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Abstract: Spacer-induced flow shadows and limited mechanical stability due to module construction
and geometry are the main obstacles to improving the filtration performance and cleanability of
microfiltration spiral-wound membranes (SWMs), applied to milk protein fractionation in this study.
The goal of this study was first to improve filtration performance and cleanability by utilising pulsed
flow in a modified pilot-scale filtration plant. The second goal was to enhance membrane stability
against module deformation by flow-induced friction in the axial direction (“membrane telescoping”).
This was accomplished by stabilising membrane layers, including spacers, at the membrane inlet
by glue connections. Pulsed flow characteristics similar to those reported in previous lab-scale
studies could be achieved by establishing an on/off bypass around the membrane module, thus
enabling a high-frequency flow variation. Pulsed flow significantly increased filtration performance
(target protein mass flow into the permeate increased by 26%) and cleaning success (protein removal
increased by 28%). Furthermore, adding feed-side glue connections increased the mechanical mem-
brane stability in terms of allowed volume throughput by ≥100% compared to unmodified modules,
thus allowing operation with higher axial pressure drops, flow velocities and pulsation amplitudes.

Keywords: pulsed flow; module stability; axial pressure loss; telescoping; membrane performance

1. Introduction

The membrane-based separation of a feed solution into the permeable components
(permeate) and the retained components (retentate) is widely applied across various in-
dustries. Within this process, the main challenge is controlling deposit formation, i.e.,
fouling, which results from the accumulation of retained feed components on and in the
membrane structure [1–5]. With deposits acting as a secondary selective layer, this causes
separation efficiency in terms of flux and protein permeation decreasing gradually during
filtration [6–8]. Additionally, frequent cleaning cycles are required to maintain membrane
performance and product quality due to the feed- and temperature-dependent occurrence
and progression of biofouling [9–13]. For dairy applications, one important example is
the fractionation of skim milk protein into its major protein components: whey proteins
(particle diameter dP = 3–6 nm [14]) and casein micelles (dP = 20–300 nm [14]) via micro-
filtration (MF; nominal pore size = 0.1–0.3 µm). This poses a particular challenge for the
application of fouling and cleaning as casein micelles can form highly compressible and
cross-linked gel layers at high concentrations and high-pressure conditions [15–19]. Deposit
formation cannot be reverted by pressure release [20], and accumulated protein can only
be incompletely removed by rinsing steps [1,2,21].

Besides feed composition, the membrane performance largely depends on processing
conditions. Up to limiting conditions, transmembrane pressure (TMP) increases can be used
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to achieve gains in flux. However, beyond limiting conditions, further increases in TMP
do not cause further flux increases but solely result in additional, partly irreversible [20]
deposit compaction and fouling [7]. Another option to enhance membrane performance
is by increasing the flow velocity v, and thus the wall shear stress τw, as this reduces
fouling [22–26]. Nonetheless, the maximum applicable crossflow velocities in SWMs are
limited by geometry-related or constructional aspects, thus also limiting fouling control
and cleanability.

Regarding membrane geometry, fouling depends on the membrane length and varies
along the membrane [27]. Due to friction, an axial pressure loss (∆pL) over the membrane
length is induced. This causes a decrease in TMP and thus in the fouling intensity from
the module inlet towards the module outlet [27]. The main industrially used module
configurations are ceramic tubular membranes (CTMs), hollow-fibre membranes (HFMs)
and SWMs, which all have their typical pros and cons. Compared to CTMs and HFMs,
SWMs offer the highest packing density, i.e., active membrane area per module, and thus
the highest whey protein mass flow per module [28]. On the contrary, SWMs suffer from
flow shadows behind spacer filaments [29–37] and, therefore, limited cleanability [29] and
mechanical stability. In SWMs, the membrane permeate pockets are formed by glueing
together individual membrane sheets, which are then wrapped around a central permeate
collection tube and fixed by an outer hull. Thus, the SWMs’ stability mainly depends on
the stability of glued bond joints and the friction between the membrane sheets, which
results from the strength of the wrapping.

The stability of bond joints depends on several construction-related aspects, such as
the glue composition [38], the design [39] and overlapping length of connections [40] and
the glue layer thickness [38]. Apart from that, process-related aspects, such as the speed of
stress application, the intensity and kind of stress [38], the process temperature [38] and the
duration of stress application, have significant effects [38,41]. Due to membrane pockets
formed by glueing together membrane sheets, the permeate side is susceptible to failure,
especially by negative TMP, which stresses bond joints via peeling and can cause tearing of
the membrane pockets. To avoid this, manufacturers usually limit the maximum negative
TMP to around 0.3 bar.

A more common failure mechanism in SWMs is telescoping, which describes an axial
displacement of the membrane pockets caused by frictional losses along the module (∆pL)
acting on the membrane envelope. Hence, the strength of the wrapping determines the
amount of friction between membrane sheets and thus its stability against axial displace-
ment. However, besides a lower risk of telescoping, stronger wrapping can also press
spacers into the membrane surface, thus reducing the active membrane area and even
disrupting the selective layer [42]. The trade-off between stability against axial deforma-
tion and membrane performance led to manufacturers limiting the friction-related axial
pressure drop ∆pL to 1.3 bar m−1 despite the commonly added stability support against
axial displacement via anti-telescoping devices (ATD). With ∆pL and thus v being limited,
this significantly restricts options to control deposit formation, e.g., by conventionally
established higher crossflow velocities in SWMs compared to the other module types
described above.

Several process-oriented approaches trying to increase membrane performance have
been investigated to cope with this limitation. One example is applying pulsed flow, i.e.,
a non-steady flow defined by its amplitude, in other words the difference between max-
imum and minimum flow and pressure conditions, and its frequency. Several studies
demonstrated the positive influence of pulsed flow on filtration [31,43] and cleaning per-
formance [29,44] for various feed solutions, including milk. For membranes containing
spacers, such as SWMs, particularly strong effects of pulsed flow on filtration and cleaning
performance were reported due to pulsed flow reducing flow shadows due to enhanced
turbulence [29,31] at high frequencies [44–49] and amplitudes [44–47,49].

However, some aspects exacerbate the transferability of lab-scale results to industrial-
scale SWM modules. Firstly, the approaches to pulsation creation used in previous lab-
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scale studies either included piston or bellows units [45,50] or specialised inductively
controlled pumps that could create pulsed flow by rapidly increasing and decreasing pump
capacity [29,31,44]. The former approach temporarily induced distinct back-pressure and
is thus incompatible with SWMs. To the authors’ knowledge, the latter one is unavailable
on a larger scale. Secondly, the transferability of results from studies with FSMs to SWMs
has been considered to be problematic for certain spacer geometries due to the curvature
of the feed channel and its influence on the radial distribution of v [37]. Thirdly, due to
the limited applicable pressure drops in SWMs, the highest applicable flow velocity and
pulsation amplitude are also limited. In particular, positive results for pulsed filtration in
a previous study using an SWM-like flat sheet membrane system (FSM) were found for
pressure losses up to 2.55 bar m−1 [31], which is beyond the allowed limit of SWM modules.
Thus, the advantage of pulsed flow might be reduced or absent for current SWM modules.

Hence, the potential beneficial effect of pulsed flow in filtration and cleaning remains
to be evaluated for industrial-scale SWMs. Therefore, a novel approach was developed
to create pulsed flow without back-pressure from the permeate side or relying on rapid
pump capacity ramps. Then, pulsed flow can be utilised to assess the efficacy of pulsed
flow MF of skim milk and subsequent membrane cleaning in SWMs. With previous studies
observing improved pulsed flow efficiency for increased amplitudes and at pressure drops
above the current limits of industrial SWMs, stability-enhanced modules could support the
efficiency of pulsed flow manifold by enabling higher crossflow velocities, axial pressure
drops and pulsed flow amplitudes. Hence, this study also investigates an approach to
improve module stability against telescoping by adding glue connections on the feed
side between membrane pockets, as this should provide additional resistance against the
displacement of individual sheets in the axial direction.

Accordingly, this study aims to overcome the limitations of SWMs by two means.
The first one is process-oriented and functions by modifying an existing plant for utilising
pulsed flow and then assessing its efficacy in filtration and cleaning. The second approach
is membrane-oriented and functions by creating a more robust SWM by adding glue
connections on the feed side between membrane pockets, including spacers, to enhance its
mechanical stability. For comparing steady and pulsed flow, filtration performance was
evaluated in terms of permeate flux, protein permeation and protein mass flow. Cleaning
success was evaluated hydrodynamically by measuring the flux recovery ratio (FRR) and
chemically by analysing the protein removal achieved during cleaning. To investigate
the effect of additional glue connections on module stability, the axial displacement of
membrane layers in an unmodified and a glued membrane system was measured at
different flow rates and radial distances to the module centre.

2. Materials and Methods
2.1. Filtration Plant and Experimental Design

An established pilot-scale filtration plant (Figure 1) was designed to resemble a typ-
ical industrial setup. It mainly consisted of a double-screw-type displacement pump
(FDS 2-3, Fristam Pumpen KG, Hamburg-Bergedorf, Germany), which is insensitive to
moderate pressure surges and commonly used in several dairy applications in which, e.g.,
highly viscous fluids such as milk concentrates need to be processed, and a membrane
housing with the established module configuration 6338 (length L = 0.96 m; diameter
d = 0.16 m). Additionally, pressure sensors and flow meters allow the monitoring and
controlling of the transmembrane pressure TMP (see Equation (1)), feed flow rate and
permeate flux J (see Equation (2)).

TMP =
p1 + p2

2
− p3 (1)
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where p1 is the feed-side pressure, p2 is the retentate-side pressure and p3 is the permeate-
side pressure.

J =

.
Vper

Amembrane
(2)

where
.

Vper is the permeate flow rate and Amembrane is the membrane area.
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Figure 1. Piping and instrumentation (P and I) diagram of an established membrane filtration plant
setup (black parts) consisting of feed pump, feed tank, sampling valves, manual throttling valves, a
heating cycle consisting of another feed pump and heat exchanger, as well as various flow, pressure
and temperature sensors. The red parts show the complimentary addition of a controlled bypass for
utilising pulsed flow, including a manual throttling valve to control the pulsation amplitude and a
controlled valve to control the pulsation frequency.

A separate heat exchanger loop combined with a temperature sensor enables precise
temperature control of the filtration fluids before entering the membrane loop. Thus, the
system can process various filtration feeds at defined temperatures, withstanding pressure
surges and varying the installed membrane module’s geometry and pore size.

2.1.1. Plant Modification and Experimental Design to Utilise Pulsed Flow

To enable applying a pulsed flow to a standard membrane filtration plant setup without
a pump capable of rapidly transitioning between high and low flow rates, a controlled bypass
was added upstream of the membrane inlet flow meter and pressure sensor (see Figure 1).
Accordingly, the bypass-related flow rate or pressure reductions could be monitored with
installed sensors. The bypass comprised a relay-controlled pneumatic valve capable of fully
closing or opening the bypass within 0.5 s at defined intervals. Hence, by determining the
phase durations where the bypass was open (∆tmin) or closed (∆tmax), flow rate and pressure
reach their minimum (

.
Vmin, vmin and TMPmin) or maximum (

.
Vmax, vmax and TMPmax),

respectively, and thus control the pulsation frequency f (Equation (3)).

f =
1

∆tmax + ∆tmin
(3)
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The additional manual valve allows control over the extent of flow rate reduction
when the bypass is opened and thus the amplitude of pulsed flow in terms of flow rate
(Equation (4)), flow velocity (Equation (5)) and TMP (Equation (6)).

∆
.

V =
.

Vmax −
.

Vmin (4)

∆v = vmax − vmin (5)

∆TMPcycle = TMPmax − TMPmin (6)

where ∆
.

V is the amplitude of flow rate, ∆v is the amplitude of flow velocity and ∆TMPcycle
is the amplitude of TMP. It is to be noted that the flow velocity was calculated for a
theoretical channel height without a spacer and a channel width of the SWM’s spiral length.
Hence, calculating v for spacer-filled channels can only provide a rough estimation, with
local values highly depending on the position relative to the spacer grid.

All pulsed flow experiments were conducted at 50 ◦C, resembling a typical industrial
filtration temperature [9]. The membrane was an MF SWM (GE JX6338C50) with a nominal
pore size of 0.3 µm, the material polysulfone, a spacer height of 1.27 mm (50 mils), an
active membrane area of 15.6 m2, a diameter of 6.3 inches (16 cm) and a length of 38 inches
(96 cm). Pasteurised skim milk (74 ◦C, 28 s) from a local dairy (Molkerei Weihenstephan,
Freising, Germany) was used for deposit formation in all steady and pulsed flow filtration
and cleaning experiments. Apart from filtration, deionised (DI) water was used in all
other steps, either pure for rinsing or combined with chemicals for cleaning. As high
frequencies [45–49] and amplitudes [45–47,51] were found to be beneficial for pulsed
flow efficiency, the respective maximum values that were possible with the current setup
were used in the pulsed flow filtration and cleaning experiments. Regarding TMP, the
average values were chosen to resemble typical process conditions. TMPavg during cleaning
resembles the lowest possible value without reaching negative values for TMPmin and still
enabling the identical flow velocity amplitude as during filtration (details see below).

Filtration Experiments

Before filtration, the membrane was conditioned with Ultrasil 69 (0.4% v/v, Ecolab
Deutschland, Monheim am Rhein, Germany) at 50 ◦C for 20 min. After an intermediate
rinsing step to avoid chemical residues, milk was heated to the process temperature by
the heat exchanger loop, and filtration was initiated. Pulsed flow filtration was conducted
with f = 0.5 Hz, the highest technically possible ∆

.
V = 10 m3 h−1, due to pump capac-

ity limitations (
.

Vmax = 14 m3 h−1 with ∆pL, max = 0.83 bar m−1 and vmax = 0.37 m s−1,
.

Vmin = 4 m3 h−1 with ∆pL, min = 0.14 bar m−1 and vmin = 0.11 m s−1,
.

Vavg = 9 m3 h−1 with
∆pL, avg = 0.35 bar m−1 and vavg = 0.24 m s−1) and ∆TMPcycle = 1.50 bar
(TMPmax = 1.75 bar, TMPmin = 0.25 bar, TMPavg = 1.00 bar). The average TMPavg and
.

Vavg were used for conducting comparative steady flow filtration runs. During the filtra-
tion duration of 60 min, samples were taken from permeate and retentate sample ports
after 5, 10, 15, 30, 45 and 60 min. Protein permeation for a specific milk protein Pi was
calculated by Equation (7) by its respective concentrations in the permeate ci, p and retentate
ci, r. Similarly, ci, p and Flux J were used to calculate an individual protein’s permeating
mass flow

.
mi into the filtrate (Equation (8)).

Pi =
ci, p

ci, r
(7)

.
mi = J·ci, p (8)

After each filtration experiment, the membrane was rinsed and then cleaned with
combined caustic (0.8% v/v, Ecolab Germany) and enzymatic (0.3% v/v Ultrasil 67, Ecolab
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GmbH, Monheim am Rhein, Germany) cleaning agents for 40 min, followed by another
rinsing step and an acidic cleaning step (0.4% v/v Ultrasil 75, Ecolab GmbH, Monheim am
Rhein, Germany) for 20 min at 50 ◦C. To verify sufficient cleaning success and thus ensure
long-term membrane functionality, the membrane’s pure water flux was measured before
each filtration run.

Cleaning Experiments

Before filtration, the membrane was conditioned, and the initial water flux J0 was mea-
sured. Filtration was then conducted for 40 min at 50 ◦C,

.
V = 5 m3 h−1 and TMP = 1.7 bar

with skim milk. Afterwards, the milk was drained, and the membrane system was care-
fully rinsed to remove bulk milk and loosely bound material. The following cleaning
experiments were conducted with NaOH at pH 11.3 (cNaOH = 0.03%) for 20 min at 50 ◦C
in circulation under either steady or pulsed flow mode. Due to the NaOH solution vol-
ume being high compared to the membrane area to be cleaned (yielding a specific clean-
ing volume of 6.4 L per square meter of active membrane area), an excess of cleaning
agent compared to the amount of protein to be removed was present. Thus, the exper-
iments should not be affected by the excessive consumption of cleaning agents causing
distorted protein removal or changes in the pH. Pulsed flow cleaning was conducted
with f = 0.5 Hz, the maximum technically viable ∆

.
V = 10 m3 h−1 (

.
Vmax = 14 m3 h−1 with

∆pL, max = 0.83 bar m−1 and vmax = 0.37 m s−1,
.

Vmin = 4 m3 h−1 with ∆pL, min = 0.14 bar m−1

and vmin = 0.11 m s−1,
.

Vavg = 9 m3 h−1 with ∆pL, avg = 0.35 bar m−1 and vavg = 0.24 m s−1)
and ∆TMPcycle = 1.00 bar (TMPmax = 1.15 bar, TMPmin = 0.15 bar, TMPavg = 0.60 bar).

The average TMPavg and
.

Vavg were used for comparative steady flow cleaning runs. For
evaluating chemical cleaning success in terms of protein removal, samples were taken from
the feed vessel after 20 min cleaning. Subsequently, the cleaning solution was drained, the
system rinsed, and the water flux after cleaning J1 was measured to evaluate the hydraulic
cleanliness in terms of flux recovery ratio (FRR) (see Equation (9)) reached by the applied
cleaning protocol. If the cleaning evaluation indicated incomplete cleaning (FRR < 90%),
an additional cleaning procedure with industrial cleaning agents, analogous to filtration
experiments, was conducted to evaluate long-term membrane functionality.

FRR =
J1

J0
(9)

It is to be noted that while identical pulsation frequencies as in previous FSM studies
could be achieved with this approach and setup, the maximum applicable amplitudes
and flow velocities were significantly lower in the current study due to limitations in
pump capacity.

2.1.2. Membrane Modification and Experimental Design to Investigate Increased Axial
Pressure Drops

To investigate increased axial pressure drops, the plant’s double-screw-type displace-
ment pump (see Figure 1) was replaced by a larger centrifugal pump capable of creating
a feed pressure of 4.8 bar and a maximum feed flow rate of 45 m3 h−1. In this scenario,
experiments were conducted with used membranes put out of operation at an industrial
plant to be free for establishing potentially destructive conditions. The membranes were
provided by a local dairy, where they had been used for the filtration of dairy fluids for
several months. The membranes (Koch Industries, Wichita, KS, USA) had a separation
range of 10 kDa, a 31 mil (0.79 mm) diamond-shaped spacer and an active membrane area
of 19.1 m2, a diameter of 6.3 inch (16 cm) and a length of 38 inch (96 cm). It is to be noted
that the used membranes showed no apparent membrane failures despite a few areas with
dislocated spacers between non-displaced membrane sheets.

To assess the effect of feed-side glue connections on membrane stability, modified mem-
branes were obtained by inserting a two-component adhesive (Araldite 2014-1,
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Huntsman Corporation, Salt Lake City, UT, USA) into the dry spacer channels with a
syringe and thus glueing together the membrane sheets. This procedure resulted in semi-
circular glue connections (d = 2 cm) placed in a radial direction along the membrane
diameter (Figure 2). After hardening for several days, the modified membranes were
comparatively assessed with unmodified membranes for their axial pressure drop stability.
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Figure 2. The membrane module was modified by adding glue dots (see black areas) radially along
the membrane diameter.

For axial stability experiments, the membranes were initially rinsed with deionised
(DI) water with open permeate valves to allow the permeate pockets to be filled. To simulate
the filtration of fouling-intensive feeds such as skim milk, where permeate production is
substantially low and thus the influence of flux on the length dependency of crossflow
velocity is negligibly small, axial stability experiments with water were conducted with
the permeate valve closed (TMP = 0.0 bar). The membrane was then subjected to an initial
axial pressure drop of 0.3 bar m−1 for 5 min. After assessing the axial displacement relative
to the permeate collection tube at four equidistant points (radial distances 3.3 cm, 4.5 cm,
5.8 cm, 7.0 cm) in the radial direction of the SWM with a Vernier calliper, this procedure
was repeated, increasing the axial pressure drop by 0.2 bar m−1 up to 1.5 bar m−1. This
approach allowed the evaluation of the displacement depending both on the applied
axial pressure drop and the radial distance of displaced membrane sheets to the permeate
collection tube.

Preliminary experiments with unmodified membranes and an ATD showed no signifi-
cant displacement at either radial position for pressure drops < 4.0 bar m−1 (see Figure 3),
contrary to industrial reports and restrictions stated by membrane manufacturers. This
contradicting observation is presumably due to displacements with ATD only caused
by long-term stress, as bond joints and polymers are known to migrate under constant
stress [41]. As these long-term scenarios are hard to reproduce at lab scale, the following
experiments were conducted without an ATD to exclusively assess the axial stability of the
membrane module without the support of an ATD.
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2.2. Chemical and Statistical Analyses

The contents of caseins and whey proteins in filtration and cleaning samples were
analysed by reversed-phase high-performance liquid chromatography (RP-HPLC) as de-
scribed by Dumpler et al. [52]. Agilent ChemStation software (Rev. B.04.03) was used to
analyse RP-HPLC chromatograms.

Data were plotted, fitted and statistically evaluated using OriginPro 2021 (OriginLab
Corporation, Northampton, MA, USA). Statistical significance between data sets was
assessed using a one-way analysis of variance (ANOVA) at the 5% level (p < 0.05). Depicted
error bars represent the standard deviation of replicates, whereas all cleaning and filtration
experiments were conducted at least in triplicates. Due to membrane failure/rupture
accompanying axial displacements, stability experiments could only be conducted as
single runs.

3. Results and Discussion
3.1. Optimisation of SWM’s Process Efficiency via the Utilisation of Pulsed Flow
3.1.1. Validation of Plant Modifications

As larger pumps are normally incapable of rapidly producing quickly transitioning
conditions between high and low flow rates, pulsed flow was created by installing a bypass,
temporarily reducing the pressure and flow rates reaching the membrane module. An
overview of the resulting pulsed flow characteristics is given in Figure 4.

Figure 4 depicts the time-resolved progression of flow rate
.

V and TMP. With this
approach to pulsation creation and the specific setup used in this study, a maximum
frequency of 0.5 Hz with an amplitude >10 m3 h−1 could be realised. Hence, compared to
previous lab-scale studies using steep transitioning ramps of inductively controlled pumps
to generate pulsed flow [29,31,44,53], the same maximum frequencies can be achieved at
tenfold higher flow rates. Also, the profiles of flow rate and TMP progression correspond
to those of lab-scale experiments with rapid ramps creating pulsed flow [44]. It is to be
noted that while other valves with shorter opening and closing times might enable higher
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pulsation frequencies, they might also induce intensified pressure surges on the plant
equipment, which could cause enhanced wear. However, the current setup with f = 0.5 Hz
did not cause any damage or wear on sensitive plant components, such as sensors or valves,
within a pulsed flow operation of four months. Contrary to other approaches of creating
pulsed flow, such as via bellows or piston units [45,50], it is also of advantage that the
occurrence of negative TMP values can be avoided. This is particularly important for SWMs,
where negative TMP must not exceed 0.3 bar, according to membrane manufacturers´
specifications, as this would stress the bond joints of membrane pockets and could result
in membrane failure. Overall, the bypass as a technical option to produce pulsed flow
conditions resembles a low-effort and cost-efficient approach to creating similar pulsed
flow profiles on a pilot scale with industrially sized membranes as in lab-scale studies.
Nonetheless, it is to be noted that with this novel approach to pulsation creation, the energy
efficiency is decreased compared to that of the previous system using rapid pump capacity
ramps [31,44]. In this case, pumps will not alternately increase and decrease in pump
capacity, but are instead continuously run at maximum capacity, despite a large share of
flow temporarily not reaching the membrane during the low-flow pulsation phases.
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.
Vmin = 4 m3 h−1,

.
Vavg = 9 m3 h−1) and ∆TMPcycle = 1.50 bar (TMPmax = 1.75 bar, TMPmin = 0.25 bar, TMPavg = 1.00 bar).

3.1.2. Influence of Pulsed Flow on Filtration Performance in Industrial-Scale SWMs

The mass flow resulting from flux and permeation was analysed to assess the effect of
pulsed flow on the time-resolved filtration performance in industrial SWMs during 60 min
filtration. The strongest impacts of pulsed flow were reported for high frequencies [44–49]
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and amplitudes [44–47,49]. Accordingly, pulsed flow experiments were run with the best
combination of frequency and amplitude applicable to the current setup. The mass flow
of whey protein, i.e., the targeted permeating component (Figure 5), for pulsed flow was
permanently increased over that of steady flow throughout filtration. While the whey
protein mass flow with steady flow decreased from 38.9 g m−2 h−1 by 39% to 23.8 g m−2

h−1, pulsed flow decreased from 43.7 g m−2 h−1 by 31% to 30.0 g m−2 h−1. Hence, the
initial mass flow (+12%), steady-state mass flow (+26%) and its decrease during filtration
(−21%) were all improved with pulsed flow. These results demonstrate an improved initial
and continuous deposit control with pulsed flow resulting in a 26% increased whey protein
mass flow compared to steady flow at steady-state.
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mass flow during skim milk MF. Filtration conditions ∆

.
V = 10 m3 h−1 (

.
Vmax = 14 m3 h−1,

.
Vmin = 4 m3 h−1,

.
Vavg = 9 m3 h−1) and ∆TMPcycle = 1.50 bar (TMPmax = 1.75 bar, TMPmin = 0.25 bar,

TMPavg = 1.00 bar).

The observed improvements in filtration performance with pulsed flow are generally
in accordance with our previous lab-scale study [31]. The increased mass flow, induced by
enhanced flux and permeation, is the result of improved access to flow shadows causing
improved deposit control with less fouling [31]. The small differences in performance
improvement with pulsed flow between lab-scale and industrial-scale membranes, particu-
larly regarding whey protein permeation, could arise from the fact that the highest applied
axial pressure drop, and thus the flow velocity, was much lower (∆pL, max = 0.83 bar m−1)
compared to that in the previous study (∆pL, max = 2.55 bar m−1) with FSM. The same
applies to the amplitude (∆v = 0.26 m s−1 versus ∆v = 0.60 m s−1) [31], as explained above.
Frequency and amplitude have both been previously identified to be critical aspects for
pulsed flow efficiency [44–47,54].

3.1.3. Influence of Pulsed Flow on Cleaning Efficiency in Industrial-Scale SWMs

To also examine the effect of pulsed flow on cleaning efficiency with the modified
filtration plant for industrial-scale SWMs, cleaning experiments with NaOH at pH 11.3
(cNaOH = 0.03%) were conducted after steady flow filtration. Again, pulsed flow experi-
ments were conducted at the maximum frequency and amplitude settings possible with
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the current setup. The results of comparing steady and pulsed flow cleaning experiments
were evaluated using FRR (Figure 6 left) and total protein removal (Figure 6 right) as
assessment criteria.
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V = 10 m3 h−1
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Vmax = 14 m3 h−1,
.

Vmin = 4 m3 h−1,
.

Vavg = 9 m3 h−1) and ∆TMPcycle = 1.00 bar (TMPmax = 1.15 bar,
TMPmin = 0.15 bar, TMPavg = 0.60 bar).

Regarding FRR, there were no significant differences between flow modes, with
90 ± 2% for steady and 87 ± 5% for pulsed flow. Nonetheless, the protein removal achieved
with pulsed flow (4.90 ± 0.36 g m−2) was significantly increased by 28% over that achieved
with steady flow cleaning (3.83 ± 0.29 g m−2). With pulsed flow improving access to flow
shadows [29,31,44,51,55–59] and thus improving removal particularly in these areas, the
reason for the absence of improvements in FRR could be due to the steady water flux
measurements being prone to the same flow shadows behind spacer filaments as steady
flow cleaning. As shown in a previous study for FSMs, fouling residues in areas subject to
flow shadows could only partially be removed by steady flow cleaning, whereas no distinct
residues in those areas could be observed for pulsed flow cleaning [29]. As these observa-
tions were only reflected by an increased protein removal but not an increase in FRR, it can
be assumed that the additional protein removal near spacer filaments could not be detected
by steady flux measurements. This is presumably due to these areas hardly contributing to
flux under steady flow, regardless of fouling being present or absent, and translates to an
overestimation of hydraulic cleanliness for steady flow and an underestimation thereof for
pulsed flow cleaning. This explanation also highlights FRR being insufficient as a singular
tool for cleaning evaluation, particularly for membranes subject to flow shadows, such as
FSMs or SWMs. Overall, similar to the filtration experiments (Section 3.1.2), the positive
results from lab-scale trials could be confirmed, but the benefits were less pronounced, due
to reasons explained above.

Another factor when comparing FSM and SWM results is the membrane length, which
could also affect the results of pulsation efficiency. Due to the length dependency of ∆pL,
TMP and fouling, the membrane length was previously identified in HFM to affect the
cleaning efficiency for flow modes inducing flow reversal [53] but not for conventional
steady or pulsed flow [29]. Nonetheless, due to significant geometrical differences between
HFMs and SWMs, a declining efficiency of pulsation effects with increasing membrane
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length in SWMs, e.g., due to propagating flow and pressure waves being partially absorbed
by the friction with spacer filaments, cannot be excluded. Nonetheless, the lower flow
velocity and amplitude, limited by the maximum pressure drop applicable and thus the
stability of SWMs, remain the most probable causes for the observed differences between
FSMs and SWMs. Hence, the following sections will investigate an approach to improve
module stability in SWMs under operating conditions currently out of reach.

3.2. Optimisation of SWMs’ Mechanical Stability by Feed-Side Glue Connections

First, the effect of glue connections on the filtration behaviour was to be assessed since
the glued areas reduce the inlet cross-section of the module. Therefore, the relationship
between axial pressure drop and volume flow rates was compared for a glued and an
unmodified membrane (Figure 7).
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The unmodified membrane reaches the maximum axial pressure drop of 1.3 bar m−1

at 16.9 m3 h−1, and the glued membrane already at 15.9 m3 h−1. This means that for an
identical maximum pressure drop of 1.30 bar m−1, the modified membrane could only be
operated at a six percent lower volume flow rate than the unmodified membrane. Hence,
potential improvements in module stability need to be more pronounced than the enhanced
axial pressure drop induced by the glued sections. Otherwise, if glued connections could
not provide sufficient stability improvements, the enhanced axial pressure drop would
further limit the highest applicable flow velocities. Also, it is to be noted that the glued
connections were added to the SWM after its manufacture. Therefore, the areas covered
with glue were larger and less well-shaped than they could be when created during the
SWM manufacturing process.

Furthermore, the effect of additional glue connections on the short-term stability of the
membranes without an ATD was assessed in terms of the axial displacement at different
radial positions caused by different axial pressure drops (Figure 8).



Membranes 2023, 13, 791 13 of 18

Membranes 2023, 13, x FOR PEER REVIEW 13 of 18 
 

 

The unmodified membrane reaches the maximum axial pressure drop of 1.3 bar m−1 
at 16.9 m3 h−1, and the glued membrane already at 15.9 m3 h−1. This means that for an 
identical maximum pressure drop of 1.30 bar m−1, the modified membrane could only be 
operated at a six percent lower volume flow rate than the unmodified membrane. 
Hence, potential improvements in module stability need to be more pronounced than 
the enhanced axial pressure drop induced by the glued sections. Otherwise, if glued 
connections could not provide sufficient stability improvements, the enhanced axial 
pressure drop would further limit the highest applicable flow velocities. Also, it is to be 
noted that the glued connections were added to the SWM after its manufacture. There-
fore, the areas covered with glue were larger and less well-shaped than they could be 
when created during the SWM manufacturing process. 

Furthermore, the effect of additional glue connections on the short-term stability of 
the membranes without an ATD was assessed in terms of the axial displacement at dif-
ferent radial positions caused by different axial pressure drops (Figure 8). 

  
(a) (b) 

Figure 8. Axial displacement of the unmodified (a) and glued (b) membrane caused by axial pres-
sure drops at different radial distances to the module centre without an ATD. The grey reference 
lines indicate no axial displacement. Lines are a guide for the eye. 

Due to the absence of an ATD, the critical axial pressure drop, where axial dis-
placement starts to occur, was reached at 0.5 bar m−1 for the unmodified membrane (Fig-
ure 8a). Beyond this point, the axial displacement increased exponentially as a function 
of axial pressure drop. Also, the displacement was most pronounced for the membrane 
parts in the radially outer positions, i.e., farthest away from the central collection tube 
(7.0 cm), as the pockets are only fixed to the central collection tube and the outer part is 
only held in place by the friction induced by the module wrapping. Hence, the outer 
part cannot take up high forces in the axial direction and thus is pushed towards the rear 
part of the module 879% further than the inner part (12.34 cm displacement at 7.0 cm ra-
dial distance versus 1.26 cm displacement at 3.3 cm radial distance) where most of the 
axial forces can be taken up by the connection to the central collection tube. Even at 
pressure drops of 1.5 bar m−1, above the manufacturer limit of 1.3 bar m−1, only a slight 
axial displacement <1.0 cm of the inner membrane envelope could be observed. Overall, 
these results emphasise both the instability, particularly of the outer SWM parts, against 
telescoping as well as the necessity and potential advantages of additional stabilisers, 
such as glued connections, for module stability. 

The glued membrane (Figure 8b) showed vastly different results with no displace-
ment up to an axial pressure drop of 1.0 bar m−1. This translates to an overall 100% stabil-

Figure 8. Axial displacement of the unmodified (a) and glued (b) membrane caused by axial pressure
drops at different radial distances to the module centre without an ATD. The grey reference lines
indicate no axial displacement. Lines are a guide for the eye.

Due to the absence of an ATD, the critical axial pressure drop, where axial displacement
starts to occur, was reached at 0.5 bar m−1 for the unmodified membrane (Figure 8a).
Beyond this point, the axial displacement increased exponentially as a function of axial
pressure drop. Also, the displacement was most pronounced for the membrane parts in
the radially outer positions, i.e., farthest away from the central collection tube (7.0 cm), as
the pockets are only fixed to the central collection tube and the outer part is only held in
place by the friction induced by the module wrapping. Hence, the outer part cannot take
up high forces in the axial direction and thus is pushed towards the rear part of the module
879% further than the inner part (12.34 cm displacement at 7.0 cm radial distance versus
1.26 cm displacement at 3.3 cm radial distance) where most of the axial forces can be taken
up by the connection to the central collection tube. Even at pressure drops of 1.5 bar m−1,
above the manufacturer limit of 1.3 bar m−1, only a slight axial displacement <1.0 cm of
the inner membrane envelope could be observed. Overall, these results emphasise both
the instability, particularly of the outer SWM parts, against telescoping as well as the
necessity and potential advantages of additional stabilisers, such as glued connections, for
module stability.

The glued membrane (Figure 8b) showed vastly different results with no displacement
up to an axial pressure drop of 1.0 bar m−1. This translates to an overall 100% stability
increase compared to the unmodified membrane with significant displacements already
observed at 0.5 bar m−1. Considering the displacements at different radial positions, they
are all significantly reduced. For the inner part, i.e., 3.3 cm and 4.5 cm, no significant
displacement can be observed for axial pressure drops up to 1.5 bar m−1. At 4.5 cm radial
distance and 1.5 bar m−1, the displacement in the glued membrane was 82% reduced
compared to that of the unmodified membrane (0.5 cm versus 2.9 cm). In the outer part
(7.0 cm radial distance) at 1.5 bar m−1, where displacement was most pronounced for
both membranes, the displacement could be reduced by 81% (2.3 cm versus 12.3 cm). An
overview of the achieved reductions in axial displacements with the modified membrane
compared to the unmodified membrane shows an exponential increase for increasing
pressure drops (see Figure 9a) and radial distances to the module centre (see Figure 9b).
Hence, improvements of the modified membrane are most pronounced for outer membrane
parts and at increased axial pressure drops or flow velocities.
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Besides the observed stability increases, axial displacement still occurred due to
the increasingly stressed bond joints eventually rupturing at their weakest point. As a
consequence, the supportive effect of this bond joint vanished, and axial displacement
occurred. Nevertheless, due to the supportive effect of the remaining membrane sheet
connections, the resulting axial displacement could be significantly reduced compared
to an envelope without glued bond joints. The related failure mechanism was a rupture
of the glue connections. An additional failure mechanism, e.g., the axial displacement of
the feed spacer, as observed in the used membranes, could not be observed for the glued
membranes, which also underlines their enhanced stability.

It is to be noted that due to glue connections being added after SWM manufacturing
and for used membranes, the adhesion between the selective and support layer, as well as
the glue connections and their geometry, might not be ideal. Hence, it can be assumed that
if prepared under ideal conditions, the stability improvements gained by glue connections
would be more pronounced.

4. Conclusions

This study presented two approaches to successfully reduce the limitations of SWMs
regarding cleanability and mechanical stability. The first approach, focusing on processing,
transferred and utilised the concept of pulsed flow to industrial-scale membranes by
adding a controlled bypass. This led to similar flow characteristics but less distinct process
improvements during filtration and cleaning compared to previous lab-scale studies using
FSMs [29,31]. While the underlying causes for the observed differences between lab-scale
FSMs and industrial-scale SWMs could not entirely be determined, they are presumably
due to the reduced flow velocity and pulsation amplitude applicable in SWMs. Nonetheless,
significant improvements for both filtration (mass flow +26%) and cleaning performance
(protein removal +28%) could be confirmed for pulsed flow. It is to be noted that while this
approach was associated with low effort and investment cost on the pilot scale, a transfer
to industrial-scale systems, often encompassing several membrane housings, i.e., filtration
units, would require an efficient implementation of the additional controlled bypass into
each filtration unit. This could be performed by, e.g., combining two filtration units into
one pulsation unit where the flow control is managed by a controlled three-way diverting



Membranes 2023, 13, 791 15 of 18

valve instead of a controlled bypass. This way, one filtration unit would be in the high
flow rate phase while the other filtration unit would be in the low flow rate phase. One
advantage of this approach would be that no pump energy would be left unused as bypass
flow but instead split between two filtration units pulsing inversely. Despite the advantages
of pulsed flow, the necessity of adding the respective type of pulsation creation to every
filtration unit is given for each type of pulsation creation and should thus be considered
upon implementation.

The second approach, focusing on membrane construction, applied glue connections
between membrane sheets in the radial direction across the membrane width of a used
SWM. As a result, the axial pressure drop at a given flow rate was slightly increased.
However, the stability against axial displacement without an ATD was increased by ≥100%
across the whole membrane diameter. Consequently, the enhanced axial pressure drop
at the inlet partly compensated the glued connections’ positive effect. Nevertheless, the
positive effect of enhanced stability predominates over the disadvantage of enhanced axial
pressure drop. Thus, higher flow rates and increased amplitudes under pulsed flow are
expected to be applicable to the glue-connected SWM. Due to glue connections being added
under non-ideal conditions, i.e., after manufacturing and for used membranes, it can be
assumed that stability improvements would be more pronounced under ideal glueing
conditions. In the case of manufacturing the interconnections between the membrane
pockets simultaneously with the SWM itself, the bonds could be formed slimmer but longer
to leave more free inlet cross-sections. Additionally, the effect of those glue connections
might be enhanced by optimising their location, orientation and extent within the mem-
brane module. However, since the effects on module stability could only be assessed with
short-term experiments under extreme conditions, i.e., without an ATD, long-term stability
tests should be conducted to confirm the enhanced stability for conventional setups with
an ATD.

Finally, the combined maximum achievable advantages of using a stabilised SWM
with pulsed flow allowing for increased pulsation amplitudes at increased flow rates should
be assessed to facilitate weighing the required implementation effort versus the gained
advantage, particularly from an economic and ecological point of view.
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