.1. Section 3.2 shows the influence of preex-
isting conditions on vital signs within the study group. Finally, we introduce our most
important findings that suggest the possibility to build a PU predictor in Section 3.4. More-
over, a parallel study on PUs at feet is presented in Section 3.5 as it only requires little
system adaptation.

3.1. Verification of Kiprode Sensor System

To verify the KIPRODE sensor system and ensure proper sensor operation, all recorded
data files are compared to gold standard measurements of today’s medicine whenever
available. Basically, two different ways of sensor verification are used: first is the compari-
son with medical reference data that is recorded twice a day during the study by medical
personnel (medical reference). The second way is to compare the measured data of patients
with the control group and set it into relation with expected values (common sense).

3.1.1. Kiprode Sensor Data vs. Medical Reference

The primary values that we measure and analyze within this research are SpO2, heart
rate, skin temperature and the pressure load. There is no medical reference for the latter
and its functionality is proven with adjusted calibration in the lab.

A practical way to assess the functionality of the sensor system involves comparing it
with the medical screening data that the personnel documented daily. Not all values can be
directly compared as no standard reference measurement exists. We evaluate the sensor
system by comparing the distributions of sensor data and reference data. The biggest
challenge is that we measure at patients’ hips or back (trochanter or sacral) but standard
reference measurements are performed at finger tips (heart rate and SpO2)) or in the
ear (body temperature). A comprehensive comparison of the above described values is
provided below, based on Figure 7. The dataset of KIPRODE sensor data is far larger for all
data types, as the system measures continuously, but medical reference required manual
interaction and hence is only determined on specific times.

There are plausible screening data for heart rate measurements that allow for direct
comparison with the KIPRODE sensor data as the heart rate is the same, independent of the
measuring position. According to Figure 7a, both graphs show a similar distribution with
a median that only deviates by one pulse per minute. That slight difference might occur
because reference data is taken at specific times, whereas the KIPRODE system measures
continuously. The comparison provides a good indicator that the KIPRODE heart rate
measurements are working reliably.

On the other side, the reference temperature in the medical dataset represents the body
temperature that is taken at the patients’ ear whereas the KIPRODE skin temperature is
derived close to the pressure sensor at the patients’ hips. Consequently, the temperature
readings cannot be compared with absolute values and we rather look at their distribution
in Figure 7b. Nevertheless, the temperature readings seem to be similarly distributed for
both measurement methods, matching typical pathophysiologic patterns.
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Clinical Reference Data KIPRODE Sensor Data

(a)

(b)

(c)

Figure 7. Comparison of the recorded vital signs measurements with our newly developed KIPRODE
sensor system with common-practice medical reference data. The latter is plotted on the left and
only determined a few times a day, whereas the KIPRODE system on the right measures with a
one-minute sampling rate. (a) Comparison of heart rate (HR) measurements: similar distribution in
both datasets. (b) Temperature measurements; note that reference and sensor data show different
body sites. (c) Distribution of SpO2 readings, again measured at different body sites: noticeable
left-shift of the distribution for KIPRODE sensor data on the right.

However, for SpO2 measurements, the gold standard is to determine the value at
finger tips or toes. As we measure at the hips or back of a patient, no direct comparison is
possible. The second type of sensor validation is based on the comparison with the control
group as described below. Figure 7c displays the recorded data with a notable difference
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between reference and KIPRODE data. If we take into account the different measurement
sites at patients’ bodies, we obtain very interesting results: the SpO2 values for patients
within this study seem to be notably reduced (mean of 91.7%) at the hip compared to 95.6%
at their fingers. That is reasonable from a medical perspective as those patients may have
worse tissue blood circulation due to their preexisting conditions. We are confident to trust
the KIPRODE sensor readings because of the comparison with the healthy control group in
Section 3.1.2. Hence, the study already shows an interesting finding: people with higher
risk for developing a PU show strongly reduced SpO2 values at their hip tissue compared
to their finger tips.

3.1.2. Vital Sign Analysis of Patients and Control

Additional insights into the quality of sensor data can be obtained by comparing the
sensor data from patients with the control group as well as with medically expected values.

Figure 8 shows the mean and standard deviation of all recorded vital sign values (SpO2,
heart rate, skin temperature) for the control group compared with patients. The vital sign
analysis of the control group meets the expected ranges and suggests a proper operation of
the KIPRODE sensor system. SpO2 values should be close to 100% for a healthy person
and the mean heart rate of around 60 beats per minute is expected as well. There is
little comparison for skin temperature readings at the hip, but generally speaking values
between 35.0 °C and 36.5 °C are in a normal range. Hence, all three vital sign distributions
of the control group lie in the expected range, according to the medical professionals of the
MRI. The orange dots mark both patients that developed a stage one PU during the study.
Further analysis of their skin health follows in Section 3.4.1. Their average vital signs show
no extremely conspicuous values compared to the whole patient group.

Setting the patient group into relation with the control provides an expected result
for the heart rate in Figure 8a. On average the patient group is older, less sportive and
suffers from more preexisting conditions. All factors correlate with an increased HR and
hence the HR values are not surprising (70.2± 10.8 beats

min for patients versus 57.4± 7.0 beats
min

in the control).
Figure 8b displays a higher skin temperature for patients (36.0± 0.7 °C) compared

to the control group (35.3± 0.4 °C). Since the absolute skin temperature is influenced by
external parameters such as blankets during night or room temperature, we do not evaluate
the absolute value and interpret relative skin temperature changes per individual only (see
Section 2.5.2).

Of particular interest is the significantly reduced mean SpO2 within the patient group
in Figure 8c. The mean SpO2 value is significantly reduced at 91.3± 2.9% compared to
the mean of healthy individuals, which is 98.5± 0.9% here. The latter value is considered
normal for healthy individuals, which validates the accuracy of the KIPRODE sensor
data. The mean value of around 91.3± 2.9% is also reduced compared to the finger tip
measurements in Figure 7b, which reveal a mean SpO2 of 95.6%. Those findings are a
reasonable indicator that the mean blood oxygenation in the body tissue of high PU-risk
patients differs significantly between the extremities and the central body, which is not the
case for healthy subjects. A possible explanation is that damaged tissue suffers from the
pressure load and leads to worse tissue perfusion. This supports our research hypothesis
and opens the possibility to predict PUs in early stages, preventing further damage.

We investigated the mean pressure load that subjects were exerting on their predilec-
tion sites (trochanter and sacral): Figure 8d gives no explanation for the above described
differences in body vital signs as the distribution of mean pressure load is very similar in
control and patient group.

3.2. Effect of Preexisting Conditions on Vital Signs

This research investigates the correlation between tissue blood oxygenation, skin
health and PU development risk. Here, we looked at the influence of preexisting conditions
on the body vital signs in the patient group. Preexisting conditions that are commonly
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associated with a high PU risk are, among others, paraplegia, immobility, diabetes, or if
a patient already had a PU or even a PU-related surgery. All of them affect the body
tissue SpO2 similarly and are often correlated with each other. Hence, we focus on the
interpretation of the effects a previous PU surgery has on body vital signs in Figure 9 and
show the others in Appendix A.3.
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Figure 8. Comparison of recorded vital signs of healthy subjects with the patient group: results of
the control group reside in expected ranges, whereas patients show significant deviations. (a) Mean
heart rate (HR): as expected, we see a relevant increase for patients; on average they are older and
several have preexisting conditions (see Section 2.4). (b) Skin temperature: increased temperature for
patients. The difference could be due to a higher ambient temperature in a hospital, so the analysis
focuses on relative changes. (c) Blood oxygen saturation, SpO2: strongly decreased median of mean
SpO2 for patient group suggesting worse tissue blood circulation. (d) The mean pressure load for
patients and control group is similar, thus, it does not explain the existing differences in (a–c). The
results of a Welch’s unequal variances t-test are reported below each figure, and an asterisk indicates
that the differences in means are statistically significant at the level of α = 0.001.

Figure 9a does not indicate a significant influence of preexisting conditions on the
heart rate compared with similar patients that did not undergo a PU-related surgery;
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stronger correlations are observed with physical conditions (see Section 3.1.2). However,
both skin temperature as well as body tissue SpO2 suggest a negative correlation with a
previous PU-related surgery (Figure 9b,c): both are significantly decreased for patients with
a previous surgery. The mean skin temperature decreases from 36.2 °C to 35.5 °C and the
SpO2 decreases from 92% to 89.8%. Those findings align well with our research hypothesis
assuming reduced tissue blood perfusion for patients with preexisting conditions. A lower
average skin temperature could be a reasonable consequence of disturbed tissue blood
flow. Comparing the skin temperature between patients is valid as they experienced very
similar conditions within the hospital, even if we cannot compare it with the control group
above. The same conclusion about damaged tissue perfusion can be drawn from reduced
tissue SpO2 averages as they are the primary parameter allowing to quantify oxygen
transportation into the tissue. Again, we compared the pressure load in both groups (with
or without previous PU surgery) without observing any relevant difference. This means
we see significantly deteriorated tissue perfusion for patients who already had a PU.

3.3. Relationship between Skin Temperature and Pressure Loading

The skin temperature is affected by underlying tissue perfusion as high blood circula-
tion leads to increased skin temperature. The methods to analyze the relationship between
skin temperature and pressure loading were elaborated in more detail in the master’s thesis
of Schillinger [54].

The assumption that changes in skin temperature are linked to the risk of pressure
ulcer development has been demonstrated in prior studies [55,56]. In most cases, those mea-
surements were taken at distinct times because continuous monitoring was too challenging
at relevant body sites. However, with our KIPRODE sensor system, we can observe the skin
temperature of at-risk patients during the whole study continuously (with measurements
every minute). This enables us to gain further insights about how pressure load and skin
temperature relate to each other.

The approach within the study is to investigate skin temperature values directly
after a notable pressure change is detected. The latter would probably occur due to a
patient changing their position from one body site to another; hence relieving the previous
body site from pressure load. By utilizing machine learning methods (as described in
Section 2.5.2), we identify those relevant pressure changes within all recorded pressure and
temperature data.

Figure 10 shows the analysis of temperature variations in relation to changes in
pressure. Sudden increases in pressure load are presented in Figure 10a and are likely
associated with a patient shifting their weight onto the sensor, whereas Figure 10b displays
the pressure load relief. The left graphs of both figures represent the patient-normalized
pressure load with a dotted line showing the moment of the detected pressure change.
The corresponding graphs on the right show relative temperature trends after the detected
pressure change. Detected pressure load changes are categorized according to their length:
20, 40 or more than 55 min of lasting pressure load. The available data was insufficient to
effectively investigate longer time periods.

The majority of the graphs show a strong positive correlation of temperature trend
and pressure load. Thus, when weight is shifted onto the sensor, i.e., the predilection site,
the skin temperature increases with minimal delay. This is likely due to the compression of
the skin, which rapidly increases tissue perfusion, subsequently raising the skin surface
temperature. We can see the opposite effect for pressure relief in Figure 10b.

For the first time, we show the continuous skin temperature in conjunction with actual
skin pressure loads at PU risk patients. Those are short-term reactions of the tissue. Further
optimization to detect deteriorating tissue perfusion over longer time spans could enable
PU risk estimations based on skin temperature as proposed in other studies [55,56].
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Figure 9. Influence of a single preexisting condition within the patient group: here patients with
and without a PU surgery prior to the study are compared (for other preexisting conditions, see
Appendix A.3). (a) The mean heart rate does not depend on a previous PU surgery. (b) A reduced
mean skin temperature in patients with a previous surgery, which could be an indicator of deteri-
orating tissue perfusion. (c) The tissue blood oxygen saturation, SpO2, is significantly reduced for
patients with this precondition, suggesting decreased tissue blood circulation. (d) The mean pressure
load for patients with or without a previous PU surgery is quite similar, hence, the pressure load
cannot explain differences in (b,c). The results of a Welch’s unequal variances t-test are reported
below each figure, and an asterisk indicates that the differences in means are statistically significant
at the level of α = 0.001.

3.4. Development of a Pressure Ulcers Predictor

The goal of this study is to develop a pressure ulcer predictor that will alert patients to
prevent PUs and their severe consequences. Since we tried to avoid increasing the risk of PU
development among patients, we followed the clinical practice for PU prevention during
the study. As a result, we only had two positive diagnoses from the Philips finger tests,
indicating a stage one PU (see Section 1.3). In one case, useful sensor data is lacking due to
technical or application issues. Hence, we focus on the analysis of the well-documented case.
In order to classify and detect the actual development of a pressure ulcer with statistical
relevance, a higher number of positive samples would be required. Therefore, training
of supervised machine learning algorithms is not possible. Nevertheless, the analysis
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presented in Section 3.4.1 yields promising results. The proposed predictor is tested using
the acquired study data in Section 3.4.2.
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Figure 10. Skin temperature reaction with respect to pressure loads: for every cluster of simi-
lar pressure loads, the corresponding spike triggered average of the skin temperature is shown.
The correlation coefficients according to Pearson (r) and Spearman (ρ) were calculated between the
pressure cluster center and the spike triggered average [54]. (a) Rising pressure events. (b) Falling
pressure events.
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3.4.1. Analysis of Diagnosed Pressure Ulcers Development

As discussed in Section 1 disrupted tissue blood oxygenation is assumed to lead to
deteriorating skin health and this might be detected before skin damage is visible by a
decrease in measured SpO2 values.

Figure 11 displays the recorded SpO2 values at the predilection site within the six
hours before a stage one PU was diagnosed by medical staff. Starting around 3.5 h prior to
the PU diagnoses, the 1 h rolling mean of SpO2 steadily falls and decreases from around
94% to 87% within 1.5 h. After that, the signal quality is too low to calculate a representative
rolling mean. This decrease in mean SpO2 is consistent with our research hypothesis. As the
the diagnosis of a stage one PU occurs two hours after the decrease in mean SpO2, we could
raise a warning to prevent the development of a severe PU.

If this indicator can be validated in a larger study group it could potentially lead to the
development of a wearable PU prophylaxis system. However, this requires further research.
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Figure 11. The tissue blood oxygenation measured at the predilection site six hours before a positive
Phillips finger test diagnoses a stage one PU. The patient mean is the expanding mean of patient data
available at that timestamp. (filter parameters: Appendix A.1).

3.4.2. KIPRODE Pressure Ulcers Predictor

Based on the results in Section 3.4.1, we propose an early warning algorithm that could
warn patients before an actual PU develops. Since the study group data only contains
sensor data of one PU development case, we are constrained to evaluate our proposed
predictor on the non-positive cases. While this does not validate our predictor, it does show
how often this pattern is present in the study group data. To reliably verify this predictor,
a larger number of positive cases is required. Therefore, a study group with a higher risk of
PU development is needed. To encourage further research, we share the code that has been
developed so far [42].

We assume the rolling mean of SpO2 to be a strong PU prediction parameter, because it
represents the trend of SpO2 measurements. Therefore, a warning is raised, if the 1 h rolling
mean of SpO2 is significantly lower than the expanding mean of SpO2 of the patient data
available at that time:

diffSpO2
= mean60min(SpO2)−meanpatient(SpO2) (1)

state(t) =

{
warn, if diffSpO2

≤ thres
normal, otherwise

(2)

the rolling mean over 1 h is only calculated, if at least 90% of the SpO2 values in the
window are valid. The resulting distribution of differences of the means can be seen in
Figure 12b. The warning threshold is set to −3%. These parameters are chosen based
on medical estimations and heuristic data analysis. When a dataset with more positive
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cases is available these parameters need to be optimized with respect to the receiver
operator characteristic.

A more detailed look into the recorded data of the patient 10 h before the stage one
PU was diagnosed is given in Figure 12a. Here, one can see the skin’s vital signs as well as
the sum of the pressure applied on the skin. Because we are measuring continuously on
moving patients in a hospital environment, the sensor data is noisy. For visualizing the
trends of the data, we apply filters as described in Appendix A.1. The positive Phillips
finger test was recorded at the red dotted line on the right. Therefore, we are searching
for a pattern that occurred prior to the positive result and serves as an indicator for a
developing PU.

Our proposed predictor searches for a significant decline in the 1 h rolling mean of
SpO2 below the expanding mean of a patient (see Equation (1)). In the displayed data, a
warning would be raised by the decline in SpO2 inside the red area. This would enable the
patient or a caretaker to prevent a serious PU. Figure 12c displays the number of positive
alarms that our predictor would have generated within the study group. The patient, who
was diagnosed with a PU, would have received six alarms (green). We cannot confirm the
accuracy of these predictions because we do not receive the medical diagnosis continuously,
but only when a doctor examines the patient. In a follow-up study, the medical staff
should check for PU formation every time a warning was raised by the algorithm. This
way, the accuracy of our proposed predictor can be evaluated. The fact that also some
control group members would have received a warning indicates that some false alarms
are raised. As discussed in Section 4, pressurizing healthy skin would not lead to low
tissue perfusion. Analyzing the raw data of alarm events within the control group suggests
faulty measurements. The control group applied their sensor systems themselves, while the
patients had them applied by medical staff. Loose sensor attachment and more individual
movement can lead to motion artifacts, which are stronger for healthy people. These motion
artifacts can distort pulse oximeter readings, resulting in incorrect measurements. To filter
out the motion artifacts in future designs it could help to add an accelerometer.

3.5. Pressure Ulcers at Patients’ Feet

Pressure ulcers can occur on different sites and in various types of patients. The first
part of the study addressed PUs in hospitalized, bedridden people at high risk of PUs
at their hip or lower back. Similarly, diabetic patients have an increased risk for PU
development at their feet; referred to as diabetic foot ulcer (DFU).

As described in Section 1.2, a PU can arise from an intense pressure load on precon-
ditioned skin and lead to skin breakdown and further injury including infection or even
amputation [57]. Due to neurological insensitivity at the peripheral level, individuals with
advanced diabetes are particularly susceptible to pressure ulcers as their perception of
pressure and pain is weakened in the extremities [58]. The most common predilection sites
for these individuals are the feet, particularly the heels, ankles, and toes. Unfortunately, foot
ulcers in diabetics are highly susceptible to infection, resulting in diabetic foot infections
(DIFs). Diabetic foot infections are associated with increased morbidity, daily wound care,
high healthcare costs, and surgical intervention. A 12-month prospective observational
study by Ndosi M, Wright-Hughes A, Brown S, et al. [59] provides a prognosis for patients
with infected diabetic foot ulcers (IDFU). Their study showed that after one year, only 46%
of affected patients had their foot ulcers healed, out of which 10% recurred. Fifteen (15)%
of patients died during this time and 17% required lower extremity amputation, reflecting
the severity of this condition [59]. About 8–15% of patients with diabetes will experience
feet PU once in their lifetime. In Germany, every 13.4 min a diabetes-related amputation is
performed [60].
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Figure 12. The proposed PU predictor as described in Equation (1). As only two positive Phillips
finger test were recorded, we analyze how often the predictor would raise a warning in the control
and in the patient group. (a) Vital signs and pressure measurements during the 10 h before a positive
Philips finger test was recorded. In the SpO2 subfigure it is visualized how a warning is raised. If the
difference between the rolling mean of the last hour and the expanding mean of the patient data
available at that time falls below the threshold shown in (b) a warning is raised. (filter parameters:
Appendix A.1). (b) Distribution of differences between the rolling means of SpO2 over the last hour
and the patient data available at that timestamp as defined in Equation (1). (c) Number of warnings
the proposed predictor raises per patient. Highlighted in green is the patient whose data is shown
in (a).

In 2016, about 18.6 million people worldwide were affected by DFUs alone and
6.8 million had to live with an amputation of lower extremities [61]. This corresponds to a
worldwide prevalence for DFU in 2016 of 270 per 100,000 people and 96 for DFU-related
amputations, respectively [61]. Armstrong et al. [62] provide a detailed cost analysis for
DFU treatment: the cost of diabetes increased by 26% in the US from 2012 to 2017. Of the
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US$237bn spent on diabetes in 2017, it was estimated that a third was needed to treat
DFU. This puts the economic cost of DFU treatments at the same level as the direct costs
incurred in US cancer treatments in 2015; those amounted to approximately US$80.2bn.
They also show a almost similar 5-year mortality for patients with a DFU as for cancer
patients (30.5% [62]).

In the KIPRODE study, we modified our system to also investigate those PUs, consid-
ering their medical proximity. In this study, we did not monitor the development of any
PU. Hence, the investigation focuses on the prophylaxis of the main risk factor for DFUs:
pressure peaks at patients’ feet. It is widely assumed that individually adjusted orthopedic
shoes offer the most effective protection against these risk factors. We investigate this
hypothesis by continuous feet pressure load monitoring.

3.5.1. System Adjustment for Prophylaxis of Feet Pressure Ulcers

To prevent the severe consequences of feet ulcers, we have to adjust our KIPRODE
system as described in Section 2.1: the pressure sensor area is transformed into a feet-like
shape (4 by 12 rows of pressure sensitive elements) which can be placed inside a shoe as
depicted in Figure 13. The sensor node measuring vital signs has to be placed at the lower
leg to be as close as possible to the foot. It cannot be inserted into the shoe to not introduce
any additional PU risk because of rims or edges. In this stage of development the sensors
are connected via cords with the main board (see Section 2.1) which is not the optimal
solution as it can be inconvenient for the patient. Future optimizations should consider
the implementation of wireless transmission such as Bluetooth or NFC for data transfer.
A difference to the previous study design is that we are observing patients while walking
or standing, rather than while lying down. That means, pressure loads are usually not of
similar duration and PU development is more likely to occur due to repetitive pressure
peaks at the feet.

Neuropathy leads to a reduced or diminished sense for pressure load at patients’
feet. That can lead to unnoticed developments of pressure ulcers at their feet. Hence,
a reasonable approach to reduce the risk for foot ulcers is the reduction in pressure peaks.
This has already been tried through the use of orthopedic shoes that are precisely fitted to
the patient.

The main research question is whether an individually adjusted orthopedic shoe
can reduce the risk for the generation of foot ulcers. As the study does not expect the
actual formation of foot ulcers, the parameter under investigation is the pressure load
on the feet during the daily activities of ambulatory patients. The goal is to determine
abnormal pressure load patterns by machine learning algorithms and warn a patient if
such is detected.

3.5.2. PU-Risk Mitigation by Individual Shoes

During the study conducted at Fußnetz Bayern (FNB) [63], half of the patients wore
orthopedic shoes, while the other half wore regular shoes. This was then compared with a
healthy control group.

The whole patient group comprises ambulant patients that are already regularly
visiting the doctor because of a previous ulcer. In this study, the KIPRODE sensor system is
applied to the opposite foot, where no ulcer has occurred previously. Those patients are at
a high risk of developing further ulcers and are therefore motivated to mitigate the risk as
far as possible. For the adapted study, we included 13 ambulant patients for a period of
more than two weeks and nine healthy control subjects for a period of more than one week.
The duration of the patient study varied strongly (ranging from a few days to more than
three weeks), depending on patients’ commitment and comfort.
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Figure 13. Adapted KIPRODE sensor system to investigate the pressure load of risk patients at their
feet during their daily life. The white box contains all electronics, whereas the small sensor node mea-
sures vital signs. The pressure sensor foils is inserted in the shoe (©Fraunhofer EMF/Bernd Mueller).

To evaluate the pressure load on patients’ feet, we measure the pressure load inside a
shoe continuously over the observation period. Therefore, every minute a pressure scan is
performed across the whole sole, including 48 elements (4 by 12 rows) and saved with the
vital signs at their legs. Since obtaining high-quality vital sign measurements proved to be
challenging with ambulatory patients, meaningful interpretation is not feasible, and we
focus exclusively on pressure load data. As we want to compare the pressure load between
patients wearing orthopedic shoes and those without, we split the group accordingly,
as shown in the graphs in Figure 14. In Figure 14a, it is evident that the pressure peaks as
well as the mean pressure load are notably decreased for patients wearing an orthopedic
shoe compared to those without or the control group. A more detailed analysis divides the
sole of the foot into forefoot, midfoot, and rearfoot, as presented in Figure 14b–d. Figure 14d
discloses the highest differences in pressure load mean and peak at the heel. The heel
is also where the largest pressure loads usually occur while standing. Even though the
mean pressure loads of patients with orthopedics in Figure 14c is slightly higher compared
to those without, the peaks are reduced. The absolute pressure load on the midfoot is
much lower than in rear and front. Hence, the impact of the midfoot is not as strong as
the forefoot or heel, which aligns with other research such as Jasiewicz et al. [64]. At the
forefoot, Figure 14b, pressure peaks are at their lowest for patients wearing orthopedic
shoes, and there is a slight reduction in the mean pressure load as well. In summary, we
reach a clear conclusion: orthopedic shoes can provide substantial support for the feet of
patients with preexisting conditions by reducing pressure loads.
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(a)

(b) (c) (d)

Figure 14. The graph displays the summarized pressure load on patients’ feet, normalized to their
weight. The sole of the feet is split into three sub-areas: forefoot, midfoot and rearfoot. All areas
display notably reduced pressure loads for patients wearing orthopedic shoes. (a) Normalized
feet pressure load: the left bar represents patients with individually optimized orthopedic shoes,
the middle bar represents patients without such shoes, and the right bar represents the healthy
control group. (b) Normalized pressure load at the forefoot. (c) Normalized pressure load at
the midfoot. (d) Normalized pressure load at the rearfoot/heel.

4. Discussion

In order to obtain the necessary data for the intended design of a PU prediction
and prophylaxis system, we needed to develop a new sensor system. The authors are
unaware of any comparable sensor system that allows the recording of body vital signs and
pressure loads in humans. We focused on bedridden patients with an increased risk of PU
development, hence, the system is optimized for placement at the hip or back (trochanter or
sacral). Nevertheless, it could be adjusted for other body sites as well. The introduction of a
new and highly integrated electronic device invariably brings along certain vulnerabilities
and requires multiple rounds of improvement. For this reason, the sensor was constantly
refined and optimized for clinical use. Although the method of measuring data remained
consistent throughout the entire study to ensure data reproducibility, the hardware box was
modified for ease of use. Examples of these optimizations include the implementation of
double coverings and the extension of individual cables, along with the installation of strain
relief at the connection points between the cables and the box. These changes have made
the daily maintenance of the sensors much easier and increased their mechanical stability.
Numerous code adjustments were required, which led to data loss at the beginning of the
study. However, after some iterations, the KIPRODE sensor system was operating reliably
and could be used for our purposes. The main findings include that patients with severe
preexisting conditions require even simpler-to-use devices than the healthy control group.
After a successful control group study, we encountered several system failures, for example
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due to removed cables, humidity or other mechanical stress. That resulted in some data
loss until we increased the mechanical stability. For future developments, this should be
taken into account from the beginning.

The long-term goal is to provide those prophylaxis tools to at-risk patients at home.
As evident from the study, the system still requires a high level of monitoring and super-
vision by trained individuals. Some patients quit the study because the sensor system
was not comfortable enough. This indicates that following the completion of functional
development, a few additional comfort-related optimizations are required.

A major challenge when building a prophylaxis tool lies in the conflict between the
necessity to monitor the disease and the simultaneous attempt to prevent its occurrence.
In this case, it has resulted in only one well-documented and diagnosed PU in our study.
Consequently, no statistically significant analysis is possible for our observations and we
have to rely on qualitative analysis by comparing our findings with medically expected
conditions. For future studies, we recommend to include hospital stations with an even
higher risk for PU development, such as intensive care units.

The patient who developed a PU exhibited a noticeable decline in the mean SpO2
in the hours before it became visible. In our opinion, the reduced SpO2 values strongly
correlates with the health condition of the tissue. That is also indicated by comparisons
of tissue SpO2 values between patients and control group. Hence, we assume deteriorat-
ing tissue perfusion as a consequence of an ongoing pressure load due to the patient’s
preexisting condition.

On average, the control group is younger and lighter than the patient group. Ideally,
the only distinction between the control group and patients would be their preexisting
conditions. However, recruiting healthy individuals with comparable physical charac-
teristics to the patients is challenging. We publicly searched for volunteers on the MRI
website and on the hospital’s white board and received the control group as presented
above. The significance of certain findings is constrained by these differences between the
two groups. However, since we validated our measurements as described in Section 3.1, it
is unlikely that external factors or noise significantly distorted our conclusions. This means
that physical effects cannot solely explain the great differences in vital sign measurements
presented Section 3.1.2. Only the heart rate may be increased for patients due to their
age and preexisting condition, but we do not focus on that. Skin temperature could be
heavily influenced by environmental conditions, but our analysis solely examined relative
temperature differences with similar conditions. Most importantly, the SpO2 data are
validated with common-practice reference measurements in Figure 7; otherwise, if physical
data would be the main influencing effect, the finger tips readings would have to show
that, too. The variations in the decreased SpO2 readings at patients’ hip and back tissue
(trochanter and sacral), most likely arise from their preexisting conditions that are also
related to PU development. Further evidence is given by Gómez-González et al. [65], who
show that healthy subjects do not experience reduction in tissue SpO2, even though the
blood flow may be hindered due to a long-lasting pressure load.

Our interpretation, the inverse relationship between SpO2 levels and PU risk, is also
supported by the correlations observed between patients with previous PU surgery and
the measured SpO2 as discussed in Section 3.2: patients who had already undergone a PU
surgery show significantly reduced mean SpO2, which is also a strong indicator for the
correlation of tissue SpO2 and PU risk. This observation aligns well with previous work,
e.g., by Yafi et al. [66], who found a similar correlation between a decrease in tissue oxygen
saturation and PU formations in different stages. They used an external imaging system to
derive the tissue SpO2, which is not comfortable for ambulant patients.

Nevertheless, there remain certain overarching challenges associated with mobile
pulse oximetry measurements (photoplethysmography), which we want to highlight. We
cannot exclude all external disturbances in a real-life study. Kim et al. [67] provide a
comprehensive analysis of photoplethysmography interference, particularly for wearable
devices. Those measurements can be disturbed by patients’ motion or light scattering of
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the sensor [67]. Since, we are focusing on lying patients, we assume that motion-related
artifacts are rare but light scattering might be relevant. Those artifacts should be reduced
in the patient group compared to the control group, as patients are extensively monitored.
This includes the impact of different skin types, especially for lower SpO2 levels [46,47].
However, light scattering may be also impacted by a varying sensor pressing force [67] that
could differ depending on whether patients within the KIPRODE study lie on the sensor or
not. We recommend further optimization of the KIPRODE system, with a focus on develop-
ing a sensor case that considers the potential variations in applied pressure. Some of those
interferences can be reduced by adjusted filtering and intelligent algorithms. For example,
Lauterbach et al. [37], present accurate and reliable pulse oximeter measurements with a
state-of-the-art wearable device. The same holds for Poorzagar et al. [68], who also reported
accurate SpO2 results for poorly perfused patient tissue with modern wearable sensors.
The findings of these two studies support our approach of utilizing tissue SpO2 levels
as a predictive factor for PUs, with the potential to further enhance signal quality in the
near future.

The investigation on how preexisting conditions impact the body vital signs reveals
another finding: Section 3.2 has shown a significant decrease in the mean skin temperature
for patients who already underwent a PU surgery. These results are in accordance with
related research such as Jiang et al. [55] or Rapp et al. [56], who present comparable results
with a nursing facility study, showing differences in skin temperature for high and low
PU risk patients. In conclusion, substantial evidence indicates a direct correlation between
lower skin temperature and compromised tissue perfusion, which increases the risk for
PU development. Nevertheless, neither the existing research nor our study has established
a direct short-term correlation between skin temperature and PU development, which
makes it difficult to provide an ad-hoc PU predictor. It can be helpful as a general PU risk
estimation of patients. The SpO2 trends seem to be far more effective for short term PU
prediction due to their direct correlation.

As a result of the KIPRODE study, we propose a PU predictor that continuously
analyzes SpO2 trends of risk patients at known risk body sites. If it detects a certain pattern
within the sensor trend, an alarm is triggered to alert the patient, enabling them to relieve the
pressure load. A promising pattern seems to be a rapid decline in tissue SpO2: a reduction
of around 7% in 1.5 h. This observation is consistent with the findings of Harris et al. [69],
who determine significant tissue injury after three hours and almost 50% loss of vessel
reflow after five hours of pressure loading. However, given the limited number of samples
who developed a PU, that predictor probably requires further optimization. The following
Table 2 summarizes the presented results from our study relative to other relevant research.

Table 2. Comparison of our findings with the literature.

Research Reference Methods Findings Analogy

Tissue SpO2 during
long-lasting

pressure load

Gómez-
González et al. [65]

Doppler laser devices
and infrared beams for
determining the degree

of oxygenation

Healthy subjects do not
experience a reduction

in tissue SpO2

Agrees well with
Section 3.1.2

Assess skin status
in care Yafi et al. [66]

Near-infrared Spatial
Frequency Domain

Imaging (SFDI)

Decrease in tissue
oxygen saturation due

to PUs

Aligns well with
Section 3.4.1

Quality of pulse
oximeter in wearables Poorzagar et al. [68] Literature review

Oximeters, particularly
newer models, are
accurate in poorly
perfused patients

Confirms the KIPRODE
measurement method
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Table 2. Cont.

Research Reference Methods Findings Analogy

Effects of skin
pigmentation on the

accuracy of SpO2
measurements

Shi et al. [46] Literature review
Pulse oximetry

overestimates SpO2 of
dark-skinned people

Must be considered in
future design

Effects of skin
pigmentation on the

accuracy of SpO2
measurements

Cabanas et al. [47] Literature review

Pulse oximeters are less
accurate in dark-skinned

individuals at lower
SpO2

Must be considered in
future design

Validate the skin
temperature on sacral

region as early warning
signs of PU

Jiang et al. [55]
Relative skin

temperature at sacral
area measured daily

Differences in skin
temperature for

patients with high/low
PU risk

Aligns well with
Section 3.2

Influence of skin
temperature regulation

on PU risk
Rapp et al. [56] Skin temperature

monitors

PU risk depends on
multiscale entropy for

skin temperature

Aligns well with
Section 3.2

Effect of varying
duration of ischemia on

tissue damage
Harris et al. [69] Tissue blood analysis

in animals

Changes in blood
composition after
lasting ischemia

Aligns well with
Section 3.4.1

5. Conclusions

The presented KIPRODE study reveals several interesting findings about tissue blood
perfusion, skin health and the risk for developing a pressure ulcer (PU). We designed, built
and thoroughly tested a new wearable sensor system: the KIPRODE sensor system. It
enables the recording of vital signs at the hip or back (trochanter or sacral) of patients and
combines them with the corresponding pressure load measurements in local proximity.
We observed a significant decrease in tissue blood oxygenation (SpO2) in the hours (0–4 h)
before a PU becomes visible and is detected by a physician. Although we were able to
observe only a single instance of PU development due to effective prophylaxis at the
study institutes, this observation aligns closely with our originally formulated hypothesis:
disturbed tissue perfusion leads to insufficient oxygen supply and thereby reduces skin
health. The disturbance in this case arises from prolonged pressure loads experienced
by at-risk patients who have limited mobility or are unable to perceive the necessity for
repositioning. The collected data permits the proposal of a PU development predictor
utilizing machine learning, but requires validation in subsequent research.

Furthermore, we explored additional hypotheses regarding pressure ulcers at patients
feet: how does the distribution of pressure loads on patients’ feet during their daily life
influence the risk of PU development? Additionally, how can orthopedic shoes aid in foot
ulcer prophylaxis by mitigating pressure spikes? Individually adjusted shoes or insoles
have been found to significantly decrease both the average pressure load and the occurrence
of pressure spikes. Therefore, they offer valuable support for preventing foot ulcers.

The KIPRODE study provides a further step towards understanding the development
of PUs and, consequently, their possible prevention. The sensor systems are ready for
further studies with larger patient groups to verify the PU predictor and optimize its
machine learning algorithms. Establishing a reliable PU prophylaxis would be a critical
step in addressing a severe and preventable disease that affects numerous patients.
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Appendix A

Appendix A.1

The filtered data (orange line in Figures 4a, 11 and 12a) is the result of applying a
digital, zero phase (forward-backward filtering) Butterworth-Filter to the preprocessed data.
The used filter is implemented in the SciPy library [49] and the following filter parameters
are used.

https://mediatum.ub.tum.de/1717646
https://gitlab.cc-asp.fraunhofer.de/mls/public
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Table A1. Filter coefficients used for the filtered data (orange line in Figures 4a, 11 and 12a).

Filter Type N: Filter Order fs: Sampling
Frequency

Wn: Critical
Frequency

skin temperature Butterworth 1 1 0.2

SpO2 Butterworth 1 1 0.0333

heart rate Butterworth 1 1 0.2

Appendix A.2

1. Initialize STA with window size T, reference point tre f and the dataset S, produced by
the pressure event detection, containing N pressure rise events. All the segments are
aligned, meaning in every segment the pressure rise happens exactly at t = 5 (after
5 min). The reference point, to which we compare all the other temperature values is
therefore the measurement at tre f = 3. The window size T is set to 60 min, because we
want to inspect the temperature in a one hour window, from 5 min before until 55 min
after the pressure fall.

2. Iterate over all the timepoints t in range (0, T):

(a) For each t, iterate over all the segments si in S:

i. Compute the difference ∆i between the temperature at the current
timepoint si(t) and the temperature at the reference timepoint si(tre f )
for sample si according to:

∆si(t) = si(t)− si(tre f ) (A1)

ii. Store the temperature differences ∆i in a list.

(b) Calculate the mean of the temperature differences ∆i over all the segments S
at the current timepoint t:

∆t =
1
N

N

∑
i=1

∆i (A2)

(c) Calculate the corresponding 95%-confidence interval at timepoint t, accord-
ing to:

CIt = ∆t ± z
σ√
N

(A3)

With σ being the standard deviation of the ∆is and z taken from the standard
normal distribution at p = 0.05, knowing that our measurements are normally
distributed.

3. Combine all the temperature differences ∆t into one series and plot it including the
confidence interval, and highlight the reference point tre f and the timepoint where
the pressure event happens.

4. Repeat for the pressure fall events.

The algorithm can be summarized into:

STA(t) =
1
N

N

∑
i=1

si(t)− si(tref) (A4)
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Appendix A.3

Further analysis on the influence of relevant preexisting conditions on vital signs.
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