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Abstract

Nonlinear electrokinetic phenomena can result in a range of fascinating emergent behav-

iors. For instance, when aqueous suspensions of microparticles are exposed to an AC

electrical field, they can organize into band patterns perpendicular to the field direction.

These patterns evolve into zigzag shapes, within which particles circulate.We observed this

patterning in various particles, such as silica spheres, fatty acids, oil, coacervate droplets,

bacteria, and ground coffee, and determined that a second-order electrokinetic flow, specif-

ically concentration polarization electro-osmosis (CPEO), causes this phenomenon. Brow-

nian particle simulations, incorporating the nonlinear electroosmotic flow, accurately re-

produce all observed stages of the patterning process. Furthermore, the emergence of

these patterns can be quantitatively predicted by a parameter-free theory for CPEO flows.

Moreover, AC electrically induced CPEO flow around asymmetric particles results in their

phoretic motion, a mechanism we have termed concentration polarization electrophoresis

(CPEP). To demonstrate this, we created particle dimers by connecting micron-sized silica

spheres, measuring 1.0 µm and 2.1 µm, with DNA linker molecules. These dimers can be

steered in a 2D plane by controlling the AC electric field orientation using the joystick

of a gamepad. Utilizing induced dipole-dipole interactions, the dimers can controllably

pick up and release monomeric particles at desired positions, thereby assembling particles

into groups. Systematic experiments exploring the dependence of dimer migration speed

on electric field strength and frequency, as well as on buffer composition, are consistent

with the theoretical framework of CPEO. Experiments with various asymmetric particles,

such as fragmented ceramic, borosilicate glass, acrylic glass, agarose gel, yeast cells, and

ground coffee, confirm CPEP as a general phenomenon expected for all charged dielec-

tric particles. Turning to another electrokinetic phenomenon, specifically diffusiophoresis,

we introduce our design of the diffusiophoretic trap. This trap facilitates the local up-

concentration of DNA by up to a hundredfold through an electric field generated by an

electrolyte gradient. Experiments with carboxylated silica particles demonstrate that the

diffusiophoretic force is long-range, spanning over hundreds of micrometers. Moreover,

the trap enables the localized assembly of DNA nanostars into macroscopic gels. These

gels assemble in the presence of an electrolyte gradient and disassemble upon its removal,

highlighting the dissipative nature of this process.
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Zusammenfassung

Nichtlineare elektrokinetische Phänomene können zu einer Reihe faszinierender emergen-

ter Verhaltensweisen führen. Beispielsweise können sich wässrige Suspensionen von Mikro-

partikeln, die einem Wechselstrom-Elektrofeld ausgesetzt sind, in Bandmustern senkrecht

zur Feldrichtung organisieren. Diese Muster entwickeln sich zu Zickzack-Formen, inner-

halb derer Partikel zirkulieren. Wir haben diese Musterbildung bei verschiedenen Partikeln

beobachtet, wie zum Beispiel Silikatkugeln, Fettsäuren, Öl, Koazervat-Tropfen, Bakte-

rien und gemahlenem Kaffee, und haben festgestellt, dass ein elektrokinetischer Fluss

zweiter Ordnung, speziell die Konzentrationspolarisations-Elektroosmose (CPEO), die-

ses Phänomen verursacht. Brownsche Partikelsimulationen, die den nichtlinearen elek-

troosmotischen Fluss einbeziehen, reproduzieren genau alle beobachteten Stadien des

Musterbildungsprozesses. Darüber hinaus kann das Auftreten dieser Muster quantita-

tiv durch eine parameterfreie Theorie für CPEO-Ströme vorhergesagt werden. Weiter-

hin führt der durch Wechselstrom induzierter CPEO-Fluss um asymmetrische Partikel zu

deren phoretischen Bewegung, ein Mechanismus, den wir als Konzentrations-polarisations-

Elektrophorese (CPEP) bezeichnet haben. Um dies zu demonstrieren, haben wir Partikel-

dimere erstellt, indem wir mikrometergroße Silikakugeln mit Durchmessern von 1.0 µm

und 2.1 µm mittels DNA verbunden haben. Diese Dimere können in der 2D-Ebene durch

die Kontrolle der Ausrichtung des Wechselstromfeldes mit dem Joystick eines Gamepads

gesteuert werden. Durch Ausnutzung induzierter Dipol-Dipol-Interaktionen können die

Dimere Monomere kontrolliert aufnehmen und an gewünschten Positionen ablegen, wo-

durch die Monomere in Gruppen angeordnet werden können. Systematische Experimente,

die die Abhängigkeit der Migrationsgeschwindigkeit der Dimere von der Stärke und Fre-

quenz des elektrischen Feldes sowie von der Pufferzusammensetzung untersuchen, stehen

im Einklang mit den theoretischen Vorhersagen der CPEO. Experimente mit verschiedenen

asymmetrischen Partikeln, wie fragmentierter Keramik, Borosilikatglas, Acrylglas, Agaro-

segel, Hefezellen und gemahlenem Kaffee, bestätigen CPEP als generisches Phänomen,

das für alle geladenen dielektrischen Partikel zu erwarten ist. Im Hinblick auf ein weiteres

elektrokinetisches Phänomen, speziell die Diffusiophorese, stellen wir unser Design einer

diffusiophoretischen Falle vor. Diese Falle ermöglicht die lokale Aufkonzentration von DNA

auf bis zu das Hundertfache durch ein elektrisches Feld, das durch einen Elektrolytgra-

vii



dienten erzeugt wird. Experimente mit karboxylierten Silikapartikeln zeigen, dass diese

diffusiophoretische Kraft langreichweitig ist und sich über Hunderte von Mikrometern er-

streckt. Außerdem ermöglicht die Falle die lokale Assemblierung von DNA-Nanosternen

zu makroskopischen Gelen. Diese Gele bilden sich in Anwesenheit des Elektrolytgradien-

ten und zerfallen wieder bei dessen Abwesenheit, was den dissipativen Charakter dieses

Prozesses unterstreicht.
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1. Introduction

Historically, the first comprehensive theoretical treatment of an electrokinetic phenomenon

was presented by Helmholtz in 1876 [1]. In his work, he discusses the flow induced by an

electric field in a charged tube filled with an electrolyte, a phenomenon now referred to

as electroosmosis. Helmholtz postulated, based on the experimental work of Quincke [2],

the existence of an electric double layer on the surface of a charged substance, which

arises from counterions being attracted to the charged surfaces. He proposed that when

an electric field is applied along the tube, electric forces act on the counterion layer along

the wall, consequently dragging the liquid with them.

Later, in 1903, Smoluchowski derived an equation for the migration velocity of charged

spheres immersed in an electrolyte under the influence of an electric field [3]. This phe-

nomenon, initially known as cataphoresis, is now referred to as electrophoresis. According

to Smoluchowski, the migration velocity v of a particle due to the applied electric field

strength E is expressed as:

v =
ϵζ

η
E (1.1)

Notably, the electroosmotic flow velocity in a pipe, as derived by Helmholtz, assumes the

same form. Consequently, the equation is now known as the Helmholtz-Smoluchowski

equation [3]. The prefactor in this equation is commonly referred to as electrophoretic

mobility and is a function of the dielectric constant ϵ and the viscosity η of the fluid. The

parameter ζ, known as the zeta potential, represents the potential difference between the

charged surface and the electrolyte. The zeta potential serves as a lumped parameter in

the above equation and depends on the structure of the electric double layer. Interestingly,

the derivations by Helmholtz and Smoluchowski only required the double layer to be thin

compared to the size of the tube or particle, but did not require an explicit expression

for the charge distribution within it. The flow fields computed by Helmholtz and Smolu-

chowski are illustrated in Figure 1.1. The structure of the electric double layer was later

analyzed independently by Gouy in 1910 [4] and Chapman in 1913 [5]. Their analysis

allowed the calculation of the zeta potential ζ from the surface charge and the electrolyte

concentration. The Gouy–Chapman model led to an expression for the characteristic size

1



λD of the electric double layer:

λD =

√
ϵkBT

2e2c
(1.2)

In this equation, kB represents the Boltzmann constant, T is the temperature, e denotes

the elementary charge, and c is the concentration of monovalent ions. The length λD is

below 10 nm for ion concentrations exceeding 1mM. This finding can be viewed as a later

validation of Helmholtz’s and Smoluchowski’s assumption of a comparably thin double

layer. The characteristic size λD, referred to as the Debye length, was named after Peter

Debye, who calculated the electrophoretic migration velocity in 1923 for the opposite limit

to that assumed by Smoluchowski, where the size of the double layer is much larger than

the particle [6].

0E 

0E 

ba
+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+
++ + + + + + + + + + + + +

+ + + + + + + + + + + + +

Figure 1.1. Flow fields computed by Helmholtz and Smoluchowski. (a) Electroosmotic flow
in a negatively charged tube, where an electric field E0 drives the positive counter ions in the
double layer along the tube, inducing flow throughout the tube. (b) Electroosmotic flow around
a negatively charged spherical particle, with the electrophoretic migration velocity of the particle
directed to the left.

Another interesting aspect of the Helmholtz-Smoluchowski equation is its lack of a size

parameter for the tube or particle. This implies, as Smoluchowski himself pointed out,

that equation 1.1 is applicable to particles of any shape and size. This topic was further

explored by Henry in 1931, who sought to establish a connection between the limiting

cases discussed by Smoluchowski and Debye. He concluded that equation 1.1 indeed

applies to particles of any shape when the zeta potential ζ is approximately independent

of the particle size [7]. This is precisely the case in the limit of comparably thin electric

double layers, as assumed by Helmholtz and Smoluchowski. A rigorous proof of the shape

independence of the Helmholtz-Smoluchowski equation can be found in reference [8].

Further refinements to the theory of Smoluchowski were made by Bikerman in the 1930s,

who realized that the double layer could accumulate a considerable amount of counter ions

in cases of large zeta potentials [9, 10]. This accumulation leads to ion-selective surface

conduction. Under the influence of an external electric field, the counter ion species is

2



selectively transported along the surface of the particle, resulting in charge separation.

This separation, in turn, generates an electric field that opposes the external electric field.

The opposing electric field reduces the electrophoretic migration velocity and introduces

shape and size dependence into the equation.

In the 1960s, Soviet scientist Stanislav Dukhin offered a more comprehensive treatment of

ion-selective surface conduction in the thin double layer limit, specifically accounting for

the transport equations of each ion species [11]. His analysis revealed that ion flux balance

on the particle surface leads to a distortion of the bulk salt concentration near the particle.

Such distortions of the bulk salt concentration duo to local ion selective conduction is now

known as concentration polarization. A dimensionless quantity characterizing the contri-

bution of surface conductivity, known as the Dukhin number Du, was named after him.

Further enhancements to the equation for the electrophoretic migration velocity, which

have gained more recognition in the Western world, were later developed by O’Brien and

White [12–14]. Notably, O’Brien and White where apparently unaware of Dukhins work

in their initial analysis [12]. Other contributions to the theory of electrophoresis, leading

up to the work of O’Brien and White, were made by Overbeek [15] and Wiersema [16],

who built upon the work of Henry.

Dukhin also made a significant contribution in explaining a related phenomenon, namely

Diffusiophoresis. Diffusiophoresis refers to the directed migration of colloidal particles in

a concentration gradient, driven by double layer forces. Following its initial discovery by

Derjaguin and coworkers [17], Dukhin and Derjaguin provided a satisfactory theoretical

explanation for this phenomenon. Analogous to the Helmholtz-Smoluchowski equation

for electrically induced flow velocity, the concentration gradient-induced flow velocity is

now known as the Dukhin-Derjaguin slip boundary condition. More recent theoretical

advancements in describing diffusiophoresis were subsequently made by Prieve [18,19].

Another significant contribution of Dukhin in colaboration with Shilov was the exten-

sion of his theory of ion-selective surface conduction to particles subjected to AC electric

fields [20,21]. He discovered that concentration polarization provides a satisfactory expla-

nation for a phenomenon known as low-frequency dielectric dispersion. In suspensions of

colloidal particles within aqueous electrolyte solutions, unusually high dielectric constants

are typically observed at low electric field frequencies [22, 23]. Dukhin determined that

the double layer around colloidal particles becomes polarized at frequencies corresponding

to the relaxation time of the concentration polarization mechanism. This mechanism is

predominantly governed by ion diffusion around particles, which suggests a characteristic

3



frequency given by

fcr =
1

2π

2D

R2
(1.3)

where D is the ion diffusion constant and R is the particle radius [24]. This frequency

assumes a value around 1 kHz for micrometer-sized particles, which precisely matches the

range where the unusually high dielectric constants were measured. Notably, a compet-

ing theory in Western literature was proposed by Schwarz, also involving surface con-

duction [22]. In 1983, Lyklema reviewed both explanations and concluded that the phe-

nomenon of low-frequency dielectric dispersion is best explained by Dukhin’s approach [24].

Over a century after Helmholtz presented his linear theory on electroosmosis, first in-

vestigations into nonlinear electrokinetic phenomena were conducted by Gamayunov,

Murtsovkin, and Andrei Dukhin, son of Stanislav Dukhin, in the 1980s. They studied

the flow field generated by a DC electric field around polarizable particles, such as metal

particles, and the consequent interactions between particle pairs [25–27]. Ramos et al.

rediscovered similar flows in 1998 [28] around microelectrodes in a microfluidic system

and provided a theoretical analysis in 1999 [29]. Squires and Bazant conducted a com-

prehensive theoretical analysis of this electroosmotic flow and coined the term ’Induced

Charge Electroosmosis’ (ICEO) [30]. They also highlighted the previously unrecognized

work of Gamayunov, Murtsovkin, and Andrei Dukhin. In the context of induced charge

electroosmosis, the electrically induced fluid flow significantly differs around strongly po-

larizable particles compared to the classical electroosmotic flow around weakly polarizable

particles. For strongly polarizable particles, the surface charge is induced by the applied

electric field, unlike the fixed surface charge in classical electrophoresis. Consequently, an

induced electric double layer is formed, to which the external field couples. This coupling

gives rise to a quadratic dependence of the induced hydrodynamic flow on the electric

field:

v ∝ ϵR

η
E2 (1.4)

Contrary to classical electrophoresis, this flow does not induce motion in spherical particles,

as it is symmetric about the particle equator. The flow field is illustrated in Figure 1.2.

However, due to the symmetry, steady streaming is expected in an AC-electric field. ICEO

also exhibits a characteristic frequency below which the flow magnitude is anticipated to

be strongest. This frequency is determined by the time needed to charge the double-layer

through the bulk resistance and is given by

fc =
1

2π

D

λDR
. (1.5)
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This frequency assumes values of around 20 kHz for micrometer-sized particles in ion

concentrations of approximately 1mM. While the flow is symmetric for spheres and does

not induce propulsion, asymmetric particles can generate asymmetric flows, which leads

to their propulsion even in AC electric fields. Bazant and Squires named this mechanism

’Induced Charge Electrophoresis’ (ICEP) [31].
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Figure 1.2. Induced Charge Electroosmotic flow around a spherical metal particle. The external
electric field E0 induces surface charges, which attract counterions, forming an induced electric
double layer. The external field exerts a force on these counterions, resulting in an induced
electroosmotic flow.

Recently, Schnitzer and Yariv developed a systematic approach for calculating nonlinear

contributions to the electrophoretic migration velocity of dielectric, charged spherical par-

ticles, accounting for ion-selective surface conduction [32,33]. Their calculations included

a second-order contribution to the flow field, similar in form to ICEO flows. However, this

contribution did not affect the migration velocity due to its symmetry.

In the past few years, steady streaming driven by AC electric fields has also been ob-

served around nonconducting surfaces. This phenomenon was independently discovered

in microfluidic channels by the research group of Ramos [34] and around micrometer-sized

particles in my own work [35]. It was found that the steady streaming is most pronounced

at electric field frequencies corresponding to those where the low-frequency dielectric dis-

persion was measured. Consequently, we independently concluded that concentration

polarization is responsible for the induced fluid flow. Since Schnitzer and Yariv’s approach

already accounted for concentration polarization in the DC case, it was logical to extend

their methodology to AC-electric fields [35, 36]. Utilizing Schnitzer and Yariv’s frame-

work, Fernandez-Mateo computed the flow field around a dielectric charged sphere in

an AC-electric field and introduced the term ’Concentration Polarization Electroosmosis’

(CPEO) [36]. Notably, Gamayunov, Murtsovkin, and Andrei Dukhin also predicted this

hydrodynamic effect around charged dielectric particles in the earlier mentioned work on

interacting particle pairs in DC-electric fields.
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With this thesis, I join the group of scientists who have rediscovered electrokinetic phe-

nomena already discussed in Soviet literature. I explore two electrokinetic phenomena

caused by Concentration Polarization Electroosmosis (CPEO). In Chapter 2, I introduce

the classical theory of electrophoresis and diffusiophoresis, establishing the terminology

and concepts used in subsequent chapters. In Chapter 3, I present the collaborative work

conducted by my co-authors and myself on a colloidal patterning phenomenon in an AC

electric field, which we explain through AC electric field-induced CPEO flows resulting

in hydrodynamic interactions between particles. Subsequently, in Chapter 4, I present

the work conducted by Friedrich Simmel and myself on CPEO flow-induced propulsion

of asymmetric particles in AC electric fields, a phenomenon we refer to as Concentra-

tion Polarization Electrophoresis (CPEP). Specifically, we experimentally demonstrate the

breakdown of shape independence under experimental conditions where CPEO flows are

expected. Finally, in Chapter 5, I present the work conducted by Friedrich Simmel and

myself on another electrokinetic phenomenon, specifically diffusiophoresis. We introduce

our design of the diffusiophoretic trap, which facilitates the local concentration of DNA

and enables hybridization reactions, as well as the localized assembly of DNA nanostars

into macroscopic gels.
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2. Fundamentals

In this chapter, I provide a mathematical introduction to the theory of electrophoresis of

colloidal particles.

In Section 2.1, we1 will begin by outlining the governing equations commonly used to

characterize electrokinetic phenomena [12–14,16,32,33,36–40]. Next, in Section 2.2, we

will examine an equilibrium solution of the governing equations to introduce the concept of

charge screening and electric double layers in electrolyte solutions [41,42]. In Section 2.3,

we will discuss electroosmosis, which refers to the liquid motion induced by an electric

field above a charged plane [42,43]. Subsequently, in Section 2.4, we will investigate the

flow field around micrometer-sized charged particles enveloped by a comparatively thin

electric double layer due to an externally applied electric field [12–14, 32, 37, 44]. From

this flow profile, we will derive the migration velocity, namely the Smoluchowski equation,

and subsequently prove its shape independence [8]. Next, in Section 2.5, we will explore

diffusioosmosis in electrolytes, which refers to the liquid motion above a plane induced by

a concentration gradient along it. Lastly, in Section 2.6, we will discuss diffusiophoresis in

electrolytes, the directed migration of particles in a concentration gradient [18,19,40,43].

1With ”we” I refer to the reader and myself, as is common practice in many textbooks.
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2.1 Governing Equations

The equations presented in this section are generally implicitly assumed in most treatments

of electrokinetic phenomena. Explicit formulations of these equations can be found in [37,

38], and their dimensionless versions are available in [32,33].

An electrolyte consisting of monovalent salts, such as NaCl, subjected to an electric field

can be described by the Nernst-Planck equations. The fluxes j+ and j− of positive and

negative ions with concentrations c+ and c− are given by

j+ = −D+∇c+ −D+ e

kBT
c+∇Φ + c+v (2.1)

and

j− = −D−∇c− +D− e

kBT
c−∇Φ + c−v. (2.2)

The first term describes ion diffusion according to Fick’s law, where D+ and D− are the

diffusion constants. The second term describes the migration of ions with charges +e

and −e due to the electric field E = −∇Φ, associated with the potential Φ. Note that

we used the Einstein relation to express the electrical ion mobilities as ±eD±

kBT
. Here, kB is

the Boltzmann constant and T is the temperature in K. The last term describes possible

additional drift due to a fluid flow with velocity v. Each ion species has an associated

conservation law given by
∂c+

∂t
+∇ · j+ = 0 (2.3)

and
∂c−

∂t
+∇ · j− = 0. (2.4)

The electric potential, Φ, is related to the density of free charges, ρe, through the Poisson

equation. The charge density, in turn, is related to the ion concentrations via ρe =

e(c+ − c−). The electric potential is therefore described by

−ϵ∆Φ = ρe = e(c+ − c−) (2.5)

where ϵ is the dielectric constant of water. Lastly, we need an evolution equation for the

fluid velocity v. For micron-sized particles, we can use the creeping flow approximation

such that the fluid velocity, v, and the pressure, P , are described by Stokes flow:

0 = η∆v −∇P + ρeE (2.6)
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ρeE is the Coulomb force density or electric body force, which can also be expressed

as −e(c+ − c−)∇Φ or ϵ∆Φ∇Φ according to the above definitions. The creeping flow

equation must be complemented by the conservation law ∇ · v = 0 for incompressible

fluids.

2.2 Electric Double Layer as Equilibrium Solution

First, we discuss an equilibrium solution of the system of partial differential equations

introduced in the previous section. We consider the scenario depicted in Figure 2.1a,

where a charged plane is submerged in an electrolyte. Counter ions are attracted and

accumulate near the surface, while co-ions are repelled and depleted near the surface.

The resulting charge distribution is sketched in Figure 2.1. The counter ions screen the

surface charge, making the plane appear electrically neutral at distances far from the

surface. The emerging charge distribution is commonly referred to as electric double

layer, Debye layer, or diffuse layer. This structure has a characteristic size known as the

Debye length, denoted by λD on the x-axis.

The following discussion primarily draws from [42] and [41] and describes the the Gouy-

Chapman model of electric double layers. However, we begin by deriving the Poisson-

Boltzmann equation rather than assuming it, to introduce slightly modified equations

as in [32]. Additionally, in subsection 2.2.4, we derive the hydrostatic pressure in the

Debye layer following the approach in [40]. This will be relevant when we later discuss

diffusiophoresis and diffusioosmosis in section 2.5 and section 2.6.2.
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Figure 2.1. Schematic representation of a charged surface in contact with an electrolyte. a
Positive ions accumulate near the charged surface, while negative ions are repelled. b Corre-
sponding charge density distribution ρe as a function of distance from the charged surface. The
Debye length λD is marked on the x-axis.

2.2.1 Poisson Boltzmann Equation

In equilibrium, the net ion fluxes j+ and j−, as well as the fluid flow v, vanish everywhere.

In a one-dimensional scenario, as illustrated in Figure 2.1, the ion flux equations simplify
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to

0 = −∂c+

∂x
+

e

kBT
c+

∂Φ

∂x
(2.7)

and

0 = −∂c−

∂x
− e

kBT
c−

∂Φ

∂x
. (2.8)

By dividing each of these equations by their respective concentrations, c+ and c−, and

making use of the identity ∂c±

∂x
/c± =

∂ ln(c±)
∂x

, we can integrate both equations. This

process yields a Boltzmann distribution for the ion species:

c+ = A+e
−e(Φ+B+)

kBT (2.9)

and

c− = A−e
+e(Φ+B−)

kBT (2.10)

Here, A+, A−, B+, and B− are integration constants which need to be determined by

boundary conditions. Physically, we expect that far from the charged plane, the potential

approaches a constant value, φ. Additionally, ion concentrations should stabilize to a bulk

ion concentration, c. Mathematically, this translates to the conditions c+(∞) = c−(∞) =

c and Φ(∞) = φ. Using these boundary conditions, we deduce expressions for the ion

concentrations:

c+ = ce
−e(Φ−φ)

kBT (2.11)

c− = ce
+e(Φ−φ)

kBT (2.12)

Note that most other treatments set the potential φ far from the charged plane to

zero [42]. Inserting the expressions for the ion concentrations into the Poisson equa-

tion 2.5 yields

−ϵ
∂2Φ

∂x2
= ρe = ec

(
e

−e(Φ−φ)
kBT − ce

+e(Φ−φ)
kBT

)
. (2.13)

This equation is commonly referred to as the one dimensional Poisson-Boltzmann equa-

tion. We can introduce the potential difference Ψ = Φ− φ to reach a more recognizable

form. Note that subtracting the constant φ from Φ does not alter the left side of the

equation. By introducing the hyperbolic sine function, we obtain

∂2Ψ

∂x2
= 2

ec

ϵ
sinh

(
eΨ

kBT

)
. (2.14)
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2.2.2 Linearized Poisson Boltzmann Equation

It is instructive to consider a linearization of the Poisson Boltzmann equation. We can

linearize this differential equation by assuming that the electric potentials are much smaller

than the thermal voltage kBT
e
. Specifically, assuming eΨ

kBT
≪ 1 yields

∂2Ψ

∂x2
≈ 2

e2c

ϵkBT
Ψ. (2.15)

Using the boundary condition Ψ(∞) = φ(∞)− φ = 0, the solution is

Ψ = ζe
−x
λD , (2.16)

where we define the Debye length as λD =
√

ϵkBT
2e2c

. ζ is the zeta potential and typically

represents the potential value directly at the charged surface, which is at x = 0. Using

our definition, the zeta potential, ζ = Ψ(0) = Φ(0) − φ, represents the potential dif-

ference between the charged surface and the bulk. The potential distribution is shown

in Figure 2.2. ζ can be determined by the boundary condition on the charged surface.

According to Gauss’s law the surface charge σ is related to the electric field at the surface

via σ = ϵE(0) = −ϵ∂Ψ
∂x
(0). We find ζ = λσ

ϵ
. We will discuss a general expression for ζ

later, using the exact Poisson-Boltzmann equation.

The Debye length λD represents the characteristic length scale of the Debye layer. In the

0

Φ

x

Φ(0)

φ 

ζ 

Figure 2.2. Potential distribution near a negatively charged plane. The surface potential
Φ(0) exhibits a negative drop, ζ, relative to the bulk potential, φ. Here, ζ represents the zeta
potential.

linearized scenario described here, it’s the length where the surface potential decreases

to 1
e
of its surface value. Additionally, we can compute the charge distribution ρe using

the Poisson equation as ρe = −ϵ∂
2Ψ

∂x2 . This results in ρe =
−ϵζ
λ2
D
e

−x
λD , which has the same

distance dependence. We can interpret λD as the characteristic length scale of the exten-

sion of the counterion cloud shown in Figure 2.1. The Debye length explicitly depends on
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the bulk ion concentration c as λD ∝ 1√
c
. In a solution with typical ion concentrations

of 1mM, 10mM, and 100mM of monovalent salts, the corresponding Debye lengths at

20◦C are λD = 9.6 nm, λD = 3.1 nm, and λD = 0.96 nm, respectively. It is important

to note that the ion concentration c in our definition of λD is in molecules per m3. The

computed values imply that the counterion cloud has a typical size on the order of sev-

eral nm, making it comparably small in most experimental setups and even for µm-sized

particles.

2.2.3 Zeta Potential and Grahame Equation

We now return to the exact Poisson Boltzmann equation 2.14 to derive an exact expression

for the zeta potential ζ. Multiplying the Poisson Boltzmann equation with ∂Ψ
∂x

and using

the chain rule yields
1

2

∂

∂x

(
∂Ψ

∂x

)2

= 2
ec

ϵ

∂

∂x
sinh

(
eΨ

kBT

)
. (2.17)

which can be integrated to

1

2

(
∂Ψ

∂x

)2

= A+ 2
kBTc

ϵ
cosh

(
eΨ

kBT

)
. (2.18)

A is an integration constant and can again be determined by the boundary condition

Ψ(∞) = 0 and also ∂Ψ
∂x
(∞) = 0. We find A = −2kBTc

ϵ
which gives

(
∂Ψ

∂x

)2

= 4
kBTc

ϵ

(
cosh

(
eΨ

kBT

)
− 1

)
= 8

kBTc

ϵ
sinh2

(
eΨ

2kBT

)
. (2.19)

This equation can in principle be solved exactly by separation of variables. We are however

only interested in the value of Ψ at the surface namely the zeta potential Ψ(0) = ζ. We

can use the above equation directly and use again the Gauss type boundary condition of

the electric field −ϵ∂Ψ
∂x
(0) = σ at the surface to relate the surface charge to the zeta

potential:

σ =
√

8ϵkBTc sinh

(
eζ

2kBT

)
(2.20)

It is important to highlight that we took the square root of equation 2.19 before applying

the boundary condition, selecting the sign of the square root to match negative surface

charges with negative surface potentials. The equation presented above is commonly

known as the Grahame equation and allows us to compute the zeta potential ζ directly

from the surface charge, or vice versa. It is important to note that ζ explicitly depends on
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the bulk ion concentration c. Furthermore, according to our definitions, the zeta potential

should be interpreted as the potential difference between the surface potential Φ(0) and

the bulk potential φ, given by ζ = Ψ(0) = Φ(0)− φ as indicated in Figure 2.2.

2.2.4 Equilibrium Pressure

We derive the hydrostatic pressure P in the Debye layer, following the approach in [40].

The hydrostatic pressure can be computed using the one-dimensional creeping flow equa-

tion 2.6 with v = 0:
∂P

∂x
= ρeE = −e(c+ − c−)

∂Ψ

∂x
(2.21)

Note that the electric field E should be computed from the complete potential Φ(x) using

E = −∂Φ
∂x
. This is however equivalent to E = −∂Ψ

∂x
since Ψ(x) = Φ(x)− φ.

This can be further simplified using the expressions for c+ and c−, and by once again

employing the hyperbolic sine function:

∂P

∂x
= 2ec sinh

(
eΨ

kBT

)
∂Ψ

∂x
= 2kBTc

∂

∂x
cosh

(
eΨ

kBT

)
(2.22)

After integration and applying the boundary condition Ψ(∞) = 0, we obtain an expression

for the hydrostatic pressure:

P = P0 + 2kBTc

(
cosh

(
eΨ

kBT

)
− 1

)
= P0 + 4kBTc sinh

2

(
eΨ

2kBT

)
(2.23)

P0 represents the hydrostatic pressure in the bulk, that is, far away from the charged

surface, where we require P (∞) = P0.

2.3 Electroosmosis

We present a non-equilibrium solution to the system of equations outlined in Section 2.1.

We will discuss electroosmosis, which refers to the motion of liquid in a charged channel

filled with an electrolyte due to an applied electric field. We start with a conceptual expla-

nation of electroosmosis and subsequently transitions to its mathematical derivation where

we mainly follow [43] and [42]. We will derive the flow profile depicted in Figure 2.3d,

resulting from the application of an electric field E0 parallel to the charged surface shown

in Figure 2.3a.
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2.3.1 Conceptual Discussion

Consider the setup illustrated in Figure 2.3a, where an electric field is applied parallel to a

charged plane. Near the plane, counterions accumulate and coions are expelled, forming

an electric double layer as in the equilibrium case. The electric potential Φ(∞, y) far from

the plane varies with the y-coordinate parallel to the plane due to the external electric

field. The horizontal electric field E0 acts on the ions, resulting in horizontal ion currents

j+y and j−y . The charge distribution is depicted in Figure 2.3b. Within the electric double

layer, where a net charge density is present, a net force density acts on the liquid. The

resulting Coulomb force density Fc = ρeE0 is illustrated in Figure 2.3c. At an atomistic

level, the net force density can be explained by the differential drag exerted by the ions on

the liquid: Far from the surface, equal amounts of positive and negative ions are dragged

through the liquid in opposite directions, resulting in no net force on the fluid. Closer to

the surface, the number of counterions being dragged through the liquid exceeds that of

coions moving in the opposite direction, which leads to a net force exerted on the fluid in

this region.
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Figure 2.3. Schematic representation of an electric double layer subjected to a tangential
electric field, inducing electroosmosis. (a) Positive ions accumulate near the charged surface,
whereas negative ions are repelled. A tangential electric field E0 moves the ion species in
opposite directions. The electric potential Φ is indicated on the right. The potential difference
ζ, between the surface Φ(0, y) and positions far away Φ(∞, y) from the surface, is independent
of y. (b) Corresponding charge density distribution ρe as a function of distance from the
charged surface. (c) Coulomb force density resulting from the tangential electric field acting
on the charge density distribution. (d) Flow profile resulting from the stress balance between
Coulomb and viscous forces.

The net force density leads to liquid motion within the electric double layer. The resulting

flow field is depicted in Figure 2.3d. The fluid velocity v at the surface is zero, as the

liquid is in contact with the stationary surface. Within the double layer, the Coulomb force
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density drags the liquid. The liquid motion is opposed by viscous stress, arising from the

fluid velocity gradient ∂v
∂x
. Thus, within the double layer, the Coulomb force is balanced

by viscous stress, as described by the creeping flow equation 2.6.

This balance leads to increasing fluid velocities at greater distances from the surface.

Further away, where the force density is lower, the required velocity gradients are smaller.

Outside the double layer, in the absence of net forces, the velocity gradient is zero, and

the fluid velocity assumes a constant value. Overall, the force exerted on the fluid within

the double layer drags the entire bulk of the fluid along with it, far beyond the double

layer.

2.3.2 Validity of the Poisson-Boltzmann Equation

We rederive the Poisson-Boltzmann equation for the non-equilibrium case depicted in Fig-

ure 2.3, confirming that the equilibrium double-layer structure is still applicable. Although

the following derivation is based on certain assumptions, we note that the solution we

provide is exact and does not rely on approximations.

Due to the system’s symmetry, we assume that ion transport occurs solely parallel to the

plane, aligning with the external electric field. Consequently, the ion fluxes j+ and j−

are directed exclusively in the y-direction, as shown in Figure 2.3a. Analogous to the

equilibrium case, the x-components of the ion fluxes, j+x and j−x , are zero:

j+x = 0 = −∂c+

∂x
+

e

kBT
c+

∂Φ

∂x
(2.24)

j−x = 0 = −∂c−

∂x
− e

kBT
c−

∂Φ

∂x
. (2.25)

As these equations are identical to those in the equilibrium solution as presented in sec-

tion 2.2, the ion concentrations are again Boltzmann distributed. However, the potential

Φ(x, y) now depends on both x and y due to the externally applied electric field. At dis-

tances far from the charged plane, the potential is expected to vary solely due to the applied

electric field E0, leading to the modified boundary condition φ(∞, y) = φ(y) = −E0y.

Additionally, we require again that the ion concentrations c+ and c− far from the plane

remain at the constant value c. Upon applying the revised boundary conditions, we arrive

at the following expressions for the ion concentrations:

c+ = ce
−e(Φ−φ(y))

kBT = ce
−e(Φ+E0y)

kBT (2.26)

c− = ce
+e(Φ−φ(y))

kBT = ce
+e(Φ+E0y)

kBT . (2.27)
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We now revisit the Poisson equation to find an expression for the potential Φ.

ϵ

(
∂2Φ

∂x2
+

∂2Φ

∂y2

)
= −e(c+ − c−) = 2ec sinh

(
e(Φ + E0y)

kBT

)
(2.28)

We make the plausible assumption that the potential can be expressed as Φ(x, y) =

Ψ(x) + φ(y) = Ψ(x) − E0y. This assumption is motivated by the definition of Ψ used

to solve the equilibrium Poisson equation. Ψ represents again the potential difference

between positions within the double layer and bulk, defined as Ψ(x) = Φ(x, y) − φ(y)

with Ψ(∞) = Φ(∞, y) − φ(y) = 0. Substituting the assumed form of Φ(x, y) into the

equation and acknowledging that ∂2(−E0y)
∂x2 = 0 and ∂2(−E0y)

∂y2
= 0, we reduce the equation

to the one-dimensional Poisson-Boltzmann equation:

∂2Ψ

∂x2
=

2ec

ϵ
sinh

(
eΨ

kBT

)
(2.29)

The reappearance of the one-dimensional Poisson-Boltzmann confirms that the double

layer structure remains unaltered. The zeta potential ζ can still be calculated from the

surface charge via the Graham equation presented in subsection 2.2.3 and the charge

distribution is again given by ρe = −ϵ∂
2Ψ

∂x2 . Note that the potential at the charged surface

is now given by Φ(0, y) = ζ +φ(y) = ζ −E0y. The zeta potential ζ represents again the

difference between the bulk potential and the surface potential.

2.3.3 Derivation of the Flow Profile

The flow profile can be computed using the creeping flow equation, as stated in Equa-

tion 2.6, which incorporates a Coulomb force density, expressed as ρeE. To determine

expressions for the charge density ρe and the electric field E, we must solve Equation 2.29.

This will yield an expression for Φ(x, y), enabling us to compute the electric field as

E = −∇Φ(x, y) and the charge density as ρe = −ϵ∆Φ(x, y). However, it will become

evident that we do not require an explicit expression for Φ(x, y).

As illustrated in the previous section, the potential Φ(x, y) can be expressed as a super-

position of an x-varying component Ψ(x), representing the double layer structure, and

a y-dependent part φ(y), resulting from the external electric field. By using Φ(x, y) =

Ψ(x) + φ(y) = Ψ(x)− E0y, we derive the Coulomb force density as

ρeE = ϵ∆(Ψ(x)− E0y)∇ (Ψ(x)− E0y) = ϵ
∂2Ψ

∂x2

∂Ψ

∂x
ex − ϵ

∂2Ψ

∂x2
E0ey (2.30)
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with the unit vectors ex and ey in the x and y directions, respectively.

Let us now consider the y-component of the creeping flow equation along with the y-

component of the Coulomb force:

η
∂2vy
∂x2

= ϵ
∂2Ψ

∂x2
E0 (2.31)

It should be noted that we have made the assumption that both vy and P are independent

of the y-coordinate, resulting in ∂2vy
∂y2

= 0 and ∂P
∂y

= 0. This implies that neither velocity

nor pressure varies along the surface. We will revisit this assumption in subsection 2.3.4.

Upon integrating the above equation twice, we obtain

ηvy(x) = ϵΨ(x)E0 + Ax+B (2.32)

where A and B are integration constants, which will be determined by the boundary condi-

tions. As defined in Section 2.3.2, Ψ represents the potential difference between positions

within the double layer and the bulk. Therefore, we find Ψ(∞) = Φ(∞, y)−φ(y) = 0 at

a location far away from the charged surface. Additionally, it is required that the velocity

reaches a finite value at infinity, denoted by vy(∞) = v∞. Applying these boundary con-

dition yields ηvy(∞) = 0 + A · ∞ + B = ∞. Consequently, for finite vy(∞) = v∞, it is

necessary that A = 0. With this, the value of B is determined as B = ηv∞.

Directly at the stationary surface the fluid is at rest, which yields a now slip boundary

condition, expressed as v(y) = 0. Further we have Ψ(0) = ζ which is the definition zeta

potential. By applying these two conditions and utilizing the values for B and A, we

obtain 0 = ϵζE0 + ηv∞. Solving for v∞ yields

v∞ = −ϵζ

η
E0. (2.33)

The above equation is usually referred to as the Helmholtz-Smoluchowski slip bound-

ary condition [3, 43]. It relates the velocity far away from the surface, v∞, to the zeta

potential, ζ, which in turn can be computed using the Graham equation shown in subsec-

tion 2.2.3 from the surface charge σ and the ion concentration c. The equation will be

further discussed in Section 2.4, specifically regarding its use as a boundary condition for

hydrodynamic flows in macroscopic systems.
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Finally, with the expression for v∞, the flow profile is given by

vy(x) =
ϵ

η
(Ψ(x)− ζ)E0 (2.34)

The flow profile is sketched in Figure 2.3d, and an explicit expression for Ψ(x) can be

obtained by solving Equation 2.19.

2.3.4 Systematic Approach to the Creeping Flow Equation

We conclude our discussion by addressing the systematic approach to solving the creeping

flow equation, as motivated by references [40] and [32]. Typically, one starts by deriving an

explicit expression for the pressure P . A differential equation that exclusively involves the

pressure and the Coulomb force density can be found by applying the divergence operator

∇ to the creeping flow equation 2.6. Given the incompressibility condition ∇ ·v = 0, the

term involving velocity becomes ∇ ·∆v = ∆∇ · v = 0. Consequently, we are left with

∆P = ∇ (ρeE) (2.35)

By substituting the expression from equation 2.30 for ρeE, we obtain

∆P =

(
∂2P

∂x2
+

∂2P

∂y2

)
= ϵ

∂

∂x

(
∂2Ψ

∂x2

∂Ψ

∂x

)
(2.36)

Since the right-hand side of the equation depends only on Ψ(x), a function of x alone,

we can assume P to be independent of y.

∂2P

∂x2
= ϵ

∂

∂x

(
∂2Ψ

∂x2

∂Ψ

∂x

)
(2.37)

Importantly, this assumption aligns with the expectation that the pressure far from the

charged surface remains constant, as we assume no external pressure gradient parallel to

the charged plane.

After performing one integration and applying the Poisson-Boltzmann equation 2.28 to

substitute for ∂2Ψ
∂x2 , we arrive at the following equation:

∂P

∂x
= ϵ

∂2Ψ

∂x2

∂Ψ

∂x
+ A = 2ec sinh

(
eΨ

kBT

)
∂Ψ

∂x
+ A (2.38)

Here, A represents an integration constant, which is zero as we require a constant pressure
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far from the plane, leading to ∂P
∂x

∣∣
∞ = 0. Furthermore, utilizing Ψ(∞) = 0 results in

0 = 2ec sinh(0) + A = 0 + A, which yields A = 0.

This brings us back to the equation from which we began deriving the equilibrium pressure

distribution in Section 2.2.4. This implies that the pressure distribution is identical to that

in the equilibrium case.

Next, we need to substitute the explicit expression for the pressure gradient, ∇P , into

the creeping flow equation to deduce an expression for the velocity. Starting with the

x-component, we obtain

0 = η

(
∂2vx
∂x2

+
∂2vx
∂y2

)
− ∂P

∂x
+ ϵ

∂2Ψ

∂x2

∂Ψ

∂x
(2.39)

Using our expression for ∂P
∂x

from equation 2.38, we find 0 = η
(

∂2vx
∂x2 + ∂2vx

∂y2

)
. A valid

solution for vx which stratifies the boundary condition vx(0, y) = 0 which means that

there is no liquid flux perpendicular into the charged plane is simply vx(x, y) = 0. This

assumption can be also motivated by the symmetry of the system. The incompressibility

condition ∂vx
∂x

+ ∂vy
∂y

= 0 then implies ∂vy
∂y

= 0.

Turning to the y-component, we find

0 = η

(
∂2vy
∂x2

+
∂2vy
∂y2

)
− ∂P

∂y
− ϵ

∂2Ψ

∂x2
E0. (2.40)

Given that we have already established the pressure as independent of y, it follows that
∂P
∂y

= 0. Additionally, we deduced ∂vy
∂y

= 0, which implies ∂2vy
∂y2

= 0. With these consider-

ations, we arrive at the same equation used to determine the flow profile, already solved

in Section 2.31:

η
∂2vy
∂x2

= ϵ
∂2Ψ

∂x2
E0. (2.41)

2.4 Electrophoresis

In this section, we discuss the electrophoresis of micrometer-sized charged particles en-

veloped by counterion cloud, forming a comparably thin electric double layer. Our analysis

begins with a conceptual discussion, comparing the flow field around a spherical particle

undergoing electrophoresis with and without a counterion cloud. We base our discussion

on the flow field plots presented in reference [44] and the derivation of Stokes’ law as

found in hydrodynamic textbooks [45].

Subsequently, we mathematically explore the scale of the electric double layer surrounding

the particle. This analysis enables us to derive approximate equations for calculating the
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hydrodynamic flow field and the migration velocity of the particle. We then compute

the force balance on the particle and demonstrate, as in reference [8], that the migration

velocity is independent of the particle’s shape.

2.4.1 Conceptual Discussion

v 

qcF		= 0E 

0E 

a
0E v 

u 

b

Figure 2.4. Flow profile around a negatively charged sphere being dragged through a liquid
by an electric field E0, in the absence of counter ions. The flow velocity perpendicular to the
migration direction at the particle’s equator is indicated with arrows. a Co-moving frame of
reference. b Stationary, laboratory frame of reference.

We begin with a simple extreme case: a charged sphere is dragged through a liquid devoid

of electrolytes by an electric field. In this scenario, the sphere experiences a Coulomb force,

denoted as Fc = qE0, where q represents the sphere’s total charge, and E0 is the exter-

nally applied electric field. The sphere moves at a constant speed through the liquid, and

the Coulomb force is counteracted by a viscous friction force, expressed by Fr = −6πηRu.

This friction force, commonly referred to as Stokes’ law, points in the opposite direction

to the migration velocity u. The force balance equation, 0 = Fc + Fr = qE0 − 6πηRu,

subsequently provides an expression for the migration velocity: u = q
6πηR

E0.

Mechanistically, the viscous friction force originates from fluid elements sliding along the

surface of the migrating sphere. The viscous stress σ at the surface, defined as the tan-

gential force per unit area, is linked to the fluid velocity gradient ∂vy
∂x

between the solid

surface and the adjacent fluid elements. Mathematically, it is expressed as τ = η ∂vy
∂x

∣∣∣
x=0

,

where x is a coordinate normal to the surface and y is tangential to it. Deriving Stokes’

law involves first solving the creeping flow equation to determine the velocity profile of a

sphere migrating at constant velocity. The total viscous friction force is then calculated

by integrating the viscous stress τ over the sphere’s entire surface.

The flow profile is depicted in Figure 2.4. Figure 2.4a illustrates the flow profile from

the perspective of a negatively charged sphere at rest in a constant external fluid flow.
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Here, the Coulomb force, and hence the migration direction, points left, opposite to the

applied electric field. The flow velocity v at the sphere’s surface is zero, increasing with

distance from the sphere until it reaches a constant value, corresponding to the negative

of the migration velocity u. From this frame of reference, the flow lines bend around the

particle. Figure 2.4b presents the same scenario from a laboratory frame, showing the

flow lines of a migrating sphere from an external observer’s viewpoint at a given moment.

In this view, the sphere pushes fluid in front of it and drags some fluid behind it. The

flow velocity at the surface perpendicular to its migration direction equals the sphere’s

migration velocity u, decaying to zero at greater distances from the surface.
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Figure 2.5. Flow profile and electric field around a negatively charged sphere being dragged
through a liquid by an electric field E0, in the presence of counter ions. The flow velocity
perpendicular to the migration direction at the particle’s equator is again indicated with arrows.
(a) Electric field in the vicinity of the particle. The particle appears electroneutral on the
displayed scale, and the electric field bends around the particle. The inset shows the situation
zoomed in to the particle surface, which is similar to the case of electroosmosis. (b) Flow profile
in a co-moving frame of reference. (c) Flow profile in a stationary, laboratory frame of reference.

Next, we consider another extreme scenario: a charged sphere is now dragged through

a liquid containing an electrolyte at a sufficiently high concentration such that the elec-

tric double layer’s extension is significantly smaller than the particle’s size. As discussed

in Section 2.2 for the charged plane, counterions accumulate near the particle’s charged

surface, effectively screening the surface charge. Figure 2.5a depicts a sphere subject

to an external electric field, viewed from the sphere’s frame of reference. On the de-

picted macroscopic scale, the particle appears electrically neutral. The electric field bends

around the non-conducting sphere, thereby dragging ions around it. Near the surface,

the electric field is tangential to the surface, as ions cannot penetrate the sphere. The

inset in Figure 2.5a depicts the situation at the surface. At the scale of the Debye length,

the charged surface appears locally flat. Additionally, the tangential electric field Et is

approximately constant at this scale. This local scenario is analogous to the case of elec-

troosmosis discussed in Section 2.3. The tangential electric field acts on the accumulated

counterions near the charged surface, inducing liquid motion. Concurrently, the tangential
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electric field also acts on the surface charge, resulting in a total Coulomb force expressed

as Fc = qE0.

Compared to the case without an electrolyte, there is now a Coulomb body force acting

on the liquid near the surface, which induces liquid motion in the opposite direction to the

particle’s migration direction. This effect increases the viscous drag force on the particle

and therewith reduces the migration velocity. Figure 2.5b illustrates the flow profile around

the sphere from the particle’s frame of reference. The flow field appears qualitatively sim-

ilar to that in Figure 2.4a for the case without counterions. However, near the surface,

the fluid velocity increases rapidly with distance within the electric double layer due to the

force on the counterions. Outside the electric double layer, the velocity reaches a maxi-

mum and then decays with distance until it reaches a constant value, which is again the

negative of the migration velocity. In Figure 2.5c, we depict the same scenario from the

laboratory frame of reference. At the surface perpendicular to its migration direction, the

flow field matches the sphere’s migration velocity u. The flow velocity decreases rapidly

in the double layer and even reverses direction within the electric double layer. Beyond

the double layer, the liquid flows in the opposite direction to the sphere’s migration. Far

away, the flow velocity decays to zero. As the sphere drags fluid in one direction and the

Coulomb body force in the double layer acts in the opposite direction, the liquid circulates

around the particle, as indicated in the figure.

2.4.2 Derivation of the Migration Velocity

To compute the migration velocity, we adopt an approach similar to that used for the case

without counterions. In this section, we solve the Stokes equation, now incorporating a

Coulomb body force, to determine the flow profile around the sphere. Subsequently, we

calculate the viscous stress at the surface and balance it with the Coulomb force to es-

tablish an expression for the migration velocity.

We derive an approximate solution for the flow profile around a sphere by utilizing the

small scale of the electrical double layer. This allows us to solve the governing equations

from Section 2.1 in two distinct regions: an outer region, on the particle’s scale, and an

inner region, within the electrical double layer. Inside the double layer at a microscopic

scale, the situation resembles that in electroosmosis. On a macroscopic scale, the charged

particle appears electroneutral, as the surface charge is screened by the counterions in the
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electric double layer. This solution strategy is commonly known as the thin double layer

approximation [12–14,32,37].

We begin the discussion by motivating the separation of scales through the reformulation

of the Poisson equation in dimensionless variables. The Poisson equation is expressed as

−ϵ∆Φ = ρe = e(c+ − c−). (2.42)

We define r̂ = Rr as the dimensionless distance, Φ̂ = eΦ
kBT

as the dimensionless potential,

and ĉ± = c0c
± as the dimensionless concentration, where c0 is the ion concentration far

from any charged surface in the bulk. This leads us to

−
ϵkBT
e2c0

R2
∆Φ̂ = −2λ2

D

R2
∆Φ̂ = (ĉ+ − ĉ−) (2.43)

where we identify the Debye length as λD =
√

ϵkBT
2e2c0

. When the Debye length is sig-

nificantly shorter than the particle size, i.e., the radius, we find
2λ2

D

R2 ≈ 0, leading to

ĉ+ − ĉ− = 0. We conclude that on a macroscopic scale, the concentrations of positive

and negative ions are approximately equal, suggesting electro-neutrality. Returning to the

original variables, we find c+ = c− = c, far from the charged surface.

On a microscopic scale close to the particle surface, we find the situation depicted in the

inset in Figure 2.5a. At the scale of the Debye length, the charged surface appears locally

flat. Additionally, the tangential electric field Et is approximately constant at this scale.

This local scenario is analogous to the case of electroosmosis discussed in Section 2.3.

We can use the same approach to determine the ion concentration distribution close to

the surface. From the fact that the ion flux normal to the surface is zero, we find again

c+ = ce
−e(Φ−φ(y))

kBT and c− = ce
+e(Φ−φ(y))

kBT .

φ(y) and c represent the potential and ion concentration far away from the charged surface,

respectively, which is outside the double layer. Assuming that the tangential electric field

Et is approximately constant on the scale of the double layer, we approximate φ(y) as

φ0 −Ety. This expression, φ0 −Ety, is the Taylor expansion of the potential outside the

double layer at the specified position on the sphere. Substituting the ion concentrations

back into the Poisson equation yields

ϵ

(
∂2Φ

∂x2
+

∂2Φ

∂y2

)
= 2ec sinh

(
e(Φ− φ0 + Ety)

kBT

)
(2.44)
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As before, we reintroduce the potential difference Ψ = Φ− φ0 + Ety, leading to

∂2Ψ

∂x2
= 2

ec

ϵ
sinh

(
eΨ

kBT

)
. (2.45)

The equation can be solved as before and can be used to determine the zeta potential ζ

via the Graham equation 2.20 from the surface charge. To obtain a complete solution of

the potential valid in all regions, we require that the value of the inner solution at infinity

matches the value of the outer solution at the particle surface. Note that the complete

solution of the potential can be expressed as a single function by Φcombined = Ψ + φ.

Here, we need to use the expression for the potential Φ outside the double layer for φ.

However, one must replace x with r −R in Ψ to align the coordinates.

We can now proceed to compute the local flow profile using the creeping flow equation,

as in Section 2.3. The flow profile for a charged flat surface is given by

vy(x) =
ϵ

η
(Ψ(x)− ζ)Et (2.46)

Far away from the surface where Ψ(∞) = 0 , the velocity approaches the value vt =

− ϵζ
η
Et. Similarly to the potential, we must also match the velocity value obtained at

infinity with the solution of the velocity profile outside the double layer. vt will serve as

an effective boundary condition for the tangential velocity outside the double layer for the

creeping flow equation.

Having established the solutions inside the double layer, we can now turn to the solution

outside the double layer at a macroscopic scale. We use the previously derived electroneu-

trality condition to obtain an approximate equation for the ion flux equations. By defining

c = c+ = c−, we find

j+ = −D+∇c−D+ e

kBT
c∇Φ + cv (2.47)

and

j− = −D−∇c+D− e

kBT
c∇Φ + cv. (2.48)

The electric current density is defined by je = e (j+ − j−) and can be expressed as

je = −(D+ −D−)∇c− (D+ +D−)
e

kBT
c∇Φ. (2.49)
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Assuming that the ion concentration c is constant, we can simplify the equation to

je = −(D+ +D−)
e

kBT
c∇Φ, (2.50)

which corresponds to Ohm’s law for two-component electrolytes. Aiming for a steady-

state solution, the conservation laws dictate ∇j+ = 0 and ∇j− = 0, which also implies

∇je = 0. Applying ∇ to the above equation yields a Laplace equation for the electric

potential:

∆Φ = 0. (2.51)

To solve for the potential, we need to impose boundary conditions. In the following, we

will use spherical coordinates. We assume that the charged sphere is exposed to an electric

field with the constant value E0, pointing in the z-direction. Therefore, the potential far

away from the sphere should assume the value −E0z = −E0r cos(θ), where θ is the polar

angle in spherical coordinates. At the surface of the particle, we assume that no ions

can enter the double layer. This yields the boundary condition erje = 0 for the current,

which also implies − er∇Φ|r=R = 0. The solution satisfying these boundary conditions

is a combination of an electric dipole and the constant external electric field:

Φ = −1

2
E0

R3

r2
cos(θ)− E0r cos(θ). (2.52)

The corresponding electric field is given by

E = E0 cos(θ)

(
1− R3

r3

)
er − E0 sin(θ)

(
R3

2r3
+ 1

)
eθ. (2.53)

The tangential component of the electric field at r = R is given by Et = −1.5 sin(θ)E0.

We can now proceed to solve the velocity profile outside the double layer. As mentioned

earlier, the value of the velocity of the inner solution at infinity, given by vt = − ϵζ
η
Et,

will serve as an effective boundary condition for the tangential component of the velocity

profile outside the double layer. With the expression for the tangential electric field, this

results in vt = 1.5 ϵζ
η
sin(θ)E0. The normal component of the fluid velocity is zero since

fluid can not enter the particles surface. Furthermore, we require that the velocity far away

from the particle approaches a constant value, pointing in the z-direction. It turns out

that a valid solution of the creeping flow equation, satisfying these boundary conditions,
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is given by

v = −ϵζ

η
E = −ϵζ

η
E0

(
cos(θ)

(
1− R3

r3

)
er − sin(θ)

(
R3

2r3
+ 1

)
eθ

)
. (2.54)

Far away from the sphere, the velocity is given by − ϵζ
η
E0ez. Changing the frame of

reference yields the migration velocity:

u =
ϵζ

η
E0. (2.55)

Note that the migration direction for a negatively charged particle with a negative surface

potential ζ points in the opposite direction as the electric field.

Finally, it should be mentioned that it is not immediately apparent that the presented

value for u is indeed the migration velocity. We could construct other valid solutions to

the Stokes equation by adding another solution of the creeping flow equation, which is

the solution used to derive Stokes’ law. The boundary conditions would still be satisfied

since the Stokes flow at the particle surface is zero and has a constant value far away

from the sphere. To select the correct solution, we need to consider the force balance on

the particle surface. However, it will ultimately be revealed that the expression previously

given is, in fact, the migration velocity.

2.4.3 Force Balance

To establish the force balance of the particle, we need to compute the viscous stress at

the particle’s surface and equate it with the Coulomb force due to the particle’s surface

charge σ [46]. We begin by computing the viscous stress from the solution of the velocity

profile presented above.

Near the surface, the flow profile can be expressed as vy(x) = ϵ
η
(Ψ(x)− ζ)Et. The

viscous stress τ at the surface is derived from the velocity profile by

τ = η
∂vy
∂x

∣∣∣∣
x=0

= ϵ
∂Ψ(x)

∂x

∣∣∣∣
x=0

Et. (2.56)

The term − ∂Ψ(x)
∂x

∣∣∣
x=0

represents the electric field perpendicular to the surface, which

relates to the surface charge as −ϵ ∂Ψ(x)
∂x

∣∣∣
x=0

= σ. Thus, the viscous stress is τ = −σEt.

The term σEt represents the Coulomb force per unit area acting on the charged surface,

equivalent to the stress or surface tension due to the Coulomb force. This implies that

the viscous stress at the surface is exactly balanced by the Coulomb stress at the surface:
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0 = τ + σEt. This result has some interesting implications. Firstly, it confirms that the

solution presented above is correct and that the migration speed is indeed given by ϵζ
η
E0.

Secondly, this result implies that there is no internal stress within the particle, suggesting

that a soft particle is not expected to deform during migration in an electric field.

2.4.4 Shape Independence

In this section, we will establish that electrophoresis, under the thin double layer ap-

proximation, is shape-independent [8]. First, we will reexamine the effective boundary

conditions for the electric field and the velocity profile outside the electric double layer.

The normal component of the electric field at the particle surface is zero, as no current

enters the double layer. This condition is expressed as − er ·∇Φ|r=R = 0. Similarly, the

normal component of the fluid velocity is also zero since fluid cannot enter the particle

surface. This is expressed as er · v|r=R = 0. Furthermore, far away from the particle, the

electric field is constant and points in the z-direction, assuming the value E0ez. Similarly,

the velocity profile far away from the particle is expected to be constant and pointing

in the z-direction, assuming the value −uez, where u is the migration velocity of the

particle. The tangential component of the flow velocity at the particle surface is linked to

the tangential electric field by vt = − ϵζ
η
Et.

Let’s now assume an arbitrarily shaped particle. The electric potential Φ will be a solution

of the Laplace equation ∆Φ = 0, satisfying the stated boundary conditions for the electric

field. Assuming the velocity field to be v = − ϵζ
η
E automatically satisfies the boundary

conditions for the velocity. Both fields have only a tangential component at the particle

surface, which is related via the factor − ϵζ
η
, and they assume a constant value, pointing

in the z-direction, far away from the particle. Therefore, the flow velocity far away from

the particle is given by u = − ϵζ
η
E0.

What remains is to demonstrate that the constructed solution is indeed a solution of the

creeping flow equation. Inserting ϵζ
η
∇Φ into the creeping flow equation yields

ϵζ

η
∆(∇Φ)−∇P = 0. (2.57)

We can use ∆(∇Φ) = ∇ (∆Φ) = 0, which leaves us with ∇P = 0. This shows that

the proposed solution solves the creeping flow equation and that the pressure is constant

everywhere. Finally, we need to mention that the local balance of viscous stress and

Coulomb stress at the particle surface, proven in section 2.4.3, is a necessary condition

for the shape independence of electrophoresis. This ensures that the above solution
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is indeed the correct solution of the creeping flow equation, satisfying force balance of

viscous friction and Coulomb force, independent of the particle’s shape. Lastly, shape

independence combined with the local stress balance implies that there is no hydrodynamic

interaction force between two particles migrating next to each other in an electric field.

The argumentation above applies also to multiple similar particles subject to an electric

field. In this case, the potential is still a solution of the Laplace equation, and the

hydrodynamic flow field is directly proportional to the electric field. Furthermore, on each

particle’s surface, there is the local stress balance between Coulomb and hydrodynamic

forces. Consequently, particles migrate independently of each other. However, particles

are still expected to interact with each other through the distortion of the external electric

field.

2.4.5 AC Electric Fields

The derivation of the migration velocity can be extended to time-varying external elec-

tric fields. Time dependence is introduced into the governing equations, as detailed in

Section 2.1, solely through the conservation laws for ion species, represented by ∂c+

∂t
+

∇j+ = 0 and ∂c−

∂t
+ ∇j− = 0. The electroneutrality approximation outside the dou-

ble layer, expressed as c− = c+ = c, leads to the equation for electric current density

∇je = e∇j+ − e∇j− = 0, mirroring the steady-state result. Consequently, the poten-

tial adheres to a Laplace equation in this scenario, similar to the steady-state case, when

assuming a constant ion concentration c throughout. Further assuming that the electric

double layer at the particle surface maintains its equilibrium structure, we encounter the

same mathematical problem as in the steady-state case. The AC-electric solution for the

flow field and the electric field can be derived by substituting E0 with sin(ωt)E0 in the

corresponding expressions from Section 2.4.2.

This result, combined with the proven shape independence discussed in Section 2.4.4,

suggests that particles of any shape experience no net movement in an AC electric field.

However, particles are expected to align with the electric field due to the induced electric

dipole. Also, electric particle-particle interactions are still expected.

2.5 Diffusioosmosis

In this section, we discuss diffusioosmosis in electrolyte solutions. Diffusioosmosis de-

scribes the motion of a liquid above a surface, induced by a concentration gradient. Ini-

tially, we will provide a conceptual discussion to explain the relevant forces involved [46].
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Subsequently, we will derive the diffusiophoretic flow field within a thin electric double

layer [18, 19, 40, 43]. We will then discuss the emergence of diffusion-induced electric

fields and deduce an effective boundary condition for hydrodynamic flows above charged

surfaces.

2.5.1 Conceptual Discussion
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Figure 2.6. Schematic illustration of diffusioosmotic flow. A charged plane is submerged in
an electrolyte with a concentration gradient ∇c, depicted with differing gray values, along the
plane in the y-direction. The hydrostatic pressure p and Debye length λD are indicated with
blue arrows at two different positions. The pressure difference causes flow v from high-pressure
to low-pressure regions.

Consider the scenario depicted in Figure 2.6, where a charged plane is submerged in an

electrolyte with a concentration gradient along the plane in the y-direction. Adjacent

to the surface, there exists an electric double layer whose size varies along the surface

due to its dependency on the bulk ion concentration. This size variation is represented

in the Figure by two different Debye lengths, λD, along the surface. Additionally, the

hydrostatic pressure within the double layer changes with the ion concentration in the bulk.

This pressure results from the force exerted by the attracted counterions on the liquid.

Higher ion concentrations outside the double layer correspond to higher concentrations

inside, leading to increased pressures within it. The variation in hydrostatic pressure along

the surface is depicted in the Figure by the two pressure values, p1 and p2, at different

positions. It is important to note that the pressure outside the double layer remains

constant at p0. The differential pressure induces liquid motion, v, within the electric

double layer, moving from high to low pressure regions as indicated. This motion drives

bulk liquid from areas of higher salt concentrations to those with lower concentrations.

This scenario is applicable only when ions have equal diffusion constants. In cases where

ions have asymmetric diffusion constants, an additional diffusion-induced electric field

arises, leading to more electroosmotic flow. This general scenario is further discussed in

Section 2.5.4.
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2.5.2 Surface Pressure-Driven Diffusioosmosis

We will now derive the velocity profile within the double layer in response to an exter-

nally applied concentration gradient of an electrolyte with symmetric diffusion constants,

following the approach of [32]. Note that this derivation is an approximation, applicable

only within a local region of the electric double layer where the external gradient appears

to vary slowly, thus preserving its equilibrium structure. Assuming no ion fluxes perpen-

dicular to the plane, we can derive Boltzmann distributions for the ion concentrations.

Consequently, the Poisson equation can be expressed as

ϵ

(
∂2Φ

∂x2
+

∂2Φ

∂y2

)
= 2ec(y) sinh

(
e(Φ− φ0)

kBT

)
, (2.58)

where c(y) represents the ion concentration outside the double layer, varying along the

y-axis. We introduce dimensionless variables to approximate the potential Φ(x, y). We

consider x-distances on the scale of the electric double layer, introducing x = λ0x̂ where

λ0 is a constant with the scale of the Debye length. Similarly, we introduce y-distances on

the scale of the concentration gradient, defining y = Rŷ where R is a distance much larger

than the Debye length λD. We also introduce the dimensionless potential Φ̂ = e(Φ)
kBT

and

its dimensionless value far from the plane, φ̂0 =
e(φ0)
kBT

, and use the definition ˆc(y) = c0c(y)

where c0 is a reference concentration outside the double layer which we set to c(0). With

these definitions, we arrive at

ϵkBT
2e2c0

λ2
0

∂2Φ̂

∂x̂2
+

ϵkBT
2e2c0

R2

∂2Φ̂

∂ŷ2
=

λ2
0

λ2
0

∂2Φ̂

∂x̂2
+

λ2
0

R2

∂2Φ̂

∂ŷ2
= ĉ(ŷ) sinh

(
Φ̂− φ̂0

)
, (2.59)

where we define λ0 =
√

ϵkBT
2e2c0

which is the Debye length at y = 0. Utilizing the approxi-

mation λ2
0/R

2 ≈ 0, we simplify the equation to

∂2Φ̂

∂x̂2
= ĉ(ŷ) sinh

(
Φ̂− φ̂0

)
, (2.60)

which is equivalent to the one-dimensional Poisson-Boltzmann equation in dimensionless

variables. Returning to dimensional variables, we reintroduce the potential difference

Ψ = Φ− φ0, leading to the familiar form

∂2Ψ

∂x2
=

2ec(y)

ϵ
sinh

(
eΨ

kBT

)
, (2.61)
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This demonstrates that the electric double layer locally maintains its equilibrium structure.

Consequently, we can calculate the potential Ψ(x, y) by considering only its x-dependence.

As shown in Section 2.2.3, the above equation can be integrated once to obtain

∂Ψ

∂x
= −

√
8kBTc(y)

ϵ
sinh

(
eΨ

2kBT

)
. (2.62)

We now proceed to solve the creeping flow equation in the electric double layer. The

Coulomb force density, ρeE, can be computed from the potential as

ρeE = −2ec(y) sinh

(
eΨ

kBT

)
E = +2ec(y) sinh

(
eΨ

kBT

)(
∂Ψ

∂x
ex +

∂Ψ

∂y
ey

)
. (2.63)

We calculate the pressure by considering the normal component of the creeping flow

equation:

0 = −∂P

∂x
+ 2ec(y) sinh

(
eΨ

kBT

)
∂Ψ

∂x
, (2.64)

where we assume no fluid flow in the x-direction towards the plane, i.e., vx = 0.

The pressure inside the electric double layer, as integrated in Section 2.2.4, is given by

P (x, y) = P0 + 4kBTc(y) sinh
2

(
eΨ(x, y)

2kBT

)
. (2.65)

Next, we insert this expression for the pressure and the y-component of the Coulomb force

into the y-component of the creeping flow equation:

0 = η
∂2vy
∂x2

− ∂P

∂y
+ 2ec(y) sinh

(
eΨ

kBT

)
∂Ψ

∂y
. (2.66)

The term ∂2vy
∂y2

is set to zero, as the incompressibility condition yields ∂vx
∂x

+ ∂vy
∂y

= ∂vy
∂y

= 0

for vx = 0.

Computing the derivative of P and acknowledging that both c(y) and Ψ(x, y) depend on

y leaves us with

η
∂2vy
∂x2

= 4kBT sinh2

(
eΨ

2kBT

)
∂c(y)

∂y
. (2.67)

To solve for the flow velocity vy, we need to integrate the above expression twice with

respect to x:

η

∫ x

0

∫ x

∞

∂2vy
∂x2

dxdx = 4kBT
∂c(y)

∂y

∫ x

0

∫ x

∞
sinh2

(
eΨ

2kBT

)
dxdx. (2.68)
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SubstitutingΨ(x) allows us to integrate with respect toΨ. We find dx = −dΨ/
(√

8kBTc(y)
ϵ sinh( eΨ

2kBT )
)

by using equation 2.62. The integration limits are set to apply the boundary conditions

for Ψ, which are Ψ(∞) = 0 and Ψ(0) = ζ, and for vy, where
∂vy
∂x

∣∣∣
x=0

= 0. With this,

the flow profile can be derived as

vy =
4ϵ

η

(
kBT

e

)2

ln

cosh
(

eΨ
4kBT

)
cosh

(
eζ

4kBT

)
 ∂ ln (c(y))

∂y
. (2.69)

Far from the charged plane, where Ψ(∞) = 0, the velocity approaches the value v∞,

given by:

v∞ = −4ϵ

η

(
kBT

e

)2

ln

(
cosh

(
eζ

4kBT

))
∂ ln (c(y))

∂y
. (2.70)

This equation should be interpreted as an effective boundary condition for the creeping

flow equation on a macroscopic scale. Unlike electroosmosis, where the flow is driven by

a constant electric field E0 resulting in a constant flow velocity v∞ = −ϵζ
η
E0 far from the

plane, diffusioosmosis presents a different scenario. In diffusioosmosis, the flow velocity

varies along the surface with ∂ ln(c(y))
∂y

. This implies that a constant flow field is not a

valid solution outside the double layer. Moreover, the induced flow field will also alter the

concentration gradient due to convection.

2.5.3 Diffusion-Induced Electric Fields

+

-D ∇c ++

-

- -
-D ∇c

ρ
e

∇c

E 

Figure 2.7. Schematic illustration of a diffusion-induced electric field. A gradient, depicted with
differing gray values, of two ion species with differing diffusion constants results in differential
diffusive fluxes −D+∇c+ and −D−∇c−. In the depicted case, anions diffuse faster, leaving
the cations behind. This leads to the charge distribution ρe shown below, which in turn gives
rise to the electric field E.

In this section, we discuss the electric field that arises in an electrolyte gradient with

asymmetric diffusion constants. This electric field causes an additional superimposed

electroosmotic flow on top of the diffusioosmotic flow. The existence of such an electric

field was initially described by Planck over a century ago [47]. Consider the concentration
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gradient depicted in Figure 2.7, consisting of anions and cations with different diffusion

constants, D− and D+, respectively. Both ion species exhibit a diffusive flux, −D+∇c+

and −D−∇c−, directed downward along the gradient. If anions, for instance, have higher

diffusion coefficients than cations, they will diffuse down the concentration gradient more

rapidly, leaving the cations behind. This results in a charge separation, as depicted in the

Figure, with more positive charges on the left and negative charges on the right. The

resulting charge distribution, ρe, gives rise to an electric field that opposes the differential

diffusion. In this scenario, the electric field will move anions down the gradient and cations

up the gradient. This opposing electric field results in an apparent effective diffusion

constant, denoted as D∗, for both ion species combined.

To derive an expression for the electric field, we consider a macroscopic scale where

we can use the electroneutrality approximation given by 0 = c+ − c−, as motivated in

Section 2.4.2. Using the definition c = c+ = c−, we express the ion flux equations as

j+ = −D+∇c+
e

kBT
D+cE + cv, (2.71)

j− = −D−∇c− e

kBT
D−cE + cv. (2.72)

In the absence of an externally applied electric field, we can assume that the electric

current is zero everywhere. Mathematically, this is expressed as je = e(j+ − j−). Using

the expressions for the ion fluxes, one arrives at

0 =
je
e

= −D+∇c+D−∇c+

(
D+ e

kBT
c+D− e

kBT
c

)
E, (2.73)

where the convection term, cv, cancels. The above equation can be solved for the electric

field, yielding

E =
kBT

e

D+ −D−

D+ +D−
∇c

c
=

kBT

e

D+ −D−

D+ +D−∇ ln(c). (2.74)

2.5.4 Diffusioosmotic Slip Boundary Condition

As previously mentioned, the diffusion-induced electric field causes an additional super-

imposed electroosmotic flow on top of the surface pressure-driven diffusioosmotic flow,

as illustrated in Figure 2.6 and derived in Section 2.5.2. The electroosmotic flow velocity

outside a double layer for a tangentially imposed electric field is given by v∞ = − ϵ
η
ζEt.

Using the expression for the the diffusion-induced electric field and assuming that the
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electrolyte gradient points locally along the surface in the y-direction, we arrive at

v∞ = − ϵ

η

kBT

e

D+ −D−

D+ +D− ζ
∂ ln (c(y))

∂y
. (2.75)

We can now superimpose the electric component with the surface pressure-induced com-

ponent to obtain an effective boundary condition for the creeping flow equation on a

macroscopic scale. The tangential component of the flow velocity vt is given by

vt = − ϵ

η

kBT

e

(
D+ −D−

D+ +D− ζ + 4
kBT

e
ln

(
cosh

(
eζ

4kBT

)))
∂ ln (c(y))

∂y
. (2.76)

This expression is commonly referred to as the Dukhin-Derjaguin slip boundary condi-

tions [18,19,32,40,43]. Note that the second, pressure-driven term in the equation drives

liquid motion from high to low salt concentrations, since the term ln(cosh(eζ/4kbT ))

is positive, independent of ζ. The first term, in contrast, depends on both the sign of

the zeta potential ζ and the factor β = (D+ −D−)/(D+ +D−). This means that the

direction of the electric part of the diffusioosmotic-induced fluid motion depends on the

sign of the surface charge and the diffusion constants of the electrolyte used. Therefore,

it is generally not trivial to predict the direction of a diffusioosmotic flow.

2.6 Diffusiophoresis

Similar to electrophoresis, where we calculated the migration velocity from the elec-

troosmotic slip boundary condition, one can calculate the migration velocity of a par-

ticle placed in a concentration gradient using the diffusioosmotic slip boundary condi-

tion [18,19,40,43]. Consider the scenario depicted in Figure 2.8 where a spherical particle

is immersed in a concentration gradient. The particle disturbs the external concentration

gradient, depicted by different grey levels. It blocks the diffusive ion flux, which needs to

pass around the particle. The concentration gradient on the surface of the particle will

induce a diffusioosmotic flow on the particle surface, resulting in the propulsion of the

particle.

2.6.1 Ion Concentration Evolution Equation

We start by deriving an evolution equation for the ion concentration on a macroscopic

scale. We can eliminate the electric field in one of the ion-flux equations from Section 2.5.3

using the expression in Equation 2.74. Choosing the ion flux equation for the positive ions
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u 

∇c

Figure 2.8. Charged sphere placed in a concentration gradient ∇c. The sphere blocks the
diffusive current, resulting in the concentration distribution indicated by varying shades of gray.
The diffusioosmotic flow arising on the particle surface causes its migration with velocity u.

yields

j+ = −D+∇c+
e

kBT
D+c

kBT

e

D+ −D−

D+ +D−
∇c

c
+ cv, (2.77)

which can be simplified to

j+ =

(
−D+ +D+D

+ −D−

D+ +D−

)
∇c+ cv = − 2D+D−

D+ +D−∇c+ cv. (2.78)

We further apply the conservation law ∇ · j+ + ∂c
∂t

of the positive ions to obtain the

evolution equation of the ion concentration as

∂c

∂t
=

2D+D−

D+ +D−∆c+∇ · (cv). (2.79)

The prefactor 2D+D−

D++D− is the harmonic mean of the diffusion constants and serves as an

effective diffusion constant D∗.

2.6.2 Diffusiophoretic Migration Velocity

To derive the migration velocity, we use a linearization of the governing equations as

outlined in reference [19]. We consider three different scales: the observer scale, where

the concentration varies according to equation 2.79; the particle scale, where the exter-

nal concentration changes only slowly; and the scale of the electric double layer on the

particle’s surface.

On the intermediate scale, we linearize the external concentration gradient via a Taylor

expansion, given by c(r) ≈ c(0) + ∇c|r=0 · r, where the coordinate r = 0 represents

the particle’s center. We assume that the local concentration varies according to c(r) ≈
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c0 + c1(r), where c1(r) is a small perturbation. We require that the perturbation c1(r)

approaches ∇c|r=0 ·r at a distance far from the particle. Additionally, we orient the local

coordinate system such that the external concentration gradient points in the z-direction,

implying c1(r) should approach ∂c
∂z

∣∣ r = 0z.

Now, we can incorporate our approximation for the ion concentration into the evolution

equation for ion concentration:

∂ (c0 + c1(r))

∂t
=

2D+D−

D+ +D−∆(c0 + c1(r)) +∇ ((c0 + c1(r))v1) , (2.80)

We also assumed that the flow velocity is small and can be approximated as v ≈ 0 + v1,

such that c1(r)v1 ≈ 0. Acknowledging that derivatives of the constant c0 vanish, we

arrive at

∂c1(r)

∂t
=

2D+D−

D+ +D−∆c1(r) + c0∇v1 +∇ (c1(r)v1) ≈
2D+D−

D+ +D−∆c1(r), (2.81)

where we used the incompressibility condition ∇ · v1 = 0. We make another approxima-

tion, namely, that the ion concentration varies slowly locally in time in the vicinity of the

particle, such that ∂c1(r)
∂t

≈ 0. This leads us to a Laplace equation for c1, given by

∆c1(r) = 0. (2.82)

On the particle surface, we require that no ions can penetrate the surface, which is

expressed as j− ·er = j+ ·er. This condition, under the above approximations, translates

to er ·∇c1 = 0.

We proceed in a similar manner as in the case of electrophoresis, discussed in 2.4.2. Utiliz-

ing spherical coordinates, the far-field condition for the concentration becomes ∂c
∂z

∣∣
r=0

cos(θ),

which we denote as c′ cos(θ). The solution that satisfies the boundary conditions of the

above equation represents a dipole potential combined with the far-field condition and is

given by

c1 =
1

2
c′
R3

r2
cos(θ) + c′r cos(θ). (2.83)

The corresponding concentration gradient is given by

∇c1 = −c′ cos(θ)

(
1− R3

r3

)
er + c′ sin(θ)

(
R3

2r3
+ 1

)
eθ. (2.84)

The tangential component of the concentration gradient at r = R is ∇||c1 = eθ ·∇c1 =

1.5 sin(θ)c′.
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Next, we solve the creeping flow equation. We consider the effective boundary con-

dition derived in Section 2.5.4 for the tangential fluid velocity, which had the form

vt = −µD(ζ)
∂ ln(c(y))

∂y
, where µD(ζ) is the prefactor from equation 2.76. ∂ ln(c(y))

∂y
repre-

sents the tangential component of the logarithmic concentration gradient at the surface.

In the three-dimensional scenario of this Section, this is expressed in spherical coordinates

as

vt = −µD(ζ)∇|| ln(c). (2.85)

Note that the prefactor µD(ζ) depends on the local ion concentration through ζ.

Inserting c ≈ c0 + c1 into the boundary condition and expanding for small c1 gives(
−µD(ζ0)−

∂µD

∂ζ

∂ζ

∂c

∣∣∣∣
c=c0

c1

)
∇||

(
ln(c0) +

c1
c0

)
, (2.86)

where ζ0 is the zeta potential calculated from the ion concentration c0, which is the ion

concentration on the largest scale, the observer scale, at the particle’s position. Using

∇||(ln(c0)) = 0 and assuming that the term containing the factor c1 · c1 is approximately

zero, we arrive at

vt = −µD(ζ0)
∇||c1
c0

. (2.87)

This boundary condition for the creeping flow equation is similar to that in Section 2.4

where we discussed electrophoresis. It turns out that a valid solution of the creep-

ing flow equation that satisfies this boundary condition is given by v = −µD(ζ0)
c0

∇c1,

as can be shown using the same arguments given in Section 2.4.4. Since ∇c1 ap-

proaches c′ez = ∂c
∂z

∣∣
r=0

ez far away from the particle, we conclude that v approaches

v∞ = −µD(ζ0)
c′

c0
ez = −µD(ζ0)

1
c0

∂c
∂z

∣∣
r=0

ez, which approximates −µD(ζ0)∇ ln(c) since

∇ ln
(
c0 +

∂c
∂z

∣∣
r=0

z
)
= 1

c0
∂c
∂z

∣∣
r=0

ez. We can change the frame of reference again and

express the migration velocity of the sphere as

u = µD(ζ
∗)∇ ln(c) =

ϵ

η

kBT

e

(
D+ −D−

D+ +D− ζ∗ + 4
kBT

e
ln

(
cosh

(
eζ∗

4kBT

)))
∇ ln(c) (2.88)

where ζ∗ refers to the zeta potential calculated with respect to the ion concentration

c at the observer scale. Note that the mobility µD(ζ
∗) is not constant as it depends

on the local ion concentration through ζ∗, which changes due to the particle’s migration

and the potential evolution of the external concentration profile. This means that the

magnitude and direction of the migration velocity might change depending on the local

ion concentration. [19]

Note that from here on, we would need to establish a force balance of the particle to
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confirm that the migration velocity is correct. This is illustrated in reference [46]. Unlike

electrophoresis, for diffusiophoresis, the local force balance on the particle surface is not

zero, indicating that there is internal stress in the particle during migration [46].
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3. Emergence of Colloidal Patterns

in ac Electric Fields

The text and figures in this chapter are adapted from the publication [35] stated below

and have been restructured to better suit this thesis. The videos mentioned below are

accessible on the publisher’s webpage and are referenced accordingly.

Emergence of Colloidal Patterns in ac Electric Fields

Florian Katzmeier, Bernhard Altaner, Jonathan List, Ulrich Gerland, and Friedrich C. Simmel,

Physics Department E14 and T37, TU Munich, D-85748 Garching, Germany

In this chapter, my coauthors and I provide a comprehensive explanation of a colloidal pat-

tern formation phenomena, which was independently rediscovered by several researchers [48–

50], including myself, for various types of particles. It was observed that when an alternat-

ing electric field is applied to sedimented particles in a microscopy chamber, the particles

organize into extended dynamic band patterns perpendicular to the electric field (see upper

two panels in Figure 3.1).

~

E E

Figure 3.1. Overview Figure: Emergence of Colloidal Patterns in AC Electric Fields. (Upper
left) Experimental setup. (Upper right) Late stage of the colloidal patterning phenomena.
(Lower left) Electrically induced quadrupole flow responsible for the patterning. (Lower right)
Experimentally observed quadrupole flow.

Motivated by the rediscoveries across different particle types, I experimentally confirmed

the generic nature of this phenomenon by observing patterning for a range of different
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particle types. Since existing literature lacked a thorough explanation, I conducted an

extensive literature review on recently described nonlinear electrokinetic phenomena. This

review led me to conclude that a typical flow, specifically a quadrupole flow arising around

spherical particles in an AC electric field [30,31,33,36,51], could account for the observed

patterning phenomena (see lower two panels in Figure 3.1). To validate my assessment,

I implemented a many-particle Brownian dynamics simulation, taking special care to in-

corporate hydrodynamic interactions resulting from the quadrupole flow. This simulation

successfully reproduced all stages of the patterning process. Notably, the quadrupole flow

can be explicitly observed around larger particles by examining the trajectories of smaller

particles (see lower right panel in Figure 3.1).

To gain further insight, I conducted experiments with silica particles, focusing on the fre-

quency and ion concentration dependence of the patterning phenomena. In collaboration

with Bernhard Altaner, I confirmed that the patterning phenomena can be quantitatively

predicted without any free parameters, by utilizing the weakly nonlinear multi-scale theory

of Schnitzer, Yariv, et al. [32, 33].
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3.1 Introduction

Systems driven far from equilibrium can self-organize into spatiotemporal dissipative struc-

tures and thereby undergo spontaneous symmetry breaking [52,53]. Such dynamic behav-

ior has been observed in electrokinetic experiments with clay particles [50], polystyrene

micro-spheres [49], and also with λ-DNA [48]. When an alternating electric field is ap-

plied, particles form chains along the field direction, which move towards each other, align

in parallel and develop extended band patterns roughly perpendicular to the field direction.

The particle chains within the bands undergo dynamic break-up, resulting in the formation

of triangular band structures wherein the particles circulate.

Originally, Jennings attributed the chain break-up to dipole like repulsion forces arising

from electrophoretic particle oscillations [50]. Hu et al. explained the particle circulation

with electrorotation caused by mutual polarization of the particles [49]. Further experi-

mental studies following this interpretation were conducted by Lele et al. [54] and Mittal

et al. [55]. For observations with λ-DNA, Isambert and coworkers assumed that hydrody-

namic interactions were generated by local conductivity gradients caused by electrophoretic

salt depletion [48], resulting in liquid shearing under the influence of an external electric

field. All of these models explained the dynamics within the band structures, but did not

address their formation in the first place.

In the present work we verify the generic emergence of the same characteristic patterns

for a wide range of colloidal particles. We demonstrate that the observed phenomena can

be naturally explained with an electrokinetic fluid flow [30,33,51] around the particles. A

Brownian particle simulation accounting for the hydrodynamic and dipole-dipole pair in-

teractions reproduces the key aspects of the band pattern formation, such as spontaneous

symmetry breaking, inclination of the bands, and particle circulation within these bands.

For silica spheres, we experimentally investigate the emergence of patterns as a function

of salt concentration and AC field frequency. The observed dependence can be predicted

without any free parameters from the weakly nonlinear multi-scale theory of Schnitzer,

Yariv, et al. [32, 33].

3.2 Results

3.2.1 Experiments

We conducted our experiments with aqueous suspensions of various micrometer-scale par-

ticles, including fluorocarbon (FC) oil and lauric acid droplets, coacervates made from
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t=0 s t=0.7 s t=15.3 s t=77 s

Lauric acid E. coli Fluorocarbon oil Coacervates CoffeeSilica 
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Figure 3.2. (a) Schematic representation of the experimental setup. Aqueous particle suspen-
sions are subjected to AC electrical fields inside of a microscopic observation chamber. (b) Snap-
shots of a suspension of 1.3 µm diameter silica particles in an AC electric field (E0 = 17mV/µm,
f = 500Hz) at different timepoints. The formation of zigzag-shaped band patterns is clearly
visible. In the fully formed bands (t = 77 s) the particles circulate as indicated. (c) Band
formation and zigzag patterns in suspensions of various colloids. The images are taken ≈ 100 s
after the electric field was turned on.

poly(allylamine) and adenosine triphosphate (ATP), monodisperse silica particles (ra-

dius a ≈ 650 nm), E. coli bacteria, and ground coffee (Experimental details and particle

size distributions are given in sections 3.4.1 and 3.6.5, respectively). The suspensions

were loaded into microscope observation chambers with platinum electrodes placed at

opposite inlets (see Figure 3.2a). After letting the colloids sediment for 10min, we

applied an in-plane AC electric field and recorded the resulting dynamics on the bot-

tom of the chamber with an inverted microscope. We applied electric fields with ampli-

tudes between 17mV/µm and 56mV/µm, which is on the order of the thermal voltage

(φth := kBT/e ≈ 25.69mV) for µm sized particles. The applied frequency was set to

500Hz for all samples except for bacteria, where it was 250Hz.

We found that similar band patterns formed in all our samples (Figure 3.2). Particle

chain formation occurred within the first second after the electric field was switched on,

while horizontal band structures emerged within the first minute. The band structures

continued to grow and merge until the electric field was switched off. The time course

of the pattern formation process is exemplary shown for silica particles in Figure. 3.2b,

and can be clearly observed in the supplementary videos [35]. Snapshots of the patterns

taken 100 s after the electric field was turned on are shown in Figure. 3.2(c). We observed

distinct zigzag patterns for coacervates, FC oil and silica particles, and less dominant

patterns for the polydisperse lauric acid droplets. For the bacteria we found only chain

formation at f = 500Hz, while at f = 250Hz the typical band patterns emerged, but
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less pronounced zigzag structures. The sample containing the polydisperse ground coffee

particles showed more irregular behavior, but chain formation and also the onset of band

formation could be clearly observed. The angle between the zigzag bands and the electric

field axis was roughly 60◦ (highlighted in Figure 3.2b).

3.2.2 Theoretical Background

The initially observed formation of particle chains is well-known [49,50,54,55] and is caused

by induced dipole-dipole interactions. When the external AC electric field is described as

the real part of the complex phasor E(t) = E0e
iωtêz with angular frequency ω = 2πf , the

time-averaged dipole-dipole force on a particle at position r exerted by another residing

at the coordinate origin is given as

F dip(r) = 6πϵ|Kd|2E2
0a

2h (r) , (3.1)

with the complex dipole coefficient Kd, the permittivity of water ϵ and the substitution

h(r) := 1−3 cos2 θ
r4

êr − 2 cos θ sin θ
r4

êθ (θ is the zenith angle in spherical coordinates, and r is

given in units of the particle radius a).

Figure 3.3. (a) A charged particle in an electric field (black field lines) surrounded by coun-
terions (red cloud) with ion fluxes (outlined arrows) along one field line. The neutral salt
concentration is drawn as a grey cloud (darker regions correspond to higher concentrations).
(b) Time averaged electrokinetic flow arising from Coulomb forces acting on the Debye layer.
(c) Experimentally observed fluid motion around a large coacervate (superposition of a 3.8 s
long video with enhanced contrast for moving particles). Bright areas correspond to trajectories
of smaller coacervates.

The formation of large scale patterns is driven by hydrodynamic interactions, which are

caused by electrokinetic flow around the particles. The corresponding Poisson–Nernst–

Planck–Navier–Stokes system of nonlinear partial differential equations can only be solved

approximately [10, 12–14, 16, 37, 38, 42, 56–60]. For the DC case, Schnitzer, Yariv, et
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al. [32, 33] recently developed a weakly non-linear electrokinetic theory, in which the

dimensionless electrokinetic flow ũ := u/u∗, with u∗ = (kBT )2ϵ
e2aη

, is expanded in powers of

the dimensionless electric field ξ = ea
kBT

E0:

ũ = ξũ1 + ξ2ũ2 + ξ3ũ3 + . . . . (3.2)

From the DC solution one can extrapolate to the time-averaged AC solution, where one

can use the fact that odd powers of ξ ∝ E0e
iωt have a zero time average, which leaves

ũ2 as the leading order electrokinetic flow (for an AC solution in a special case, see also

reference [36]). An explicit expression for ũ2 can be deduced from the stream function

given in [33], which results in

u =
1

2
u∗ξ2ũ2 = u∗ξ2

γ

2
(g − h) (3.3)

where g(r) := 1−3 cos2 θ
r2

êr is a radial field and γ is a dimensionless microscopic parameter

(see below and reference [33]). Notably, this well-known flow pattern [30, 51] can be

explicitly observed around large coacervate droplets via the trajectories of smaller droplets

(see Figure 3.3c and supplementary videos [35]), which follow the streamlines of the

electrokinetic flow shown in Figure 3.3b.

The derivation of the individual terms in equation 3.2 is quite involved [32, 33], but the

mechanism can be understood qualitatively from the scheme in Figure 3.3: a negatively

charged particle immersed in an electrolyte is surrounded by a diffuse charge layer (Debye

layer), in which positive counter-ions are accumulated and co-ions are almost completely

depleted. Outside the Debye layer the salt solution is electrically neutral. The asymmetry

in ionic concentrations results in an ion-selective surface conductivity and surface current

j+Du, which is characterized by the ion-selective Dukhin number Du [32].

In the electro-neutral region, the electric field drives Ohmic counter- and co-ionic currents

j+E and j−E parallel to the field lines. Along field lines entering the Debye layer, flux balance

requires a diffusion flux jdiff which counterbalances the co-ion current j−E . jdiff can only

result from a variation of the neutral salt concentration n in the vicinity of the colloid,

which in Figure 3.3a is depicted as a grey cloud with varying intensity. The electrokinetic

properties of the Debye layer are determined by the zeta potential ζ, which depends on

the surface charge and the extension of the Debye layer κ−1, which in turn depends on

n via κ−1 = (2e2n/ϵkBT )
1/2. The variation of n outside the Debye layer causes a locally

varying perturbation ζ1 of the equilibrium zeta potential ζ0 i.e., ζ = ζ0 + ζ1, visualized as

an expansion of the Debye layer on one side and a compression on the other side of the
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particle.

The free charges in the Debye layer are subject to a Coulomb force due to the tangen-

tial component of the electric field Eθ, which gives rise to fluid motion according to the

electrokinetic slip boundary condition veo = ζEθ. The first and second order velocity com-

ponents v
(1)
eo and v

(2)
eo connected to ζ0 and ζ1 are indicated in Figure 3.3b. For alternating

electric fields v
(1)
eo has a zero time average, while v

(2)
eo has a non-vanishing time average,

resulting in a fluid flow around the particle.

3.2.3 Brownian Dynamics Simulation

In the overdamped limit, a direct force F tot
i exerted on particle i results in particle drift with

velocity Dp

kBT
F tot

i whereDp is thediffusion constant of the particle.To include hydrodynamic

interactions with the flow field utot
i (r), which is caused by other particles (j ̸= i) in the

fluid, we use Faxen’s correction for the drift velocity:

vi =
Dp

kBT
F tot

i +

(
1 +

1

6
∆

)
utot

i . (3.4)

E

t=0 s t=2.0 s t=16.6 s t=66 s 

Figure 3.4. Simulated dynamics with γ = 0.088 and |Kd|2 = 0.23. Snapshots of a large
scale simulation of the patterning process. The different stages of the experimentally observed
patterning process from Figure 3.2b are nicely reproduced. The particles circulate again as
indicated.

The direct force on particle i is obtained as the sum of dipolar and a repulsive interactions

F rep(rij) i.e. F tot
i =

∑
j ̸=i

(
F dip(rij) + F rep(rij)

)
, where rij = ri − rj denotes the

difference vector between particles i and j. Ignoring geometric interactions, the velocity

field caused by the particles j ̸= i is to zeroth order given as the sum utot
i =

∑
j ̸=i u(rij).

Together with 3.1 and 3.3 and by recognizing that ∆g = −6h and ∆h = 0, the drift

velocity (Equation 3.4) becomes

vi(ri) = u∗
∑
j ̸=i

[
ξ2
(γ
2
g(rij) + (|Kd|2 − γ)h(rij)

)
+ νk(rij)

]
(3.5)
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where the repulsion νk(rij) is discussed in Section 3.6 The movement of the particles can

then be described by the N -particle Langevin equation,

a dri = vi dt+
√

2Dp dW i , (3.6)

where dW is the increment of a Wiener process.

We numerically solved this stochastic differential equation with periodic boundary condi-

tions and random initial particle configurations (see Section 3.6.1). As we observed the

emergence of stripe patterns exclusively at the channel bottom, we restricted our simula-

tion to two dimensions by constraining the dipole-dipole force and fluid flow to the plane

y = 0, which captures both geometry and scaling of the physical interactions qualitatively

correctly. As shown in Figure 3.4, a simulation based on equation 3.6 with 1521 particles,

γ = 0.088, |Kd|2 = 0.23, and a particle number density matched to our silica particle

experiments recapitulates all stages of the observed pattern formation process (cf. Fig-

ure 3.2 and supporting videos [35]; see Section 3.7.2 for a simulation with polydisperse

particles.)

3.2.4 Parameter Dependence

To gain further insight into the physical mechanisms underlying the pattern formation

process, we explored its dependence on AC field frequency and salt concentration. We

prepared aqueous suspensions of silica particles at 0.0375 % (w/v) with NaCl concentra-

tions ranging from 5 µM to 2500 µM, and recorded microscopy videos with a relatively weak

electric field amplitude of 10.6mV µm−1 at frequencies ranging from 250Hz to 25 kHz.

To analyze our data, we defined the ‘pattern visibility’ p in an image as the discretized

version of p =
∫
A
| ∂
∂z

(G ∗ I) (x, z)|dxdz where A is the area of the image, G is a Gaus-

sian with a standard deviation of 15 pixels (corresponding to 6 µm), I(x, z) is the image

intensity, and ∗ denotes convolution. The order parameter p(t) is time-dependent and

measures density fluctuations along the z-direction at a scale defined by G. We computed

p(t) for every frame of our microscopy videos and used it to determine a typical timescale

τp for the emergence of stripe patterns (examples of p(t) are shown in Section 3.5.1). In

Figure 3.5), τ−1
p is plotted as a measure for the speed of pattern formation for various

frequencies and salt concentrations.

As electrokinetic fluid flow appears to drive the pattern formation process, we expect

τ−1
p to scale with the magnitude of the fluid flow, which is set by γ. The microscopic

parameter γ is related to the physics of the Debye layer, whose details are specified by

the curvature parameter δ := (κa)−1 and the dimensionless equilibrium zeta potential
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Figure 3.5. (a) Observed pattern visibility p in an experiment. Red circles indicate the exper-
imental data points with a heat map generated by linear interpolation on the logarithmic grid.
(b) Dimensionless characteristic numbers for electrokinetics lead to characteristic scales for the
ionic strength (or, equivalently, Debye length). (c) The low-frequency pattern visibility p can be
quantitatively predicted without fit parameters using the second-order velocity scale γ derived
by Schnitzer and Yariv in Ref. [33].

ζ̃0 = ζ0/φth [32, 33]. The latter is linked to the dimensionless surface charge density

σ̃ := σ
ϵκφth

by the Grahame equation σ̃ = 2 sinh ζ̃0/2. The ionic transport around colloidal

particles is characterized by the Dukhin number Du, which measures the relative strength

of surface to bulk conductivity [39, 61, 62]. By considering the surface conductivity of

counter-ions only, an ion-selective Dukhin number [32,33] given by Duσ := δσ̃(1 + 2µ+)

can be defined with the ionic drag coefficient µ+ :=
ϵφ2

th

ηD+ and the counter-ion diffusion

constant D+ [32, 33].

In Figure 3.5b, we show the variation of these dimensionless numbers for the ionic con-

ditions of our experiment, where we set the surface charge to the known value for silica

particles σ = −0.0027C/m2 [63]. Comparison with Figure 3.5a indicates that patterns

can be observed only up to a characteristic ionic strength where
∣∣∣ζ̃0∣∣∣ (blue dot) is O(1).

For higher ionic strengths, |ζ0| < φth, the physics of the Debye layer can be neglected

altogether. Further, pattern formation is fastest when the zeta potential is ‘logarithmically

large’ compared to the curvature parameter i.e.
∣∣∣ζ̃∣∣∣ = O(|ln(δ)|) (orange dot) and where

surface conduction becomes dominant over bulk conduction i.e. Duσ = O(1) (green dot).

Finally, in Figure 3.5c we compare γ (Reference [33]) with the observed pattern visibility p,

for which we scaled p such that its maximum at f = 250Hz corresponds to the maximum

value of γ. For the lowest experimental frequencies, we find excellent agreement between

pattern visibility p and γ, and even for higher frequencies p qualitatively shows the same
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behavior, albeit with a reduced amplitude. Notably, the appearance of patterns for salt

concentrations below 1mM as well as the maximum pattern formation speed at around

50 µM are nicely predicted by γ, when σ = −0.0027C/m2 is used. Further, we find that

the value of γ chosen for our simulation (Figure 3.4) has a physically reasonable magnitude.

While no nonlinear AC theory is available to date, we find that the decrease of the

amplitude falls in the range of the characteristic frequency fcr =
2
π

D+D−

a2(D++D−)
= 1.2 kHz

of the variation of neutral salt n, which is known from other linear AC theories [24,38,60,

64–66]. As also expected from this model, both fcr and τ−1
p are reduced in experiments

with higher viscosity (cf. Section 3.7.1).

It remains to be explained why similar patterns emerge for widely different particle types

even though the model predicting the hydrodynamic flow strictly applies only for hard

spheres with a surface charge - except for the silica particles, the shape and interfacial

structure of the investigated colloids is generally more complex (see also Section 3.7.3).

First, the geometry of the hydrodynamic flow is somewhat expected as it is the second

order term of the general axisymmetric solution of the overdamped Navier-Stokes equa-

tion outside of a sphere [33] [67] [68]. Further, we expect the underlying mechanism

to be generic to surface charge-stabilized colloidal dispersions [69], for which accumula-

tion of counter-ions and depletion of co-ions close to the colloidal surface gives rise to

an ion-selective surface conduction even for more complex surface compositions. Qual-

itatively, patterns are thus generally expected at low ionic strengths(< 1mM) and low

frequencies(f < 1.2 kHz) as predicted by the hard sphere model, and as used in the ex-

periments of Figure 3.2.

3.3 Conclusion

In conclusion, we experimentally verified the generic occurrence of a pattern formation

process that had been previously observed when different types of colloids in aqueous

suspension were subjected to AC electrical fields. We identified the physical mechanisms

underlying the pattern forming process as dipole-dipole interactions and second order elec-

trokinetic fluid flow, and confirmed the emergence of collective behavior in a many particle

simulation. We found that Schnitzer-Yariv’s weakly non-linear electrokinetic theory gives

a parameter-free quantitative explanation of the pattern formation process, which only

requires a surface charge on the colloidal particles, providing a satisfactory unifying expla-

nation for the observed macroscopic patterns and their underlying physical mechanism.

Apart from its fundamental scientific interest, the described effect could be utilized for
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applications in microfluidics and microrobotics. For instance, it should be possible to use

the described electrokinetic flow to realize microfluidic pumps and mixers, as previously

proposed based on induced charge electroosmosis [70–75]. Further, our insights should

be helpful for the development of electrically manipulated microswimmers, which were

previously envisioned [31] and implemented [76–81] based on inorganic (metallo-dielectric)

Janus particles. Our experimental results with oil droplets, coacervates, lauric acid and

even bacteria demonstrate that similar swimmers consisting solely of soft and biological

material are feasible.

3.4 Materials and Methods

3.4.1 Preparation of Colloidal Suspensions

In initial experiments, we found that the formation of patterns predominantly occurs at low

salt concentrations (250 µM NaCl). We therefore usually included several washing steps

in the preparation of our colloidal sample. Distilled and deionized water (ddH2O) with

a resistivity ρ of 18.2MΩ/cm was obtained from a water purification system (Sartorius

arium® pro).

Silica Microspheres

Monodisperse silica particles with a diameter of 1.3 µm in 5 % (w/v) aqueous suspension

were purchased from the microParticles GmbH (LOT:SiO2-F-L1272). Before usage, we

vortexed the stock solution and mixed 100 µL of the stock solution with 900 µL ddH2O

in an Eppendorf tube. The sample was centrifuged in a table centrifuge for 30 s until the

colloids sedimented completely. The excess washing liquid (900 µL) was then carefully

removed again. The washing steps were repeated 5 times. The washed stock solution

was then used as a starting solution for all further experiments with silica particles.

For the experiment shown in Figure 3.2 we created a solution with a particle den-

sity of 0.0375 % (w/v) and a NaCl concentration of 250 µM. A particle density of

0.0375 % (w/v) nominally corresponds to 176 210 particles per mm3, where we used

a density of 1.85 g/cm3 [82] for silica. In order to generate more distinct macroscopic

patterns, for the experiment shown in Figure 3.2c we created a suspension with a higher

particle density of 0.1 %(w/v) in a 250 µM NaCl solution.
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Polyallylamine-ATP Coacervates

Polyallylamine with an average molecular weight of 17 kDa was obtained as an aqueous so-

lution with a concentration of 20 % (w/w) (Sigma Aldrich 479136-1G, Lot # MKCL0467).

We diluted the polyallylamine solution to a monomer concentration of 20mM and adjusted

the pH to 7. Adenosine 5’-triphosphate (ATP) dipotassium salt (Sigma Aldrich A8937-

1G, Lot # SLBP7423V) was used to create a 100mM stock solution in ddH2O, which we

aliquoted and froze at −20 ◦C.

The conditions for the formation of stable polyallylamine-ATP coacervate droplets were

derived from [83]. To create the coacervates we pipetted 20 µL of the ATP stock into

1000 µL of the polyallylamine stock solution which was kept at 4 ◦C and vortexed the

solution briefly. We then centrifuged the sample at 10000 rcf and 4 ◦C for 1min. We

then removed the supernatant and resuspended the coacervates in 1mL ddH2O. After

a second washing step the coacervates were resuspended in 500 µL of a 250 µM NaCl

solution.

Molten Lauric Acid Droplets

0.5mg lauric acid (Sigma Aldrich, # W261408-SAMPLE-K) was added to 10mL of a

250 µM NaCl solution in a 15mL Falcon tube. The Falcon tube was placed in a water

bath placed on a heat plate, which had been set to 150 ◦C for 30min. When the lauric acid

was dissolved, we vortexed the Falcon tube for 1min and diluted 100 µL of the resulting

lauric acid emulsion in 900 µL of a pre-heated 250 µM NaCl solution in an Eppendorf tube.

The sample was vortexed again for 1min and a 100 µL aliquot was diluted once more in

900 µL of a pre-heated NaCl solution. We then sonicated the sample for 1min using an

ultrasonic homogenizer (Bandelin Sonopuls mini20) equipped with an MS 2.5 sonotrode

at maximum settings (20W). The sonotrode was moved in circles around the liquid air

interface near the wall of the tube (this was done as we found that the colloids tended

to accumulate at that part of the tube during sonication). After preparation, the sample

was stored in the heat bath.

Fluorocarbon Oil Droplets

2 µL fluorocarbon oil (Sigma Aldrich, # F9755) containing 2% of a surfactant (FluoSurf

from Emulseo, Bordeaux) was added to 998 µL of a 250 µM NaCl solution. We sonicated

the sample for 1 min at maximum power (20W). As for the lauric acid droplets, the

sonotrode was moved in circles around the liquid air interface near the wall of the tube.
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E.coli Bacteria

Bacteria (E.coli DH5α) were grown for 16 h at 36 ◦C in 5mL of LB medium (Carl Roth,

# X968.1) in a shaking incubator. The bacteria were diluted 1 to 100 in two tubes each

containing 5mL of fresh LB medium and grown until an OD600 of 2.1 was reached. The

tubes containing the bacteria were put on ice for 15min to cool them down to 4 ◦C,

followed by centrifugation at 3000 rcf and 4 ◦C for 15min. The supernatant was removed

and the bacterial pellets were re-suspended each in 5mL of 4 ◦C cold ddH2O. After two

further washing steps the bacteria were eluted in 1mL of a 250 µM NaCl solution and

pooled.

Coffee

Coffee was brewed in the office with a filter coffee machine using 2 spoons of ground

coffee (Dallmayr Prodomo, 100% ARABICA) and 2 coffee filters (Rewe, Ja!). The coffee

was filled into a 0.2 L cup, which was placed on an office desk and covered with a piece of

carton. After letting the coffee particles sediment for 24 h, we recovered the cold coffee

suspension from the office desk. To this end, we removed two times 5mL of the coffee

suspension from the surface of the cup and put them in two 15mL Falcon tubes. We then

followed the same washing protocol used for the bacteria. We sonicated the final coffee

samples for 1 min at maximum settings (20W) to remove any remaining larger coffee

particles.

3.4.2 Microscopy Experiments

AC signals of up to 20V peak to peak were generated with a function generator RIGOL

DG812 and were amplified with a home-built two channel, bipolar amplifier to voltages

in the range [−290V : 290V]. Each amplifier channel employs a pair of high voltage

operational amplifiers (Apex PA443) connected in a bridge amplifier configuration with

a gain adjusted to 36 (31.1 dB). Due to the employed operational amplifier and circuit

configuration, the maximum slew rate is limited to 64V/µs. Detailed schematics and

circuit board layouts can be provided by the authors upon request.

We conducted our experiments in self-made glass chambers or in commercial plastic

chambers (Ibidi, µ-Slide VI 0.4), depending on the physical nature of our colloids. The

self-made glass chambers are an adaption of the design used by Kopperger and List. [84]

Details can be provided by the authors upon request. For imaging, we used an inverted
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microscope (Olympus IX71) equipped with a CCD camera (Andor Luca, DL-604M). Self-

made glass chambers enabled us the apply larger electric fields due to their shorter channel

length, which we found to be necessary to trigger the formation of patterns for coffee

particles, E.coli and fluorocarbon oil. On the other hand, we avoided to measure lauric

acid and silica micro spheres in glass chambers as they tended to stick to the glass surface.

As the pattern occurred on a scale of around 200 µm we mostly used a magnification (20x)

where our microscopy images have a size of 400 µm x 400 µm . The size of the commercial

plastic chambers was 3.7 µm x 17 µm and the size of the self made glass chambers was

4mm x 4mm. The size of the observation chamber is chosen such that it is much larger

as the occurring pattern during the recording time. We further imaged all our samples in

the middle of the observation chamber. We therewith reduce the influence of confinement

effects. The specific experimental conditions are listed in Table 3.1. In all experiments,

we used sample volumes of 100 µL of the colloidal suspensions described above. For the

experiment with lauric acid we used a temperature controlled microscopy stage (Tokai

Hit OLYMPUS THERMO PLATE, #MATS-UAXKP-D) which was heated to 50 ◦C. The

nominal exposure time was set to 50 ms in our experiments. The actual time between

frames was saved in the metadata file and was ≈100ms. The scale bar in all microscopy

images and the time stamp in the supplementary videos was inserted with ImageJ.

Table 3.1. Experimental settings for imaging the different colloids

Colloid Channel Channel length (mm) Voltage amplitude (V) Electric field amplitude (mV/µm) Frequency (Hz) Objective
Silica (Figure 3.2b) Ibidi 17 288 17 500 40x
Silica (Figure 3.2c) Ibidi 17 288 17 500 20x
Coacervates Ibidi 17 288 17 500 10x
Lauric acid Ibidi 17 288 17 500 10x
Fluocarbon oil Glass 5 180 36 500 20x
Coffee Glass 5 288 58 500 20x
E. coli Glass 5 288 58 250 20x

Bacteria

In contrast to the experiments with the other colloids, for E.coli bacteria we found only

vertical chain formation at an electric field frequency of 500Hz. By contrast, the usual

horizontal band structures were found at a lower frequency of 250Hz. We attribute this

finding to the presumably more complex electric properties of the bacteria. Two images

of a bacterial suspension at the two frequencies are shown in Figure 3.6.
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Figure 3.6. Both images are taken 100 s after the electric field was turned on. The other
conditions are the same as listed in Table 3.1. The electric field oscillates as usual along the
vertical axis.

Imaging of the Hydrodynamic Flow in Figure 3.3

In experiments with polydisperse particle suspensions we found that the hydrodynamic

flow can be explicitly observed around larger particles based on the trajectory of the

smaller particles surrounding them. To image the hydrodynamic flow we conducted an

experiment with coacervates in a glass chamber where we applied an electric field ampli-

tude of 36mV/µm and a frequency of 500Hz. Our coacervates were best suited for this

experiment, as the corresponding samples usually contained a small number of larger par-

ticles. We recorded a video focused on a large coacervate with a 100x magnification. We

corrected for the drift of the large coacervate with an ImageJ plugin (Template Matching

and Slice Alignment from Qingzong Tseng [85]). To create the image in Figure 3.3c we

cut out a 50× 50 µm2 region of the drift corrected video and computed the absolute

difference of subsequent images of the stack, which lets moving particles appear as bright

spots with high contrast. From this we computed the average of 30 successive video

frames that had sufficient image quality. Particle trajectories appear as bright stripes in

the averaged image.

3.5 Parameter Screening

We explored the dependence of the emergence of patterns on AC field frequency and salt

concentration to gain deeper insight into the underlying mechanism.

3.5.1 Experiment

For the experiment we prepared a washed silica particle stock solution as described in

Section 3.4.1, from which we generated suspensions at 0.0375 % (w/v) with NaCl con-
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centrations ranging from 0 µM to 2500 µM. As the solution conductivity is a critical

parameter of our experiment we prepared our experiments with particular care to avoid

any salt contamination. Hence, before usage we washed every tube with ddH2O, and

we multiply pipetted ddH2O with every fresh pipette tip before pipetting a sample. We

flushed the commercial microscopy channels with ddH2O before filling them with a sample.

We found that any contact of a sample with unwashed surfaces resulted in an increase in

conductivity. We applied a relatively weak electric field with amplitude 10.6mV/µm and

applied frequencies ranging from 250Hz to 25 kHz. Between successive runs at a fixed

frequency, an electric field of 1.06mV/µm at 1Hz was applied for 2min to mix the sam-

ple, followed by a pause of three minutes before the next run at a different frequency. We

recorded microscopy videos with 2000 frames each and an exposure time of 50ms/frame

for every sample at a given frequency and salt concentration. The actual time interval

between frames was around 100ms and varied slightly from run to run. The actual time

interval was saved in the microscopy metadata file and used later for the data analysis.

To confirm the absence of contaminants in a freshly prepared sample, we measured the

conductivity of our samples at the lowest frequency (250Hz) and compared it to the

theoretically expected conductivity at a given salt concentration. To this end, we put

a reference resistor Rref in series with our sample and monitored the voltage across the

resistor A(t) and the voltage supply B(t) with a digital oscilloscope (picoscope 2206B).

We recorded ⟨|A(t)|⟩T , ⟨|B(t)|⟩T and ⟨A(t) · B(t)⟩T . From this measurement, the con-

ductivity of the sample can be determined as follows:

The fraction of the voltage across the reference resistor that is in phase with the applied

voltage is given by ⟨A(t)·B(t)⟩T
⟨|B(t)|⟩T

and the corresponding in-phase current is ⟨A(t)·B(t)⟩T
Rref⟨|B(t)|⟩T

. From

the latter we can compute the resistance of the sample via 1
Rsample

= ⟨A(t)·B(t)⟩T
Rref(⟨|B(t)|⟩T )2

where

we assumed that the resistance of the sample is much larger than that of the reference

resistor. The electrolytic conductivity can be computed from Rsample and the channel

geometry via 1
ρ
= 1

Rsample

L
W ·H where 17mm, 3.8mm and 0.4mm. The measured data and

the corresponding values for the in-phase current and electrolytic conductivity are listed

in Table 3.2.

We fitted a line to the measured conductivity values to obtain the limiting conductivity

Λ. (Figure 3.7). We found Λ = 0.121 (S/cm)/M which is in good agreement with

the theoretical value for the limiting conductivity of 0.125 (S/cm)/M computed from the

Nernst-Einstein equation (using DNa+ = 1.3× 10−9m2/s and DCl− = 2× 10−9m2/s).
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[NaCl] (µM) ⟨|A(t)|⟩T (mV) ⟨|B(t)|⟩T (V) ⟨|A(t)B(t)|⟩T (V · V ) Rref Ω In phase current (µA) 1
ρ

(µS/cm)

Air 6.85 125.9 0.007 11000 0.0051 0.0045
0 8.467 125.9 0.98 11000 0.71 0.63
5 20.01 126 2.47 11000 1.78 1.58
10 26.68 125.9 3.331 11000 2.41 2.14
25 50.63 125.8 6.362 11000 4.60 4.09
50 96.26 125.9 12.11 11000 8.74 7.77
100 171.8 126 21.64 11000 15.61 13.86
250 396 126 50.08 11000 36.13 32.07
500 841 125.9 105.9 11000 76.47 67.93
1000 171.6 125.9 21.72 1100 156.83 139.32
2500 357 125.9 45.89 1100 331.36 294.36

Table 3.2. Measurements of the electrolytic conductivity 1
ρ of the microscopy samples used for

the screening experiment.

100

101

102

101 102 103

1/
ρ

(µ
S

/c
m

)

[NaCl] (µM)

linear fit
data

Figure 3.7. Plot of the electrolytic conductivity 1
ρ from Table 3.2 fitted to a linear function.

Data Analysis

We defined the ‘pattern visibility’ p in an image as a measure for large scale structure

occurring along the direction of the electric field, i.e., in z-direction. The approach is

motivated by scale-space theory [86]. Figure 3.8 illustrates the definition of the ‘pattern

visibility’ p in a microscopy image at three different stages of the pattern formation process.

Below the images we plotted the image intensity of a cross section. For the original images

on the left dips correspond to single particles. To obtain p we first apply a Gaussian filter

with a standard deviation of 15 pixels (corresponding to 6 µm at our magnification) to

an image. This eliminates the information of individual particles. Images of a pattern

will have large scale density fluctuations in z-direction while images with no pattern will

appear mostly homogeneous. This can be seen in the cross section below the middle

images. The density fluctuations can be quantified by computing the integral of the

absolute value of the derivative of the image in z-direction. In the cross section plots,

this operation amounts to computing the length of the intensity graph. The absolute

value of the derivative of the image in z-direction is shown on the right. The area below
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Figure 3.8. Illustration of the definition of the ‘pattern visibility’ p at different stages of the
patterning process. The image intensity of the marked cross sections is plotted in the graph
below the images.

the graphs in the corresponding cross section plots is the ‘pattern visibility’ of the cross

section. The pattern visibility p of the whole image can be obtained by summing over all

possible cross sections.

In practice, we compute a discretized version of

p =

∫
A

∣∣∣∣ ∂∂z (G ∗ I) (x, z)
∣∣∣∣ dxdz (3.7)
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where g is a Gaussian function and I is the intensity of the image (∗ indicates convolution).
We computed p for every frame of the videos of our screening experiment. We then

computed the speed of the patterning process τ−1
p by fitting lines to the initial stage of

the p vs time data. Examples of the p vs time data including the linear fit are shown in

Figure 3.9.
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Figure 3.9. Example plots of the p vs time data for 250Hz measurements. The linear fit to
obtain the initial speed τ−1

p of the patterning process is also included.

We analyzed our microscopy videos with ImageJ scripts. To compute the derivative of an

image we used the FeatureJ plugin.

We would finally like to discuss the limitations of our definition of the pattern visibility

p. p is, in principle, only a property of an image and is thus a function of the microscope

settings used for imaging. In all our experiments we kept the microscope settings constant.

However, high contrast images make p more sensitive for pattern quantification. Further,

the smallest size of a pattern that can be quantified is set by the standard deviation of

the Gaussian filter that is applied in the first analysis step.

3.6 Theory and Simulation

The SDE governing the particle dynamics in explicit form is given by

a dqi = u∗
∑
j ̸=i

[
ξ2
(γ
2
g(rij) + (|Kd|2 − γ)h(rij)

)
+ νk(rij)

]
dt+

√
2Dp dW i . (3.8)

where the particle distances rij are defined by rij = qi − qj and dW i is the stochastistic

increment of a Wiener process. The positions of the particle centers qi are given in dimen-

sionless variables (in multiples of the particle radius). For the purpose of our simulation
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we re-scaled time by a2

Dp and introduced the new dimensionless numbers

α =
γ

2

a

Dp

ξ2u∗ =
γ

2

6πϵE2
0a

3

kBT
(3.9)

β =
(∣∣K2

d

∣∣− γ
) a

Dp

ξ2u∗ =
(∣∣K2

d

∣∣− γ
) 6πϵE2

0a
3

kBT
(3.10)

and

ν̃ = ν
a

Dp
u⋆. (3.11)

With these variables, the SDE is given by

dqi =
∑
j ̸=i

[
αg(rij) + βh(rij) + ν̃k(rij)

]
dt+

√
2 dW i . (3.12)

The repulsion force k(rij) is included for particles in contact with each other. Particles

are in contact when they are closer than two times the particle radius a. In dimensionless

variables this condition is met when |rij| = |qi − qj| < 2. The dipole-dipole-force and

the hydrodynamic interactions are only defined outside the particles. We therefore assume

that these interactions do not increase any further for intersecting particles. We halt h

and g at their value at the particle surface and thereby obtain continuous vector fields.

The explicit expressions for the particle interactions used in the simulation are given by

g(r) =

{
(1−3 cos2(θ)

r2
êr for r > 2

(1−3 cos2(θ)
22

êr for r ≤ 2
(3.13)

h(r) =

{
1−3 cos2(θ)

r4
êr − 2 cos(θ) sin(θ)

r4
êθ for r > 2

1−3 cos2(θ)
24

êr − 2 cos(θ) sin(θ)
24

êθ for r ≤ 2
(3.14)

and

k(r) =

{
0 for r > 2

1√
2
(2− r)

3
2 êr for r ≤ 2

(3.15)

3.6.1 Simulation

We implemented the Euler-Maruyama solution scheme to solve the overdamped many

particle Langevin equation numerically (Matlab code is available on Github [87]). We
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explicitly compute

δqt
i =

∑
j ̸=i

[
αg(rt

ij) + βh(rt
ij) + ν̃k(rt

ij)

]
δt+

√
2δtXi (3.16)

for every time step δt where Xi is a two-component vector of normally distributed random

numbers with standard deviation 1 and rt
ij is defined by rt

ij = qt
i − qt

j. This in turn gives

the updated particle positions via

qt+δt
i = qt

i + δqt
i (3.17)

3.6.2 Implementation

The particles are placed on a square grid with a dimensionless distance of d = 5.6. We

choose the grid distance in such a way that the particle density is matched with our

screening simulation. This is explained in more detail in Section 3.6.4.

We begin our simulations by letting the particles diffuse freely with only the repulsion

force acting between particles. For this phase, we increased the standard deviation of the

random number by a factor of 10 for a more rapid randomization and let the particles

diffuse for 2000 integration steps with δt = 1× 10−3. We explicitly compute

δqt
i =

∑
j ̸=i

[
ν̃k(rt

ij)

]
δt+ 10

√
2δtXi. (3.18)

This gives a mean square displacement for a particle from the initial position of approx-

imately 400. The parameters of this initial stage are chosen such that
√
400 is larger

compared to the initial particle distance and therefore yields a sufficient randomization of

the particle positions.

After the randomization, the particle positions are updated according to equation 3.16

and 3.17. We implemented periodic boundary conditions by surrounding the 2D simu-

lation box with eight copies of itself. The forces acting on one particle are computed

by considering all other particles including the eight copies. Particles moving out of the

simulation box on one side re-enter the box from the opposite side.

3.6.3 Numerical Stability

We observed that for badly chosen simulation parameters, particles tend to diffuse into

each other and are then subjected to a large repulsion force which lets them jump over

unphysically large distances. We therefore determined ad hoc criteria for the repulsion
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parameter ν̃ of the contact force and the time step δt to prevent this particle hopping

artifact. To this end, we first consider the equilibrium position of two intersecting particles.

The maximum attraction of the two vector fields αg and βh is given at an angle θ = 0 and

a distance r = 2. We thus find max(−αg) = α
2
and max(−βh) = β

8
. The equilibrium

position of two intersecting particles at maximum attraction is therefore given by

rm = 2−

(√
2

ν̃

(
β

8
+

α

2

)) 2
3

(3.19)

For our large scale simulation we choose α = 7, β = 35, and ν̃ = 400, which gives

rm = 1.91, corresponding to a 4.6 % deviation from the hard sphere distance.

Particle hopping occurs when a particle diffuses far enough into another particle’s core

such that the resulting repulsion force displaces the particle over a large distance away

from the other particle. Lets say one particle has diffused far into an other particle such

that their centers have now the distance |r| < 2. In the next integration step the particle

will be displaced by the distance ν̃k(r)δt. We want to avoid that the particle is catapulted

out of the other particle. We therefore require that the particle does not leave the other

particle in one single integration step. Such an integration step is at least |2− r| long.
We therefore require

|2− r| > ν̃
1√
2
(2− r)

3
2 δt, (3.20)

which gives
√
2− r >

√
2

ν̃δt
. (3.21)

We now require such a jump to be extremely unlikely. (≤ 10 σ or p ≤ 1.5× 10−23):

10
√
2δt = |2− r|, (3.22)

which in combination with equation 3.21 results in a condition for the maximum time

step of our simulation:

δt =

( √
2

10ν̃2

) 2
5

(3.23)

For ν̃ = 400, this conditions yields δt = 4.7× 10−3, and we therefore choose the slightly

smaller value of δt = 1× 10−3.
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3.6.4 Matching the Particle Density between Experiment and

Simulation

The particles in our simulation are initially placed on a square grid with a defined distance

d between particles. d is related to the 2D particle density CA via CA = 1
d2

or d =
√

1
CA

.

We estimate CA in our screening experiment by counting the particles in the first frame of

a video. For every concentration of NaCl we randomly choose one experiment at a given

frequency for counting, and count the particles in a (100 µm)2 large part of an image.

The results are shown in Table 3.3. We find an average particle number of 763 which

corresponds to a dimensionless particle density of 0.0322. We used 100 µm=̂ 153.8 for

rescaling space with the particle radius of a = 0.65 µm. For the dimensionless particle

distance we find d = 5.6.

From the previously computed particle density of 176 210 per mm3 and the channel height

of 0.4mm we would expect 705 particles in an area of (100 µm)2 (this 10% deviation from

the expected value presumably is the result of the particle washing procedure).

Concentration (µM) 0 5 10 25 50 100 250 500 1000 2500
Frequency (Hz) 750 750 7500 250 17500 1000 250 12500 15000 2500

Particles in (100µm)2 755 767 690 820 779 803 750 681 826 759

Table 3.3. Counted number density of particles in our screening experiment

3.6.5 Particle Size Distributions

We estimated the size distributions of the colloids used in Figure 3.2 via image analysis.

To this end, we used the minimum cross entropy thresholding routine implemented in

ImageJ [88] to create binary images from the first frame of each of the recorded microscopy

videos. We then used the ‘Analyze Particle’ function to measure the area of detected

particles. The resulting particle diameter distributions are shown in Figure 3.10. We also

show images where detected particles were marked with red circles.

For quantitative analysis, we fitted the Weibull distribution

f(x) = bxk−1e(
x
λ)

k

(3.24)

to our experimentally determined particle size histograms, where k is the shape parameter

and λ denotes the scale parameter of the distribution. b is a measure for the total amount

of particles. The vertical line in our histograms corresponds to the size of one pixel in

our images, we therefore excluded the corresponding bar from the fit. The expected value

µ and the standard deviation σ are derived from the fit parameters and are given in the
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Silica Lauric acid E. coli

Fluorocarbon oil Coacervates Coffee

µ=1.33 µm
σ=0.67 µm

µ=1.15µm
σ=0.42 µm

µ=1.15 µm
σ=0.66 µm

µ=1.28 µm
σ=0.87µm

µ=1.23 µm
σ=0.06 µm

µ=1.48 µm
σ=0.56 µm

Figure 3.10. Particle size distributions of the colloids used in Figure 3.2. µ and σ are the
expected value and standard deviation of the particle sizes

histograms. We find that most particles have a mean diameter of around 1.2 µm. We

find that the Lauric acid droplets are very polydisperse, while among the soft colloids the

FC oil droplets are the smallest and also least polydisperse. The mean diameter of the

monodisperse silica particles (µ = 1.23 µm) is reasonably close to their expected diameter

of 1.3 µm.

3.7 Supplementary Results

3.7.1 The Influence of Viscosity

The non-dimensionalized equations 3.12 together with the parameters 3.9,3.10,3.11 are

independent of the medium viscosity η. Further, the parameters γ andKd are independent

of viscosity as well [33]. By contrast, the dimensional time t̃ is connected to dimensionless

time t via the relation t̃ = a2

Dp
t = 6πηa3

kBT
t. We therefore expect that the speed of pattern

formation τ−1
p decreases by a factor of η1

η0
when the viscosity is increased from η0 to η1.

The characteristic frequency depends on the diffusion constants D+ and D− of the ions

via fcr =
2
π

D+D−

a2(D++D−)
. The Stokes-Einstein equation predicts the diffusion constant to
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depend on the viscosity as D± ∝ 1
η
. We therefore expect the characteristic frequency fcr

should also decrease by a factor of η1
η0

when the viscosity increases from η0 to η1. We note

such time scaling behavior is generally true for overdamped systems.

We designed an experiment to verify these predictions. We recorded microscopy videos

of the pattern formation process at a fixed salt concentration (100 µM) and several fre-

quencies for two different viscosities of the aqueous medium - one sample was prepared

with water, while the viscosity in the other sample was changed by adding 20% (v/v) of

glycerol (Sigma Aldrich, # 49767-100ML). We kept the other conditions the same as in

our other screening experiment. Using an online tool [89] based on Refs. [90] and [91],

we computed the ratio η1
η0

= 1.94 (T = 25 ◦C) from the glycerol concentration.

The speed of pattern formation τ−1
p at different AC frequencies for the two viscosities

is shown in Figure 3.11a. In agreement with our predictions we find the overall pattern

formation speed to be slower for the more viscous sample as well as the frequency response

shifted to lower frequencies. In 3.11b we scaled τ−1
p and fcr for the glycerol-containing

sample with the predicted value of η1
η0
, resulting in reasonable agreement between the two

graphs.

a b

Figure 3.11. (a) Effect of glycerol on the patterning speed at different frequencies. (b)
patterning speed rescaled with the viscosity ratio η1

η0
.

3.7.2 Generalization of the Simulation for Particles with Varying

Size

As the particle-particle interactions scale with the radii of the respective particles, we have

to reformulate the equations underlying the simulation in an appropriate way, for which we

start with the fully dimensional interaction equations. Dimensional variables are denoted

by a tilde.
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The drift ṽdip
ij of a particle at position q̃i due to the dipole-dipole force of a particle at

position q̃j is given by

ṽdip
ij =

1

6πηR̃i

· 6πϵ |Kd|2E2
0R̃

3
i R̃

3
jhij(r̃ij) (3.25)

where the factor 1
6πηR̃i

is the Stokes drag on particle i and r̃ij is given by r̃ij = q̃i − q̃j

. For particles in contact we again fix hij(r) at its value at the surface. Particles are in

contact when |r̃ij| < R̃i + R̃j. We find

hij(r̃) =

{
1−3 cos2(θ)

r̃4
êr − 2 cos(θ) sin(θ)

r̃4
êθ for r̃ > R̃i + R̃j

1−3 cos2(θ)

(R̃i+R̃j)4
êr − 2 cos(θ) sin(θ)

(R̃i+R̃j)4
êθ for r̃ ≤ R̃i + R̃j

(3.26)

The hydrodynamic flow at position q̃i caused by a particle at position q̃j is then given by

ũj =
γ

2

(
eR̃j

kBT
E0

)2
(kBT )

2ϵ

e2R̃jη

(
R̃2

jgij(r̃ij)− R̃4
jhij(r̃ij)

)
(3.27)

The corresponding drift ũij of a particle at position q̃i can be computed by Faxen’s law

ũij = (1 + R̃2
i∇2)ũj which gives

ũij =
γ

2

(
eR̃j

kBT
E0

)2
(kBT )

2ϵ

e2R̃jη

(
R̃2

jgij(r̃ij)−
(
R̃2

j + R̃2
i

)
R̃2

jhij(r̃ij)
)

(3.28)

For particles in contact we also fix gij(r) at its value at the surface. We find

gij(r̃) =

{
1−3 cos2(θ)

r̃2
êr for r̃ > R̃i + R̃j

1−3 cos2(θ)

(R̃i+R̃j)2
êr for r̃ ≤ R̃i + R̃j

(3.29)

The drift ṽrep
ij due to the repulsion force for interacting particles is motivated by the Hertz

contact mechanics model for two spheres. We assume that this results in a reasonable

scaling of the repulsion force between differently sized particles. We use

ṽrep
ij =

1

6πηR̃i

· ν ′

(
1

R̃j

+
1

R̃i

)− 1
2

kij(r̃ij) (3.30)

with

kij(r̃) =

 0 for r̃ > R̃i + R̃j(
R̃i + R̃j − r

) 3
2
êr for r̃ ≤ R̃i + R̃j

(3.31)

64



where ν ′ is a material specific constant.

The stochastic differential equation describing the particle dynamics is given by

dq̃i =
∑
j ̸=i

[
ṽdip
ij + ũij + ṽrep

ij

]
dt̃+

√
2Dp

i dW̃ i . (3.32)

where Dp
i is the diffusion constant of particle i. The diffusion constant is given by the

Stokes-Einstein equation as Dp
i =

kBT

6πηR̃i
.

We now introduce new dimensionless variables by scaling all distances by a length a, which

gives the dimensionless particle positions qi =
1
a
q̃i and particle distances rij =

1
a
r̃ij. a can

be an arbitrary length which represents a characteristic scale of the system, e.g., the mean

particle radius. Further we introduce dimensionless time t by defining t̃ = a2

Dp
i
t = 6πηa3

kBT
t.

We also define dimensionless particle radii via Rj =
R̃j

a
For the stochastic differential

equation, we then find

dqi =
∑
j ̸=i

[
αijgij(rij) + βijhij(rij) + νijkij(rij)

]
dt+

√
2
1

Ri

dW i . (3.33)

with

αij =
6πϵE2

0a
3

kBT
·R3

j (3.34)

and

βij =
6πϵE2

0a
3

kBT
·R3

j

(
|Kd|2R2

i −
γ

2
R2

j −
γ

2
R2

i

)
(3.35)

and

νij =
ν ′a3

kBT

1

Ri

(
1

Rj

+
1

Ri

)− 1
2

. (3.36)

The parameter definitions for equally sized particles can obtained by setting Ri/j = 1. For

the repulsion force we identify the relation ν̃ = ν′a3

kBT
between the parameter ν̃ used for the

monodisperse particle simulation and the parameter ν ′ used in the polydisperse particle

simulation. The vector fields gij, hij and kij have the same form under the given scaling

as before.

With these new definitions at hand we created a simulation with variably sized particles

(Matlab code is available on Github [87]). For the parameters we used γ = 0.088,

|Kd|2 = 0.23 and ν ′ = 75. γ and |Kd|2 are the same as in the monodisperse particle

simulation. We used a smaller value for ν ′ which corresponds to softer particles. For

the particle distribution we used a Weibull distribution with parameters obtained for the
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coacervate sample in Figure 3.10. The results are shown in Figure 3.12 and demonstrate

that the simulation reproduces all stages of the pattern formation process also for particles

with variable sizes.

E

t=0 s t=3.7 s t=18.3 s t=40.4 s

Figure 3.12. Simulation dynamics with Weibull-distributed particle sizes. The particles again
circulate as indicated by the arrows.

3.7.3 On the Generality of the Pattern Formation Phenomena

In the general case of an arbitrary colloid, an explicit expression for γ is, unfortunately,

unavailable. The model of Ref. [33] used to compute γ for our silica particles assumes hard

spheres with a fixed surface charge. The other types of colloids used in our experiments are

generally more complex: Coacervates, which are composed of charged polymers, have a

diffuse boundary. E.coli bacteria have a multilayered cell wall with complex electrochemical

properties. Fatty acid and oil droplets are liquid. Even though the surface properties of

these colloids are unknown in detail, it is clear that they all have a nonzero surface charge -

a high surface charge goes hand in hand with a stable colloidal suspension and is therefore

always given [69]. As the proposed mechanism for the fluid motion generating the colloidal

patterns is based on ion-selective surface conduction, it should always be at work for a

high enough surface charge, independent of its exact spatial distribution.

Despite the unavailability of an explicit expression, we expect a similar scaling for γ for all

colloids investigated, i.e., we expect emergence of patterns for salt concentrations lower

than 1mM. The characteristic frequency fcr should be mostly independent of the type of

colloid as it is only determined by the time scale of neutral salt diffusion outside of the

Debye layer, which lets us expect patterns for frequencies below 1 kHz. Our experiments

for the different colloids shown in Figure 3.2 were performed accordingly. We used as

little salt as possible and at a low enough frequency (500Hz). Nevertheless, in spite

of the ‘generality’ of the phenomenon, we do observe deviations as exemplified by our

experiments with bacteria in Figure 3.6, for which we found strikingly different behaviors

for 500Hz and 250Hz.
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4. Microrobots Powered by Concentration

Polarization Electrophoresis (CPEP)

The text and figures in this chapter are adapted from the publication [92] stated below

and have been restructured to better suit this thesis. The videos mentioned below are

accessible on the publisher’s webpage and are referenced accordingly.

Microrobots Powered by Concentration Polarization

Electrophoresis (CPEP)

Florian Katzmeier and Friedrich C. Simmel,

Department of Bioscience, TUM School of Natural Sciences, Technical University Munich,

D-85748 Garching, Germany

In light of the generic occurrence of the quadrupole flow around spherical particles discov-

ered in the previous chapter, Friedrich C. Simmel and I concluded that a similar flow should

also occur around asymmetric particles in an AC electric field, as shown in Figure 4.1 for

a dimer. This induced flow is asymmetric and leads to the propulsion of the particle along

the electric field lines. Such propulsion is generally unexpected in the classical picture of

electrophoresis of microscopic particles. As demonstrated in Section 2.4.4, electrophoresis

is shape-independent, which, coupled with the time reversibility of hydrodynamics at low

Reynolds numbers, results in zero net movement in an AC electric field. I named this

novel propulsion mechanism ”Concentration Polarization Electrophoresis (CPEP)” in ac-

cordance with the recently theoretically described mechanism ”Concentration Polarization

Electroosmosis (CPEO)” [36], which drives the quadrupole flow around spherical particles.

To verify the effectiveness of this propulsion mechanism, I designed and constructed the

four-electrode setup depicted on the right in Figure 4.1. Furthermore, I established a

protocol to synthesize asymmetric dimeric colloidal particles via DNA strand hybridization.

With this setup, I was able to steer the dimer particles along arbitrary trajectories using

an Xbox controller. Additionally, the setup allowed for the pickup, transport, and release

of monomeric cargo particles.

I also conducted characterization experiments, where I measured the dependence of the

dimer migration velocity on different frequencies, electric field amplitudes, and buffer
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Figure 4.1. Overview Figure: Microrobots Powered by Concentration Polarization Electrophore-
sis (CPEP). (Left part) Hydrodynamic flow field around a dimer in an AC electric field, resulting
in propulsion. (Right part) Experimental setup with an electrode configuration that enables
steering of the dimer along arbitrary trajectories.

compositions. I found that these measurements generally fit well into the theoretical

picture of ”Concentration Polarization Electro-Osmosis (CPEO)”.

Lastly, I conducted experiments with a variety of fragmented asymmetric particles to

confirm the generic occurrence of CPEP.
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4.1 Introduction

According to Smoluchowski’s century-old theory, electrophoresis of colloidal particles is

shape-independent [8]. In combination with the time reversibility of hydrodynamics at

low Reynolds numbers, shape-independence implies that even asymmetric particles will

not display any net movement when subjected to a homogeneous AC electric field. How-

ever, under experimental conditions which generate nonlinear electrokinetic phenomena,

particles with a broken symmetry can experience directed propulsion also in homogeneous

AC electric fields. Such AC electrophoretic propulsion was first theoretically proposed [31]

for strongly polarizable particles based on induced charge electroosmosis (ICEO) [30] and

later experimentally verified for metallo-dielectric Janus particles, which were observed to

move perpendicular to the electric field direction [76].

In this work, we investigate a novel propulsion mechanism for weakly polarizable particles

with a non-zero surface charge based on the phenomenon of concentration polarization

electroosmosis (CPEO). CPEO was recently theoretically described [36] and experimen-

tally validated [35,36,93,94] and is found to produce similar flow patterns around spheres in

an AC electric field as ICEO, but under different experimental conditions. We therefore ex-

pected that similar to propulsion via induced charge electrophoresis (ICEP) resulting from

ICEO, asymmetric particles subjected to CPEO would also experience directed propulsion,

which we accordingly refer to as concentration polarization electrophoresis (CPEP).

In the most widely utilized experimental setup, microswimmers are placed on an electrode

and exposed to a vertical electric field. Within this setup, it was demonstrated that asym-

metric colloidal dimers [95] and metallo-dielectric Janus particles [81, 96] are propelled

perpendicularly to the electric field in a random direction in the 2D plane. To intro-

duce maneuverability, magnetic fields have been used in combination with ferromagnetic

metallo-dielectric Janus particles [97] and ferromagnetic asymmetric colloidal dimers [98].

Further, it has been demonstrated that metallo-dielectric Janus particles can be used

to transport other dielectric particles [97, 99, 100]. In the case of asymmetric colloidal

dimers, the propulsion mechanism is based on the electrohydrodynamic interplay between

electrode and particles [101,102].

Since, in contrast to this propulsion mechanism, CPEO does not require an electrode in

close proximity, we surmised that it could be applied to propel asymmetric colloidal dimer

particles using an in-plane electric field. Taking advantage of electro-orientation [103–

106], which orients prolate particles parallel to an AC electric field through induced dipole

alignment and induced hydrodynamic flows, we thus expected to achieve directed propul-

sion of asymmetric dimers along the field lines rather than perpendicular to them.

69



In the following, we demonstrate that asymmetric dimer ‘microrobots’ can be precisely ma-

neuvered using a straightforward electrical setup without any additional magnetic forces by

simply controlling the orientation of an homogeneous AC electric field in the plane of move-

ment. Such AC electrically-controlled 2D actuation was previously only achieved through

dielectrophoresis [107], which requires electric field gradients and a computer-controlled

feedback mechanism [104, 105]. We also develop a strategy to pick up, transport, and

release spherical cargo particles with these microrobots by making use of induced dipole-

dipole interactions and hydrodynamic flow fields. Next, we explore the dependence of the

microrobots’ migration speeds on electric field strength, frequency, and buffer composi-

tion, finding that these measurements align reasonably well with the theoretical predictions

of CPEO. Lastly, we argue that most particles with broken symmetry can be propelled

either through ICEP for metal particles or CPEP for dielectric particles. This leads us

to conclude that propulsion in an AC-electric field, namely AC-electrophoresis (ACEP),

is a universal phenomenon anticipated for most asymmetric particle types. We validate

this by observing directed migration of a variety of asymmetric particles within a homo-

geneous AC-electric field. These include fragmented ceramic, borosilicate glass, acrylic

glass, agarose gel, and ground coffee particles, as well as yeast cells.

E
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Figure 4.2. (a) Schematic representation and photograph of our experimental setup that
enables control of the direction and amplitude of an AC electric field in a microscopy chamber.
A dimer is drawn in the center of the cross-shaped fluidic chamber, which aligns with the
externally applied AC field through an induced dipole. For visualization, the fluidic chamber in
the photograph is filled with a red dye. (b) Electrokinetic flow around a spherical particle arising
in an AC electric field. (c) Expected electrokinetic flow around an asymmetric particle dimer
in an AC electric field, which results in directed propulsion. (d) DNA modified colloids form a
dimer through DNA hybridization. (e) Microscopy image of a particle dimer.
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4.2 Results

4.2.1 Asymmetric Colloidal Microswimmers in an AC Electrical

Field

It is known that the axisymmetric fluid flow depicted in Figure 4.2b arises around weakly

polarizable particles with a non-zero surface charge when subjected to an AC electrical field

in a low-ionic strength aqueous medium. Fluid flows towards the particle in the direction of

the electric field and is repelled perpendicularly to the electric field [35,36]. We expected

that for an asymmetric dimeric particle an asymmetric flow would arise as proposed in

Figure 4.2c that would lead to the propulsion of the particle. We experimentally verified

the proposed structure of the flow field using tracer particles (See Section 4.6.4 and

Figure 4.13) Further, a dimeric particle will also align with the external electric field as

shown in Figure 4.2c and Figure 4.2a due to an alignment torque caused by the induced

dipole and fluid flow. In combination with the propulsion this leads to a directed motion

along the field lines of the electric field. The movement of the dimers can thus be easily

controlled by changing the direction and strength of the external AC electric field.

4.2.2 Experimental Setup and Fabrication of Particle Dimers

For our experiments we designed the sample chamber shown in Figure 4.2a, in which

two microfluidic channels equipped with platinum electrode pairs at their inlets intersect

in the center. The electric field in the center of the chamber is a superposition of the

fields generated by the remote electrode pairs. Hence, the field at the intersection is

homogeneous, and its direction and amplitude can be controlled by applying different

electric field strengths to the channels [84,108].

We created two electric signals with the sound card of a computer, which were amplified in

two stages using custom-built amplifiers before feeding them into the microchannels. With

our setup we can apply AC voltages with an amplitude of up to 305V which corresponds to

an electric field amplitude of approximately 60mV/µm in the center of our chamber. We

programmed a python script to control the amplitude of the electric signals via the XY-

deflection of the analog joystick of a gamepad (an Xbox Controller) which is conventionally

used to play video games. As a result, the direction and amplitude of the AC electric field

in our sample chamber and thereby the movement of our microrobots can be directly

controlled with a joystick while imaging them with a microscope. We also included

the possibility to change the field frequency to predefined values 250Hz and 750Hz by
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pressing the buttons available on the controller. Images of the setup together with detailed

information on its design and manufacture are given in Section 4.5.1.

Asymmetric particle dimers acting as microrobots were synthesized through the self-

assembly of two differently sized, DNA-coated silica spheres with diameters 1.01 µm and

2.12 µm, respectively [109–112]. To this end, each particle type was modified with 60 nt

long single-stranded DNA molecules, which had 30 nt long sub-sequences that were com-

plementary to sequences on the respective other particle type. When mixed in the presence

of 4mM MgCl2, the silica spheres specifically bound to each other via DNA duplex for-

mation (cf. Figure 4.2d & e). For our experiments, we diluted the dimers in Tris buffer

(100 µM, pH 8.4) supplemented with 5.2 µM MgCl2. A detailed description of synthesis

and sample preparation is given in Section A.1.

4.2.3 Movement and Maneuverability of the Microrobots

Our protocol for the assembly of the silica particles resulted in a mixture of mainly

monomers and dimers with only small amounts of higher order multimers. Upon ex-

posure to an AC electric field in our sample chamber, the dimers are subject to a torque

due to an induced dipole and fluid flow which aligns the dimer axis parallel to the electric

field lines. The dimers can assume two alternative, stable orientations in the AC field,

in which the positions of the larger and smaller particle are exchanged with each other

(Figure 4.3a). Notably, the induced asymmetric hydrodynamic flow around each dimer

propels them in the direction defined by the position of the larger particle. Thus the par-

ticle dimers shown in the scheme of Figure 4.3a would be expected to move in opposite

directions, as indicated by the blue pointers. To demonstrate this effect in the experiment,

we recorded a microscopy video of two differently aligned dimers while slowly changing

the direction of the applied electric field using the joystick. As expected, the dimers were

observed to move anti-synchronously, meaning that the trajectory of one particle was the

point reflection of the other (the image sequence shown in Figure 4.3a is the first part of

Supplementary Video 1 [92]; details on video processing are given in Section 4.5.6). All

dimers in a sample move along the electric field lines collectively, with the larger particles

in the front. We thus focused on the movement of individual dimers in all further experi-

ments.

To demonstrate microrobot maneuverability, we recorded a microscopy video, in which we

steered a microrobot along a slalom course around islands of monomeric particles, which

remained stationary in the AC field (cf. Figure 4.3b and second part of Supplementary
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Figure 4.3. Controlled movement of particle dimers. (a) The sketch on the left shows two
microrobots aligned with an AC electric field. The orientation of the AC electric field is indicated
with a black double arrow. The movement direction is indicated with a blue pointer and
is opposite for the two microrobots due to their opposite orientations. The image sequence
on the right shows successive frames of a microscopy video demonstrating the resulting anti-
synchronous movement in an electric field with slowly changing orientation. (b) By applying
joystick-controlled AC voltages a microrobot is maneuvered through a slalom course around
stationary monomer particles. The image shows an overlay of successive frames of a recorded
microscopy video. Due to Brownian motion, the monomer particles appear as particle clouds,
but they do not respond the applied AC electric field. (c) A microrobot is maneuvered along a
race track adopted from a well-known video game. The image shows an overlay of successive
frames of a recorded microscopy video and the racetrack.

Video 1 [92]). The monomeric particles appear as clouds in the overlay image, since they

are subject to Brownian motion. We also found a slight drift in our microscopy videos due

to bulk fluid motion which we corrected by tracking several of the stationary monomeric

particles and shifting the recorded video by their average displacement.

We also recorded a microscopy video, in which we maneuvered a microrobot along a

racetrack adopted from a computer game. For this purpose, we printed the racetrack

on a cling film and attached it with tape to the screen of the computer controlling the

microscope to enable visual feedback and control by a human operator. Figure 4.3c shows

an overlay of the racetrack and video images recorded during the experiment (cf. third

part of Supplementary Video 1 [92] ).
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Figure 4.4. Cargo pick-up, transport and release. (a) A microrobot approaches a cargo particle.
The direction of motion of the microrobot is indicated with a blue pointer and the cargo particle
is labeled with a green dot. The orientation of the AC electric field is indicated with a black
double arrow. The fluid flow arising around the microrobot and the cargo particle is illustrated
with curved blue arrows in the sketch above and leads to an attraction. (b) A microrobot
sticks to a cargo particle via induced dipole-dipole forces. Both are maneuvered around another
monomeric particle. The instantaneous induced dipole moments are indicated with white arrows
in the sketch above, the electric field is indicated with a black arrow. (c) A cargo particle is
released from a microrobot by a quick change in direction of the external electric field. The
fluid flow arising around the microrobot and the cargo particle now leads to repulsion.
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4.2.4 Pick-up, Transport, and Release of Cargo Particles

We found that the microrobots can be readily used to pick up, transport, and release

other, monomeric cargo particles, for which we utilized both electric and hydrodynamic

interactions between microrobot and cargo. Figure 4.4a shows a microscopy image of a

microrobot approaching a cargo particle (shown in green in the image). As illustrated in

the sketch above the microscopy image, fluid flows towards both particles in the direction

of the electric field and is repelled perpendicularly to it. The microrobot and the cargo

particle drift in the fluid flow caused by each other which results in an attractive interaction

for the configuration shown.

When in direct contact, the microrobot sticks to the cargo via induced dipole-dipole forces

(see Figure 4.4b). Even though we apply an AC electric field, at any point in time the

external field induces electric dipoles in both microrobot and cargo, which point in the same

direction and thus result in a near-field attraction of the particles. This mechanism is well

known and results in particle chain formation in crowded colloidal suspensions. [35,49,113].

We then maneuvered the cargo-loaded microrobot around another monomeric particle as

shown in the overlay image in Figure 4.4b. For this image, we corrected the drift in

the corresponding microscopy video by moving the tracked position of the monomeric

non-cargo particle into the center of each frame.

Cargo release (shown in Figure 4.4c) was achieved by switching off the electric field,

changing the frequency from 250Hz to 750Hz, and then applying an AC electric field

with an orientation roughly perpendicular to the previous field. The corresponding particle

configuration and flow fields are illustrated in the sketch above the microscopy image,

where the fluid is repelled perpendicularly to the electric field from the particles’ equators,

resulting in their repulsion. Once the microrobot had moved sufficiently far from the

cargo particle, the frequency was reset to 250Hz. We found that increasing the frequency

made it easier to execute cargo release, as the microrobots moved more slowly at higher

frequencies. This is presumably caused by lower CPEO flow magnitudes. Additionally,

we hypothesize that at higher frequencies the strength of the induced dipole-dipole force

decreases relative to the force exerted by the fluid flow. It is worth to note that although

the interaction between two parallel-aligned dipoles in this configuration is also repulsive,

the particles will always return to a chain formation when they are subjected solely to

dipole forces. Importantly, the field lines of the dipole-dipole forces start and end at the

dipoles, which prevents the particles from escaping. A video of the cargo transport process

is shown in the fourth part of Supplementary Video 1 [92].
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Figure 4.5. Assembly of three monomeric particles into a particle chain. (a) A microrobot
approaches cargo particle 1 (labeled with a green dot). (b) The microrobot, loaded with cargo
1, approaches another monomeric particle (orange), which serves as the drop-off location for
cargo release. (c) The cargo particle sticks to the orange particle via induced dipole-dipole forces,
while the microrobot is maneuvered towards cargo particle 2 (turquoise). (d) The microrobot
loaded with cargo 2 heads back towards the drop-off location to release the cargo. (e) The two
cargo particles and the orange target particle are assembled into a chain.

4.2.5 Controlled Assembly of Cargo Particles into Particle Chains

Using the same strategy for particle transport and release, we were also able to assemble

several monomeric particles into a particle chain. As shown in Figure 4.5 (cf. last part

of Supplementary Video 1 [92], the microrobot can be controlled to sequentially pick up

two individual cargo particles and drop them off in the vicinity of a third target particle.

As a result of the attractive induced dipole-dipole interactions between the monomeric

particles, the three particles stick together and form a particle chain.

4.2.6 Amplitude and Frequency Dependence of the CPEO Mech-

anism

Having established a novel approach for the manipulation of asymmetric colloidal dimers,

we intended to verify whether the underlying propulsion mechanism indeed conformed

with the theoretical framework for CPEO. We hypothesized that the migration speed

of the dimers would scale similarly as the strength of the fluid flow around spherical

monomer particles. Like ICEO, CPEO is a second-order phenomenon with respect to the

applied electric field and thus the migration speed v should scale with the electric field

amplitude E0 as v ∝ E2
0 . However, the frequency dependence of CPEO is expected

to differ substantially from that of ICEO. Notably, the fluid velocity around spherical

particles caused by CPEO falls off to zero for frequencies exceeding the characteristic

frequency fc = 1
2π

2D+D−

R2(D++D−)
[35, 36, 38, 64]. Here, D− and D+ denote the diffusion
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Figure 4.6. Dependence of migration speed on frequency and amplitude of the AC field. (a)
Simplified measurement setup. An AC electric field is applied to a linear microscopy channel
containing dimers. (b) Migration speed of three different dimers at a constant electric field
amplitude of 16.8mV/µm and varying frequency. The colored lines are a guide for the eye. (c)
Migration speed of three different dimers at a constant frequency of 250Hz and varying electric
field amplitude. The black lines are parabolas (v = λE2

0) fitted to the velocity data.
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coefficients of the buffer ions Cl– and Tris –H+, which are D− = 2 × 103 µm2/s and

D+ = 0.8 × 103 µm2/s at T = 20 ◦C [114] and R is the radius of the object. When

applying the theory to our dimers, we can interpret R as their typical size, which we take

as the average radius of their constituent particles, and with the given parameters we

obtain fc = 297 Hz. 1/(2πfc) corresponds to the time required for ions to diffuse over

the distance R. By contrast, in the case of ICEO the characteristic frequency is derived

from the time required to charge the electric double layer on the particle, which is given

by the RC time of the corresponding circuit [30,115].

Table 4.1. Characteristic frequencies fc and velocity scales v

CPEO ICEO metal ICEO dielectric
characteristic frequency 297Hz 5.40 kHz 98.0 kHz
velocity scale 17.5 µm/s 175 µm/s 0.33 µm/s

We measured the migration speeds of three different dimers for several voltages and

frequencies to verify the above hypothesis. To this end, we employed the setup shown

in Figure 4.6a where dimers are placed in a linear microchannel with two electrodes at

its opposite inlets. As before, we prepared the dimers in 100 µM Tris-buffer, which we

titrated to pH 8.4 by the addition of HCl and supplemented with 5.2 µM MgCl2. We

then recorded microscopy videos of the migration of the three dimers while applying AC

fields with different frequencies and amplitudes. From the start and end positions of the

dimers, we computed the distances covered and from these the average migration speeds.

We also measured the speed of a monomeric particle as a reference. The corresponding

measurements are listed in Tables A.9,A.10 and A.11. Figure 4.6c shows plots of the

migration speeds versus the applied electric field amplitude at a constant frequency of

250Hz. As shown, the experimental migration speeds are well described by a quadratic

fit v = λE2
0 . In Figure 4.6b, the frequency dependence of the migration speeds of the

three dimers is plotted for a constant electric field amplitude of 16.8mV/µm. We find a

decrease of the migration speed in the range of the characteristic frequency fc = 297 Hz

calculated for CPEO flows.

For comparison, we computed the characteristic frequency of ICEO flows around metal

and uncharged dielectric spheres at our experimental conditions [30, 115]. In addition,

we calculated the expected slip velocities around spheres for CPEO and ICEO flows at

the highest applied electric field amplitude 16.8mV/µm (Table 4.1) [30, 36, 116]. The

corresponding calculation can be found in Section 4.6.1. As mentioned, the frequency

response of our dimers agrees best with the characteristic frequency predicted by CPEO,

whereas fc predicted by ICEO for dielectric particles is two orders of magnitude off. The
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Figure 4.7. Dimer velocities at a constant electric field amplitude of 16.8mV/µm and constant
frequency of 250Hz for various buffer conditions. Blue data points indicate measurements with
MgCl2 supplemented to the buffer, while red data points correspond to measurements without
supplemented MgCl2. Each data point is the average of at least 5 velocity measurements of
different dimers, error bars indicate the corresponding standard deviations. Data points with
negative velocities correspond to dimers moving backward, which we defined as a movement
with the smaller particle in front.

characteristic frequency predicted for strongly polarizable particles, such as metal particles,

is closer to the experimentally observed value, but application of this model to our case is

physically unreasonable as silica particles are not strongly polarizable. The value for the

slip velocity around a sphere calculated from CPEO is found to be one order of magnitude

larger than the observed migration speed of our dimers. This result is not unexpected since

the slip velocity and the migration speed are not directly equivalent, as also demonstrated

in the schematic diagram shown in Fig 4.2c. The migration speed may be further reduced

due to the additional drag caused by the nearby channel bottom. Importantly, the slip

velocity calculated for ICEO flow around a dielectric sphere is approximately one order of

magnitude lower than the observed dimer migration speed.
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4.2.7 Buffer Dependence of the Transport Mechanism

We finally also characterized the buffer dependence of the microrobots’ migration velocity.

CPEO flows are caused by ion-selective surface conduction in the electric double layer at

the particle surface, which depends on the zeta potential. The zeta potential, in turn, is a

function of the surface charge of the particle and the ionic strength of the buffer solution.

The flow is thus expected to be strongest for large surface potentials, i.e., under conditions

with large surface charge densities and low ionic strengths. We recorded microscopy videos

of dimers prepared in buffers with different concentrations of Tris, NaCl and NaOH, each

supplemented with 5.2 µM MgCl2. In addition, we tested Tris-buffer, NaCl and NaOH

without any MgCl2 and also a solution containing exclusively MgCl2. For each buffer

composition, we recorded tracks of at least five dimers, and we took care that every

video contained at least one spherical particle as a reference. As before, we measured

the migration speed by marking the start and end position of the dimer and dividing

the resulting distance by the elapsed time. We also measured the migration speed of all

spherical particles in each microscopy video and used it as a reference (See Section 4.5.7 for

details) The results of these experiments are listed in Tables A.1,A.2,A.3,A.4,A.5,A.6,A.7

and A.8), and are plotted in Figure 4.7.

Overall, the velocities tended to decrease for increasing monovalent salt concentrations,

approaching zero velocity for concentrations around 1mM, which is in the range expected

for CPEO flows for typical values of the surface charge [35]. The details of the buffer

dependence of the particle velocity are intricate, however. We found that supplementing

the buffers with 5.2 µM MgCl2 had a tremendous effect on the migration behavior. For

Tris buffer, we found a strong enhancement of the velocity by MgCl2. For NaOH, we

found that dimers moved backwards in the absence of MgCl2, while they moved forward

in its presence. Notably, when using MgCl2 in dH2O only, we found backward movement

that changed to forward movement at higher concentrations. When present alone and at

low concentrations, either NaOH or MgCl2 induced backward movement. However, when

combined they induced forward movement. We found the largest migration velocities for

NaOH and Tris buffer at pH 8.4, which we attribute to an increase in surface charge

caused by the elevated pH. As even small amounts of MgCl2 had an extreme effect on the

migration velocity, we took special care to avoid any salt contamination in our samples

(See Section 4.5.4 for details).

For an electrokinetic phenomenon such as CPEO, a complex dependence on buffer condi-

tions is not unexpected. The reversal of the direction of movement of the particle dimers

could be caused by either a complete flow inversion or by a more subtle change of the cur-
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vature of the flow lines around the particles depending on the ionic environment. At the

microscopic level, these variations might be associated with the DNA molecules present

on the colloidal surface, which are known interact strongly with Mg2+ ions [117]. An

extended discussion of this phenomenon is provided in Section 4.6.2, 4.6.4 and 4.6.4 with

a brief summary provided here.

In particular, we found that the theory by Fernández-Mateo et al. [36], which was de-

veloped for binary electrolytes with identical ion diffusion coefficients D, indeed predicts

flow reversal around spherical particles for certain values of D. However, in this case flow

reversal is restricted to scenarios with unrealistically high zeta potentials (ζ > 100mV)

and rather low diffusion constants (D ≈ 500 µm2/s) (See Figures 4.11 and 4.12 ). We

therefore experimentally examined the flow field around the microswimmers using tracer

particles under buffer conditions leading to either backward (50 µM of NaOH and 0 µM

of MgCl2) or forward migration (25 µM of NaOH and 5 µM of MgCl2) (Supplementary

Videos 3 & 4 [35]). The results of these experiments suggest that the flow lines are

differently curved around the swimmer particles for the two movement directions rather

than simply inverted (See Figure 4.13).

To determine whether the reversal of migration direction is linked to the DNA surface

modification, we measured the mobility of our 1.0 µm silica particles with and without

DNA using electrophoretic light scattering, under buffer conditions corresponding to ei-

ther forward or backward migration. We observed no significant differences between both

particle types, suggesting a negligible impact of the DNA. Interestingly, the presence of

5 µM MgCl2 significantly altered the mobility of the monomers, which is consistent with

the strong screening effect of the divalent Mg2+ ions. We estimated the surface charge

from the mobility using the Smoluchowski equation and the Poisson-Boltzmann equa-

tion, revealing that the additional 5 µM of MgCl2 strongly altered the mobility without

appreciably affecting the surface charge. Considering the pronounced effect of even small

quantities of Mg2+ ions on the mobility, we suggest that a detailed calculation of the

dimensionless flow velocity for mixed electrolytes, including divalent ions, could provide

mechanistic insight into the reversal of the migration direction of the microswimmers.

4.2.8 Universality and Interplay of CPEP and ICEP in AC Elec-

trophoresis

As a general comment, we would like to note that AC electrophoresis (ACEP) in a ho-

mogenous AC-electric field is a generic phenomenon that should be expected for most

particle types with a broken symmetry under the appropriate experimental conditions, i.e.,
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Figure 4.8. Selected frames from a video showing an individual yeast cell and a yeast cell
doublet subjected to an AC electric field. The cells migrate in opposite directions, parallel to
the electric field, and pass each other.

at sufficiently low salt concentrations and an externally applied frequency that matches

the characteristic frequency of the particles. The underlying mechanisms for ACEP are the

well-established ICEP for metal particles and CPEP (described in this paper) for dielec-

tric particles with a non-zero surface charge. Importantly, all electrostatically stabilized

colloidal dispersions inherently meet the non-zero surface charge requirement for CPEO

flows. In our previous work [35], we have demonstrated that a variety of particles, in-

cluding fluorocarbon (FC) oil and lauric acid droplets, coacervates, silica particles, E. coli

bacteria, and ground coffee, are subject to CPEO flows. As it is the case for our micro-

robots, CPEO flows around an arbitrary asymmetric particle will be asymmetric which will

lead to a propulsion in a direction determined by the shape of the particle.

To confirm the universality of CPEP, we conducted experiments with a variety of charged

dielectric particle types exhibiting broken symmetry, including fragmented ceramic, borosil-

icate glass, acrylic glass, agarose gel debris, ground coffee particles, and even yeast cells

(Supplementary Video 2 [92]). Using the setup illustrated in Figure 4.6a, we exposed

these particles to a homogeneous AC electric field with an amplitude of 16.8mV/µm and

a frequency of 250Hz. As demonstrated in Supplementary Video 2 [92], we indeed ob-

served the expected, directed migration for all asymmetric particle types. The particles

moved predominantly along the electric field lines, even though some migrated at an angle

to the field. As an example, Figure 4.8 shows three selected frames from a microscopy

video, in which an individual yeast cell and a yeast cell doublet pass each other, while

moving in opposite directions.

We conjecture that for composite particles (e.g., metallo-dielectric Janus particles), ICEP

is not an isolated phenomenon. A CPEO flow may occur along with the ICEO flow gener-

ated on the metallic side, provided the dielectric Janus face is sufficiently charged. Given

that ICEO and CPEO flows operate at different characteristic frequencies, their interplay

would depend on the applied frequency. A similar argument can be made for particle

dimers exposed to a vertical electric field. These should also be subject to CPEO flows in

addition to the flows created at the electrode, when AC electric fields are applied within
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the frequency range defined by the corresponding characteristic frequency.

4.3 Discussion

A wide range of AC-electrophoretic propulsion strategies have been developed in the past

years, which differ from our approach in several aspects. In general, there are two possible

electric field geometries - either microswimmers are positioned on top of large electrodes

and exposed to vertical electric fields [81, 95–100, 118–122] or they are subjected to in-

plane electric fields using remote electrodes [76, 123] as employed in our study. In both

configurations, the applied electric field must be large enough to generate a voltage drop

across the particle on the order of the thermal voltage kBT/e. Due to the shorter dis-

tance between the electrodes, vertical electric field setups typically require lower voltages,

making them easier to implement.

Vertical electric field configurations, however, induce propulsion only in a random direction

perpendicular to the field. To achieve directional motion or steerability with microswim-

mers in such setups, magnetic fields have been employed, requiring additional external

magnets and the use of appropriate magnetic microparticles. [97, 98, 100, 119, 120] By

contrast, employing in-plane electric fields - such as in this work - naturally provides align-

ment and steerability through electro-orientation [103–106] of the microswimmers. This

results in an overall simpler experimental setup and more design flexibility for the swim-

mers as they do not have to be magnetic.

The two electric field configurations can be implemented in combination with two basic mi-

croswimmer designs - metallo-dielectric Janus particles [76,81,96,97,99,100,118–121,123]

and asymmetric colloidal dimers [95,98]. Both microswimmer designs are expected to ex-

hibit propulsion in both electric field configurations. The propulsion mechanisms of each

combination differ, each being associated with a distinct characteristic frequency that

must be matched with the frequency of the external electric field in order to achieve

propulsion. The characteristic frequencies range from the lower MHz range for Janus par-

ticles in vertical electric fields, which are driven by self-dielectrophoresis [96], to the lower

kHz region for ICEO-driven metallo-dielectric Janus particles [76], to the 297Hz needed

to propel our asymmetric colloidal dimers by CPEO. Overall, the CPEO mechanism can

be applied to the broadest class of particles that can be used as microswimmers, as only

particle asymmetry and a surface charge is required. This offers great design flexibility

and even allows the use of biological and soft materials as microswimmers, overcoming

the need for hard, durable substrate particles that are required for metal deposition to

manufacture Janus particles.
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To implement effective cargo transport, both attractive and repulsive interactions be-

tween microswimmer and cargo are necessary to establish an efficient loading and release

mechanism. In our setup, this is accomplished through the geometry of the induced hydro-

dynamic flow, which can be either attractive or repulsive, depending on the particle-cargo

configuration. The only alternative strategy known to balance these interactions employs

Janus particles in vertical electric fields, where cargo particles are either repelled or at-

tracted to the dielectric or metallic side based on the applied frequencies. This strategy

has been previously implemented using specially designed ferromagnetic metallo-dielectric

Janus particles, allowing for steerability and directed cargo transport [97, 100,120].

4.4 Conclusion

In conclusion, we have introduced a novel approach towards AC electrophoretic (ACEP)

manipulation of colloidal microswimmers, namely concentration–polarization electrophore-

sis (CPEP), which facilitates precise electrical control over two-dimensional movements.

In contrast to other approaches for electrically driven swimmers, the utilization of con-

centration–polarization electroosmosis (CPEO) and electro-orientation enables the use of

in-plane electric fields to move the particles in the direction of the field lines, rather than

perpendicular to them, as in other approaches. Directed movement requires asymmetric

particles with a surface charge, but the particles themselves do not need to be ‘Janus’ or

magnetic, which broadens the design possibilities for electrically controlled microrobots. In

our case, two differently-sized silica particles were connected using DNA linker molecules.

We employed a relatively simple setup to achieve 2D actuation, which did not require

additional magnetic fields, as in the case of dimers or Janus particles subject to a verti-

cal electric field, nor computer-controlled feedback, as in the case of dielectrophoretically

driven microswimmers. As demonstrated by the joystick-controlled actions, our approach

is of immediate interest for applications in microrobotics. The microrobots can move along

arbitrarily chosen paths in 2D and can be directed to controllably pick up, release, and

also assemble particles into groups. Further, we confirmed that the dependence of our mi-

crorobots’ migration speed on the AC electric-field frequency, amplitude, and electrolyte

concentration aligns with the theoretical expectations for CPEP. Finally, we confirmed

that CPEP applies to a broad class of dielectric particles with a broken symmetry and

non-zero surface charge by observing the directed migration of a variety of asymmetric

particles subject to a homogenous AC-electric field. From this, we conclude that AC

electrophoresis (ACEP) in a homogeneous AC-electric field, governed by ICEP for metal

particles and CPEP for dielectric particles, is a universal phenomenon expected for most
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asymmetric particles.

Looking ahead, the generic nature of ACEP opens up opportunities for frequency-dependent

particle sorting or precise positioning of particles, as their unique size, shape, and compo-

sition should result in distinct frequency responses, enabling their selective manipulation.

Further, it is conceivable to let microrobots assemble other microparticles into defined

superstructures, which themselves could then also act as microrobots, potentially laying

the basis for a simple form of ‘self-replication’. One of the main challenges for future

applications, however, will be the realization of operating conditions that are compatible

with useful chemical or biochemical reactions.

4.5 Materials and Methods

4.5.1 Design of the Experimental Setup and its Operation

The bottom part of our microscopy chamber is a glass cover slide. The PMMA part is

glued to the glass slide with Dichloromethane. We use platinum wires (Merck: Art. No.

267201-400MG) with a diameter of 0.5 mm as electrodes.

The design of our self-made sample chamber is inspired by that of Kopperger et al. [84].

Photographs of our experimental setup are shown in Figure 4.9. The sample chamber is

shown in Figure 4.9a, where it is filled with a red dye for better visualization. The sample

chamber consists of two parts. Its bottom is constituted by a glass cover slide (Carl Roth:

Art. No. CEX2.1), whereas its top is made from a piece of PMMA, from which the

channel geometry has been milled out via micro-milling. Both parts are glued together

with Dichloromethane (Carl Roth: Art. No. 8424.2). The gluing process is illustrated in

Figure 4.10. First, the PMMA part is placed on the glass cover slide. Then small drops

of dichloromethane are placed with a glass pipette at the edge of the PMMA part. Due

to capillary forces, the drops wet the surface between the PMMA and the glass slide. The

dichloromethane dissolves the surface of the PMMA. The PMMA part is then pressed

gently with a finger onto the glass cover slide until the dichloromethane is dried.

Figure 4.9b and Figure 4.9c show the electrode mounting, where four electrodes are fixed

on a PMMA frame. The electrode mounting was milled from a 10 mm PMMA sheet.

The electrodes extend out of small holes from the PMMA frame and are clamped with

a screw from above (see red arrow in Figure 4.9b with the label “electrode fixture”).

In Figure 4.10c the electrode mounting is placed on the sample chamber such that the

electrodes extend into the inlets of the sample chamber, resulting in an operational setup.
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Figure 4.9. Photographs of the experimental setup. (a) Sample chamber filled with a red dye.
(b) Electrode mounting. (c) Electrode mounting placed on the sample chamber.

Figure 4.10. Illustration of the glueing process used for manufacturing the sample chamber.

We use a standard Xbox Controller (PDP 049-012-EU-RD Controller Xbox Series X Rot)

connected via an USB-cable to the microscope computer to control electrical signals gen-

erated by the sound card of the computer. For microscopy, we used an Olympus IX71

inverted microscope equipped with a 20x objective (Olympus UPlanFL N 20x/0.50) and

an 100x objective (Olympus PlanApo 100x/1.40 Oil). During our screening experiments

we monitored the current and voltage with a digital oscilloscope (PicoScope 2000) to

avoid systematic errors. Electric signals for our screening experiments were created with

a function generator (RIGOL DG812) and amplified with an amplifier built in-house.

4.5.2 Functionalization and Dimerization of Colloidal Particles

Carboxylated silica spheres with diameters 1.01 µm (Lot: SiO2 –COOH-AR756-5ml) and

2.12 µm (Lot: SiO2 –COOH-AR1060-5ml) were purchased from microParticles GmbH. We

modified the surface of the silica spheres by activating the carboxyl groups with 1-Ethyl-

3-(3-dimethyl-aminopropyl) carbodiimide (EDC) and coupling them to amino-modified

DNA. [124, 125] The colloids were reacted in 200 µL of 100mM MES buffer (pH 4.8

adjusted with HCl and NaOH) containing 250 µM amino-modified DNA and 250mM EDC
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(Merck: Art. No. E6383-1G) on a rotator at room temperature for 3 h. We used colloid

concentrations of 11.35 ·109/mL and 50 ·109/mL of the 2.12 µm colloids and the 1.01 µm

colloids, respectively, to account for the different surface areas of the colloids. The colloids

were then washed and incubated extensively in borate buffer (boric acid adjusted to pH

8.2 with NaOH) and deionized water to get rid of remaining reaction components and to

hydrolyze unreacted activated carboxyl groups. We avoided using buffers containing amino

groups for washing as we wanted to preserve the negative surface charge of the colloids.

An extended protocol with details on the washing procedure is given in Section A.1.

Finally, the colloids were diluted to concentrations of 2.27 · 109/mL (2.12 µm colloids)

and 10 · 109/mL (1.01 µm colloids) in deionized water, shock frozen in liquid nitrogen and

stored at −80 ◦C.

Our two DNA strands are 60 nucleotides (nt) long and are each composed of a 30 nt

long spacer region followed by a 30 nt region which is complementary to the correspond-

ing region on the other strand. The spacer provides flexibility in the distance between

the colloids where hybridization can take place. We designed our DNA sequences with

NUPACK [126] such that they have no secondary structure. The oligonucleotides were

purchased from Integrated DNA Technologies as dried pellets, their sequences are listed in

Section A.1.1. We diluted our DNA strands in deionized water and stored them at −20 ◦C.

4.5.3 Microrobot Assembly

We assembled our microrobots by incubating concentrations of approximately 1.6·109/mL

of each colloid with 4mM MgCl2 in a reaction volume of 25 µL for 45 min on a rotator.

The above colloid concentration assumes that no colloids were lost in the above washing

procedure. The reaction is stopped by rapid dilution of the sample by a factor of 1 to

1000 in deionized water. The sample is handled with special care as we found that shaking

causes the microrobots to disintegrate. For further use, we usually diluted our microrobots

again by a factor of 1 to 20 in a buffer of choice. The microrobots were assembled freshly

for every day of experiments.

4.5.4 Sample Preparation

In initial experiments, we found a reduction in the migration speed after washing our

pipette tips. We therefore suspected that the pipette tips contained trace amounts of

divalent ions. In order to establish stable and reproducible behavior of the swimmers, we

henceforth cleaned all pipette tips and the sample chamber with deionized water before
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usage. With every fresh pipette tip, we pipetted deionized water three times before

pipetting an actual sample. We also washed all used reaction tubes with deionized water

before usage, vortexed them and removed the deionized water again. For our screening

experiments, we used commercial microscopy chambers purchased from ibidi (µ-Slide VI

0.4; Cat.No:80601). Before usage, the microscopy chambers were filled three times with

deionized water and then blown dry with nitrogen gas. For our experiments with Tris-

buffer, we created a 50mM stock solution at pH 8.4 by titrating Tris (Carl Roth: Art.

No. 4855.2) with HCl. We avoided using NaOH in case of overshooting pH 8.4 as this

would have resulted in an unknown concentration of additional NaCl in the buffer.

4.5.5 Preparation of Fragmented Particles

We produced fragmented particles from a variety of materials as described below. Follow-

ing their production, the fragments were washed to remove electrolytes and prepare them

for use in our experiments. To this end, we immersed the particles in 1mL of deionized

water in a 1.5mL Eppendorf tube. We centrifuged the resulting suspension, adjusting

the duration and centrifugal forces depending on the stability of the particles. The su-

pernatant was subsequently discarded, and the tube refilled with 1mL of deionized water.

This washing process was repeated three times. Finally, we diluted the washed suspen-

sion by an empirical factor using the same buffer as in our microrobot experiments, i.e.,

100 µM Tris buffer at pH 8.4, supplemented with 5.2 µM MgCl2. We finally adjusted the

dilution to obtain a particle density appropriate for imaging. Agarose gel: We mixed 1.5 g

of agarose powder (Agarose NEEOP Ultra-Qualität; Art.-NR.2267.3) from CARL ROTH

with 30mL of deionized water. We dissolved the agarose by heating in a microwave oven.

We then poured the hot agarose solution into a glass Petri dish and let it cool and solidify

for approximately 20min. Once solidified, we gently scratched the agarose surface using a

scalpel, moving the blade perpendicularly to the cutting edge across the gel surface. We

collected around 20mg of the agarose gel fragments in a 1.5mL Eppendorf tube and filled

it up to 1mL with deionized water. For the washing process, we centrifuged for 1min

at 1000 rcf. Finally, we diluted the washed gel fragments by a factor of 20. Borosilicate

glass: To obtain glass fragments, we mechanically pulverized a borosilicate glass capillary

(BOROSILICATE GLASS; ITEM #: BF150-86-7.5) from Science Products GmbH placed

between two glass microscopy slides (Objektträger 76 x 26 mm; Art.Nr.0656) from CARL

ROTH. We recovered the resulting glass powder by pipetting 100 µL dH2O onto the slide

and transferred it into a 1.5mL Eppendorf tube that was filled up to 1mL with deionized

water. For the washing process, we centrifuged for 1min at 1000 rcf, followed by dilution
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1:5. Acrylic glass: Acrylic glass fragments (Poly(methyl methacrylate)) were produced

using a fine metal file. We collected approximately 2mg of the resulting powder suspended

it in 1mL of deionized water within a 1.5mL Eppendorf tube. For the washing process, we

centrifuged for 1min at 1000 rcf, followed by dilution 1:10. Brewers yeast: We extracted

a turbid suspension of brewer’s yeast cells from a sample of Bavarian wheat beer with a

pipette and transferred 1mL of the suspension into a 1.5mL Eppendorf tube. For the

washing process, we centrifuged at 250 rcf for 4min. Finally, we diluted the washed cells

by a factor of 20 in Tris buffer. Ceramic: We created small ceramic fragments by placing

a splinter from a coffee mug of the size of a fingertip between two aluminum sheets and

grinding it. We transferred approximately 2mg of the resulting powder into a 1.5mL

Eppendorf tube and filled it with 1mL dH2O. For washing, we centrifuged at 1000 rcf

for 1min, and finally diluted the washed ceramic fragments 1:5 in Tris buffer. Coffee:

We pipetted 1mL of coffee (prepared using standard procedures using very finely ground

coffee beans) into a 1.5mL Eppendorf tube. For the washing process, we centrifuged the

suspension at 1000 rcf for 1min, followed by dilution 1:5.

4.5.6 Video Editing

We used ImageJ to edit our videos. We corrected the drift in the corresponding microscopy

video by tracking the monomeric particles with the ImageJ plugin TrackMate [127] and

shifting the recorded video by their displacement. Overlay images were created by comput-

ing the minimum intensity of a collection of frames from a microscopy video. We adjusted

the contrast and brightness of our videos and images such that they appear alike. The

final video editing was done with the freely available software Shotcut [128].

4.5.7 Data Analysis

We marked the start and end positions of every microrobot and reference particle in a

video and saved the coordinates with the corresponding frame number. We also recorded

the instantaneous orientations of every microrobot, which lets us identify backward and

forward movements. For that purpose, we used an ImageJ macro to automatize the data

analysis. We computed the velocities of all microrobots and reference particles by sub-

tracting the y-coordinates of the start and end positions and dividing the result by the

elapsed time. The elapsed time was extracted from the metadata of the corresponding

video. We then computed the average velocity of all reference particles in a video and

subtracted the velocity of every microrobot in a video by the result, which gives us the

corrected microrobot velocities. The average and standard deviation are then computed
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from the corrected velocities of all videos with the same buffer conditions. All measured

velocities and the recorded microrobot orientations for our buffer characterization exper-

iments are listed in Tables A.1,A.2,A.3,A.4,A.5,A.6,A.7 and A.8). In our frequency and

electric field characterization experiments, we were interested in the response of a single

microrobot and reference particle. We therefore applied a simplified data analysis pro-

cedure and measured only the speed of the single microrobot and reference particle in a

video. The recorded measurements are listed in Tables A.9,A.10 and A.11.

4.5.8 Programming

We used the online tool ChatGPT [129] based on GPT3 [130], a Generative Pretrained

Transformer developed by OpenAI, to assist with programming.

4.6 Supplementary Results

4.6.1 Characteristic Frequencies and Velocity Scales

In this Section, we compute the characteristic frequencies and magnitudes of the slip

velocity for CPEO flows around charge dielectric particles and for ICEO flow around

dielectric and metallic particles. We use the average particle radius R = 0.78 µm of

the two particles composing our dimers as the typical size. Further, we use the inverse

averaged diffusion constant as used by [36] and [115] for the diffusion constant which

is defined by D = 2D+D−

D++D− . D+ and D− are the ion diffusion constants for TrisH+ and

Cl– , respectively, and are given by D+ = 800 µm2/s and D− = 2000 µm2/s. Numerically,

D = 1143 µm2/s for this case.

The characteristic frequency of ICEO flows around metal particles is derived from the

charging time τ = λR/D [30] of the electric double layer on the particle surface, where

λ is the Debye screening length and depends on the ionic strength c. A concentration of

c = 50 µM corresponds to λ = 43 nm. The characteristic frequency is then given by

fc =
1

2π

D

λR
, (4.1)

which results in fc = 5396 Hz.

For ICEO flows around dielectric particles the characteristic time scale is given by τ =

λ2/D [30] which corresponds to a characteristic frequency of

fc =
1

2π

D

λ2
, (4.2)
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which gives fc = 98.0 kHz.

Note that the equation for the characteristic time scale for dielectric particles in [30] has

an additional erroneous factor ϵw/ϵd (see their equation 6.14). ϵw/ϵd is the fraction of

the dielectric constants of water and the particle. The equation above can be obtained

when starting from their equation 6.7 and by following the steps stated in the paper.

Additionally, one has to assume 1+ϵw/ϵd
ϵw/ϵd

≈ 1, which is reasonable as in most cases ϵw ≫ ϵd.

The characteristic time scale for CPEO flows is independent of the Debye screening length

and is given by τ = R2/D [36]. Here, τ is the typical time that ions need to diffuse across

the length of our dimer. The characteristic frequency is given by

fc =
1

2π

D

R2
, (4.3)

which for our parameter settings is fc = 297Hz.

The slip velocity V for ICEO flows around a metal particle is given by

V = ϵw
RE2

µ
(4.4)

where ϵw is the dielectric constant of water and µ is the viscosity. When using the

maximum applied electric field amplitude E = 16.75mV/µm, we obtain V = 0.33 µm/s.

The slip velocity V for ICEO flows around a dielectric particles is given by

V =
3

4
ϵd
λE2

µ
(4.5)

where ϵd is the dielectric constant of the particle [116]. We used the relative permittivity

of 3.7 for silica to compute ϵd. When again using the maximum applied electric field

amplitude we get V = 0.33 µm/s.

The slip velocity V for CPEO flows around a charged dielectric particle is given by

V = Uϵw
RE2

µ
(4.6)

where U is the dimensionless velocity computed which has typically a magnitude of U =

0.1 (see below and in [36]). For the maximum applied electric field amplitude this results

in V = 17.47 µm/s.
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4.6.2 Propulsion Direction

In this Section, we further investigate the observation that the migration direction of the

microswimmers is influenced by the buffer composition, specifically by the presence or

absence of MgCl2. The observed change in the migration direction could be attributed

either to a complete inversion of the hydrodynamic flow or to a different curvature of

the flow lines. The results obtained by Fernandez Mateo et al. [36], who computed the

magnitude U of CPEO flows around spherical particles in AC-electric fields, show that flow

reversal is theoretically feasible. However, this reversal occurs under physical conditions

that are difficult to achieve, such as exceedingly high zeta potentials (ζ > 100mV) and

unrealistically low ionic diffusion coefficients (D ≈ 500 µm2/s). We therefore used tracer

particles to experimentally investigate the flow field for both migration directions. The

flow fields derived from these experiments indicate that the flow field around the dimer

is merely differently curved for the different conditions, but not reversed. Finally, we

studied the impact of the DNA modification and MgCl2 on the surface properties of our

microswimmers by measuring the electrophoretic mobility of the monomer particles via

electrophoretic light scattering. We found that the DNA modification did not alter the

monomer mobility which suggests that the inversion of the migration direction is in fact

not related to the DNA modification. Our results indicate that small amounts (5 µM)

of MgCl2 significantly alter the monomer mobility but do not change the surface charge.

Since Fernandez Mateo et al.’s result for the flow velocity only applies to monovalent

ions with identical diffusion constants, the significant effect of even small amounts of

divalent magnesium ions on the mobility lets us to surmise that a more general theory

for the dimensionless flow velocity might elucidate the reasons for the observed migration

direction reversal.

4.6.3 Flow Reversal

In this Section, we plot the result of [36] for the dimensionless flow magnitude U of

CPEO flows around spherical particles for different ion diffusion constants. Their result

for U is a function of the zeta potential ζ, the Dukhin number Du, and the ion diffusion

constantD. The Dukhin number is a dimensionless quantity that characterizes the surface

conduction of colloidal particles. In Figure 4.11, we plot the dimensionless flow magnitude

U versus the dimensionless frequency 2πf/(D/R2) for different ion diffusion constants

D and Dukhin numbers Du at a constant zeta potential ζ = 101mV. The plot on the

upper left is a recreation of a plot shown in [36], where we plotted the frequency response

of U for the ion diffusion constants of KCl (D = 2036 µm2/s) and four different values
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of the Dukhin number. In the other plots, we decreased the diffusion constant. We find

decreasing velocities for the higher Dukhin numbers, 1 and 10, for decreasing values of

the ion diffusion constant. For very low diffusion constants (D = 226 µm2/s) and Dukhin

numbers of 1 and 10, we find flow reversal at low frequencies.
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Figure 4.11. Plots of the frequency response of the dimensionless flow magnitude of CPEO flows
around spheres for different diffusion constants D and Dukhin numbers Du. The dimensionless
zeta potential was set to ζ = −4. The upper left plot is a recreation of the plot shown in [36]

In Figure 4.12, we systematically plotted the frequency response of the flow magnitude

for different values of the surface charge density σ. Within one graph, we plotted the

frequency response for several values of the ion diffusion constant. Note that the zeta

potential ζ is a function of the surface charge density and the Debye length λ, which is

in turn a function of the salt concentration c that we set to λ = 43 nm and c = 50 µM.

We assume a particle radius of R = 0.78 µm. We vary the surface charge since both

the Dukhin number and the zeta potential are functions of the surface charge. For low

surface charges (σ = −0.0005C/m2, σ = −0.0010C/m2, σ = −0.0015C/m2) and

low zeta potentials, we find overall increasing flow magnitudes U for increasing surface

charges. However, at high surface charges (σ = −0.0045C/m2, σ = −0.0080C/m2,
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σ = −0.0160C/m2), we find decreasing flow magnitudes for increasing surface charges,

which decrease more strongly for lower ion diffusion constants. This leads, at a certain

point, to a flow reversal at low frequencies. Interestingly, the graphs cross the zero line

at higher frequencies and become positive again. Overall, we find that flow reversal can

indeed occur for high surface charges and low diffusion constants. However, the required

values for the surface charges/zeta potentials (ζ > 100mV) and the diffusion constants

(D ≈ 500 µm2/s) are physically rather unrealistic.

4.6.4 Visualization of the Hydrodynamic Flow Field

In order to gain further insight into the reversal of migration direction, we experimentally

visualized the hydrodynamic flow which propels our microswimmers (see Figure 4.2). To

this end, we recorded brightfield videos at a 60x magnification, capturing a migrating mi-

croswimmer surrounded by smaller spherical particles serving as tracers. We specifically

studied conditions under which the microswimmer either migrated forwards (25 µM NaOH

and 5 µM MgCl2 ) or backwards (50 µM NaOH and 0 µM MgCl2).

As tracer particles we used unmodified silica spheres from Microparticles GmbH, with a

diameter of 0.70 µm (Lot: SiO2 –COOH-F-SC143-10ml). We selected silica because of

its high density, which ensures that these small particles do not quickly diffuse out of the

focal plane. The size of these particles was chosen as a compromise as they need to be

small enough to not disturb the flow field, yet large enough to make tracking feasible.

We applied an electric field with an amplitude of 16.75mV/µm and a frequency of 750Hz.

This frequency was higher than in our usual experiments as we were imaging the mi-

croswimmer and tracer particles at a higher magnification, where electrophoretic oscil-

lations were visible at f = 250Hz. Our samples were prepared similarly to our buffer

screening experiments, with the washing protocol for the tracer particles mirroring that of

our DNA-modified colloids, substituting buffer with water in all washing steps.

During the recording process, we manually adjusted the microscopy stage in sync with

the migrating microswimmer to maintain it within our field of view. Due to the imperfect

manual position adjustment, we employed an ImageJ plugin, Template Matching and Slice

Alignment [85], to obtain microscopy videos with a stationary microswimmer and moving

tracer particles. The resulting videos are provided in the Supplementary Movie files 3 and

4 [92].

In Figure 4.13a and Figure 4.13b, we visualized the trajectories of tracer particles for the

forward and backward migrating microswimmer, respectively. For this purpose, we se-

lected segments of the recorded video that contained at most two tracer particles passing
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Figure 4.12. Plots of the frequency response of the dimensionless flow magnitude for CPEO
flows around spheres with different surface charges σ and diffusion constants D. The Debye
length is set to λ = 43 nm and the particle radius is R = 0.78 µm

by the microswimmer. From the individual frames Fi of the selected video segments, we

computed Gi =
∣∣Fi − F

∣∣ where F is the average image of the Fi. In the images Gi,

particles appear as bright spots, independent of their appearance in the images Fi where
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Figure 4.13. Overlay images showing particle traces of silica spheres, drifting in the flow field
created by the microswimmer. Part (a) of the figure displays a forward-moving microswimmer
with the larger particle located in the front, and part (b) displays a backward-moving microswim-
mer. The electric field oscillates in the vertical direction. The sketches on the left depict the
streamlines of the deduced hydrodynamic flow, wherein the tracer particles drift. The smaller
images in the center display short overlays involving one or two tracer particles, whereas the
larger images on the right show an overlay from a longer video, capturing a larger number of
tracer particles. The videos are provided in the Supplementary Movie files 3 and 4 [92].

they can appear either bright or dark depending on their position relative to the focal

plane.

We then created an overlay image by extracting the maximum value of each pixel in the

image sequence from the images Gi. The overlay images for both migration directions are

shown on the right side of Figure 4.13. On the left side of Figure 4.13, we have sketched

the flow field in which the tracer particles drift that can be deduced from the images.

On the right, there is an overlay image of a longer video segment containing many tracer

particles.

For the forward moving microswimmers in Figure 4.13a, particles approach the microswim-

mer from the front and move towards the center of the larger particle. They are then

expelled perpendicularly to the migration direction of the microswimmer. Occasionally, a

particle is trapped behind the microswimmer, where it circulates in the flow field. These

trajectories are representative of the fluid flow in Figure 4.2. Importantly, it should be
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noted that hydrodynamics is not the only factor influencing the movement of the tracer

particles. Induced dipole-dipole forces also contribute to the interactions between the

microswimmer and the tracer particles.

or the backward moving microswimmers in Figure 4.13b, the trajectories are less clear

as the overall flow magnitudes are found to be lower. The trajectories appear more dif-

fuse since the Brownian motion of the tracer particles dominates over their drift in the

microswimmer’s flow field. Despite this, tracer particles are observed to approach the mi-

croswimmer from the front, now represented by the smaller particle. They are attracted to

the center of the smaller particle and then expelled perpendicular to the microswimmer’s

migration direction. Occasionally, a particle that has already passed by the microswimmer

is attracted to its rear, i.e., the larger particle of the microswimmer. The tracer particle

then becomes attached to the larger particle, which we attribute to induced dipole-dipole

forces. We hypothesize that the induced dipole-dipole forces are stronger compared to

the hydrodynamic flow in this scenario, preventing the circulation that is observed for the

forward-moving microswimmer. Nonetheless, we surmise that the flow field still corre-

sponds to the sketch on the left of Figure 4.13b.

We conclude that the flow field, is curved differently for backward-migrating microswim-

mers compared to forward-migrating microswimmers, and it is not simply inverted.

4.6.5 Monomer Mobility

To further investigate whether the inversion of migration direction is associated with the
DNA functionalization of the colloids, we measured the mobility of the 1.0 µm-sized silica
particles, both with and without DNA modification, using electrophoretic light scattering.
Using a Malvern Zetasizer Nano ZS with a Dip-Cell accessory, we tested our samples in a
single-use cuvette (Einmalküvetten ROTILABO® PMMA, Macro, 4 ml) from Carl Roth.
We assessed the monomer mobility under buffer conditions that induced both forward
and backward microswimmer migration. As we were interested specifically in the effect
of small quantities of MgCl2 (5 µM), we carefully implemented several washing steps to
avoid salt contamination. To this end, the unmodified 1.0 µm silica particles were diluted
1 to 5 in water resulting in concentrations comparable to those of our modified silica
particles. The unmodified particles were washed following the same procedure as that
used for the DNA-coated particles, but the borate buffer washing steps were omitted.
For all measurements, we used the same cuvette, which was rinsed with deionized water
between runs. The Dip-Cell was also rinsed between measurements. We marked one side
of the cuvette to maintain the same orientation across all runs. Sample volumes of 1mL
were used, and colloids were diluted by a factor of 1 to 1000, i.e., we used 1 µL of our
stock solution. The buffer was mixed directly in the cuvette for each measurement. We
conducted four measurements, with 30 runs for each pipetted sample at a temperature of
25 ◦C. The corresponding measurement files and raw data are provided as a Source Data
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file. [92] To mitigate systematic errors, we pipetted each sample for each buffer condi-
tion three times, resulting in a total of 12 values for the monomer mobility under each
buffer condition. We computed averages and standard deviations from these, which are
represented in Figure 4.14 as bar graphs and error bars for the different buffer conditions
used (25 µM and 50 µM of NaOH, both with and without 5 µM of MgCl2, and also MgCl2
alone at 5 µM).
We did not observe any significant variation between the mobility of DNA-functionalized
and unmodified colloids within the computed standard deviations, suggesting a negligible
impact of the DNA modification on the electrokinetic properties of the colloids, even
though the mobility of the DNA-modified colloids is lower than the mobility of the un-
modified colloids across all buffer conditions. Furthermore, we found that the presence
of 5 µM of MgCl2 significantly reduced the mobility compared to experiments performed
at the same NaOH concentrations without MgCl2. We estimated the surface charge of
the monomers using the measured mobility values and the buffer conditions of our ex-
periments. This analysis was undertaken to examine whether the presence of MgCl2 only
modifies the double layer structure through enhanced electrostatic screening, or whether
it also changes the surface charge. The zeta potential ζ can be estimated from the mo-
bility µ using the Smoluchowski equation: ζ = µ η

εwε0
Here, η represents the viscosity of

the solution, while εw and ε0 denote the relative permittivity of water and the vacuum
permittivity, respectively. From the zeta potential, we computed the surface charge with
the help of the Poisson-Boltzmann equation, which in the presence of four ion species is
given by:

εwε0
d2Φ

dx2
= −

[
+e · cNaOH · e

−eζ
kBT − e · cNaOH · e

eζ
kBT + 2e · cMgCl2 · e

−2eζ
kBT − 2e · cMgCl2 · e

eζ
kBT

]
(4.7)

Here, e is the elementary charge, kB is the Boltzmann constant, and T is the absolute

temperature of the solution. cNaOH and cMgCl2 represent the concentrations of NaOH and

MgCl2 in the solution, respectively. Similar to the two ion species case, we can derive

a relation between the surface charge σ, the charge per unit area on the surface of the

monomers, and the zeta potential ζ. By multiplying the Poisson-Boltzmann equation

with dΦ
dx
, integrating the result, and applying the boundary conditions Φ(∞) = 0 and

dΦ
dx
(∞) = 0 and at the surface, Φ(0) = ζ and dΦ

dx
(0) = − σ

εwε0
, we obtain the following

equation for σ:

σ = −
√
2εwε0kBT ·Q

Q = cNaOH

(
e−eζ/kBT − 1

)
+ cNaOH

(
eeζ/kBT − 1

)
+ cMgCl2

(
e−2eζ/kBT − 1

)
+ 2cMgCl2

(
eeζ/kBT − 1

)
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Based on this equation, we computed the surface charge from the measured mobilities

for our experimental buffer conditions. We also accounted for the standard deviation of

the zeta potentials, δζ, by using error propagation δσ =
∣∣∣∂σ∂ζ ∣∣∣ · δζ, which allowed us to

determine the standard deviation of the surface charge, δσ.

The results are shown as a bar graph in Figure 4.15, indicating that the surface charge

remains the same for identical NaOH concentrations regardless of the addition of 5 µM of

MgCl2. Moreover, we observed an increase in surface charge as the NaOH concentration

increased. This trend is expected, as higher NaOH concentrations result in a greater

degree of deprotonation of the carboxyl groups on the colloidal surface. Given the pro-

nounced effect of even minor quantities of divalent magnesium ions on the mobility, we

surmise that a detailed mathematical treatment of the dimensionless flow velocity in the

context of mixed electrolytes, including divalent ions, could provide better insight into the

observed reversal of migration direction.

µ

µ

Figure 4.14. Bar graphs of the average monomer mobility from four measurements at each
buffer condition. The error bars indicate the standard deviation. The buffer conditions are listed
in the table below. Mobilities of DNA-modified and unmodified colloids are plotted next to each
other in red and blue, respectively. No significant difference was observed between the mobility
of DNA-modified and unmodified colloids across all buffer conditions. Source data are provided
as a Source Data file. [92]
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Figure 4.15. Bar graphs depicting the surface charge of monomers calculated from the average
monomer mobility at each buffer conditions. The error bars are derived from the standard
deviation of the mobilities via error propagation. The surface charges of DNA-modified and
unmodified colloids are plotted next to each other in red and blue, respectively. The surface
charge increases with higher concentrations of NaOH and is unaffected by the presence of MgCl2.
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5. Non-Equilibrium Assembly of Nucleic Acids

in a Diffusiophoretic Trap

The text and figures in this chapter have been adapted from the publication stated below,

which, at the time of writing this thesis, was under review. The videos mentioned below

are presumably accessible on the publisher’s webpage.

Non-Equilibrium Assembly of Nucleic Acids

in a Diffusiophoretic Trap

Florian Katzmeier and Friedrich C. Simmel,

Department of Bioscience, TUM School of Natural Sciences, Technical University Munich,

D-85748 Garching, Germany

In this chapter, Friedrich C. Simmel and I conceptualized an electrically-driven upcon-

centration mechanism, which could occur in a natural environment, contrasting with the

AC-electrically driven mechanism discussed in Chapter 3. This is particularly interesting

for origin-of-life research, as it addresses the well-known concentration problem, referring

to the challenge of achieving sufficiently high concentrations of reactants for reactions in

primordial scenarios. [131] Specifically, I conceptualized and constructed a diffusiophoretic

trap to facilitate local upconcentration and the hybridization and assembly of nucleic acids.

The diffusiophoretic trap consists of a glass pipette filled with a highly concentrated elec-

trolyte, whose components have asymmetric diffusion constants, as shown in Figure 5.1.

When the electrolyte is ejected by applying pressure to the glass pipette into a low ionic

strength liquid, a steep concentration gradient forms. The differential diffusion of the ions

creates an electric field that can attract and concentrate nucleic acids. I characterized this

mechanism by testing different pressures and consequently varying eflux rates, identifying

an optimal pressure range. Further, I validated that the trap can upconcentrate silica

particles as well and demonstrated that hybridization reactions on the particles’ surfaces

can be triggered when both DNA-modified silica particles and complementary DNA are

upconcentrated. Lastly, I operated the trap with DNA nanostars, which are three-armed

DNA nanostructures that can bind to each other and assemble into macroscopic gels. I

observed that when the trap is active, DNA nanostars polymerize in front of the glass
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Figure 5.1. Overview Figure: Non-Equilibrium Assembly of Nucleic Acids in a Diffusiophoretic
Trap. (Upper part) Sketch of the Diffusiophoretic Trap, comprising a glass pipette that ejects
an electrolyte with asymmetric diffusion constants. The ejected ions generate an electric field
that attracts and upconcentrates DNA nanostars, leading to their assembly into a gel. (Lower
part) Microscopy images displaying the assembly of a DNA nanostar gel in front of the glass
pipette.

pipette, forming a macroscopic gel, as illustrated in Figure 5.1. When the trap is deac-

tivated, the gel disassembles. We propose that this system resembles a simple form of a

biological system responding to an external stimulus.
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5.1 Introduction

Living organisms operate far from equilibrium, continuously dissipating energy and ex-

changing matter with their surroundings to maintain their complex organization and

structure. Numerous cellular processes such as microtubule and actin polymerization,

RNA and protein metabo-lism, ribosome assembly, and chromosome condensation, are

examples of dissipative self-assembly [132]. In these systems, local order is achieved by

consuming an energy source, typically a chemical fuel, which allows organisms to exert

temporal control over function. [133] Given the fundamental non-equilibrium state of bio-

logical processes, physical non-equi-librium settings such as thermal gradients [134–136],

high-energy radiation [137, 138], wet-dry cycles [139–143], freeze-thaw cycles [144–146]

as well as pH [147,148] and concentration [149] gradients, have been extensively studied

as plausible scenarios for promoting the emergence of life. [131] In this work, we introduce

a model system for dissipative self-assembly that employs an electrolyte gradient as the

energy source, complementing the chemical energy sources employed in other synthetic

systems [150–158] that mimic biological systems. Specifically, we use the electrolyte gra-

dient to achieve local up-concentration of branched DNA nanostructures [159–167], which

then locally self-assemble into gels and subsequently disassemble upon the removal of the

energy source.

Local up-concentration is achieved through diffusiophoresis [40], which refers to the di-

rected migration of macromolecules or colloids in a concentration gradient. This mech-

anism has recently been the focus of intense research [168–178] and has been used to

concentrate colloids [147,179–181] and macromolecules [182–184] in various experimental

settings. In the case of electrolyte gradients, the primary driving force for diffusiophoresis

is an electric field generated by the gradient itself. This electric field points along the

gradient and acts on charged macromolecules like DNA through electrophoresis. Notably,

the existence of such an electric field caused by an electrolyte gradient was theoretically

described by Planck over a century ago. [47] Mechanistically, the electric field arises from

an asymmetry in the diffusion coefficients of the ions that constitute the electrolyte. For

instance, anions with higher diffusion coefficients than cations will diffuse down the con-

centration gradient more rapidly. Such differential diffusion results in charge separation,

generating an electric field with more negative charges at the lower end of the gradient

and more positive charges at the upper end. In electrochemical experiments, the potential

drop associated with this electric field is referred to as the liquid junction potential. [185]
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Figure 5.2. (a) Schematic representation of our experimental setup. A highly concentrated
electrolyte, depicted with differently sized red and blue spheres to indicate ions with asymmetric
diffusion constants, is ejected from a glass pipette to form an electrolyte gradient. Fluorescently
labeled DNA strands are attracted through diffusiophoresis along the gradient towards the tip
and accumulate there. The blue pointers indicate the direction of the diffusiophoretic force.
(b) Overlay of an inverted brightfield image and a fluorescence image of the diffusiophoretic
trap under operation. (c) Images of the diffusiophoretic trap 100 s after activation at different
applied pressures. The brightness was individually adjusted in each image to ensure consistent
visualization. (d) Left: Example time traces of the DNA concentration in a circular region of
interest (ROI) around the trap, corresponding to a volume of approximately 280 fL. Right: DNA
concentrations within the trap after 100 s for different pipette pressures, measured in the ROIs
indicated in the inset.
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5.2 Results

As schematically shown in Figure 5.2a, a diffusiophoretic trap can be easily realized by

filling a glass pipette with a highly concentrated electrolyte and submerging it in deionized

water. The glass pipette is fixated in a commercially available pipette holder and is

connected to a constant pressure supply via tubing. Upon application of a slight positive

pressure on the pipette, the electrolyte flows out of the pipette tip, creating a steep

electrolyte gradient near the orifice. When DNA molecules are present in the surrounding

solution, they undergo directed migration towards the tip via diffusiophoresis. Close to the

tip, the hydrodynamic force generated by the outflowing fluid exceeds the diffusiophoretic

force, preventing DNA from entering the tip. As a result, DNA accumulates in a region

in front of the tip where fluid flow and diffusiophoresis are balanced. In our experiments,

we require an electric field such that negatively charged DNA migrates upwards along

the electrolyte gradient toward the pipette tip. The electric field E in a two-component

electrolyte gradient depends on the cation and anion diffusion coefficients D+ and D−,

and their respective valencies z+ and z−: [169,186,187]

E ∝ D+ −D−

|z+|D+ + |z−|D−
∇c

c
(5.1)

Here, ∇c
c

represents the normalized gradient of the electrolyte concentration c. An in-

structive derivation of this equation, along with an evolution equation for c, is given in

Section 5.5.2. Equation 5.1 guides our selection of suitable electrolytes for diffusiophoretic

trapping. As the direction of the electric field is determined by the difference of the diffu-

sion coefficients (D+ −D−), independent of ion valency, we require D+ < D− for DNA

trapping. Additionally, low-valency ions yield stronger electric fields, as z+ and z− only ap-

pear in the denominator. In our experiments, we use 200mM Tris, titrated with HCl to pH

7.7, which primarily contains monovalent TrisH+ ions with D+ = 0.8× 10−9m2 s−1 [114]

and Cl– ions with D− = 2.0 × 10−9m2 s−1 at T = 298 K. We also supplement the

solution with 1mM MgCl2 to facilitate nucleic acid hybridization. Importantly, the diffu-

sion coefficient of Mg2+ is 0.7× 10−9m2 s−1 [185], which also satisfies our criterion when

compared to the diffusion coefficient of Cl– . We hypothesize that combinations of such

electrolytes should also be effective.
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5.2.1 Trapping Efficiency

In initial experiments, we characterized the trap with 33 nucleotide (nt) long single-

stranded DNA molecules (c = 1 nM) modified with a fluorescent dye. Figure 5.2b displays

the trap 100 s after activation, showing a diffuse cloud of fluorescent DNA in front of the

pipette tip. The fluorescent cloud forms directly after activation of the trap and grows in

intensity until it reaches a steady state. We observed variations in the shape and intensity

of the DNA cloud depending on the applied pipette pressure, as illustrated in Figure 5.2c.

Low pressures lead to a more localized DNA accumulation, while high pressures result in

a larger, more diffuse cloud. These variations in the extension of the accumulation region

are not unexpected: higher pressures result in higher electrolyte efflux rates, altering

the shape of the concentration gradient, and DNA accumulates in a region where the

diffusiophoretic force balances the fluid flow, which changes depending on both the flow

magnitude and the gradient shape.

We recorded microscopy videos to quantify the formation and growth of the trapped

DNA cloud at varying pipette pressures. For data analysis, we defined a circular region

of interest (ROI) around the cloud and measured its average fluorescence. The ROI is

identified by finding the maximum intensity among all possible circular regions of the

same size within an image. We then compared the region’s average fluorescence to bulk

fluorescence values for the same DNA strands at different concentrations, which allowed

us to estimate the local DNA concentration within the trap. Figure 5.2d (left) displays

example time traces which show the change in DNA concentration within a circular ROI

with a volume of ≈ 280 fL. We observe up to a 100-fold increase in concentration within

the trap, raising the DNA concentration from its bulk value of 1 nM to 100 nM. Further,

we find that the concentration reaches a steady state after approximately 100 s. Notably, a

pressure difference of 20mbar results in more efficient up-concentration compared to lower

(e.g., 10mbar, 15mbar) or higher (e.g., 25mbar, 30mbar) pipette pressures, suggesting

an optimal pressure condition.

We further quantified DNA trapping by measuring the DNA concentration within three

differently sized ROIs after 100 s. The resulting data, showing DNA concentration as a

function of pressure, are displayed in Figure 5.2d (right). For all three regions, we observe a

peak trapping efficiency around 20mbar. Additionally, we identify a minimum operational

pressure difference of 10mbar at which the trap becomes effective. At pressures exceeding

30mbar, trapping efficiency becomes comparably low. Notably, the concentration peak

shifts to slightly lower pressures for smaller regions of interest, consistent with our previous

observation that lower pressures result in more localized DNA clouds.
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Figure 5.3. (a) Microscopy images showing the trap operating in the presence of colloidal
particles (d = 2.1µm). The microparticles accumulate in front of the tip, their direction of
movement is indicated with blue pointers. (b) Overlay image from a video (Supporting video
1) that captures the attraction and accumulation of the microparticles. Particle traces are
represented as green lines.

5.2.2 Range of the Trap

To visualize the range of the diffusiophoretic force generated by the trap, we used car-

boxylated silica particles (d = 2.1 µm), which carry a negative charge and are therefore

expected to migrate in the same direction as DNA in the trapping field. Operating the

trap at 25mbar, we observed accumulation of colloids in a region directly in front of the

trap, as shown in Figure 5.3a. We also recorded a microscopy video of the colloid trapping

process (Supporting video 1), from which we generated an overlay image of the particle

traces (Figure 5.3b) (details on video analysis are given in Section 5.5.5). Our observations

suggest that the diffusiophoretic trapping force is long-range, extending over hundreds of

micrometers. This may seem surprising, as electric forces in electrolytes typically have a

range defined by the Debye length, i.e., usually on the order of nanometers. However, in

non-equilibrium scenarios, such as when a current is applied or, as in our case, when a

concentration gradient is present, the electric force can extend over a much longer range.

It is worth noting that, according to Equation 5.1, the range of the diffusiophoretic force

should in fact be similar to that of the concentration gradient.

Next, we investigated the diffusiophoretic trap’s capacity to promote DNA hybridization

reactions. Notably, the trap generates favorable conditions for such reactions in two

respects: the trap locally enhances the DNA concentration by hundredfold, and the steep

electrolyte gradient provides a high ionic strength within the trap. By contrast, in regions
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Figure 5.4. (a) DNA-modified silica particles and complementary strands are both accumulated
in the diffusiophoretic trap. The locally high DNA and electrolyte concentrations promote DNA
hybridization on the colloid surface. The blue pointers indicate the direction of the diffusio-
phoretic force. (b) Brightfield and fluorescence images of the sedimented particles after the trap
was turned off (see also Supporting video 2).

remote from the trap, both DNA and electrolyte concentrations are low, preventing DNA

hybridization to occur.

5.2.3 DNA Hybridization on Silica Particles

Since both carboxylated silica particles and DNA accumulate in the trap, we studied

hybridization reactions on the surface of the colloids, which can be easily monitored by

microscopy. We modified the microparticles by activating their carboxyl groups with 1-

Ethyl-3-(3-dimethyl-aminopropyl) carbodiimide (EDC) and coupling them to 60 nt long

amino-modified DNA capture strands. [124, 125] We then operated the trap at 25mbar

using the DNA-modified colloids and a 5 nM solution of fluorescently labeled 30 nt long

DNA strands, which had a sequence complementary to a subsequence of the DNA on

the colloids (cf. Section 5.5.8). Both colloids and free DNA accumulate in the trap,

allowing the free DNA to hybridize with the DNA on the colloids (Figure 5.4a.). After

5min of operation we turned off the trap and the colloids sedimented. The localization of

fluorescence signal on the microparticles, which is visible in the fluorescence image of the

sedimented colloids (Figure 5.4b), indicates successful DNA hybridization. We observed

fluorescence on the particles for an additional 2 h, indicating that the fluorescent DNA

was indeed stably bound to the capture strands. The complete experiment is documented

in Supporting video 2.

5.2.4 Formation of DNA Gels

Lastly, we studied whether the diffusiophoretic trap can promote the assembly of branched

DNA junctions - also termed Y-DNA [159,160,164] or DNA nanostars [161–163,165–167]
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Figure 5.5. (a) Sketch illustrating how DNA nanostars are attracted and accumulate in a
diffusiophoretic trap. The nanostars have self-complementary single-stranded overhangs that
allow them to polymerize into a gel. (b) DNA concentration within a circular ROI close to
the tip’s pore during a DNA nanostar polymerization experiment. The ROI is shown in the
microscopy image in the inset, numbers on the graph correspond to the images displayed in (c).
(c) Brightfield and fluorescence images from selected frames of the nanostar polymerization
experiment. The fluorescence intensity was individually adjusted for each frame.
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- into macroscopic gels (cf. Figure 5.5a). Three-arm DNA nanostars are composed of

three 42 nt long single strands that hybridize together to form a Y-shaped nanostructure

with three ≈ 7 nm long arms. Each arm of a nanostar features a single-stranded sticky

end with a distinct self-complementary sequence, enabling the edges of the junctions to

bind to each other and polymerize into a gel. We operated the diffusiophoretic trap with

5 nM DNA complexes. In order to be able to monitor their assembly via fluorescence

microscopy, we substituted 1 nM of one of their constituent strands with a 33 nt long

strand carrying a Cy5-label instead of the sticky end.

In Figure 5.5c, we show selected frames extracted from a microscopy video (Supporting

video 3) of the trap operating in the presence of nanostars. The video is further analyzed

by plotting the fluorescence intensity within a circular region of interest as indicated

in Figure 5.5b. Within roughly the first minute of operation (until time point 1), the

fluorescence rapidly increases, corresponding to the formation of a diffuse DNA cloud

similar as in the experiments shown in Figure 5.2. Between time points 1 and 2, the

shape of the fluorescent cloud changes and its intensity drops. Simultaneously, in the

brightfield image a distinct structure appears in front of the tip, which we interpret as the

formation of a DNA gel. The change in shape of the fluorescent cloud is likely due to the

altered hydrodynamic flow and electrolyte gradient caused by the presence of the DNA

gel. The gel continues to grow in size between time points 2 and 4, while maintaining a

relatively constant fluorescence level. After 17 minutes (between time points 4 and 5), we

stopped the electrolyte flow, eliminating the gradient and thus terminating the trapping

process. We observed a quick initial expansion in the size of the gel, accompanied by a

rapid decrease in fluorescence. The gel continues to expand until it is no longer visible

in either the fluorescence or brightfield channels. We repeated the DNA gel formation

experiment multiple times and found similar behavior as in Figure 5.5b in each case (see

Section 5.5.7).

5.3 Discussion

The observed behavior can be explained with the viscoelastic properties of DNA nanostar

gels [161, 163, 164]. The rapid expansion of the gel following trap deactivation is a

consequence of the elasticity of the DNA gel. During operation of the trap, the gel is

compressed by the force exerted through the electric field. Upon removal of this force,

the gel quickly relaxes and expands. The swift decrease in fluorescence after time point

4 can be attributed to the diffusion of unbound DNA molecules out of the trap. The

later phase of the dissolution process (time points 6 and 7) is characterized by a slow
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expansion of the gel and fading visibility, indicating swelling and bulk erosion. As the gel

forms under a compressive force and at high DNA concentrations, it initially comprises a

densely interconnected matrix. During dissolution, nanostars dissociate within the gel and

either escape or bind elsewhere. This results in a reduced crosslinking density, leading to

elastic relaxation and expansion of the gel matrix.

5.4 Conclusion

In conclusion, we have developed a diffusiophoretic trap capable of locally concentrat-

ing both DNA and colloids, as well as promoting hybridization between complementary

DNA strands. Moreover, we investigated the reversible self-assembly of DNA nanostars

into macroscopic structures. DNA nanostars assemble in the presence of an electrolyte

gradient, and disassemble when this gradient is removed. An electric field generated by

the gradient provides the driving force for assembly by locally up-concentrating the DNA.

When the energy source is removed, the gel slowly disassembles, demonstrating that the

DNA gel only exists under non-equilibrium conditions.

In addition to its fundamental scientific interest as a non-equilibrium dynamical system,

the diffusiophoretic trap has potential technological applications. Our experiments demon-

strate that the trap can be employed to up-concentrate charged colloids or molecules,

which could be used for extracting them from diluted environmental samples, or for se-

lecting and sorting particles based on charge. Furthermore, the local up-concentration

mechanism provides a possibility to speed up concentration-dependent reactions, which

might prove useful for the development of low cost DNA or RNA detection systems.

Due to its simplicity - only requiring a sufficiently steep salt gradient - our trap sys-

tem is also of interest as a potential setting for prebiotic evolution, specifically relating

to the well-known concentration problem. Given the dilute nature of primordial envi-

ronments, prebiotic evolution faces the challenge of achieving the necessary concentra-

tion of organic molecules to undergo reactions that would lead to the formation of the

first biomolecules. [131] Diffusiophoresis in salt gradients provides an additional mech-

anism besides other natural phenomena like thermal gradients [134–136], freeze-thaw

cycles [144–146], and evaporation [139–143], which can up-concentrate (bio)molecules.

Natural sources of electrolyte gradients may include porous rocks that leach salts, salt-

water springs, or hydrothermal vents. According to Equation 5.1, salts suitable for the

diffusiophoretic trapping of nucleic acids comprise most halogen salts of divalent or triva-

lent metal ions [185]. Alkaline solutions are also expected to be effective, due to the

exceptionally high diffusion constant of OH– . Notably, calcium carbonate, a commonly
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occurring mineral, has previously been demonstrated to be effective in driving diffusio-

phoresis [169].

5.5 Materials and Methods

5.5.1 Design and Operation of the Setup

Figure 5.6 shows the setup of our diffusiophoretic trap. We constructed a custom-built

mechanical micromanipulator mounted on a microscopy stage. The glass pipette holder

is mounted on a lever that has an adjustable angle. We use a BNC-Type Pipette Holder

(HEKA; #895229) for glass pipettes with an outer diameter of 1.5mm. For microscopy, we

employed an Olympus IX81 inverted microscope equipped with a 20× objective (Olympus

UPlanFL N 20×/0.50). The microscope is placed on an optical table and inside a plastic

housing to prevent air flow and vibrations from disturbing our experiments. Adjustable

air pressure is provided to the glass pipette by an OB1 MK3 microfluidic flow controller

from Elveflow.

The sample chamber is a standard 8mm x 1mm nitrile rubber sealing ring glued to a

glass cover slide (ROTH; #CEX2.1). To fixate the sealing ring, we first dipped it into a

drop of UV-curable glue (BEST KLEBSTOFFE; Uvirapid 702). Excess glue is removed

by placing the sealing ring on another glass slide and picking it up again. The sealing

ring is then carefully placed in the center of the glass slide. The glue is cured by shining

UV light on the glass slide for 1 h. The sample chamber is rinsed with deionized water,

sonicated in a 2 % Hellmanex (Hellma; #9-307-011-4-507) bath for 15min, rinsed again

with deionized water, and then sonicated again in deionized water for 15min. The sample

chamber is then carefully dried using compressed air. We store the sample chambers in

an empty pipette box. We avoid storing the sample chambers in water as we found this

causes the sealing ring to detach from the glass slide.

For pulling glass pipettes, we use a P-1000 pipette puller from Sutter Instruments equipped

with a 2.5mm x 2.5mm box heating filament (Sutter Instrument, #FB255B) from Science

Products GmbH. We use borosilicate glass capillaries (Sutter Instrument; #BF150-86-10)

with an outer diameter of 1.5mm and an inner diameter of 0.86mm. The pulling settings

to produce sub-micrometer pipette tip orifices are as follows: Heat = 547, Pull = 3,

Velocity = 37, Delay = 1, Pressure = 500. [188]

For our experiments, we use 200mM Tris (ROTH; #4855.2) titrated with HCl (ROTH;

#0281.1) to a pH of 7.7 and supplement it with 1mM MgCl2 (Merck; #63069-500ML).
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a b 

Figure 5.6. (a) Photograph of our diffusiophoretic trap setup, showing a glass pipette mounted
on a mechanical micromanipulator. A pressure supply is connected via small tubing. (b) Close-
up photograph of the glass pipette extending into the sample chamber, which is filled with
water. The sample chamber consists of a sealing ring glued to a microscopy slide.

We prepare our samples in 1.5mL tubes (Eppendorf; Safe-Lock Tubes 1.5mL). We note

that all tubes contain dust particles, which are attracted to our trap and lead to incon-

sistent experiments. To mitigate this issue, we pre-wash the tubes with Helmanex and

distilled water.

To prepare the sample chamber, we rinse it with deionized water, blow it dry, and position

it on the microscopy stage. We fill a newly pulled glass pipette with buffer using spe-

cialized pipette tips (Eppendorf; Microloader) and insert the pipette into a holder on the

mechanical micromanipulator. We add 30 µL of sample to the chamber, filling it gently

to avoid bubble formation and to prevent dust particle contamination. We also ensure a

flat water surface to prevent optical distortions. Finally, we lower the filled glass pipette

into the sample chamber.

5.5.2 Theoretical Considerations

Calculation of the Electric Field

In this Section, we derive the electric field E that arises in a concentration gradient of a

two-component electrolyte with ion valencies z+ and z− and local concentrations c+ and

c−. When ions have dissimilar diffusion constants D+ and D−, one ion species diffuses

more rapidly, leading to charge separation. This charge separation generates an electric

field. We start by using the approach outlined by Chiang et al. [169], who derived an

electric field expression for multi-component electrolytes.

The ion fluxes j+ and j− are governed by the Nernst-Planck equations, combined with a
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convective drift term due to the fluid velocity v:

j+ = −D+∇c+ +D+
∣∣z+∣∣ e

kBT
c+E + c+v (5.2)

j− = −D−∇c− −D− ∣∣z−∣∣ e

kBT
c−E + c−v (5.3)

Further, we must also consider the continuity equation for each ion species:

∂c+

∂t
+∇ · j+ = 0 (5.4)

∂c−

∂t
+∇ · j− = 0 (5.5)

Additionally, we assume approximate electroneutrality in the system [189]:

0 =
∣∣z+∣∣ c+ −

∣∣z−∣∣ c− (5.6)

The electric current density J can be computed from the ion fluxes as J = e |z+| j+ −
e |z−| j−. We assume zero electric current as there are no external electrodes or other
charge sources. This zero-current condition yields |z+| j+ − |z−| j− = 0, which, upon
using equations 5.2 and 5.3, results in

0 =
J

e
= −D

+
∣∣∣z+∣∣∣∇c

+
+ D

−
∣∣∣z−∣∣∣∇c

−
+

(
D

+
∣∣∣z+∣∣∣2 e

kBT
c
+

+ D
−
∣∣∣z−∣∣∣2 e

kBT
c
−
)

E +
(∣∣∣z+∣∣∣ c+ −

∣∣∣z−∣∣∣ c−)v (5.7)

The convection term now includes the right side of equation 5.6 as a factor and thus

vanishes. We then define n = |z+| c+ = |z−| c− in line with equation 5.6:

0 =
J

e
= −

(
D+ +D−)∇n+

e

kBT

(
D+

∣∣z+∣∣+D− ∣∣z−∣∣)nE (5.8)

Here, n represents the equivalent number of monovalent ions bearing the same charge as

the multivalent ions. Solving for E gives the desired expression for the electric field:

E =
kBT

e

D+ −D−

|z+|D+ + |z−|D−
∇n

n
(5.9)

The gradient term is invariant under scaling, implying that ∇n
n

= α∇n
αn

= ∇c
c
. The scaling

factor α can be chosen such that c corresponds to any definition of the local electrolyte

concentration. For instance, setting α = 1
|z+| yields c =

1
|z+|n = c+.

114



Equation for the Electrolyte Concentration

For completeness, we also derive the evolution equation for the electrolyte concentration

c. To do this, we eliminate the electric field in equation 5.2 using equation 5.9. We

employ the appropriate electrolyte concentration definition for the gradient term, which

is ∇c+

c+
:

j+ = −D+∇c+ +D+
∣∣z+∣∣ c+ D+ −D−

|z+|D+ + |z−|D−
∇c+

c+
+ c+v (5.10)

The equation can be further simplified and rearranged as:

j+ = −D+D− |z+|+ |z−|
|z+|D+ + |z−|D−∇c+ + c+v (5.11)

We define an effective diffusion constant D∗ = D+D− |z+|+|z−|
|z+|D++|z−|D− and apply the con-

tinuity equation 5.4:
∂c+

∂t
= D∗∆c+ −∇

(
c+v

)
(5.12)

Note that the procedure would yield the same result if initiated with equation 5.3, but with

c− appearing in the equation instead of c+. Also, drift-diffusion equations are generally

invariant under scaling, as the concentration term appears in every summand. We can thus

replace c+ with any ion concentration definition. For instance, we can use n = c+ |z+|
again.

5.5.3 Programming and Video Editing

For video and image analysis we used ImageJ [190]. The final video editing was done using

the open-source software Shotcut [128]. The programming was assisted by ChatGPT [191]

based on the large language model GPT-4 [192]. We use NUPACK for the design of DNA

sequences [126].

5.5.4 Measurement of the Trapping Efficiency (Section 5.2.1)

Experimental Section

We prepare a 1mL solution containing 1 nM of fluorescently labeled DNA in deionized

water. Using this solution, we operate the diffusiophoretic trap and record microscopy

videos to capture the formation of the fluorescent diffuse cloud at varying applied pressures.

Between each run, we carefully replace the sample in the chamber. Each recorded video

lasts 120 s, with an image captured every 1 s. To generate a calibration curve for data
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analysis, we also image DNA solutions at concentrations of 0 nM, 1 nM, 5 nM, 25 nM,

50 nM, and 100 nM.

We record additional videos of the trapping process that include a brightfield channel at

selected pressure values: 10mbar, 15mbar, 20mbar, 25mbar, and 30mbar. These dual-

channel videos enable us to visualize the shape of the fluorescent diffuse cloud in relation

to the pipette.

Calibration and Image Correction

We aim to establish a calibration procedure to translate fluorescence values from mi-

croscopy images into DNA concentrations. To achieve this, we compute a translation

factor and perform a flat-field correction to account for uneven illumination. For the

flat-field correction, we need to generate a correction image.

A microscopy image with pixel intensity values I(x, y) at pixel coordinates x and y under

uneven illumination can be modeled as

I(x, y) = S(x, y) · F (x, y) +B. (5.13)

Here, B represents the background signal predominantly arising from the camera’s internal

noise, F (x, y) denotes the uneven illumination pattern with a spatial average ⟨F (x, y)⟩ =
1, and S(x, y) is the signal representing image features. Rearranging equation (5.13), we

obtain

S(x, y) =
I(x, y)−B

F (x, y)
. (5.14)

We use an image with 0 nM DNA concentration, containing only deionized water, as our

background image B. To compute the correction image F (x, y), we consider images

Ic(x, y) of bulk DNA at concentrations c. Using equation (5.13), we have

Ic(x, y) = g(c) · F (x, y) +B. (5.15)

g(c) is constant for a given image and depends on the DNA concentration. Solving for

F (x, y) yields

F (x, y) =
Ic(x, y)−B

g(c)
. (5.16)

We can find an expression for g(c) by averaging equation (5.16) and using ⟨F (x, y)⟩ = 1:

g(c) = ⟨Ic(x, y)−B⟩ (5.17)
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We can thus calculate the correction image as

F (x, y) =
Ic(x, y)−B

⟨Ic(x, y)−B⟩
. (5.18)

We averaged the correction images obtained for all DNA concentrations c to enhance

accuracy. This averaged correction image is then applied using equation (5.14).

To translate fluorescence values into concentrations, we assume a linear relationship be-

tween concentration c and g(c):

⟨Ic(x, y)−B⟩ = g(c) = k · c (5.19)

We fit ⟨Ic(x, y) − B⟩ to obtain k, as shown in Figure 5.7. We find k = 90.1 a u /nM.
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Figure 5.7. Plot of the average intensity of the bulk fluorescent values at different concentra-
tions of fluorescent DNA. Data are fitted with a linear function.

Using this value, we can estimate local DNA concentrations c(x, y) in the corrected images

S(x, y) as c(x, y) = S(x, y)/k.

Concentrations in the Trap

To assess the efficiency of the diffusiophoretic trap under various applied pressures, we

aim to measure the DNA concentration in the trap. First, we apply the correction to

the videos using equation (5.14). We define a circular region of interest around the

diffusiophoretic trap where we aim to estimate the DNA concentration. We identify this

region by locating the maximum intensity among all possible circular regions of the same

size within an image. First, we create an image that contains the average values of the

circular region around a specific pixel as the pixel value. Computationally, we achieve this
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by defining a normalized circular filter C(x, y). This filter depicts a bright circle on a black

background, with the sum of all its pixel values equal to 1. We convolve each frame of

our microscopy videos with this circular filter, as expressed by S(x, y)∗C(x, y). From the

resulting image, we extract the maximum pixel value, denoted as max (S(x, y) ∗ C(x, y)).

According to our definition, this maximum value represents the average fluorescence value

inside the trap. Note that this procedure is effective only when a single bright spot is

present in an image. We apply this procedure to every frame of all microscopy videos for

three differently sized circular regions. This yields fluorescence-over-time data for each

recorded video at a given pressure. By applying the conversion factor k, we translate

fluorescence values into concentrations and generate the plots depicted in Figure 5.2

Image Editing

From the dual-channel videos that include both brightfield and fluorescence channels, we

selected one frame from each channel 100 s after initiating each experiment. We then

generated overlay images by combining the inverted brightfield frame with the corre-

sponding fluorescence frame. To maintain uniformity, we adjusted the contrast in both

the brightfield and fluorescence frames to get similar brightness levels for all images.

5.5.5 Operation of the Trap with Silica Spheres (Section 5.2.2)

Experimental Section

We purchased carboxylated silica spheres with a diameter of 2.12 µm (Lot: SiO2-COOH-

AR1060-5ml) from microParticles GmbH. Before use, we washed the colloids in deionized

water. To do this, we diluted the colloidal stock solution 1:10 in 1000 µL of deionized wa-

ter. We then centrifuged the solution at 1000 rcf for 2min and removed the supernatant.

Next, we added 1000 µL of deionized water and sonicated the colloidal solution for 1min

using an ultrasound generator (Bandelin: SONOPLUS UW mini20) at maximum power.

We repeated the procedure three times. For our experiments, we used a total dilution of

1:200,000 with respect to the initial stock concentration. Note that this value requires

adjustment through trial and error, as the number of colloids lost during the washing

procedure and the initial stock concentration may vary.

We operated our diffusiophoretic trap at 25mBar and recorded a 3min long brightfield

video of colloids being attracted and accumulated in the trap.
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Data Analysis and Video Editing

From the recorded video, we created the image shown in Figure 5.3, which displays the

trajectories of the colloids as green lines. To generate this image, we first computed

Gi = |Ii − I| from the individual frames Ii, where I is the average image of these frames.

In the computed images Gi, particles appear as bright spots. This is independent of

their appearance in the original frames Fi, where they could appear either bright or dark

depending on their position relative to the focal plane. Finally, we created an overlay

image by taking the maximum value of each pixel across the image sequence from the

images Gi. We then overlaid the resulting image with the inverted average image I such

that the pipette is visible in the image.

5.5.6 DNA Hybridization on Silica Particles (Section 5.2.3)

Functionalization of Silica Particles

We modified the surface of our silica spheres by activating the carboxyl groups using

1-Ethyl-3-(3-dimethyl-aminopropyl) carbodiimide (EDC) and coupling them to amino-

modified DNA [124, 125]. The protocol follows a methodology we previously devel-

oped [92]. The colloids reacted in 200 µL of 100mM MES buffer (pH 4.8, adjusted with

HCl and NaOH), containing 250 µM amino-modified DNA and 250mM EDC (Merck: Art.

No. E6383-1G), on a rotator at room temperature for 3 h. We used a colloid concen-

tration of 11.35 × 109mL−1 for the reaction. Subsequently, the colloids were washed

and incubated extensively in borate buffer (boric acid adjusted to pH 8.2 with NaOH)

and deionized water to remove residual reaction components and hydrolyze unreacted

activated carboxyl groups. We avoided buffers containing amino groups during washing

to preserve the negative surface charge of the colloids. Finally, the colloids were diluted

1 to 5 to a concentration of 2.27 × 109mL−1 in deionized water, shock-frozen in liquid

nitrogen, and stored at −80 ◦C. An extended protocol detailing the washing procedure is

available in Section A.1.

Experimental Section

We conducted our trapping experiments using a 1:200000 dilution of the DNA-functionalized

colloids relative to their initial stock concentration. We use 5 nM of complementary DNA

and a 30 µL sample volume. We operated the trap for 5min and recorded a video in both

the brightfield and fluorescence channels. We then recorded another video in the bright-

field channel, during which we turned off the trap to observe colloid sedimentation. We
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resumed imaging the sedimented colloids in the brightfield and fluorescence channels for

2 h. We terminated the experiment upon observing that the liquid in the sample chamber

had evaporated.

Data Analysis and Video Editing

From the recorded videos, we generated Supplementary Movie 2. We adjusted the bright-

ness levels throughout the first part of the video to ensure the visibility of the trapped

DNA. We also created an overlay image, displayed in Figure 5.4, by combining an inverted

brightfield image of the trapped colloids with a fluorescence image of the diffuse cloud of

attracted DNA.

5.5.7 Formation of DNA Gels from DNA Nanostars (Section 5.2.4)

Experimental Section

For our experiments, we prepared a 1mL solution of DNA nanostars in deionized water.

The solution contains 5 nM of each of the three DNA strands that compose the Y-shaped

nanostars, yielding an overall nanostar concentration of 5 nM. We substituted 1 nM of

one strand with a Cy5-labeled strand to produce fluorescent nanostars. We heated the

sample on a heat block set to 90 ◦C for 2min and allowed it to cool to room temperature

over 10min. We operated the diffusiophoretic trap using 30 µL of this fluorescent DNA

solution. We recorded a microscopy video, capturing both the brightfield and fluorescence

channels every 10 s to observe the polymerizing DNA nanostars. After approximately

17min, we turned off the trap but continued imaging. We repeated the experiment 6

times.

Data Analysis and Video Editing

To estimate the concentration of DNA nanostars in the diffusiophoretic trap, we apply

the image correction method outlined in Section 5.5.4, using equation 5.5.4. We then

follow the procedure detailed in Section 5.5.4 to measure the DNA concentration in a

designated region of interest in front of the trap. The concentration versus time graphs

for all replicates are displayed in Figure 5.8. A representative graph is shown in Figure 5.5.

For visualization, we select fluorescence and brightfield frames from the recorded video at

specific time points to document the evolving DNA gel structure. We adjust the brightness

and contrast of these frames to maintain visibility across different fluorescence intensities.
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These processed images appear in Figure 5.5. The full video, with brightness adjusted for

all frames and channels, is accessible in Supplementary Movie 3.

Replicates

In Figure 5.8, we display the concentration versus time graphs for replicates of the DNA

nanostar polymerization experiments, originally presented in Figure 5.5. The graphs gen-

erally show the same qualitative time-dependent trends with an initial rapid increase in

DNA concentration in the trap and a subsequent decline during the onset of gel polymer-

ization. During gel polymerization, the fluorescence level remains more or less constant,

albeit with some variations and noise. We assume that these variations stem from varia-

tions in the shape of the flow fields and concentration gradients due to slight differences in

the position and shape of the gel. When the trap is deactivated at around 17 minutes, the

DNA concentration experiences an initial sharp decline, followed by a gradual decrease to

0 nM as the DNA gel dissociates. The graph labeled ’run 1’ appears in Figure 5.5. In ’run

3’, an unusual drop in DNA concentration occurs during the dissociation phase because

the gel detached from the glass pipette and drifted away. In ’run 6’, we inadvertently

deactivated the trap one minute later than in the other runs.
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Figure 5.8. Replicates of the DNA nanostar polymerization experiment shown in Figure 5.5.
The plots represent the average intensity in a region of interest corresponding to a sample volume
of 280 fL.

5.5.8 DNA Sequences

We order DNA from IDT in dry form and adopted the sequences from a previous study [193].

The sequences composing the DNA nanostars are listed in the table below, in 5’ to 3’

notation. Y2 CY5 is a modified version of the strand Y2, having a fluorescent dye instead
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of a single-stranded overhang. /5Cy5/ is the notation of the fluorophore modification

from the DNA supplier.

Label Sequence Length (nt)

Y1 GCTCGAGCCAGTGAGGACGGAAGTTTGTCGTAGCATCGCACC 42

Y2 GCTCGAGCCAACCACGCCTGTCCATTACTTCCGTCCTCACTG 42

Y3 GCTCGAGCGGTGCGATGCTACGACTTTGGACAGGCGTGGTTG 42

Y2 CY5 /5Cy5/AACCACGCCTGTCCATTACTTCCGTCCTCACTG 33

The sequence used to modify the colloids is listed in the table below and labeled as

C2µ. C2µ* is designed to be complementary to the latter part of C2µ and features

a fluorophore modification. Both sequences are designed to lack secondary structure,

optimizing binding, as confirmed by NUPACK analysis. The prefix /5AmMC6/ denotes

an amino modification, while /5Cy55/ denotes a fluorophore modification.

Label Sequence Length (nt)

C2µ /5AmMC6/GTCTTTTATGCTGCTTATTCGTGTATATCCTGACCTAACTGAACTACCGCGCTAAAACTG 60

C2µ* /5Cy55/CAGTTTTAGCGCGGTAGTTCAGTTAGGTCA 30
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6. Summary and Outlook

In summary, my co-authors and I have provided a comprehensive explanation for a previ-

ously poorly understood colloidal patterning phenomenon in AC electric fields. Specifically,

we discovered that hydrodynamic quadrupole flow, caused by Concentration Polarization

Electroosmosis (CPEO) emerging around the colloids, is responsible for the patterning. In-

terestingly, it was recently found that similar patterns can also be created by AC magnetic

fields acting on magnetic particles [194].

The existence of CPEO flows around spherical particles in AC electric fields led us to con-

clude that CPEO can be used to propel asymmetric particles. This understanding allowed

us to complete the picture of AC electrophoresis (ACEP), which, as we found, can be

achieved through Induced Charge Electrophoresis (ICEP) for metal particles, and through

the mechanism we introduced, Concentration Polarization Electrophoresis (CPEP). I be-

lieve that a comprehensive understanding of AC electroosmosis, including CPEO and

ICEO, may prove useful in creating novel microfluidic devices. ICEO is already extensively

used in microfluidic devices [70–75]. Furthermore, I propose that the generic occurrence

of CPEP, as demonstrated by us, might be useful for sorting particles based on their

shape and composition. Finally, I envision sophisticated microrobotics applications going

beyond the demonstrated action of simple silica dimers. One can construct microrobots

out of more intriguing materials, such as living organisms or biocompatible materials,

which would allow the addition of genetic circuits, biological or chemical sensors to the

microrobots.

Concerning the diffusiophoretic trap we implemented, I believe similar traps could be

utilized in low-cost sensing applications to extract nucleic acids from low-concentration

environmental samples. Furthermore, the trap could be used to concentrate and assemble

structures beyond DNA nanostars, such as DNA origamis and colloids, into macroscopic

structures. Additionally, the trap could be used to separate particles and molecules based

on their charge, as the direction of the focusing electric field depends on the employed

electrolyte gradient. Importantly, our trap system, which utilizes simple diffusiophoresis in

salt gradients, offers a promising platform for prebiotic evolution by concentrating organic

molecules. Such a process is important in dilute primordial environments to promote

interactions and the assembly of simple biomolecules into more complex structures [131].
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A. Appendix

A.1 Functionalization of the Colloids

A.1.1 DNA sequences

The sequences of the oligonucleotides used for modification and cross-linking of the mi-

croparticles (in 5’ to 3’ direction) are listed below:

� /5AmMC6/TTCGTTTTAGTCCCATTTGTTCAGTTTTTTCAGTTTTAGCGCGGTAGTTCAGTTAGGTCA

� /5AmMC6/GTCTTTTATGCTGCTTATTCGTGTATATCCTGACCTAACTGAACTACCGCGCTAAAACTG

Here ‘/5AmMC6/’ denotes the amino modification at the 5’ end of the sequences by the

oligo synthesis company (IDT).

A.1.2 Buffer and reagent stocks

The following buffers and reagents can be prepared in advance.

� 1M MES buffer (Carl Roth: Art. No 4256.2) titrated to pH 4.8 with HCl and

NaOH

� 0.1M MES buffer diluted from the stock above

� 50mM Borate buffer at pH 8.2 prepared by titrating boric acid (Carl Roth: Art. N0

6943.2) with HCl and NaOH

� 5’-amino-modified DNA diluted in deionized water to a concentration of 1mM

Ethyl-3-(3-dimethyl-aminopropyl) carbodiimide (EDC) (Merck: Art. No. E6383-1G) is

stored in dry form in small aliquots of approximately 20mg at −20 ◦C and is later diluted

in deionized water just before starting the bioconjugation reaction.
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A.1.3 Colloid Concentrations

Carboxylated silica spheres with diameters 1.01 µm (Lot: SiO2 –COOH-AR756-5ml) and

2.12 µm (Lot: SiO2 –COOH-AR1060-5ml) were purchased from the microParticles GmbH.

The colloids come at a weight per volume concentration of cW = 0.05 g/mL. This can

be translated into a number density c via

c =
cW

ρ4
3
π
(
d
2

)3
were ρ = 1.85 g/cm3 is the density of the colloids and d is their diameter. The number

density of the colloids is thus given by

c1.01 =
50 · 109

mL

c2.12 =
5.42 · 109

mL
.

The following relation between the colloid concentrations cs in the reaction has to be

fulfilled in order to have approximately the same number of reaction sites in a sample:

cs2.12 =

(
1.01

2.12

)2

cs1.01, (A.1)

which relates the number densities via the surface area of the colloids. We choose

cs1.01 = 10 · 109 1

mL

cs2.12 = 2.27 · 109 1

mL
.

as the starting point for our protocol.

A.1.4 Protocol

0. Colloid Start Concentration

� vortex colloid stock solutions

� 2.12 µm colloids: Pipet 419 µL of colloids and 581 µL of deionized water into a

1.5mL tube (dilution 1/2.386)

� 1.01 µm colloids: Pipet 200 µL of colloids and 800 µL of deionized water into a

1.5mL tube (dilution 1/5)
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1. Transfer Colloids into MES Buffer

� centrifuge the colloids at 250 rcf for 30 s and remove the supernatant (the Colloids

should be sedimented)

� add 1 mL of 0.1 M MES buffer

� vortex briefly

� centrifuge the colloids at 250 rcf for 30 s (Colloids should be sedimented)

� add 100 µL of 0.1 M MES buffer at pH 4.8

� sonicate the colloids with a ultrasound generator at maximum power settings (20 W)

for 1 min

The sonication with the ultrasound generator (Bandelin: SONOPLUS UW mini20) breaks

up potentially aggregated colloids.

2. Modification Reaction

� create 1.25 M EDC stock solution: Disolve 12 mg of EDC in 50 µL deionized water

� add 50 µL of 1 mM amino-modified DNA and 10 µL of 1 M MES-buffer and 40 µL

of 1.25 M EDC to a 0.5 mL tube

� vortex briefly

� add the 100 µL of the prepared colloids solution to the sample.

� vortex briefly

� incubate for 3 h on a rotator

3. Washing Procedure

The colloids are first washed with borate buffer to neutralize the acidic MES buffer and

to hydrolize unreacted activated carboxyl groups. The colloids are then washed with

deionized water to remove the borate buffer and any reactants that are unspecifically

adsorbed to the colloids.

� transfer the sample to a 1.5 mL tube

� add 800 µL of 50 mM borate buffer to the sample.
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� repeat the following steps for 5 times

– centrifuge at 250 rcf for 30 s (the colloids should be sedimented) and remove

the supernatant

– add 1 mL of 50 mM borate buffer to the sample

– vortex briefly; In round 4: sonicate at max settings for 1 min and incubate for

1.5 h on a rotator

� repeat the following steps for 5 times

– Centrifuge at 1000 rcf for 30 s (Colloids should be sedimented) and remove

the supernatant

– add 1 mL of deionized water to the sample

– vortex briefly; in round 4: sonicate at max setting for 1 min and incubate for

1.5 h on a rotator

� sonicate the colloids with a ultrasound generator at max settings for 1 min

� create aliquots, shock freeze in liquid nitrogen and store at −80 ◦C

A.2 Raw Data (Microrobots Powered by Concentra-

tion Polarization Electrophoresis (CPEP)

A.2.1 Buffer Characterization

Tables A.1, A.3, A.5 and A.7 list all velocity measurements for all buffer conditions.

Column 1 and 2 list the concentrations of the buffer ingredients. Column 3 (video no.)

enumerates the videos recorded with the same buffer condition. Column 4 (dimer (µm/s))

reports the measured velocities of all dimers in a video as an ordered list. Column 5 (ori-

entation) lists the orientations of the dimers from Column 4 encoded as 1 (‘up’) and

-1 (‘down’). Up corresponds to the case where the smaller particle of a dimer appears

below the larger particle on the computer screen. Column 6 (reference (µm/s)) contains

the measured velocities of all reference particles as an ordered list. Column 7 (average

reference (µm/s)) lists the average velocity of the reference particles from Column 6 of

one video. Column 8 (dimer corrected (µm/s)) lists the dimer velocities from Column 4

corrected by the average velocity of the reference particles from Column 7.
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Tables A.2, A.4, A.6 and A.8 list the corrected velocity measurements, and the correspond-

ing average and standard deviation for the given buffer compositions. Column 1 and 2 list

the concentrations of the buffer ingredients. Column 3 (dimer corrected (µm/s)) list all

corrected dimer velocities of a given buffer composition. Column 4 (average (µm/s)) re-

ports the average of the corrected dimer velocities. Column 5 (standard deviation (µm/s))

lists the standard deviation of the corrected dimer velocities.

Table A.1. NaOH raw data

NaOH (µM) MgCl2 (µM) video no. dimer (µm/s) orientation reference (µm/s) average reference (µm/s) dimer corrected (µm/s)
10 5.2 1 -2.1584; 2.0315; 1.7996 1; -1; -1 -0.11963 -0.11963 2.0388; 2.1512; 1.9192
10 5.2 2 -2.11; 1.8049 1; -1 0.09221 0.09221 2.2022; 1.7127
10 5.2 3 1.7057; 1.6759 -1; -1 -0.22243; -0.26056; -0.17912 -0.2207 1.9264; 1.8966
25 0.2 1 -0.62871; -0.66528 -1; -1 -0.16556; -0.23086; -0.21944 -0.20529 -0.42343; -0.45999
25 0.2 2 -0.22598 1 -0.33294; -0.11588 -0.22441 0.0015664
25 0.2 3 -0.32598 -1 -0.1046 -0.1046 -0.22138
25 5.2 1 3.081; 2.9794 -1; -1 0.016034; 0.10796; 0.10584 0.076612 3.0044; 2.9028
25 5.2 2 -3.098; 3.1878 1; -1 -0.033192 -0.033192 3.0648; 3.221
25 5.2 3 -3.8004; 3.4204 1; -1 -0.24992; -0.36162; -0.092779; 0.1997 -0.12616 3.6742; 3.5466
50 0.2 1 -0.69124; 1.0838; 0.81608 -1; 1; 1 0.15563 0.15563 -0.84687; -0.92813; -0.66045
50 0.2 2 -1.0354; -1.1525 -1; -1 0.065881 0.065881 -1.1013; -1.2184
50 0.2 3 -0.69959; -0.90219; -0.88047 -1; -1; -1 -0.12209 -0.12209 -0.57749; -0.78009; -0.75838
50 5.2 1 0.36514; -0.75861 -1; 1 -0.011512 -0.011512 0.37665; 0.7471
50 5.2 2 0.49612; -0.9068 -1; 1 -0.12991; 0.10312; 0.039071 0.0040941 0.49203; 0.9109
50 5.2 3 -0.71939; -0.87973 1; 1 -0.09121 -0.09121 0.62818; 0.78852
100 5.2 1 -0.31532; -0.17464 1; -1 0.049767 0.049767 0.36509; -0.22441
100 5.2 2 0.05744; -0.03439 1; 1 -0.16706; 0.050236; -0.1582 -0.091673 -0.14911; -0.057283
100 5.2 3 -0.044189; 0.29934 1; 1 0.01613; -0.020345; -0.1041 -0.036106 0.0080835; -0.33544

Table A.2. NaOH corrected velocities

NaOH (µM) MgCl2 (µM) dimer corrected (µm/s) average (µm/s) standard deviation (µm/s)
10 5.2 2.0388; 2.1512; 1.9192; 2.2022; 1.7127; 1.9264; 1.8966 1.9782 0.16687
25 0.2 -0.42343; -0.45999; 0.0015664; -0.22138 -0.27581 0.21261
25 5.2 3.0044; 2.9028; 3.0648; 3.221; 3.6742; 3.5466 3.2356 0.31069
50 0.2 -0.84687; -0.92813; -0.66045; -1.1013; -1.2184; -0.57749; -0.78009; -0.75838 -0.85889 0.2164
50 5.2 0.37665; 0.7471; 0.49203; 0.9109; 0.62818; 0.78852 0.65723 0.19825
100 5.2 0.36509; -0.22441; -0.14911; -0.057283; 0.0080835; -0.33544 -0.065514 0.24331

Table A.3. Tris raw data

Tris (µM) MgCl2 (µM) video no. dimer (µm/s) orientation reference (µm/s) average reference (µm/s) dimer corrected (µm/s)
10 5.2 1 2.1867; 2.112 -1; -1 -0.011658 -0.011658 2.1983; 2.1237
10 5.2 2 2.3178 -1 -0.28296; -0.093157 -0.18806 2.5058
10 5.2 3 2.0876; -2.5115 -1; 1 -0.01149 -0.01149 2.099; 2.5
10 5.2 4 2.384; -2.5342 -1; 1 -0.31553; 0.031664 -0.14193 2.526; 2.3922
25 5.2 1 2.7714; -1.5856 -1; 1 0.035405 0.035405 2.736; 1.621
25 5.2 2 -2.8863; 2.7368 1; -1 0.0074493 0.0074493 2.8938; 2.7293
25 5.2 3 -2.1166; -2.9565; 2.956 1; 1; -1 -0.0031657 -0.0031657 2.1135; 2.9533; 2.9592
50 0.2 1 0.24035; -0.29358; -0.29227 -1; 1; 1 -0.07472 -0.07472 0.31507; 0.21886; 0.21755
50 0.2 2 -0.18728; 0.3081; 0.067422 1; -1; -1 -0.10733; 0.014156 -0.046585 0.1407; 0.35468; 0.11401
50 0.2 3 -0.41175; -0.35746 1; 1 0.081775 0.081775 0.49352; 0.43924
50 5.2 1 2.2018; -2.4064 -1; 1 -0.082894 -0.082894 2.2847; 2.3235
50 5.2 2 2.2391; -2.415 -1; 1 0.042677; -0.078361 -0.017842 2.257; 2.3971
50 5.2 3 2.4588; -2.2549 -1; 1 -0.04447 -0.04447 2.5033; 2.2105
100 5.2 1 1.1616; -1.736; -1.8208 -1; 1; 1 -0.22214; -0.30256 -0.26235 1.424; 1.4736; 1.5584
100 5.2 2 1.7564; -1.4701 -1; 1 0.083002; 0.033984 0.058493 1.6979; 1.5286
100 5.2 3 -1.2916; 1.5386; -1.7132 1; -1; 1 -0.071143; 0.016444 -0.027349 1.2642; 1.566; 1.6859
250 5.2 1 0.82139; -0.63782 -1; 1 -0.016064 -0.016064 0.83745; 0.62176
250 5.2 2 -0.87382; -0.94419 1; 1 -0.03497 -0.03497 0.83885; 0.90922
250 5.2 3 -0.95719; -0.82211; 0.80946 1; 1; -1 -0.13714; 0.20802 0.035439 0.99263; 0.85755; 0.77402
500 5.2 1 -0.55723; 0.51097; -0.45549 1; -1; 1 -0.065543 -0.065543 0.49169; 0.57651; 0.38994
500 5.2 3 -0.54143; 0.78223 1; -1 -0.2473 -0.2473 0.29413; 1.0295

A.2.2 Electric Field Strength and Frequency Characterization

Table A.9, A.10 and A.11 each contain data obtained from measurements made on one

individual dimer and a reference particle. Column 1 and 2 list the applied electric field

amplitude and frequency. Column 3 lists the measured velocity of the dimer. Column 4
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Table A.4. Tris corrected velocities

Tris (µM) MgCl2 (µM) dimer corrected (µm/s) average (µm/s) standard deviation (µm/s)
10 5.2 2.1983; 2.1237; 2.5058; 2.099; 2.5; 2.526; 2.3922 2.335 0.18938
25 5.2 2.736; 1.621; 2.8938; 2.7293; 2.1135; 2.9533; 2.9592 2.5723 0.51075
50 0.2 0.31507; 0.21886; 0.21755; 0.1407; 0.35468; 0.11401; 0.49352; 0.43924 0.2867 0.13732
50 5.2 2.2847; 2.3235; 2.257; 2.3971; 2.5033; 2.2105 2.3293 0.10607
100 5.2 1.424; 1.4736; 1.5584; 1.6979; 1.5286; 1.2642; 1.566; 1.6859 1.5248 0.14114
250 5.2 0.83745; 0.62176; 0.83885; 0.90922; 0.99263; 0.85755; 0.77402 0.83307 0.11551
500 5.2 0.49169; 0.57651; 0.38994; 0.29413; 1.0295 0.55636 0.28501

Table A.5. NaCl raw data

NaCl (µM) MgCl2 (µM) video no. dimer (µm/s) orientation reference (µm/s) average reference (µm/s) dimer corrected (µm/s)
25 5.2 1 0.2565; -0.090399 -1; -1 -0.047559; -0.10738 -0.077468 0.33397; -0.01293
25 5.2 2 -0.0010654; -0.072518 1; -1 -0.083108 -0.083108 -0.082042; 0.01059
25 5.2 3 -0.058622; 0.077811; 0.20893 1; -1; -1 -0.0033616 -0.0033616 0.055261; 0.081173; 0.21229
50 0.2 1 -0.07064 -1 -0.10322 -0.10322 0.032583
50 0.2 2 -0.30739; 0.14427 -1; 1 -0.20242 -0.20242 -0.10497; -0.34669
50 0.2 3 0.23731; -0.0034925 1; 1 0.022871; 0.14171 0.08229 -0.15502; 0.085783
50 5.2 1 0.18548; -0.60578 -1; 1 0.10408; -0.16269; -0.13499 -0.064532 0.25002; 0.54125
50 5.2 2 0.35203; -0.4395 -1; 1 0.013808; 0.12143 0.067621 0.28441; 0.50712
50 5.2 3 -0.36842; 0.49881 1; -1 0.041369; -0.13753 -0.048079 0.32034; 0.54689
50 5.2 4 -0.62647; 0.5147; -0.6237 1; -1; 1 -0.011805; 0.0073405 -0.0022323 0.62424; 0.51693; 0.62146
100 0.2 1 -0.3359; -0.070846; -0.32053 1; 1; 1 -0.39082; -0.018323 -0.20457 0.13133; -0.13372; 0.11596
100 0.2 2 -0.050905 -1 -0.15048; -0.098426; -0.10022; 0.21803; -0.13712 -0.053645 0.0027406
100 0.2 3 0.041658; 0.27696; 0.091807 -1; -1; -1 0.035803; 0.092218 0.06401 -0.022352; 0.21295; 0.027797
100 0.2 4 -0.19775 1 -0.035193; 0.050215; -0.069265 -0.018081 0.17967
100 5.2 1 0.54022; -0.76891 -1; 1 -0.064309 -0.064309 0.60453; 0.7046
100 5.2 2 -0.9319; -0.94887 1; 1 -0.061837; 0.0075117; -0.099579 -0.051301 0.88059; 0.89757
100 5.2 3 0.51296; 0.58286 -1; -1 0.1632 0.1632 0.34976; 0.41966
100 5.2 4 0.59116; 0.54284 -1; -1 -0.0032619 -0.0032619 0.59442; 0.5461
250 5.2 1 0.35226; -0.81461 -1; 1 0.10234 0.10234 0.24992; 0.91694
250 5.2 2 0.57366; 0.52717; -0.74718 -1; -1; 1 -0.012219 -0.012219 0.58588; 0.53939; 0.73496
250 5.2 3 -0.43561; 0.52548 1; -1 -0.007625 -0.007625 0.42798; 0.53311
500 5.2 1 -0.23991; 0.53692; -0.27462 1; -1; 1 0.118; -0.19101 -0.036507 0.20341; 0.57343; 0.23812
500 5.2 2 0.69386; -0.13413 -1; 1 -0.16074 -0.16074 0.8546; -0.026605
500 5.2 3 0.36688; 0.44444 -1; -1 -0.10812 -0.10812 0.475; 0.55257

Table A.6. NaCl corrected velocities

NaCl (µM) MgCl2 (µM) dimer corrected (µm/s) average (µm/s) standard deviation (µm/s)
25 5.2 0.33397; -0.01293; -0.082042; 0.01059; 0.055261; 0.081173; 0.21229 0.085472 0.14266
50 0.2 0.032583; -0.10497; -0.34669; -0.15502; 0.085783 -0.097663 0.17027
50 5.2 0.25002; 0.54125; 0.28441; 0.50712; 0.32034; 0.54689; 0.62424; 0.51693; 0.62146 0.46807 0.14427
100 0.2 0.13133; -0.13372; 0.11596; 0.0027406; -0.022352; 0.21295; 0.027797; 0.17967 0.064296 0.11614
100 5.2 0.60453; 0.7046; 0.88059; 0.89757; 0.34976; 0.41966; 0.59442; 0.5461 0.62465 0.19693
250 5.2 0.24992; 0.91694; 0.58588; 0.53939; 0.73496; 0.42798; 0.53311 0.56974 0.21321
500 5.2 0.20341; 0.57343; 0.23812; 0.8546; -0.026605; 0.475; 0.55257 0.41007 0.29205

Table A.7. MgCl2 raw data

MgCl2 (µM) video no. dimer (µm/s) orientation reference (µm/s) average reference (µm/s) dimer corrected (µm/s)
5 4 -0.1007 1 0.12329; 0.078374; 0.08571 0.095791 0.19649
5 1 0.89903; -0.73302 1; -1 0.033914 0.033914 -0.86511; -0.76694
5 2 0.50023; -0.76023 1; -1 0.040048 0.040048 -0.46019; -0.80028
5 3 0.61077; 0.64962 1; 1 -0.071589 -0.071589 -0.68236; -0.72121
10 1 -0.77615 -1 -0.11222 -0.11222 -0.66393
10 2 0.81232 1 -0.049807; 0.027225; -0.089389; 0.061394 -0.012644 -0.82496
10 3 -0.67114; -0.61298 -1; -1 0.16781; 0.0054852; -0.045543; 0.050324 0.04452 -0.71566; -0.6575
10 4 0.94059 1 -0.1349 -0.1349 -1.0755
10 5 -0.44429 -1 -0.061833; 0.035126; 0.065325 0.012873 -0.45717
25 1 -0.2533; 0.49167 1; 1 -0.20812 -0.20812 0.045177; -0.69979
25 2 -0.68736; -0.14944 -1; -1 -0.041324; -0.064957; -0.036963 -0.047748 -0.63961; -0.10169
25 3 -0.40842 -1 -0.099255 -0.099255 -0.30917
25 4 -0.31028; 0.63511 -1; 1 -0.021058 -0.021058 -0.28922; -0.65617
50 1 -0.043009 -1 0.0075411 0.0075411 -0.05055
50 2 -0.1422; -0.13616 -1; 1 0.0054712 0.0054712 -0.14768; 0.14163
50 3 -0.079519; 0.080918 -1; 1 -0.045867 -0.045867 -0.033653; -0.12679
100 1 0.11921 -1 0.0010629 0.0010629 0.11815
100 2 0.18407 -1 0.074598; 0.051411 0.063005 0.12106
100 3 0.31911; 0.23815 -1; -1 -0.0078792; -0.064006 -0.035943 0.35505; 0.27409
100 4 -0.46523 1 0.066031; 0.24479 0.15541 0.62064
100 5 0.29586; -0.21409 -1; 1 -0.060438 -0.060438 0.35629; 0.15366
250 1 -0.2334 1 -0.062887 -0.062887 0.17051
250 2 0.24637 -1 0.0055673; -0.030459; -0.0033249 -0.0094054 0.25577
250 3 0.33192; -0.28766 -1; 1 0.061578 0.061578 0.27034; 0.34924

Table A.8. MgCl2 corrected velocities

MgCl2 (µM) dimer corrected (µm/s) average (µm/s) standard deviation (µm/s)
5 -0.86511; -0.76694; -0.46019; -0.80028; -0.68236; -0.72121 -0.71601 0.14038
10 -0.66393; -0.82496; -0.71566; -0.6575; -1.0755; -0.45717 -0.73245 0.20621
25 0.045177; -0.69979; -0.63961; -0.10169; -0.30917; -0.28922; -0.65617 -0.37864 0.29366
50 -0.05055; -0.14768; 0.14163; -0.033653; -0.12679; 0.19649 -0.0034233 0.14154
100 0.11815; 0.12106; 0.35505; 0.27409; 0.62064; 0.35629; 0.15366 0.28556 0.18015
250 0.17051; 0.25577; 0.27034; 0.34924 0.26147 0.073229
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lists the velocity of the reference particle. Column 5 lists the corrected velocity of the

dimer.

Table A.9. Swimmer 1

electric field (mV/µm) frequency (Hz) dimer (µm/s) reference (µm/s) dimer corrected (µm/s)
3.05 250 -0.04425 -0.05515 0.01089
4.57 250 0.18415 -0.07716 0.26130
6.09 250 -0.36709 -0.05731 0.30978
7.61 250 -0.58703 -0.06520 0.52183
9.14 250 0.73478 -0.10905 0.84382

10.66 250 -1.01412 -0.04195 0.97218
12.18 250 1.08429 -0.07286 1.15715
13.71 250 -1.58886 -0.00330 1.58556
15.23 250 1.90124 0.06676 1.83448
16.75 250 -2.27900 0.02538 2.30438
16.75 500 -1.90459 0.10462 2.00922
16.75 750 1.27442 0.04976 1.22466
16.75 1000 0.84186 -0.06135 0.90321
16.75 1500 -0.14115 0.23458 0.37573
16.75 2000 0.00711 0.11272 0.10561

Table A.10. Swimmer 2

electric field (mV/µm) frequency (Hz) dimer (µm/s) reference (µm/s) dimer corrected (µm/s)
3.05 250 -0.07672 -0.03346 0.04326
4.57 250 -0.23488 -0.05509 0.17980
6.09 250 0.29167 -0.13350 0.42517
7.61 250 0.50567 -0.10702 0.61269
9.14 250 -0.96007 -0.15874 0.80133

10.66 250 0.91369 -0.09650 1.01020
12.18 250 1.37226 -0.08227 1.45453
13.71 250 -1.85958 -0.19601 1.66357
15.23 250 2.01217 -0.13712 2.14930
16.75 250 -2.41953 0.00508 2.42461
16.75 500 1.90613 -0.27114 2.17727
16.75 750 -1.64252 -0.34347 1.29905
16.75 1000 -1.02669 -0.22037 0.80632
16.75 1500 -0.51470 -0.02538 0.48932
16.75 2000 -0.40936 -0.36060 0.04876

Table A.11. Swimmer 3

electric field (mV/µm) frequency (Hz) dimer (µm/s) reference (µm/s) dimer corrected (µm/s)
3.05 250 -0.05914 0.00575 0.06489
4.57 250 0.13688 -0.03549 0.17237
6.09 250 0.16393 -0.06861 0.23254
7.61 250 0.37440 -0.14963 0.52403
9.14 250 0.53618 -0.12732 0.66351

10.66 250 -1.00302 -0.16564 0.83737
12.18 250 -1.13091 0.05384 1.18474
13.71 250 1.15126 -0.26317 1.41444
15.23 250 1.65991 -0.01931 1.67923
16.75 250 -1.95483 -0.12504 1.82979
16.75 500 -1.72144 -0.12492 1.59652
16.75 750 -1.33342 -0.13304 1.20038
16.75 1000 0.71604 -0.08498 0.80102
16.75 1500 -0.41806 -0.11272 0.30534
16.75 2000 0.17822 0.09728 0.08093
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