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The rich class of multivariate Pareto distributions forms the basis of recently intro-

duced extremal graphical models. However, most existing literature on the topic is

focused on the popular parametric family of Hüsler–Reiss distributions. It is shown

that the Hüsler–Reiss family is in fact the only continuous multivariate Pareto model

that exhibits the structure of a pairwise interaction model, justifying its use in many

high-dimensional problems. Along the way, useful insight is obtained concerning a

certain class of distributions that generalize the Hüsler–Reiss family, a result of inde-

pendent interest.
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1 | INTRODUCTION AND MAIN RESULT

Multivariate Pareto distributions play a central role in tail dependence modeling and inference as the only limit laws that can arise from multivari-

ate threshold exceedances. They are defined as the class of possible nondegenerate weak limits of the conditional laws of u�1XjkXk∞ > u, as

u!∞, for random vectors X with unit Pareto margins. As such, they are usually considered to perfectly describe the possible tail dependence

structures of multivariate data. Originally introduced in Rootzén and Tajvidi (2006), they form the basis of multivariate peaks-over-threshold

inference (Kiriliouk et al., 2019; Rootzén et al., 2018). Apart from a constraint on their support and a certain marginal standardization arising

from their definition, multivariate Pareto distributions consist of all multivariate distributions Y satisfying the homogeneity property

Pðt�1Y�AÞ¼ t�1PðY�AÞ, for t≥ 1 and A contained in the support of Y. In the absolutely continuous case, which is the focus of this note, they

can be exactly defined as follows (cf. Engelke & Volgushev, 2022). Given the existence of a density, the property (MP2) below is equivalent to the

aforementioned homogeneity.

Definition 1. An absolutely continuous random vector Y :¼ðY1,…,YdÞ with density f has a multivariate Pareto distribution if:

(MP1) it is supported on L :¼ ½0,∞Þd ∖ ½0,1�d, that is, fðyÞ¼0 for y =2L,
(MP2) its density f is ðdþ1Þ-homogeneous, that is, fðtyÞ¼ t�ðdþ1ÞfðyÞ for y�L and t≥1, and

(MP3) the marginal probabilities PðYk >1Þ, k�1,…,d, are equal to each other.

Remark 1. A multivariate Pareto distributed Y is said to have unit Pareto conditional margins since for y >1, PðYk > yjYk >1Þ¼ y�1.

If threshold exceedances of a random vector X with equal, but non-Pareto marginal distributions are of interest, the limiting

distribution Y will of course have different margins. So obtained margin-free multivariate Pareto distributions were the

focus of Rootzén and Tajvidi (2006), while some authors have considered exponential or short tailed conditional margins
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(see, e.g., Falk & Guillou, 2008; Röttger, Engelke, & Zwiernik 2023). As models for tail dependence, those formulations are equiva-

lent and the choice of margins is mostly one of notational convenience. In this note, we choose to stick to the historically standard

choice of Pareto conditional margins.

As a relaxation, Ho and Dombry (2019) propose to drop the condition that the margins of the original data X be all equal, which

leads to a generalized multivariate Pareto model that does not satisfy the property (MP3). The main result of this note can be

extended to such a model.

The class of multivariate Pareto distributions is of course very rich. It is equivalent to the class of all extreme value copulas, or to all multivari-

ate max-stable distributions (with fixed margins). As such, parametric subfamilies of multivariate Pareto distributions are derived from the

corresponding multivariate max-stable models. One of the oldest such models is the extremal logistic distribution (Gumbel, 1960), while the most

popular is that associated to the family of Hüsler–Reiss distributions (Hüsler & Reiss, 1989), hereafter termed Hüsler–Reiss distributions them-

selves for convenience (rather than Hüsler–Reiss multivariate Pareto).

In the examples below and in the rest of this note, let 1 denote a vector each element of which is 1, and the dimension of which will be clear

from the context. For a vector y :¼ðy1,…,ydÞ, we define logy as the elementwise (natural base) logarithm ðlogy1,…, logydÞ. The space of symmetric

d�d matrices is denoted by Sd�d, and Sd�d
1 �Sd�d represents those matrices which have 1 in their kernel (i.e., that have zero row and column

sums). Finally, Sd�d
1,þ �Sd�d

1 represents the matrices, which, in addition, are positive semi-definite with rank d�1.

Example 1 Extremal logistic distribution. The multivariate Pareto distributed random vector Y has an extremal logistic distribution

with parameter θ� ð0,1Þ if its density f is given by

fðyÞ/
Xd
i¼1

y�1=θ
i

 !θ�dYd
i¼1

y�1=θ�1
i , y�L:

Example 2 Hüsler–Reiss distribution. The multivariate Pareto distributed random vector Y has a Hüsler–Reiss distribution if for a

matrix Θ�Sd�d
1,þ , its density f is given by

fðyÞ/ exp �μHRðΘÞ > ðlogyÞ�ðlogyÞ > ΘðlogyÞ� �
, y�L,

where μHRðΘÞ :¼ð1þ 2
dÞ1� 1

dΘΓ1, Γ :¼1diagðΘþÞ > þdiagðΘþÞ1 > �2Θþ, and Θþ denotes the Moore–Penrose pseudoinverse of Θ.

While traditionally parametrized by the variogram matrix Γ, it has recently been suggested that the Hüsler–Reiss family can be ele-

gantly parametrized by the Hüsler–Reiss precision matrix Θ (Hentschel et al., 2022). By Proposition 3.4 of that paper, these two

matrices are uniquely determined by each other through a homeomorphic mapping between Sd�d
1,þ and the space of symmetric,

strictly conditionally negative definite matrices, to which Γ belongs. We follow Hentschel et al. (2022) and shall refer to the Hüsler–

Reiss distribution with precision matrix Θ.

Hüsler–Reiss distributions enjoy a nice connection to recently introduced extremal graphical models (Engelke & Hitz, 2020). The authors of

that paper declare that two components Yi and Yj of a multivariate Pareto random vector are conditionally independent given the other variables

ðYkÞk =2 fi,jg in the extremal sense if, roughly speaking, the density of Y admits the factorization

fðyÞ¼ fiðyÞfjðyÞ, ð1Þ

where fi (respectively fj) does not depend on its ith (respectively jth) argument; see their Proposition 1. While this would be equivalent to the

usual notion of conditional independence were Y supported on a product space, this is not the case for multivariate Pareto distributions, which

are supported on L. The authors then define an extremal graphical model as a multivariate Pareto distribution satisfying a Markov property (with

respect to this weaker notion of conditional independence) on a given undirected graph. For the relevant notions of graphical modeling, the

reader is referred to Engelke and Hitz (2020) or to Maathuis et al. (2019).

If Y is Hüsler–Reiss distributed with precision matrix Θ, then Yi and Yj are conditionally independent given the other variables in the extremal

sense of Engelke and Hitz (2020) if and only if Θij ¼0. This forms an example of a pairwise interaction model: an exponential family of multivariate

distributions where the ði, jÞth element of a parameter matrix fully governs the dependence between the ith and jth variables.

Definition 2. Let q�ℕ. A (curved) exponential family of probability distributions supported on a common set Y ⊆ℝd and indexed

by a parameter space Ω⊆ ðℝqÞd�Sd�d is called a pairwise interaction model if:
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(PI1) it corresponds to a family of Lebesgue densities

F :¼ y 7! fμ,ΘðyÞ :¼ 1
Zðμ,ΘÞ exp �

Xd
i¼1

μ >
i SiðyiÞ�

Xd
i¼1

Xd
j¼1

ΘijTiðyiÞTjðyjÞ
( )

, ðμ,ΘÞ�Ω

( )
ð2Þ

for some measurable functions Si :ℝ!ℝq and measurable, nonconstant functions Ti :ℝ!ℝ, and

(PI2) for every pair ði, jÞ, i≠ j, there exists at least one parameter ðμ,ΘÞ�Ω such that Θij ≠0.

Remark 2. 1. Only Lebesgue densities are considered for the purpose of the present note, but Definition 2 can be readily adapted

to pairwise interaction models dominated by any base (product) measure.

2. Following standard definitions of exponential families, a so-called carrying density
Qd

i¼1hiðyiÞ could be included as a factor in

the functions fμ,Θ. However, since we do not require the family to be regular (in particular, the Hüsler–Reiss distributions form a

curved exponential family), the carrying density can be absorbed in the marginal terms SiðyiÞ by possibly adding a dimension to

each μi and reducing the domain Y. The reader is referred to standard texts such as Brown (1986) for notions of exponential

families.

3. The slightly nonstandard property (PI2) is a technical requirement for the characterization of all pairwise interaction multivari-

ate Pareto models in Lemma 1 below. It is very minor: it holds if at least one possible value of the parameter Θ has no zeros,

that is, if the model allows for the simultaneous presence of all pairwise interactions. Upon inspection of the proof of Lemma 1,

it could even be further relaxed. For instance, consider a graph G with an edge between i and j if and only if Θij ≠0 for some

ðμ,ΘÞ�Ω. The property (PI2) states that G is fully connected, but Lemma 1 holds under the mere requirement that every edge in

G is part of a cycle of odd length (e.g., a triangle).

Pairwise interaction models are ubiquitous in dependence modeling. When the common support Y is a product space, they are elegant exam-

ples of undirected graphical models, where the conditional independence graph contains the edge ði, jÞ if and only if Θij ≠0. Each variable then

typically satisfies a generalized linear model conditionally on the other variables, with the regression coefficients being extracted from the parame-

ter matrix. Structure learning and parameter inference on a given graph structure can be efficiently carried out via (possibly penalized) likelihood,

but also regression (Yang et al., 2015) or score matching (Lin et al., 2016) based methods. Gaussian and Gaussian copula models (Liu et al., 2009)

as well as the continuous square root graphical model (Inouye et al., 2016) are examples of pairwise interaction graphical models used for high-

dimensional dependence modeling in Euclidean settings. Klein et al. (2020) introduce pairwise interaction graphical models for multivariate angular

data. Discrete analogs include the Ising model and more general log-linear interaction models (Darroch et al., 1980) as well as the discrete square

root graphical model (Inouye et al., 2016).

Even in a pairwise interaction model without a product space support (such as multivariate Pareto distributions), the ði, jÞth element of the

parameter matrix Θ is zero if and only if the density admits a factorization as in Equation (1). Yu et al. (2022) show that score matching can be

adapted to perform model selection and inference for the interaction parameter Θ in such a setting.

The Hüsler–Reiss family has been the focus of many recent papers on high-dimensional modeling and inference for tail dependence, espe-

cially in relation to extremal graphical models (see, e.g., Asenova et al., 2021; Engelke et al., 2022; Hentschel et al., 2022; Lederer &

Oesting, 2023; Röttger, Coons, & Grosdos, 2023; Röttger, Engelke, & Zwiernik, 2023). In fact, it is the only pairwise interaction family of multivar-

iate Pareto distributions that can be found in the literature, despite the fact that such families are naturally related to the density factorization

property underlying extremal graphical models. A natural question is whether there exists another such family.

Theorem 1. Let P be a family of absolutely continuous multivariate Pareto distributions in dimension d≥3 that forms a pairwise

interaction model. Then P is a subset of the Hüsler–Reiss family.

It has already been seen that the family of multivariate Pareto distributions is nonparametric. Moreover, the class of all pairwise interaction

models is also extremely rich. If Y ¼L in Definition 2, any choice of functions Si and Ti, which, in absolute value, increase fast enough at ∞ and

slowly enough at 0, gives rise to a nontrivial pairwise interaction model, with constraints on the parameter space being imposed by the choice of

those functions. As will be seen in the proofs, the interplay between the additive structure of the log densities in pairwise interaction models and

the homogeneity property (MP2) required of multivariate Pareto distributions means that the intersection between those two nonparametric clas-

ses is the Hüsler–Reiss family, the complexity of which is comparable to Gaussian distributions. Theorem 1 thus justifies the focus on this (rela-

tively small) parametric model in the recent literature on graphical extremes. It would be tempting to extend some of the models in the

aforementioned papers into more complicated structures while retaining the practicality of estimating pairwise interaction models, but this is in

fact not possible.
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In particular, in order to develop an efficient score matching algorithm, Lederer and Oesting (2023) introduce the class of functions

F gen HR :¼ y 7! fgen HR
μ,Θ ðyÞ :¼ 1

Zðμ,ΘÞ exp �μ > ðlogyÞ�ðlogyÞ > ΘðlogyÞ� �
: μ�ℝd,Θ�Sd�d

1

� �
ð3Þ

as surrogates of the densities of Hüsler–Reiss distributions. As the authors rightfully point out, F gen HR strictly generalizes the class of Hüsler–

Reiss densities; some of the functions therein are not even integrable on L. While there are functions in F gen HR, which are in between, that is,

integrable but not Hüsler–Reiss densities, Theorem 1 guarantees that none of them corresponds to a multivariate Pareto distribution. In fact, a

corollary of the proof of Theorem 1 is a full characterization of the functions fgen HR
μ,Θ �F genHR based on the values of μ and Θ; see Lemma 2 below.

Theorem 1 is a direct consequence of the following two results of independent interest, which are proved in Section 2.

Lemma 1. Let P be a family of absolutely continuous multivariate Pareto distributions in dimension d≥3 that forms a pairwise

interaction model and let F be the corresponding class of densities. Then F ⊆F gen HR.

Lemma 2. The functions fgen HR
μ,Θ in F gen HR can be categorized as follows.

(i) If Θ�Sd�d
1,þ and μ¼ μHRðΘÞ, then fgen HR

μ,Θ is the density of a Hüsler–Reiss distribution.

(ii) If Θ�Sd�d
1,þ , μ≠ μHRðΘÞ and μ > 1> d, then fgen HR

μ,Θ is integrable on L but is not the density of a multivariate Pareto distribution.

(iii) If either Θ =2Sd�d
1,þ or μ > 1 ≤ d, then fgen HR

μ,Θ is not integrable on L.

Remark 3. Part ðiÞ in Lemma 2 was already stated and proved by Lederer and Oesting (2023) and is in fact the main justification for

working with F gen HR. The contribution here is in giving a complete picture of the functions in this class. In particular, there are no

multivariate Pareto densities in F gen HR other than Hüsler–Reiss densities. The distributions arising in Part ðiiÞ are of the generalized

Hüsler–Reiss type of Ho and Dombry (2019).

2 | PROOFS

Throughout the proofs, for a vector y�ℝd, we generically define yi as the ith entry of y and y ∖ i �ℝd�1 as the subvector obtained by removing its

ith entry. The same conventions are used for indexing the rows and columns of a matrix.

2.1 | Proof of Lemma 1

By assumption, the density class F is defined as in Equation (2). Using the assumed properties (MP2) and (MP3) of multivariate Pareto

distributions as well as the property (PI2) of pairwise interaction models, we shall establish all the required properties that will ensure that each

density in F is an element of F gen HR. Specifically, it will be shown that the dimension q of the marginal parameters μi can be taken as 1, that the

functions Si and Ti must be logarithmic, and that moreover the parameter matrix Θ must (or rather, can be assumed to) have zero row and

column sums.

2.1.1 | The functions Ti must be logarithmic and Θ can be assumed to have zero row sums

The required homogeneity property (MP2) implies that for any y�L and t>1,

Xd
i¼1

μ >
i ðSiðtyiÞ�SiðyiÞÞþ

Xd
i¼1

Xd
j¼1

ΘijðTiðtyiÞTjðtyjÞ�TiðyiÞTjðyjÞÞ¼ ðdþ1Þlog t: ð4Þ

Since for every pair ði, jÞ, i≠ j, Θij can be nonzero, the above implies that for every such pair, any y�L and any t>1,

TiðtyiÞTjðtyjÞ�TiðyiÞTjðyjÞ¼ aijðy ∖ j,tÞþbijðy ∖ i,tÞ, ð5Þ

for some functions aij and bij not depending on yj and on yi, respectively. Consider now the following auxiliary result.
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Lemma 3. Let ξ,ψ : ð0,∞Þ!ℝ be nonconstant functions such that for any x,y� ð0,∞Þ and t>1,

ξðtxÞψðtyÞ�ξðxÞψðyÞ¼ αðx,tÞþβðy,tÞ,

for some functions α and β. Then there exist functions δξ and δψ such that for all positive x1, x2, y1 and y2 and all t>0,

ξðtx1Þ�ξðtx2Þ¼ δξðtÞðξðx1Þ�ξðx2ÞÞ, ψðty1Þ�ψðty2Þ¼ δψ ðtÞðψðy1Þ�ψðy2ÞÞ

and such that δξðtÞ and δψ ðtÞ are nonzero, for any t>0.

Proof. Let x1,x2,y� ð0,∞Þ and t>1. Applying our assumption to the points ðx1,yÞ and ðx2,yÞ, find that

ψðtyÞðξðtx1Þ�ξðtx2ÞÞ�ψðyÞðξðx1Þ�ξðx2ÞÞ¼ αðx1,tÞ�αðx2,tÞ: ð6Þ

At this point, note that ξðx1Þ¼ ξðx2Þ if and only if ξðtx1Þ¼ ξðtx2Þ. Indeed, if one of these equalities holds but not the other,

Equation (6) contradicts the assumption that ψ is not constant. Now supposing that ξðx1Þ≠ ξðx2Þ, which is possible since ξ is not

constant, Equation (6) is equivalent to

ψðtyÞ�ψðyÞ ξðx1Þ�ξðx2Þ
ξðtx1Þ�ξðtx2Þ¼

αðx1,tÞ�αðx2,tÞ
ξðtx1Þ� ξðtx2Þ :

Applying the same reasoning with any other pair of points x3,x4 such that ξðx3Þ≠ ξðx4Þ yields

ψðtyÞ�ψðyÞ ξðx3Þ�ξðx4Þ
ξðtx3Þ�ξðtx4Þ¼

αðx3,tÞ�αðx4,tÞ
ξðtx3Þ� ξðtx4Þ :

Subtracting the latter equation from the former,

ψðyÞ ξðx1Þ�ξðx2Þ
ξðtx1Þ�ξðtx2Þ�

ξðx3Þ� ξðx4Þ
ξðtx3Þ� ξðtx4Þ

� �
¼ αðx1,tÞ�αðx2,tÞ

ξðtx1Þ� ξðtx2Þ �αðx3,tÞ�αðx4,tÞ
ξðtx3Þ�ξðtx4Þ ,

which is constant in y. However, ψ was assumed nonconstant. Deduce that the difference between parentheses has to be zero,

hence for any (fixed) t>1, among all pairs x1,x2 such that ξðx1Þ≠ ξðx2Þ, the ratio ðξðtx1Þ� ξðtx2ÞÞ=ðξðx1Þ�ξðx2ÞÞ is constant, say

equal to δξðtÞ.
To summarize, we have shown that

ξðtx1Þ�ξðtx2Þ¼ δξðtÞðξðx1Þ� ξðx2ÞÞ

holds for every t> 1 and x1, x2 such that ξðx1Þ≠ ξðx2Þ. By extension, it holds for every positive x1 and x2, since

ξðx1Þ¼ ξðx2Þ makes both sides vanish. Finally, the same clearly holds for t� ð0,1� if δξðtÞ is defined as 1 for t¼1, and as δξðt�1Þ�1

for t<1.

This is the desired result for the function ξ. By symmetry, the same holds for ψ . □

By Lemma 3, there exist functions δi , i� f1,…,dg, such that for every positive yð1Þi , yð2Þi and t,

Ti tyð1Þi

� 	
�Ti tyð2Þi

� 	
¼ δiðtÞ Ti yð1Þi

� 	
�Ti yð2Þi

� 	� 	
: ð7Þ

Now, let yð1Þi , yð2Þi , yð1Þj , and yð2Þj be such that Ti yð1Þi

� 	
≠Ti yð2Þi

� 	
and Tj yð1Þj

� 	
≠ Tj yð2Þj

� 	
. Define four vectors yð1Þ,…,yð4Þ, the ith

and jth entries of which are yð1Þi ,yð1Þj

� 	
, yð1Þi ,yð2Þj

� 	
, yð2Þi ,yð1Þj

� 	
, and yð2Þi ,yð2Þj

� 	
, respectively, and which agree with each other in the other d�2

entries.

Applying Equation (5) to those four vectors, followed by Equation (7), we have
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0 ¼ aij yð1Þ∖ j ,t
� 	

þbij yð1Þ∖ i ,t
� 	

�aij yð2Þ∖ j ,t
� 	

�bij yð2Þ∖ i ,t
� 	

�aij yð3Þ∖ j ,t
� 	

�bij yð3Þ∖ i ,t
� 	

þaij yð4Þ∖ j ,t
� 	

þbij yð4Þ∖ i ,t
� 	

¼ Ti tyð1Þi

� 	
�Ti tyð2Þi

� 	� 	
� Tj tyð1Þj

� 	
�Tj tyð2Þj

� 	� 	
� Ti yð1Þi

� 	
�Ti yð2Þi

� 	� 	
� Tj yð1Þj

� 	
�Tj yð2Þj

� 	� 	
¼ δiðtÞδjðtÞ�1

 �� Ti yð1Þi

� 	
�Ti yð2Þi

� 	� 	
� Tj yð1Þj

� 	
�Tj yð2Þj

� 	� 	

for any t>1. By assumption, the last two terms in the product are nonzero. Deduce that δiðtÞδjðtÞ¼1. However, for a third index k =2fi, jg, we may

apply the same logic to find that similarly, δiðtÞδkðtÞ¼ δjðtÞδkðtÞ¼1. This is only possible if δiðtÞ¼ δjðtÞ¼ δkðtÞ¼1 for every t>1, and by extension

for every t>0, recalling that δiðtÞ is defined as 1 for t¼1 and as δiðt�1Þ�1
for t<1. The same argument applies to every triple ði, j,kÞ, so that

Equation (7) can be rewritten as

Ti tyð1Þi

� 	
�Ti tyð2Þi

� 	
¼ Ti yð1Þi

� 	
�Ti yð2Þi

� 	
,

which now holds for every index i� f1,…,dg and positive yð1Þi , yð2Þi and t. Equivalently, for every t>0, the function y 7!TiðtyÞ�TiðyÞ is constant.

We now apply the following.

Lemma 4. Let ξ : ð0,∞Þ!ℝ be a measurable function such that for any t>0, the function x 7!ξðtxÞ�ξðxÞ is constant over x>0.

Then ξðxÞ¼ clogxþ ξð1Þ, for some c�ℝ.

Proof. For every positive x and t, ξ satisfies ξðtxÞ�ξðxÞ¼ ξðtÞ�ξð1Þ, that is ξðtxÞ�ξð1Þ¼ ξðxÞþξðtÞ�2ξð1Þ. Equivalently, in terms

of the function φ :¼ ξ ∘ exp,

φðuþvÞ�φð0Þ¼φðuÞþφðvÞ�2φð0Þ, u,v�ℝ:

That is, φ�φð0Þ satisfies Cauchy's functional equation, the only measurable solutions to which are additive functions of the form

u 7!cu, for some c�ℝ (see Theorem 1.1.8 of Bingham et al., 1987; Kestelman, 1947, and the references therein). Thus,

ξðxÞ¼φðlogxÞ¼ clogxþξð1Þ. □

Applying Lemma 4, deduce that Ti is a logarithmic function of the form TiðyÞ¼ cilogyþTið1Þ. Note however that the values of ci and Tið1Þ can
be absorbed into the parameters μi and Θij, j� f1,…,dg, and into the normalizing constant, and are thus not important in characterizing the possi-

ble distributions in P. We may therefore assume that all the functions T1,…,Td are equal to the logarithm function.

With our current formulation of the distributions in P, the diagonal elements of Θ are not identifiable. Indeed, their value can be changed

arbitrarily by adding a ðqþ1Þth dimension to each μi and letting SiðyiÞqþ1 ¼ðlogyiÞ2. Therefore, we shall assume without loss of generality that

Θii ¼�P j≠ iΘij, so that the row sums of Θ (and by symmetry, its column sums) are all equal to zero.

2.1.2 | The parameters μi can be assumed scalar and the functions Si must be logarithmic

Replacing the functions Ti by logarithms in Equation (4) and using the assumption that the row and columns sums of Θ are zero, we find

ðdþ1Þlogt ¼Pd
i¼1

μ >
i ðSiðtyiÞ�SiðyiÞÞþ

Pd
i¼1

Pd
j¼1

Θijðlogyiþ logyjþ logtÞlogt¼Pd
i¼1

μ >
i ðSiðtyiÞ�SiðyiÞÞ:

Similarly to what was argued about the functions Ti, deduce that for all yi and t>0,

μ >
i ðSiðtyiÞ�SiðyiÞÞ¼ μ >

i ðSiðtÞ�Sið1ÞÞ,

which by Lemma 4 means that μ >
i Si can be chosen to be simply a logarithm, up to scaling. Thus, we may assume without loss of generality that

q¼1 and that the real-valued functions Si are logarithms.

To summarize, we have established that all the densities in F must be of the form

6 of 10 LALANCETTE



fμ,ΘðyÞ¼ 1
Zðμ,ΘÞ exp �

Xd
i¼1

μiðlogyiÞ�
Xd
i¼1

Xd
j¼1

ΘijðlogyiÞðlogyjÞ
( )

with Θ symmetric with zero row (and column) sums. This concludes the proof. □

2.2 | Proof of Lemma 2

As mentioned after the statement of the result, ðiÞ is already obtained by Lederer and Oesting (2023), so only ðiiÞ and ðiiiÞ shall be

proved here.

Let fgenHR
μ,Θ �F gen HR. It will first be shown that for fgen HR

μ,Θ to be integrable on L, it is necessary for Θ to be a Hüsler–Reiss precision matrix,

that is, an element of Sd�d
1,þ , and for μ to satisfy μ > 1> d, establishing ðiiiÞ. Finally, it will be shown that for such a given matrix Θ, for fgenHR

μ,Θ to

be a multivariate Pareto density, it is necessary for μ to have the specific form μHRðΘÞ in which case fgen HR
μ,Θ is a Hüsler–Reiss density, thus

establishing ðiiÞ.

2.2.1 | If Θ =2Sd�d
1,þ , then fgen HR

μ,Θ is not integrable

For any index k, by the change of variable x¼ logy, we find that

Zðμ,ΘÞ Ð

fy � L:yk >1g
fgen HR
μ,Θ ðyÞdy ¼ Ð

fy � L:yk >1g
exp �Pd

i¼1
μilogðyiÞ�

Pd
i¼1

Pd
j¼1

ΘijðlogyiÞðlogyjÞ
( )

dy

¼ Ð
fx � ℝd :xk >0g

exp �ðμ�1Þ > x�x > Θx
� �

dx:

ð8Þ

Decomposing x into x ∖ k and xk , we may write ðμ�1Þ > x as ðμ�1Þ >∖ kx ∖ kþðμk�1Þxk , and x > Θx as

x >
∖ kΘ

ðkÞx ∖ kþ2xkΘk, ∖ kx ∖ kþΘkkx
2
k ,

where ΘðkÞ :¼Θ ∖ k, ∖ k . We may then rewrite Equation (8) as

Ð∞
0

Ð

ℝd�1

exp �x>
∖ kΘ

ðkÞx ∖ k�2xkΘk, ∖ kx ∖ k�ðμ�1Þ >∖ kx ∖ k
� �

dx ∖ k� exp �ðμk�1Þxk�Θkkx2k
� �

dxk:

The inner integral is a Gaussian type integral. It is straightforward to show that it is finite if and only if ΘðkÞ is positive definite, using a spectral

decomposition of that matrix. Deduce that for fgenHR
μ,Θ to be integrable, all the matrices ΘðkÞ must be positive definite (hence, of full rank d�1). This

implies that Θ must also be of rank d�1. Moreover, Θ has to have only nonnegative eigenvalues. Indeed, suppose it doesn't. Then there is an

x�ℝd such that x > Θx<0. However, since Θ1¼0, it is also true that 0 > ðx�xk1Þ > Θðx�xk1Þ¼ ðx�xk1Þ >∖ kΘðkÞðx�xk1Þ ∖ k , contradicting the pos-

itive definiteness of ΘðkÞ.

It is therefore necessary for the integrability of fgen HR
μ,Θ on L that Θ�Sd�d

1,þ . For the remainder of the proof, we shall assume that this is

the case.

2.2.2 | If μ > 1≤ d, then fgen HR
μ,Θ is not integrable

Now that we assume the matrices ΘðkÞ to be invertible, we may obtain a more precise expression for Equation (8). By tedious but elementary com-

putations involving completion of the quadratic form x >
∖ kΘ

ðkÞx ∖ k , we may rewrite the argument of the exponential in Equation (8) as

� x ∖ k�βðkÞðxkÞ
� 	 >

ΘðkÞ x ∖ k�βðkÞðxkÞ
� 	

þβðkÞðxkÞ > ΘðkÞβðkÞðxkÞþð1�μkÞxk�Θkkx
2
k ,
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where βðkÞðxkÞ :¼ 1
2Σ

ðkÞð1�μÞ ∖ kþxk1 ∖ k and ΣðkÞ :¼ðΘðkÞÞ�1
. Since x ∖ k only appears in the first term, we may rewrite Equation (8) as

Ð∞
0

Ð

ℝd�1

exp � x ∖ k�βðkÞðxkÞ

 � >

ΘðkÞ x ∖ k�βðkÞðxkÞ

 �n o

dx ∖ k� exp βðkÞðxkÞ > ΘðkÞβðkÞðxkÞþð1�μkÞxk�Θkkx2k
� �2

4
3
5dxk

¼ ð2πÞðd�1Þ=2

detðΘðkÞÞ1=2 ð

∞

0

exp βðkÞðxkÞ > ΘðkÞβðkÞðxkÞþð1�μkÞxk�Θkkx
2
k

n o
dxk:

ð9Þ

Expanding the quadratic form βðkÞðxkÞ > ΘðkÞβðkÞðxkÞ, we find that

βðkÞðxkÞ > ΘðkÞβðkÞðxkÞþð1�μkÞxk�Θkkx2k ¼� ðμ�1Þ > 1

 �

xkþ1
4
ðμ�1Þ >∖ kΣðkÞðμ�1Þ ∖ k

¼�ðμ > 1�dÞxkþ1
4
ðμ�1Þ >∖ kΣðkÞðμ�1Þ ∖ k:

Therefore, Equation (9) is equal to

ð2πÞðd�1Þ=2

detðΘðkÞÞ1=2
exp

1
4
ðμ�1Þ >∖ kΣðkÞðμ�1Þ ∖ k

� �

ð

∞

0

e�ðμ > 1�dÞxk dxk , ð10Þ

which is finite if and only if μ > 1> d. This establishes that fgenHR
μ,Θ is integrable on L if and only if Θ�Sd�d

1,þ and μ > 1> d, which in particular

implies ðiiiÞ.

2.2.3 | If fgen HR
μ,Θ is a multivariate Pareto density, then μ¼ μHRðΘÞ

Now suppose that fgen HR
μ,Θ is a multivariate Pareto density. By the last two sections, it follows that Θ�Sd�d

1,þ . Moreover, by the homogeneity prop-

erty (MP2) and the fact that Θ1¼0,

logfgen HR
μ,Θ ðyÞ� logfgenHR

μ,Θ ðtyÞ¼
Xd
i¼1

μilogtþ
Xd
i¼1

Xd
j¼1

Θijðlogyiþ logyjþ logtÞlogt¼
Xd
i¼1

μilog t

must be equal to ðdþ1Þlogt. That is, μ > 1¼ dþ1.

We shall now enforce the marginal standardization property (MP3). Recalling Equation (10), we now have

Zðμ,ΘÞ ð

fy � L:yk >1g
fgen HR
μ,Θ ðyÞdy¼ ð2πÞðd�1Þ=2

detðΘðkÞÞ1=2
exp

1
4
ðμ�1Þ >∖ kΣðkÞðμ�1Þ ∖ k

� �
:

By eq. (23) in Röttger et al. (2023), detðΘðkÞÞ equals 1=d times the pseudodeterminant of Θ and as such, does not depend on k. Hence, the marginal

standardization property holds if and only if the value of ðμ�1Þ >∖ kΣðkÞðμ�1Þ ∖ k is the same for each k.

The matrices ΣðkÞ, however, enjoy a special structure. Let us augment ΣðkÞ by adding a row and column of zeros in its kth position, forming a

matrix ~ΣðkÞ
�ℝd�d. Then the matrices ~ΣðkÞ

satisfy

~ΣðkÞ
ij ¼1

2
ðΓik þΓjk�ΓijÞ, i, j� f1,…,dg,

where Γ is the variogram matrix associated to Θ, as defined in Example 2. These are the same matrices ~ΣðkÞ
as that appearing in Section 4.3 of

Engelke and Hitz (2020). Then, for any two indices k and ℓ,
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ðμ�1Þ >∖ kΣðkÞðμ�1Þ ∖ k�ðμ�1Þ >∖ ℓΣðℓÞðμ�1Þ ∖ ℓ ¼ðμ�1Þ > ~ΣðkÞðμ�1Þ�ðμ�1Þ > ~ΣðℓÞðμ�1Þ

¼Pd
i¼1

Pd
j¼1

~ΣðkÞ
ij � ~ΣðℓÞ

ij

� 	
ðμi�1Þðμj�1Þ

¼1
2

Xd
i¼1

Xd
j¼1

ðΓik�ΓiℓþΓjk�ΓjℓÞðμi�1Þðμj�1Þ

¼Pd
i¼1

ðΓik �ΓiℓÞðμi�1ÞPd
j¼1

ðμj�1Þ

¼ ðΓk� �Γℓ�Þðμ�1Þ,

recalling the fact that μ > 1¼ dþ1, or equivalently ðμ�1Þ > 1¼1. This can only be zero for any k≠ℓ if Γk�ðμ�1Þ has the same value for every k,

that is, Γðμ�1Þ� fγ1 : γ �ℝg. By invertibility of Γ, this forms a nonsingular system of d�1 linear equations. The solution set is a one-dimensional

linear subspace, only one element of which, say μ ∗ �1, satisfies ðμ ∗ �1Þ > 1¼1. Therefore, for any given parameter matrix Θ�Sd�d
1,þ , the parame-

ter vector μ is uniquely determined by the multivariate Pareto structure. The resulting distribution can be none other than the Hüsler–Reiss distri-

bution with precision matrix Θ.

Note that it can be verified by simple calculations that the unique solution to the above linear system is indeed the Hüsler–Reiss distribution.

Indeed, using Lemma S.5.11 of Hentschel et al. (2022), it can be confirmed that ΓðμHRðΘÞ�1Þ is indeed the vector 1 multiplied by the scalar

d�21 > Γð12ΘΓ� IÞ1, where I denotes the identity matrix, and that ðμHRðΘÞ�1Þ > 1¼1. □

ACKNOWLEDGEMENTS

The author wishes to thank the associate editor as well as two anonymous referees for helpful comments, which helped improve the content and

presentation of this paper. Funding from the Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged. Open

Access funding enabled and organized by Projekt DEAL.

ORCID

Michaël Lalancette https://orcid.org/0009-0005-9580-7791

REFERENCES

Asenova, S., Mazo, G., & Segers, J. (2021). Inference on extremal dependence in the domain of attraction of a structured Hüsler-Reiss distribution moti-

vated by a Markov tree with latent variables. Extremes, 24(3), 461–500. https://doi.org/10.1007/s10687-021-00407-5
Bingham, N. H., Goldie, C. M., & Teugels, J. L. (1987). Regular variation: Cambridge University Press.

Brown, L. D. (1986). Fundamentals of statistical exponential families with applications in statistical decision theory, Institute of Mathematical Statistics Lecture

Notes—Monograph Series, Vol. 9: Institute of Mathematical Statistics, Hayward, CA.

Darroch, J. N., Lauritzen, S. L., & Speed, T. P. (1980). Markov fields and log-linear interaction models for contingency tables. Annals of Statistics, 8(3),

522–539.
Engelke, S., & Hitz, A. S. (2020). Graphical models for extremes (with discussion). Journal of the Royal Statistical Society: Series B Statistical Methodology,

82(4), 871–932.
Engelke, S., Lalancette, M., & Volgushev, S. (2022). Learning extremal graphical structures in high dimensions. arXiv preprint arXiv:2111.00840.

Engelke, S., & Volgushev, S. (2022). Structure learning for extremal tree models. Journal of the Royal Statistical Society: Series B Statistical Methodology,

84(5), 2055–2087.
Falk, M., & Guillou, A. (2008). Peaks-over-threshold stability of multivariate generalized Pareto distributions. Journal of Multivariate Analysis, 99(4),

715–734.
Gumbel, E. J. (1960). Distributions des valeurs extrêmes en plusiers dimensions. Publications de l'Institut de statistique de l'Université de Paris, 9, 171–173.
Hentschel, M., Engelke, S., & Segers, J. (2022). Statistical inference for Hüsler–Reiss graphical models through matrix completions. arXiv preprint arXiv:

2210.14292.

Ho, Z. W. O., & Dombry, C. (2019). Simple models for multivariate regular variation and the Hüsler–Reiß Pareto distribution. Journal of Multivariate Analysis,

173, 525–550.
Hüsler, J., & Reiss, R.-D. (1989). Maxima of normal random vectors: Between independence and complete dependence. Statistics & Probability Letters, 7(4),

283–286.
Inouye, D., Ravikumar, P., & Dhillon, I. (2016). Square root graphical models: Multivariate generalizations of univariate exponential families that permit posi-

tive dependencies. In International Conference on Machine Learning, PMLR, pp. 2445–2453.
Kestelman, H. (1947). On the functional equation fðxþyÞ¼ fðxÞþ fðyÞ. Fundamenta Mathematicae, 1(34), 144–147.
Kiriliouk, A., Rootzén, H., Segers, J., & Wadsworth, J. L. (2019). Peaks over thresholds modeling with multivariate generalized pareto distributions.

Technometrics, 61(1), 123–135.
Klein, N., Orellana, J., Brincat, S. L., Miller, E. K., & Kass, R. E. (2020). Torus graphs for multivariate phase coupling analysis. The Annals of Applied Statistics,

14(2), 635–660. https://doi.org/10.1214/19-AOAS1300

Lederer, J., & Oesting, M. (2023). Extremes in high dimensions: Methods and scalable algorithms. arXiv preprint arXiv:2303.04258.

LALANCETTE 9 of 10

https://orcid.org/0009-0005-9580-7791
https://orcid.org/0009-0005-9580-7791
https://doi.org/10.1007/s10687-021-00407-5
https://doi.org/10.1214/19-AOAS1300


Lin, L., Drton, M., & Shojaie, A. (2016). Estimation of high-dimensional graphical models using regularized score matching. Electronic Journal of Statistics,

10(1), 806–854. https://doi.org/10.1214/16-EJS1126
Liu, H., Lafferty, J., & Wasserman, L. (2009). The nonparanormal: Semiparametric estimation of high dimensional undirected graphs. Journal of Machine

Learning Research, 10, 2295–2328.
Maathuis, M., Drton, M., Lauritzen, S., & Wainwright, M. (Eds.) (2019). Handbook of graphical models Edited by Maathuis, M., Drton, M., Lauritzen, S., &

Wainwright, M., Chapman & Hall/CRC Handbooks of Modern Statistical Methods: CRC Press, Boca Raton, FL.

Rootzén, H., Segers, J., & Wadsworth, J. L. (2018). Multivariate peaks over thresholds models. Extremes, 21(1), 115–145.
Rootzén, H., & Tajvidi, N. (2006). Multivariate generalized Pareto distributions. Bernoulli, 12, 917–930.
Röttger, F., Coons, J. I., & Grosdos, A. (2023). Parametric and nonparametric symmetries in graphical models for extremes. arXiv preprint arXiv:

2306.00703.

Röttger, F., Engelke, S., & Zwiernik, P. (2023). Total positivity in multivariate extremes. Annals of Statistics, 51, 962–1004.
Yang, E., Ravikumar, P., Allen, G. I., & Liu, Z. (2015). Graphical models via univariate exponential family distributions. Journal of Machine Learning Research,

16, 3813–3847.
Yu, S., Drton, M., & Shojaie, A. (2022). Generalized score matching for general domains. Information and Inference, 11(2), 739–780. https://doi.org/10.

1093/imaiai/iaaa041

How to cite this article: Lalancette, M. (2023). On pairwise interaction multivariate Pareto models. Stat, 12(1), e613. https://doi.org/10.

1002/sta4.613

10 of 10 LALANCETTE

https://doi.org/10.1214/16-EJS1126
https://doi.org/10.1093/imaiai/iaaa041
https://doi.org/10.1093/imaiai/iaaa041
https://doi.org/10.1002/sta4.613
https://doi.org/10.1002/sta4.613

	On pairwise interaction multivariate Pareto models
	1  INTRODUCTION AND MAIN RESULT
	2  PROOFS
	2.1  Proof of Lemma1
	2.1.1  The functions Ti must be logarithmic and Θ can be assumed to have zero row sums
	2.1.2  The parameters μi can be assumed scalar and the functions Si must be logarithmic

	2.2  Proof of Lemma2
	2.2.1  If ΘS1,+dxd, then fμ,Θgen HR is not integrable
	2.2.2  If μ1d, then fμ,Θgen HR is not integrable
	2.2.3  If fμ,Θgen HR is a multivariate Pareto density, then μ=μHR(Θ)


	ACKNOWLEDGEMENTS
	REFERENCES


