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Abstract

Critical infrastructure networks such as water supply systems and power grids are vital for society,
and their failure can lead to severe consequences. Due to the uncertainty inherent in both the
network performance and external demands and disturbances, the network failure is a random event.
Optimal management of the safety of these networks thus bene�ts from accurately calculating the
probability of failure. This is a challenging task. For elementary performance metrics, such as
connectivity and maximum �ow, the exact calculation of the failure probability is considered to be
infeasible within polynomial time constraints, so one must turn to practically e�cient algorithms
and various approximation techniques, either deterministic or stochastic. For physics-driven metrics,
e.g., the blackout size of a power grid, the problem is even more intricate, frequently involving
computationally demanding simulation models, while the system performance may not be coherent.
Also, the failure probability of critical networks is notably small as they are engineered systems
with components designed to prioritize safety. These characteristics pose additional challenges to
network reliability assessment, restrict the use of analytical methods, and motivate the use and
further development of sampling-based algorithms.

The primary goal of this thesis is to devise e�cient sampling-based algorithms for assessing net-
work reliability, with a speci�c focus on their application to power grids. In this regard, we expand
two widely employed variance reduction techniques, namely subset simulation and cross-entropy-
based importance sampling, to take into account potential 'jumps' in network performance and to
circumvent the over�tting issue when updating discrete parametric models in cross-entropy-based
importance sampling (CE-IS). Speci�cally, we propose a robust adaptation strategy of the inter-
mediate levels within subset simulation and develop e�cient Markov Chain Monte Carlo samplers
in discrete space. This novel approach is termed adaptive e�ort subset simulation (aE-SuS). For
cross-entropy-based importance sampling, we identify its over�tting issue when updating the cate-
gorical distribution and categorical mixture model, and circumvent this issue by incorporating prior
information with a Bayesian estimator. This estimator is subsequently integrated into the improved
cross entropy (iCE) method for estimating rare events, resulting in the unbiased Bayesian improved
cross entropy (BiCE) method. The adaptation of intermediate distributions in BiCE is further sub-
stantiated by two theorems for the ideal case, where both the sample size and the capacity of the
parametric model are assumed to be in�nite. Both aE-SuS and BiCE perform better than state-of-
the-art network reliability techniques, e.g., multi-level splitting with the creation process. Critical
network components, which contribute signi�cantly to network reliability, can also be identi�ed as
a by-product of these algorithms by estimating the component importance measures using failure
samples.

Sampling-based methods are applicable to general systems including those utilizing black-box per-
formance functions, yet require many samples to achieve a high accuracy. To compare the e�ciency
of di�erent sampling-based methods and further explore their potential combinations, we establish
uni�ed benchmarks tailored for rare events estimation in power grids and propose a novel relative
e�ciency metric. The reference failure probabilities can be obtained from principled Monte Carlo
methods such as Gamma Bernoulli approximation scheme (GBAS).
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Td,i Deadline for restoring the d-th edge, Xd, to at least its i-th state
sd,i

M Number of levels in multi-level splitting methods

F0 ⊂ F1 · · · ⊂ FM = F Intermediate failure domains in multi-level splitting methods

p̂
(MS)
f Multi-level splitting estimator

− inf = γ0 < γ1 < · · · < γM = γ Intermediate levels in multi-level splitting methods

Nl Sample size at the l-th level of multi-level splitting methods

Rl Number of seeds that are generated at l-th level and are located
in Fl+1

n
(k)
1 Number of replications of the k-th seed at level l

ηl Splitting factor in �xed splitting

p0 Conditional failure probability used for adaptively selecting the
intermediate threshold in multi-level splitting methods

p̂
(IS)
f Importance sampling estimator

pIS(x) Importance sampling distribution

p∗IS(x) Optimal importance sampling distribution

cE (resp. cF ) Event vector that indicates the membership of each system state
x in ΩX to the component event E (resp. the failure event F )

pΩX Probability vector comprising the probability of each system state
x in ΩX

Φ = (Φ(0), · · · ,Φ(n)) System signatures, which denote the conditional reliability given
exactly 0, · · · , n functional components
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Chapter 1

Introduction

1.1 Background and scope

Infrastructure networks, including road networks, water supply systems, underground pipelines, and
power grids, constitute the backbone of modern society, facilitating the delivery of products and
services that underpin our daily lives. However, these systems are susceptible to various threats,
ranging from natural disasters and physical attacks to aging and deterioration.

Fig. 1.1 illustrates the annual frequency of signi�cant blackouts in the U.S. over the last decade [51].
These failures resulted in severe consequences. For instance, in February 2021, the state of Texas in
the U.S. was hit by three severe winter storms, resulting in state-wide power failures and subsequent
shortages of water, food, medical service, and heating. This crisis claimed at least 111 people's lives,
and the property damage reached an estimated minimum of $155 billion, equivalent to nearly 7.4%
of Texas's GDP that year [22].

Figure 1.1: The frequency of signi�cant blackouts in the U.S. (2013-2022)

It is, therefore, important and necessary to e�ciently manage the safety of infrastructure networks
throughout their design and operational lifespans. One primary challenge in this regard is to appro-
priately quantify the uncertainty inherent in both the network's structure and its operating environ-
ment and to accurately assess the network's reliability or, conversely, its probability of failure. The
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de�nition of network failure may vary signi�cantly depending on the speci�c context, objectives, and
requirements of the network. Also, di�erent utility companies, stakeholders, and regulatory bodies
establish their own distinct standards and criteria. Often, network failure can be de�ned as the
event of a performance metric surpassing or falling below a speci�ed threshold, e.g., the blackout
size of a power network exceeding 5%. In practical applications, the network performance metric
is seldom a deterministic value; rather, it is frequently modeled as a random variable to re�ect its
inherent randomness.

The classic uncertainty quanti�cation framework has two main ingredients: (1) a deterministic
performance function g(·) that maps a set of n input variables X = (X1, · · · , Xn), which can
include hazard parameters, site conditions, material properties, to the network performance metric
g(X); and (2) a probabilistic model pX(x) that characterizes the uncertainty of the input variables.
The notation x represents a speci�c realization of X that takes values from the set ΩX . The
failure probability of the network, denoted as pf , can then be expressed as the probability that the
performance metric g(X) exceeds or falls below a speci�ed threshold γ, i.e.,

pf =

∫
F
pX(x)dx = EpX [I{X ∈ F}] , (1.1)

where F denotes the failure domain that is characterized by g(·) and γ, and I{·} represents the
indicator function. This reliability calculation problem forms the basis of network optimization,
design, resilience planning, maintenance strategy, among others, so it plays a central role in ensuring
the safety of critical infrastructures.

While it may appear straightforward, the computation of pf is far from trivial. Even for basic
performance metrics like connectivity and maximum �ow between a pair of nodes, the calculation of
pf becomes NP-hard [11], i.e., no e�cient exact algorithms that run in polynomial time in the input
dimension is likely to exist. Note that there are more re�ned and informative complexity classes for
these problems, as referenced in Provan and Ball [116], however, we will not delve into that level of
detail within this thesis. Indeed, the infrastructure networks often consist of hundreds of components,
and it is thus more pragmatic to turn to approximation and sampling techniques rather than exact
algorithms. For physics-driven performance metrics, the respective pf calculation problems are
even more challenging. Determining these metrics requires running complex and computationally
intensive simulation models. Moreover, these models often do not posses a speci�ed structure such
as monotonicity, also known as coherency [119], that can be exploited to devise e�cient algorithms.
Additionally, critical infrastructures are designed to be highly reliable, so their failure probability is
notably small. Thus, Eq. (1.1) characterizes a rare event estimation problem.

The above challenges favor the use of sampling-based methods due to the generality inherent to these
approaches. There is a substantial body of literature dedicated to network reliability assessment
using crude Monte Carlo simulation (MCS) [142, 92]. However, crude MCS is, in general, impractical
for estimating rare events, as the number of required samples, along with the associated calls to the
potentially expensive performance function required to obtain an accurate estimate, scales with

O
(

1
pf

)
. Additionally, a variety of variance reduction techniques have been developed for addressing

structural reliability problems, such as subset simulation (SuS) [8] and cross entropy (CE) method
[123], but their applicability to network reliability cannot be taken for granted. This is because
network performance functions g(x) are not necessarily continuous and frequently involve binary
and multi-state inputs. Such discontinuity can pose additional challenges to network reliability
assessment. This problem can be circumvented by converting discrete network performance into
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Chapter 1. Introduction

a continuous one [53, 38]. However, such transformations are typically tailored to the speci�c
problem at hand or necessitate numerous calculations of the original network performance, leading
to signi�cantly increased costs.

In summary, the reliability calculation problem in Eq. (1.1) is central to ensuring the safety of our
critical infrastructures, yet it is quite challenging to solve. While sampling-based methods o�er a
promising approach to tackle this issue, there are several challenges in the application of existing
methods to the estimation of rare failure events in networks, which motivates the research conducted
in this thesis.

1.2 Research objectives

The primary objective of this thesis is to investigate and develop e�cient sampling-based methods
for estimating rare failure events within infrastructure networks. The signi�cance, necessity, and
justi�cation behind this objective have already been elaborated in the background section. In this
section, we outline some of the speci�c goals.

� O�ering a comprehensive overview of the state-of-the-art network reliability techniques while
also highlighting their strengths and weaknesses.

� Substantiating and expanding the rare event estimation techniques originally introduced for
addressing structural reliability issues to the network reliability assessment.

� Identifying critical network components as a by-product of the sampling-based algorithms.

� Establishing uni�ed benchmarks to facilitate the comparison of various network reliability
algorithms and exploring potential combinations between them.

1.3 Contributions

We next outline the main contributions of this thesis, which are based on four journal articles, each
comprising a chapter in Part II. In Chapters 4-6, we expand upon two widely adopted variance
reduction techniques, namely the standard SuS and CE, to assess network reliability and enhance
their performance in the context of physics-driven network performance metrics. Subsequently, the
strengths and weaknesses of the proposed methods are exempli�ed in Chapter 7 through uni�ed
benchmarks.

Adaptive e�ort subset simulation algorithms

Chapter 4 is based on the original publication [30], whose main contributions are:

� Conceptual: Identify the discontinuity issue in network performance metrics and illustrate its
in�uence on standard SuS.

9



1.3. Contributions

� Algorithmic: Propose the adaptive e�ort subset simulation (aE-SuS) algorithm that modi�es
the adaptive selection of the intermediate domains.

� Algorithmic: Introduce a novel independent Metropolis-Hastings algorithm for e�cient sam-
pling in discrete space.

Bayesian improved cross entropy method

Chapter 5 is based on the original publication [31], whose main contributions are:

� Theoretical: Prove that under perfect sampling assumptions, the adaptation of the intermedi-
ate target distributions in the improved cross entropy (iCE) method is unique and convergent.

� Theoretical: Prove that for �tting an exponential parametric family, optimizing the CE is
equivalent to applying self-normalized importance sampling. This justi�es the use of the
e�ective sample size in the iCE method.

� Conceptual: Identify the over�tting issue in CE-based importance sampling with the categor-
ical distribution.

� Methodological: Incorporate the Bayesian statistics into the CE-based importance sampling
to mitigate the over�tting issue.

� Algorithmic: Introduce the Bayesian improved cross entropy (BiCE) method for rare event
estimation in networks, resulting in an unbiased estimator.

Bayesian improved cross entropy method with categorical mixture models

Chapter 6 is based on the original publication [32], whose main contributions are:

� Methodological: Introduce the BiCE method with categorical mixture models that enables
tackling network reliability problems with complex failure domains.

� Algorithmic: Propose a generalized expectation-maximization algorithm for approximating
the maximum-a-posteriori estimate of categorical mixture models with weighted data.

� Methodological: Use the failure samples from the BiCE method to compute the component
importance measure.

Adaptive Monte Carlo methods for estimating rare events in power grids

Chapter 7 is based on the original publication [33], whose main contributions are:

� Empirical: Establish uni�ed power �ow benchmarks and propose the use of a new e�ciency
metric for assessing the performance of various adaptive Monte Carlo simulation (adaptMCS)
methods.
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� Algorithmic: Propose a hybrid approach that combines the strengths of both aE-SuS and
annealed particle integration methods.

� Algorithmic: Compute the component importance measure as a function of the threshold γ
using one single run of the aE-SuS method.

1.4 Outline

This thesis consists of two parts. Part I provides a comprehensive overview of the state-of-the-art
network reliability techniques. We begin in Section 2.1 by introducing the primary performance
metrics central to this thesis, followed by an overview of non-sampling-based methods in Section
2.2. These methods include binary decision diagram, various cut(path)-based techniques, and state
space decomposition methods. We delve into their application to both binary and multi-state inputs
while also highlighting their limitations in the context of infrastructure network analysis. Section 2.3
is dedicated to existing sampling-based methods for network reliability assessment. In particular,
we detail the creation process whereby the discrete network performance metric is transformed into
a continuous one, and summarize various variance reduction techniques that can be subsequently
incorporated for estimating rare events in networks, among which we place particular emphasis
on multi-level splitting and CE-based importance sampling. An overview of other widely adopted
network reliability techniques is also provided in this section.

Part II consists of the main research conducted in this thesis. Chapter 4 extends a variant of the
adaptive multi-level splitting (AMS) method, known as the SuS in the context of civil engineer-
ing, to accommodate discrete network performance. Chapters 5 and 6 are dedicated to CE-based
methods, where we identify and address the issue of over�tting by proposing a Bayesian estimator.
The adaptation strategy of the iCE method is also substantiated. In Chapter 7, we establish uni-
�ed power �ow benchmarks and introduce a novel e�ciency metric for evaluating and comparing
the performance of di�erent sampling-based methods. Additionally, the calculation of component
importance measures is discussed as a by-product of the proposed sampling-based methods, with
further details provided in Chapters 6 and 7.
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Chapter 2

A review of the state-of-the-art network reliability

methods

2.1 Network performance metrics

We �rst present the key network performance metrics central to this thesis: connectivity, maximum
�ow, and physics-driven metrics such as the blackout size of a power grid, along with their respective
reliability evaluation problems.

2.1.1 Connectivity

A network G(V, E) with node set V and edge set E is connected if all terminal nodes indexed in
K are connected. This metric is widely used for characterizing the performance of communication
networks and circuit-switched networks, among various other applications [20]. The corresponding
network reliability is de�ned as the probability that the network is connected under random edge or
node failure. In principle, each undirected edge can be substituted with two directed edges pointing
in opposite directions, and for a directed graph, it is su�cient to only consider the edge failure [12].
Hence, in connectivity-based reliability problems, it is often assumed that the nodes are perfect, but
each d-th edge can either fail or not fail with probability pd and 1− pd, respectively. The states of
the edges are often assumed to be independent if no dependence structure is speci�ed.

The reliability calculation problem can be stated as follows. Let the vector X = (X1, · · · , Xn)
collect the state of all n edges, whose probability mass function (PMF) is denoted as pX(x). The
distribution pX(x) follows an independent Bernoulli distribution. Given the edge state vector x,
the connectivity of the network G, referred to as g(conn)(x), can be determined through numerous
searching algorithms, e.g., the breath-�rst-searching algorithm [108]. We adopt the convention that
the performance metric g(conn)(x) equals one if the network is connected and zero otherwise. The
network reliability can then be written as Pr(g(conn)(X) = 1), and by contrast, the failure probability,
denoted as pf , equals Pr(g(conn)(X) = 0) = 1−Pr(g(conn)(X) = 1). Note that g(conn) is also known
as the structure function.
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Chapter 2. A review of the state-of-the-art network reliability methods

Depending on the number of the terminal nodes, i.e., |K|, one distinguishes two-terminal connectivity
with |K| = 2, all-terminal connectivity with |K| = m, and K-terminal connectivity with |K| = K.
Note that in contrast to the notation convention in graph theory, where m is the number of edges
and n is the number of nodes, we use n to denote the number of edges and m for the nodes. This
aligns with the tradition in rare event estimation, where n signi�es the dimension of the problem,
which in most cases corresponds to the number of edges. The respective reliability calculations of
all these three cases are NP-hard [11], suggesting that no e�cient algorithms is likely to exist for
exact inference.

2.1.2 Maximum �ow

In many applications, such as transportation networks, road networks, and power transmission
networks, the network performance cannot be adequately characterized solely by the connectivity
among a set of nodes. Instead, it is intricately linked to attributes like capacity, load, length, or
traveling time of the network components [96]. To analyze the reliability of these systems, a more
informative network performance and a more �exible input distribution are therefore needed.

One such performance metric is the maximum �ow between a pair of nodes. This metric can be
e�ectively evaluated using the augmenting path algorithm given that all edge capacities are integer
[108]. Additionally, in the next subsection, we will delve into another metric that assesses the
blackout size of a power network. This metric is driven by physics and operation strategies and
necessitates more complex simulation models.

To align with Subsection 2.1.1, we let G(V, E) denote a network, with node set V and edge set
E , but now the input vector X = (X1, · · · , Xn) characterizes the �ow capacity of each edge. In
particular, each d-th edge independently takes the capacity 0 = sd,1 < · · · < sd,nd with probability
pd,1, · · · , pd,nd , respectively, where nd denotes the number of possible states of the d-th edge. The
input vector X therefore follows an independent categorical distribution pX(x). Given the current
capacity con�guration x, the performance function g(mf)(x) calculates the maximum �ow that can be
delivered from the source to the sink, and the failure probability pf is then de�ned as the probability
the maximum �ow g(mf)(X) is less than a speci�ed �ow demand γ, i.e., pf = Pr(g(mf)(X) < γ).
Also, sinceX is discrete and takes �nite number of states, the network performance metric g(mf)(X)
is also a multi-state random variable. This is also true for physics-driven metrics.

The maximum �ow problem can be interpreted as an extension of the two-terminal connectivity-
based problems, and hence, the respective reliability calculation must also be NP-hard.

Both connectivity-based and maximum �ow problems are widely investigated in operations research.
Due to the frequent absence of a speci�c dependence structure among component states, these studies
mainly focus on independent inputs. While this assumption is unrealistic for numerous practical
applications, the methodologies developed for connectivity or maximum �ow problems can often be
adapted to dependent cases after modi�cations. In fact, the identi�cation of failure modes and the
calculation of reliability are usually decoupled in numerous non-sampling methods, and sampling-
based methods are directly applicable if it is feasible to sample from the input distribution and to
calculate the probability of a single sample. These will be brie�y discussed in Section 2.5.
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2.1.3 The blackout size within a power network

In power transmission networks, the �ow of electrical power is subject to Kirchho�'s law and is
in�uenced by various operational strategies. We focus on two primary types of power �ow analyses in
this thesis: the standard power �ow analysis and the optimal power �ow analysis [141]. The standard
power �ow analysis considers the possibility of cascading failures, where an initial component failure
can trigger subsequent failures due to load redistribution. By contrast, the optimal power �ow
analysis aims to prevent such cascading failures by implementing optimal operation strategies that
minimize a prede�ned cost function. In both cases, it is possible that the power demands cannot be
fully met, potentially resulting in localized blackouts. The extent to which the original load cannot
be satis�ed serves as a quanti�able measure of the blackout size and can be used as a performance
metric for assessing the reliability of power grids.

The respective reliability calculation problem can be formally stated as follows. The input vector
X = (X1, · · · , Xd) now denotes the states of network components such as transmission lines, power
generators, and connecting buses, following a joint categorical distribution. The performance func-
tion, denoted as g(bz)(x), outputs the blackout size given the current con�guration (or component
states) x. The system reliability is then de�ned as the probability that g(bz)(X) is less than a
speci�ed threshold γ, and conversely, the failure probability pf equals Pr(g(bz)(X) ≥ γ).

It's important to note that, unlike metrics such as connectivity and maximum �ow, the blackout
size of a network is not necessarily coherent; in other words, the system's performance function,
g(bz)(x), is not always monotonic in x. In some instances, improving the capacity of a generator can
lead to increased load redistribution and higher potential for cascading failures in other branches,
ultimately degrading system performance (resulting in a larger blackout size). Additionally, power
�ow analysis often involves intricate and potentially expensive simulation models, which can pose
additional challenges when conducting reliability analyses.

A brief summary of the reliability calculation problems linked to the aforementioned network perfor-
mance metrics is provided in Table 2.1. For all these metrics, the exact calculation of the reliability
is NP-hard, and in most cases, one has to resort to di�erent approximation techniques, either deter-
ministic or stochastic.

Table 2.1: Network performance metrics and their reliability calculation problems

connectivity, g(conn)(·) maximum �ow, g(mf)(·) blackout size, g(bz)(·)

metric's type binary multi-state multi-state

calculation method breadth(depth)-�rst-search augmenting path power �ow analysis

input vector, X edge state edge capacity component state

input distribution, pX independent Bernoulli independent categorical categorical

failure criterion
not all terminal nodes
are connected

the maximum �ow is below
the threshold γ

the blackout size surpasses
the threshold γ
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2.2 Enumeration and approximation techniques

In this section, we present three commonly utilized non-sampling methods: the binary decision
diagram (BDD), cut(path)-based methods, and state space decomposition (SSD) methods. These
methods provide e�cient and exact failure probability calculation in certain scenarios. Alterna-
tively, they can be halted prematurely to provide a failure probability bound, thereby transforming
into deterministic approximation techniques. A detailed comparison among the three methods is
presented in Section 2.5.

2.2.1 Binary decision diagram (BDD) and its applications

2.2.1.1 Binary decision diagram (BDD)

The BDD was �rst proposed by Lee [88] for representing and designing switching circuits. Therein,
the diagram is a composition of 'instructions', each taking the form of an if-then-else function
ite(x, y, z) that directs to variable y if x = 1 (x is true) and to variable z otherwise and continues
proceeding with the if-then-else functions in y and z. The BDD has been subsequently employed
as a powerful tool for representing and manipulating general Boolean functions [3]. As an example,
Fig. 2.1 depicts the BDD for the Boolean function f(x1, x2, x3) = (¬x1 ∧ ¬x2 ∧ ¬x3) ∨ (x1 ∧ x3) ∨
(x2 ∧ x3), where ¬,∨, and ∧ denote the basic Boolean operations: logic NOT, logic OR, and logic
AND, respectively.

Figure 2.1: The BDD (left) and the ROBDD (right) of the Boolean function f(x1, x2, x3). Each
node in the two diagrams corresponds to a Boolean variable xi and has two outgoing branches, of
which the solid one represents setting xi to 1, and the dashed one represents xi = 0. Any path
from the root to the leaf 1 in the two diagrams represents an assignment of the Boolean variables
x1, x2, x3 that gives f(x1, x2, x3) = 1. The ROBDD shown on the right-hand side of the �gure is
constructed with the order x1 → x3 → x2.

Nowadays, the terminology BDD almost always refers to the reduced and ordered binary decision
diagram (ROBDD), also known as the functional graph [21]. Compared to the BDD, the ROBDD
relies on a speci�ed order of input decision variables and contains no redundant nodes and duplicate
subgraphs. For instance, the ROBDD of the Boolean function f(x1, x2, x3) with order x1 → x3 → x2

is illustrated in Fig. 2.1, which is essentially a composition of ite functions as follows:

f(x1, x2, x3) = ite (x1, ite(x3, 1, 0), ite (x3, ite(x2, 1, 0), ite(x2, 0, 1))) .
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One can prove that a Boolean function's ROBDD is unique (up to isomorphism), and any other
BDD representation of the same function will have an equal or larger number of nodes than the
ROBDD [21].

More importantly, as a knowledge compilation strategy, operations on the Boolean function, such as
∨, ∧, ¬, can be directly applied to its ROBDD through tailored algorithms without decompression.
The complexity of these algorithms directly relates to the size (or the number of nodes) of the
ROBDD and further depends on the speci�ed order of the decision variables. Unfortunately, �nding
the optimal order that minimizes a ROBDD's size is a co-NP-complete problem [21], and in practice,
the order is chosen according to heuristics [137].

Given the Boolean function's expression, e.g., the logic gate network's structure, the associated
ROBDD can be constructed iteratively in a bottom-up manner, as outlined below [137]:

1. Represent each Boolean decision variable Xi as a binary decision tree, that is ite(xi, 1, 0), and
recursively assemble them into blocks and the Boolean function according to the following
manipulation rule:

G♦H = ite(x,Gx=1, Gx=0)♦ite(y,Hy=1, Hy=0) (2.1)

=


ite(x,Gx=1♦Hx=1, Gx=0♦Hx=0), index(x) = index(y)

ite(x,Gx=1♦H,Gx=0♦H), index(x) < index(y)

ite(y,G♦Hx=1, G♦Hx=0), index(x) > index(y)

.

Here, G and H are two Boolean functions, and x and y denote Boolean decision variables,
with orders speci�ed by index(x) and index(y), respectively. Gx=1 and Gx=0 are subfunctions
of G conditional on x = 1 and x = 0, respectively. The symbol ♦ represents a logic operation,
either ∧ or ∨.

2. Reduce the resulting BDD to ROBDD by the reduction algorithm described in Bryant [21].

As an example, for building up the ROBDD of f(x1, x2, x3), one �rst constructs the BDD for
¬x1,¬x2,¬x3, x1, x2, and x3. These BDDs are then assembled into (¬x1 ∧ ¬x2 ∧ ¬x3), x1 ∧ x3,
and x2 ∧ x3, and �nally into the function f(x1, x2, x3). The 'reduction' algorithm is subsequently
invoked to get the �nal ROBDD of f . We refer the readers to [21] for more implementation details.
Alternatively, if the Boolean function's expression is only provided implicitly, e.g., in connectivity-
based network reliability assessment, the construction of ROBDD follows a top-down manner [72,
68]. This will be detailed in the next subsection.

2.2.1.2 Reduced and ordered binary decision diagram in reliability analysis

One of the major advantages of using ROBDDs for representing the performance function in relia-
bility analysis is that any path from the root to the leaf in the ROBDD represents a disjoint event.
Consequently, the probability of the function being 1 (or true) can be computed by adding up the
probability of the path from the root to leaf 1, and this can be done through a recursive algorithm
with complexity linear to the ROBDD's size, i.e., the number of nodes in the ROBDD. Note that
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this algorithm is not necessarily e�cient since the ROBDD's size can grow exponentially with the
number of variables, especially when an improper order is chosen. In the following, we introduce
two main applications of ROBDDs in reliability analysis: fault tree analysis and connectivity-based
network reliability (i.e., the network performance is measured by connectivity).

As a logic gate network, the fault tree can be naturally represented as an ROBDD, based on which
Rauzy devised algorithms that allow for e�cient computation of both the minimal cut and the
probability of the root event [120]. This is widely acknowledged as the �rst application of the ROBDD
in reliability analysis. For multi-state systems with multi-state components, the system structure
can be modeled by a group of fault trees, in which each root indicates whether the system is in a
speci�c state, so nsys fault trees are required for modeling an nsys-state system. Additionally, each
leaf, i.e., the basic event, is linked to a component state, and an nd-state component is represented
by nd leaves. Since a component can only take one state at a time, the basic events are no longer
independent, and a modi�ed construction procedure of the ROBDD was proposed to account for
such restrictions [140]. The probability of the root event can be e�ciently calculated through a
modi�ed recursive algorithm. Note that it is the size (the number of nodes) of the ROBDD rather
than the number of basic events that really matters since the former directly relates to the e�ciency
of computing the root event's probability. Shrestha and Xing [128] �nd that the ROBDD's size
is usually reduced by using a logarithmic encoding of the multi-state components, where the nd
component states are encoded with dlog2nde auxiliary Boolean variables. Besides the ROBDD,
the multi-state multi-valued decision diagram (MMDD) is another promising method for multi-
state fault tree analysis. The MMDD is a natural extension of the ROBDD for encoding functions
with multi-state input and a Boolean output [138]. In the MMDD, each node can have multiple
descendants. Algebraic decision diagram is another extension of the ROBDD [9], where the leaves
may take multiple values di�erent from 0 and 1.

For all-terminal connectivity-based problems, Imai et al. [72] constructed the ROBDD by iteratively
performing the following two steps: (1) network decomposition using edge construction/deletion (one
edge at a time) and (2) merging equivalent subgraphs. The undetermined subgraphs with the same
partition of elimination front, or boundary components, are proven to be equivalent and, hence, are
merged at each iteration. This idea was then extended to K-terminal cases [68]. The algorithm's
complexity grows exponentially with the maximum number of boundary components in all iterations,
which is further related to the ordering of edges [68]. Hardy et al. [68] suggested a breadth-�rst-
search for ordering edges. In addition, dependent component failures can also be addressed by
ROBDD-based methods [137].

2.2.2 Cut(path)-based network reliability assessment

2.2.2.1 Minimal cut(path) and their extensions

In networks with binary components, a minimal (or irreducible) cut is a group of components whose
removal from the network results in network failure, and no proper subset of it is su�cient to cause
network failure [12]. This concept can be extended to coherent multi-state-component systems, in
which each minimal cut represents a maximum lower vector, denoted as c = (c1, · · · , cn) [74]. Here,
n is the number of network components (or dimension of the problem). Any state x = (x1, · · · , xn)
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that is greater than c, i.e., xd ≥ cd for each d = 1, · · · , n, and x 6= c, falls within the safe domain,
indicating the vector is maximal. By contrast, due to the coherency of the system, any state that
is smaller than or equal to c, i.e., xd ≤ cd for each d = 1, · · · , n, leads to network failure. This
maximum lower vector is referred to as the γ-minimal cut (γ-MC) in two-terminal maximum �ow
analysis, where one estimates the probability that the maximum �ow from the source to the sink is
less than γ [75]. The minimal cut and the γ-MC of a toy network example are illustrated in Fig. 2.2.

Figure 2.2: A toy network and its minimal cuts. s and t denote the source node and the sink node,
respectively. For connectivity-based problems, Xi indicates whether the i-th edge, ei, is connected.
The corresponding minimal cuts can be enumerated as: (e1, e2), (e5, e6), (e1, e3, e6), and
(e2, e4, e5). For maximum-�ow-based problems, Xi represents the multi-state capacity of the i-th
edge, ei. Assume that the threshold γ is 2, and each edge's capacity is restricted to {0, 3, 5} unit.
Then c = (0, 0, 5, 5, 5, 5) is a maximum lower vector (or a γ-MC).

To illustrate the importance of this concept in network reliability assessment, let Ai denote the event
that the system state x = (x1, · · · , xn) is less or equal to the i-th γ-MC, c(i), i.e., Ai , {x | x ≤ c(i)},
i = 1, ..., Nc, where Nc is the number of all γ-MCs. E�ciently searching for all γ-MCs poses a
signi�cant challenge [75]. Even for connectivity-based problems, counting the minimal cuts with
the smallest cardinality cannot be accomplished in polynomial time, i.e., it is intractable [11]. The
state-of-the-art algorithms for identifying all γ-MCs are only practical for small networks, with a
few tens of components [109]. The system failure event F then becomes the union of all Ai's, and
the failure probability can be expressed as follows:

Pr(F ) = Pr

(
Nc⋃
i=1

Ai

)
. (2.2)

If only a subset of all γ-MCs is discovered, Eq. (2.2) provides a lower bound for Pr(F ).

Alternatively, one can de�ne the minimal upper vector, denoted as r, where any state x that is
strictly smaller than r leads to network failure, and any state x that is greater than or equal to r
ensures the system's functionality. In two-terminal maximum �ow analysis, the vector r corresponds
to the γ-minimal path (γ-MP) [95]. Let Nr denote the number of all γ-MPs, and de�ne A∗i , {x |
x ≥ r(i)}. The system functional event S can be written as the union of all A∗i 's:

Pr(S) = Pr

(
Nr⋃
i=1

A∗i

)
. (2.3)

Both Eq. (2.2) and Eq. (2.3) require counting the elements within a union of sets, and various tools
originally developed in set theory can be leveraged for this purpose. These include the principle of
inclusion and exclusion and the sum of disjoint products [34].
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2.2.2.2 Cut(path)-based network reliability assessment

Based on the principle of inclusion and exclusion, the failure probability Pr(F ) can be decomposed
as follows:

Pr(F ) = Pr

(
Nc⋃
i=1

Ai

)
=

∑
1≤i≤Nc

Pr(Ai)−
∑

1≤i<j≤Nc

Pr(Ai ∩Aj) + · · ·+ (−1)Nc−1 Pr(Ai ∩ · · · ∩ANc).

(2.4)
In many network reliability problems, the components' states are assumed to be statistically inde-
pendent, so for any subset S of {1, · · · , Nc}, Pr(∩SAi) can be easily calculated as

Pr(∩SAi) =
n∏
d=1

Pr

(
Xd ≤ min

i∈S
c

(i)
d

)
=

n∏
d=1

min
i∈S

Pr
(
Xd ≤ c

(i)
d

)
. (2.5)

However, the number of terms in Eq. (2.4) equals 2Nc − 1. Considering that the number of minimal
cuts Nc can also grow exponentially with the number of network components n [12], the complexity
of determining the failure probability with Eq. (2.4) in such cases is therefore doubly exponential in
n, which is only feasible for networks with limited size.

Another frequently employed combinatorial counting technique is the sum-of-disjoint-products, which
decomposes the failure probability Pr(F ) as follows:

Pr(F ) = Pr

(
Nc⋃
i=1

Ai

)
= Pr(A1) + Pr(A1A2) + · · ·+ Pr

((
∪Nc−1
i=1 Ai

)
ANc

)
= Pr(A1)︸ ︷︷ ︸

1-st term

+ Pr(A2)− Pr(A1A2)︸ ︷︷ ︸
2-nd term

+ · · ·+ Pr(ANc
)− Pr

((
∪Nc−1
i=1 Ai

)
ANc

)
︸ ︷︷ ︸

Nc-th term

= Pr(A1)︸ ︷︷ ︸
1-st term

+ Pr(A2)− Pr(A1A2)︸ ︷︷ ︸
2-nd term

+ · · ·+ Pr(ANc
)− Pr

(
∪Nc−1
i=1 (AiANc

)
)

︸ ︷︷ ︸
Nc-th term

. (2.6)

Expanding each Pr
(
∪j−1
i=1 (AiAj)

)
in Eq. (2.6) with the principle of inclusion and exclusion, however,

yields no extra bene�t, since the total number of terms remains 2Nc−1, the same as that in Eq. (2.4).

To calculate Pr
(
∪j−1
i=1 (AiAj)

)
more e�ciently, Zuo et al. [145] introduced a recursive subroutine,

denoted as PrU(B1, · · · , BN ), which computes the probability of the union of events B1, · · · , BN
using the following recursion formula:

PrU(B1, · · · , BN ) = Pr(BN ) + PrU(B1, · · · , BN−1)− PrU(B1BN , · · · , BN−1BN ). (2.7)

The input events B1, · · · , BN are checked each time when calling PrU(·), and if Bi ⊆ Bj holds
for any i 6= j in 1, · · · , n, Bi can be safely removed since Bi ∪ Bj = Bj . This preprocessing step
signi�cantly decreases the number of calls of PrU(·) in recursion, and after introducing a speci�c
ordering of the input events B1, ..., BN , the e�ciency of the sum-of-disjoint-products can be further
enhanced [10]. Despite these heuristic improvements, Eq. (2.6) remains intractable for large Nc, say
more than a hundred. Also note that Eqs. (2.4)-(2.7) are applicable for computing the union of
γ-MPs in Eq. (2.3), by simply replacing the events {Ai}Nci=1 in the equations with {A∗i }

Nr
i=1.

For connectivity-based problems, more e�cient algorithms exist for computing network reliability.
Some are based on the domination theory by observing that many terms in Eq. (2.4) are equivalent
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and hence can be canceled out in advance [126, 125, 2]; others rely on the Boolean algebra, whereby
the number of terms in Eq. (2.6) can be signi�cantly reduced [56, 1, 99, 136]. Additionally, given
all minimal cuts, Provan and Ball [115] compute two-terminal reliability in time polynomial in the
number of minimal cuts; given all minimal paths, Ball and Nemhauser [13] calculate all-terminal
reliability in time polynomial in the number of minimal paths. However, all the above-mentioned
methods run in time exponential in the number of network components, which is as expected since
the connectivity-based reliability assessment is proven to be NP-hard [11].

Note that, although our primary focus in this section is on independent inputs, the cut(path)-based
method can be extended to address dependent component failures [105].

2.2.3 State space decomposition (SSD) methods

2.2.3.1 State space decomposition (SSD)

The SSD method was originally introduced by Doulliez and Jamoulle [48] for computing the proba-
bility of ful�lling demands for multiple terminal nodes within a stochastic network. Unfortunately,
the decomposition strategy described in that work is not always accurate, and Alexopoulos [4]
addressed and corrected this issue in the context of two-terminal maximum �ow problems. The
modi�ed algorithm was subsequently re�ned by Jane and Laih [76].

Although the SSD method can also be extended to a broad spectrum of other network problems [73,
42], we only focus on the two-terminal maximum �ow problem for the sake of illustration. Recall
that the goal of maximum �ow problems is to compute the probability that a speci�ed γ unit of
�ow cannot be delivered from the source node to the sink node in a stochastic graph G (E ,V). E
and V denote the edge set and node set, respectively. The capacity of each d-th edge is modeled
as a categorical distributed variable, taking nd states 0 = sd,1 < sd,2 < · · · < sd,nd with probability
pd,1, · · · , pd,nd , respectively. Also, we assume the states of di�erent edges are independent. Let X
collect the state of all n edges with state space ΩX , {x|xd ∈ sd , {sd,1, · · · , sd,nd}, d = 1, · · · , n}
and probability mass function pX(x). The function g(mf)(x) computes the maximum �ow from the
source node to the sink node given x, a realization of the random capacity X. We term a domain
I infeasible if it consists of only infeasible states, for which g(mf)(x) < γ holds, whereas a feasible
domain F comprises only feasible states with g(mf)(x) ≥ γ. An unspeci�ed domain U does not �t
into either of the two categories and contains unclassi�ed states.

The SSD method progressively re�nes the lower and upper bound of Pr(g(mf)(x) < γ) through itera-
tively removing feasible and infeasible domains from the current unspeci�ed state space. Speci�cally,
the method initiates with the state space ΩX , i.e., U (1) = ΩX . The partition of the unspeci�ed do-
main U (l) at the l-th level hinges on identifying critical edge capacities xo ∈ U (l) and x∗ ∈ U (l) that
ensure: (1) g(mf)(x) ≥ γ if x ≥ xo, i.e., if xd ≥ xod holds for each d ∈ {1, · · · , n}. xo is, in fact, a
γ-MP described in Subsection 2.2.2, but here we adopt the notation used in the original paper [48];
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(2) g(mf)(x) < γ if xd < x∗d for some d. Subsequently, the following sets are de�ned:

F , {x ∈ U (l)|x ≥ xo},

I ,
n⋃
d=1

{x ∈ U (l)|xd < x∗d}, (2.8)

U = U (l) ∩ I ∩ F ,
n⋃
d=1

{x ∈ U (l)|x ≥ x∗, xd < xod}.

The upper bound of pf , Pr(g(mf)(x) < γ) is then re�ned by substracting Pr(F), and the lower
bound is increased by Pr(I). The same procedure is applied to decompose U (l+1) = U .

In practice, the SSD method operates on hyperrectangular domains. A hyperrectangle in ΩX ,

denoted as box
[
α , (α1, · · · , αn) ,β , (β1, · · · , βn)

]
, is de�ned as

box [α,β] = {x ∈ ΩX |αd ≤ xd ≤ βd, d = 1, · · · , n}, (2.9)

where αd and βd are constrained to values within the set sd. The probability of box [α,β] is computed
by

Pr(box [α,β]) =

n∏
d=1

nd∑
j=1

I{αd ≤ sd,j ≤ βd}pd,j , (2.10)

where I{·} is the indicator function.

Partitioning the unspeci�ed domain U (l) is signi�cantly simpli�ed when U (l) is a hyperrectangle, i.e.,
U (l) = box [α,β]. In this context, the critical edge capacity, xo, can be determined by the following
three steps [48]: (1) Create a �ctitious node and connect it to the sink node. (2) Calculate the
maximum �ow from the source node to the sink node, with capacities β for the edges in E and
capacity γ for the �ctitious edge that links the �ctitious node to the sink node. (3) The �ow in each
edge is then assigned as xo. Selecting x∗, however, is more complex. The approach proposed in
Doulliez and Jamoulle [48] was found to be inaccurate and subsequently improved by Alexopoulos
[4]. Alternatively, x∗ can be simply selected as α, which is commonly referred to as feasible-based
partitioning in the literature [42, 112], as it leads to an empty infeasible domain I at each iteration.
Now, the feasible, infeasible, and unspeci�ed domains de�ned in Eq. (2.8) can be written as

F = box [xo,β] ,

I =
n⋃
d=1

box
[
α, (β1, · · · , βd−1, x

∗
d, βd+1, · · · , βn)

]
, (2.11)

U =
n⋃
d=1

box
[
x∗, (β1, · · · , βd−1, x

o
d, βd+1, · · · , βn)

]
,

where x∗d (resp. xod) is the largest state in sd that is smaller than x∗d (resp. xod). However, we
cannot proceed to partition U using the above strategy unless it is hyperrectangular. Hence, further
decomposition of U into disjoint hyperrectangles is necessary. Let

Uj , {x ∈ U (l)|x∗j ≤ xj < xoj ;xd ≥ xod if d < j;xd ≥ x∗d if d > j}. (2.12)
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It holds that U =
⋃n
j=1 Uj and Ui ∩ Uj = ∅ for i 6= j. In other words, Uj , j = 1, · · · , n form a

partition of U . More importantly, Uj is hyperrectangular, and can be written as

Uj = Box
[
(xo1, · · · , xoj−1, x

∗
j , x
∗
j+1, · · · , x∗n)(β1, · · · , βj−1, x

o
j , βj+1, · · · , βn)

]
. (2.13)

Similar decomposition can be applied to get the disjoint partition of I, denoted as Ij , j = 1, · · · , n,
and it holds that Pr(I) =

∑n
j=1 Pr(Ij). Pr(Ij) and Pr(F) can be calculated through Eq. (2.10).

These probabilities are then utilized to re�ne both the lower and upper bounds of the failure prob-
ability pf . The hyperrectangles Uj , j = 1, · · · , n are added to the set of unspeci�ed domains. From
this set, U (l+1) is selected for decomposition in the next level.

The issue is that for each unspeci�ed hyperrectangle, n new ones are generated in the next iter-
ation. Although some of them will be speci�ed (i.e., empty, feasible, or infeasible) or duplicated,
the total number of unspeci�ed hyperrectangles still grows exponentially. When organizing these
hyperrectangles in a tree, devising an e�ective partition strategy (as it directly impacts the tree's
structure) and selecting an appropriate order for traversing the tree become essential for enhancing
the e�ciency of the SSD method [112]. For large systems with moderate component failure proba-
bilities, it often requires a large amount of time to narrow the bounds (especially the upper bound)
to a meaningful value. To mitigate this issue, one can terminate the SSD method prematurely and
employ a sampling-based method to explore the remaining unspeci�ed domain [73].

2.2.3.2 Recursive decomposition methods

In the �eld of connectivity-based reliability assessment, the idea of iteratively partitioning the state
space was independently proposed by Dotson and Gbien [47]. The algorithm was subsequently
optimized by encoding the graph with its adjacency matrix [139]. The performance of both Dotson's
and modi�ed Dotson's algorithms can be enhanced with parallel computing [44]. Building upon these
prior contributions, Li and He [91] proposed the recursive decomposition method for analyzing K-
terminal connectivity of stochastic networks. This method is applicable to both direct and indirect
graphs and accounts for node failure. However, similar to the SSD method, the reliability bounds
may converge slowly in large networks. To mitigate this issue, Lim and Song [93] prioritized the
subgraph that has the largest decomposition factor and decomposed it with its most reliable path
(or cut). Recent developments of the recursive decomposition method include extensions to address
dependent component failure [69] and integrations with network clustering techniques [89].

In the following, we introduce the recursive decomposition method in the context of two-terminal
connectivity problems considering only independent edge failure. We denote the state of all n edges
as x = {x1, · · · , xn}, where each d-th edge can either be failed or operational with probability pd
and 1 − pd, respectively. The algorithm initializes with the original graph, and its probability is
set to one, i.e., G(1) = G(V, E) and Pr(G(1)) = 1. At the l-th iteration, the recursive decomposition
method �rst identi�es a minimal path within the current graph G(l) through the breath-�rst-search
algorithm (or Dijkstra's algorithm [93]). Let a , (a1, · · · , ak) collect the edge indices of the selected
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minimal path. The following subgraphs are then generated:

G(l)
0 , G

(l) + (xa1 , · · · , xak)

G(l)
1 , G

(l) + (xa1)

G(l)
2 , G

(l) + (xa1 , xa2) (2.14)

...

G(l)
k , G

(l) + (xa1 , · · · , xak−1
, xak).

G∗+ b denotes a graph induced by G∗ and b, where b is a boolean vector that speci�es the states of
certain edges in G∗. For instance, the graph induced by G∗ and b = (x1, x4) is obtained by contracting
the �rst edge and then removing the fourth one from G∗. Since each edge fails independently, the
probability of the graph G∗ + b can be calculated as Pr(G∗) ·

∏n
d=1(1 − pd)I{xd∈b} · (pd)I{xd∈b}. If

any of G(l)
0 , · · · ,G(l)

k , is already connected or disconnected, it is added to the path set or cut set,
respectively. The remaining graphs are added to the set of undecomposed graphs, from which G is
selected for decomposition in the next iteration.

The recursive decomposition method outputs the lower and upper bounds of the reliability at each
iteration. Speci�cally, the lower bound is determined by adding the probabilities of the graphs in
the path set, while the upper bound is calculated by subtracting the summation of the probabilities
of cut set graphs from one. The convergence rate of the bounds and the space complexity of the
algorithm depend on both the decomposition order and rules. This includes the selection of G(l+1),
the identi�cation of the minimal path a, and the order of arranging elements within a. A set of
heuristic strategies have been suggested in the literature [93, 89, 112].

Each subgraph generated by the recursive decomposition method can be interpreted as a hyper-
rectangle domain, which is illustrated in Fig. 2.3. Speci�cally, connected subgraphs in the path set
are disjoint feasible domains; disconnected ones in the cut set represent disjoint infeasible domains;
unclassi�ed graphs are unspeci�ed domains. In this way, the recursive decomposition method can
be interpreted as a feasible-based SSD method.

Each subgraph in the recursive decomposition method can also be encoded with a Boolean function,
as shown in Fig. 2.3. From this viewpoint, the recursive decomposition method is an extension of
the BDD. Both methods rely on iteratively decomposing the Boolean structure function. However,
in BDD, the decomposition is rooted in Shannon's decomposition formula, whereas in the recursive
decomposition method, it is related to a minimal path. In particular, Eq. (2.14) can be expressed
as

f = xa1xa2 · · ·xak · 1 + xa1 · f |xa1=0 + · · ·+ xa1xa2 · · ·xak−1
xak · f |xa1=1,··· ,xak−1

=1,xak=0, (2.15)

where f |xa1 = 0 (resp. f |xa1 = 1) denote the Boolean function f with xa1 being false (resp. true).
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Figure 2.3: The initial iteration of the recursive decomposition method. One �rst speci�es a
minimal path, e.g., {e1, e5}, and decomposes the original graph G(1) according to it, resulting in

three subgraphs: G(1)
0 , G(1)

1 , and G(1)
2 . Each subgraph corresponds to a hyperrectangle in the SSD

method and can also be interpreted as a Boolean function. For instance, the subgraph G(1)
0

represents the hyperrectangle between (1, 0, 0, 0, 1, 0) and (1, 1, 1, 1, 1, 1), and represents the

Boolean function g(con)(X | X1 = 1, X5 = 1), which is always true since G(1)
0 is already connected.

In contrast, G(1)
1 and G(1)

2 remain undetermined and will undergo decomposition in subsequent
iterations. The lower and upper bound of the failure probability after the �rst iteration are,

therefore, equal to 0 and 1− Pr(G(1)
0 ), respectively.
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2.3 Sampling techniques

Compared to the non-sampling methods discussed in the previous section, sampling-based methods
are often more general, even applicable to black-box models, albeit yielding less reliable estimates. In
the following section, we introduce popular sampling techniques for network reliability assessment.
These include crude Monte Carlo, counting-based methods, creation-process-based approaches, along
with two common variance reduction techniques: splitting and importance sampling. Again, we
introduce these methods separately and leave the detailed comparison to Section 2.5.

2.3.1 Crude Monte Carlo

Crude MCS is the most widely employed sampling-based approach for estimating expectations, espe-
cially in high dimensions. Let h be a deterministic function with inputX, whereX = (X1, · · · , Xn)
is a n-dimensional random vector whose distribution, referred to as pX(x), is supported over ΩX .
Crude MCS then estimates the expectation EpX (h(X)) by its sample mean. That is:

p̂(MCS) ,
1

N

N∑
k=1

h(x(k)), x(k) ∼ pX(x), k = 1, · · · , N. (2.16)

Hereafter, we adhere to the convention that p̂ denotes an estimator. In network reliability problems,
the input vector X commonly represents the states of network components, and h(x) often serves
as an indicator function that equals 1 when the network performance g(x) exceeds or falls below
the failure threshold γ, i.e., the network is failed, and 0 otherwise. In this context, the expectation
EpX (h(X)) is exactly the failure probability pf :

pf = EpX (I{X ∈ F}) . (2.17)

Recall that F denotes the failure domain. In the context of connectivity-based problems, the domain
is de�ned as {x | g(conn) = 0}; for maximum-�ow problems, it corresponds to {x | g(mf) < γ}; in
power �ow problems, it is characterized by {x | g(bz) ≥ γ}.

The MCS estimator p̂(MCS) is unbiased with the following variance:

Var(p̂(MCS)) =
Var(h(X))

N
=

Var(I{X ∈ F})
N

=
pf (1− pf )

N
. (2.18)

The coe�cient of variation of the MCS estimator is proportional to
√

1−pf
pf

. In addition, note that∑N
k=1 h(x(k)) =

∑N
k=1 I{x(k) ∈ F} is the sum of a sequence of N independent Bernoulli random

variables, each with a probability pf of being one. By applying the Cherno� bound [36], one can
prove that:

Pr

(
|p̂(MCS) − pf |

pf
≥ ε

)
≤ 2 exp

(
−
Nε2pf

3

)
, (2.19)

where ε is a user-speci�ed tolerance. As a corollary, generating N ≥ −3 ln δ
2

ε2pf
, N∗ samples is su�cient

to bound the absolute relative error within ε with probability at least 1 − δ, which is derived by
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ensuring 1 − Pr
(
|p̂(MCS)−pf |

pf
≥ ε
)
≥ 1 − 2 exp

(
−Nε2pf

3

)
≥ 1 − δ. This is also known as the (ε, δ)-

approximation in statistics [113]. Unfortunately, the sample size N∗ is unknown in practice due to
its dependence on the unknown quantity of interest pf , but if a lower bound of pf , denoted as B,

is given, the sample size N can be determined conservatively as
−3 ln δ

2
ε2B

. In addition, there exist
various modi�cations of crude MCS that o�er assured (ε, δ)-approximations [113]. The time taken
by these algorithms to reach the stopping criterion is random, and they are categorized as Las Vegas
algorithms in computer science.

Eqs. (2.18) and (2.19) indicate that to attain a bounded coe�cient of variation or an (ε, δ)-approximation,

the necessary number of samples in MCS is of the order O
(

1
pf

)
. When evaluating the network per-

formance g is often computationally expensive; crude MCS is therefore infeasible for rare event
estimation. In such cases, di�erent variance reduction techniques need to be incorporated.

Multi-level Splitting and adaptive importance sampling are two primary variance reduction tech-
niques intensively investigated in structural reliability analysis. These methods aim to guide the
sampling procedure toward the failure domain by either replicating and advancing elite samples,
i.e., samples located closer to the failure domain, or by sampling from a series of intermediate dis-
tributions that progressively converge toward the optimal importance sampling distribution. They
both work in an adaptive manner, relying on a sequence of levels that may either be prede�ned or
adaptively selected during the simulation and involve a negligible computational overhead when deal-
ing with complex models. Consequently, their computational cost can be accurately approximated
by the number of calls to the performance function g. Based on these similarities, we categorize
multi-level splitting and importance sampling as adaptMCS methods in the remaining part of this
thesis. Note that in network reliability assessment, where the network performance is often discrete,
the adaptMCS methods initially proposed for continuous performance functions may encounter di�-
culties, resulting in substantial errors. To circumvent this issue, a potential approach is to introduce
the creation process that substitutes the discrete performance g(X) with a continuous critical time
T ∗. Subsequently, the adaptMCS methods are applied to the transformed performance functions.
However, the transformed performance function is more di�cult and expensive to evaluate, often
requiring multiple calls to the original function g in order to obtain the critical order [π]. This
further motivates the idea explored in this thesis, which is the extension of adaptMCS methods to
network reliability assessment without incorporating the creation process. A detailed introduction
to the creation process, multi-level splitting, and adaptive importance sampling will be given later
in this section.

In addition to the adaptive approaches, alternative variance-reduction techniques are available for
estimating rare events in networks. These include dagger sampling [84], sequence construction [50],
MCS with restricted sample space [83, 54, 55, 134, 107, 5], the coverage method [81], strati�ed
sampling [70]. A comprehensive overview of these methods can be found in Brown et al. [20].

2.3.2 Counting-based method

The counting-based method [49, 113] is proposed for solving the connectivity-based problem, in
which we calculate the probability that a group of K nodes is disconnected in a random graph
G(V , {v1, · · · , vm}, E , {e1, · · · , en}), with V, E being the node set and edge, respectively. There
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are in total n edges and m nodes, and the indices of K terminal nodes are collected in the set K.

All nodes are assumed to be perfect, but each i-th edge can fail independently with probability pi.
Hence, the state of all n edges can be collected in a binary vectorX, which is independently Bernoulli
distributed. The connectivity of the graph is indicated by g(conn)(x) : x ∈ {0, 1}n → {0, 1}, which
is also known as the structure function or performance function. Speci�cally, g(conn)(x) = 0 implies
that x is a failure state that disconnects the nodes indexed in K.

To introduce the basic idea behind this counting-based approach, we �rst consider pi = 0.5 for each
1 ≤ i ≤ n. In this context, the system failure probability can be expressed as the ratio of the number
of states that disconnect the network, denoted as |F |, to the number of total states, denoted as |ΩX |.
Here, the cardinality of a set is denoted as | · |. That is

pf =
|F |
|ΩX |

. (2.20)

|ΩX | is known to be 2n for a n-component binary system, so the failure probability calculation de-
generates into counting the failure states. After encoding the complement of the structure function,
i.e., ¬g(conn)(x) = 1−g(conn)(x), as a Σ1

1 formula, various projected counting techniques, which have
been intensively investigated in Boolean satis�ability analysis, can be leveraged to produce a prob-
ably approximately correct (PAC) estimate of |F |. Consequently, the resulting failure probability
estimator is also PAC.

The concepts of conjunctive normal form (CNF) and Σ1
1 formula are essential for understanding

the counting-based approach and hence are introduced in the following. In Boolean logic, there
are three basic operations: logic and ∧ (also known as conjunction), or ∨ (disjunction), and not
¬ (negation). A Boolean function f(x) is in CNF if it is written as a conjunction of disjunctions
of Boolean variables or their negations; otherwise put, in CNF, disjunctions must be nested in a
conjunction, and negations must be nested in a disjunction or conjunction. For example, ¬(x1 ∨x2)
is not in CNF since ¬ is outside ∨, but it can be rewritten as ¬x1∧¬x2, which is in CNF. A Boolean
function f(x) is in Σ1

1 form if it can be written as ∨z∈{0,1}m [ϕ(x, z)], where z , {z1, ..., zm} is a set
of m auxiliary Boolean variables, and ϕ is a CNF expression over x and z. In other words, f(x) = 0
if and only if ϕ(x, z) = 0 holds for every z ∈ {0, 1}m.

Paredes et al. [113] introduce a Σ1
1 formula for countingK-terminal reliability, termed theK−RelNet.

Let z , {z1, ..., zm} denote m auxiliary variables, each associated with a node in V, and (i0, i1) ∈
{1, · · · ,m} be the index of the end nodes of the i-th edge. The K − RelNet formulation reads

Ci = (¬zi0 ∨ ¬xi ∨ zi1) ∧ (zi0 ∨ ¬xi ∨ ¬zi1) =

 1, zi0 = zi1

¬xi, zi0 6= zi1

(2.21)

ϕ(x, z) = (∨j∈Kzj) ∧ (∨k∈K¬zk)︸ ︷︷ ︸
1-st term

∧ (∧ni=1Ci)︸ ︷︷ ︸
2-nd term

. (2.22)

In the following, we add a new interpretation of this formulation and explain why it works. Let us
�rst assign each node in the graph a color according to the auxiliary vector z. For instance, we can
color the j-th node black when zj = 1 and white otherwise. Based on Eq. (2.21), Ci is true in the
following two cases: (1) The i-th edge is failed. (2) The i-th edge is functional, and the color of its
two end nodes is the same. Hence, to let the second term in Eq. (2.22) be true, the nodes connected
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must share the same color. However, if there is only one color for K, the �rst term in Eq. (2.22) will
become zero. This means that if the nodes indexed in K are all connected, i.e., g(conn)(x) = 1, there
is no way to make the auxiliary function ϕ(x, z) true. The complement of the structure function, i.e.,
¬g(conn)(x), can therefore be written in Σ1

1 form with Eq. (2.22). Subsequently, the PAC estimate
for |F | is derived using projected counting techniques.

The counting-based approach is extended to encompass arbitrary but still independent pi, where
i = 1, · · · , n through a weighted-to-unweighted transformation. In this context, an unweighted
edge implies the edge's failure probability is equal to 0.5; otherwise, the edge is weighted. The
basic idea of the transformation is to substitute each weighted edge with an unweighted series-
parallel system whose failure probability is approximately equal to that of the original edge. This
transformation hinges on representing pi as a binary vector with κ-bits, and the e�ciency and
accuracy of the following counting process are sensitive to the choice of κ. Selecting a small value
for κ can lead to a non-negligible truncate error, whereas opting for a large value will signi�cantly
increase the computation cost. This issue becomes critical when pi is small. Besides, encoding
arbitrary dependent pi is challenging in the counting-based approach.

2.3.3 Creation process

For rare event estimation, crude MCS can be infeasible, and variance reduction techniques are
required. In the �eld of network reliability assessment, many of the variance reduction techniques
are built on a graph evolution process termed the creation process [53, 52], in which the network
component is assumed to be repaired sequentially from a completely damaged network with no
functional component. After introducing a random repair time for each component with a proper
distribution, the static network reliability problem can be transformed into a dynamic one. Instead
of estimating the network reliability, it su�ces to compute the probability that the network becomes
functional before a unit of time. As a result, the often discrete network performance is smoothed by a
continuous critical time, which indicates the moment the network �rst becomes functional. Various
variance reduction techniques that were initially proposed for continuous structural performance
can be leveraged for computing the network reliability, e.g., the multi-level splitting [17, 18, 104, 24]
and CE method [71]. Moreover, the creation process provides a natural way of de�ning permutation
Monte Carlo simulation (pMCS) [50, 53], which independently generates the permutation of network
components and calculates the reliability conditional on the generated permutation. The accuracy
of the pMCS can be further enhanced through a merging process [53]. Note that it is also possible
to design a destruction process where components are removed from an intact network sequentially,
and the objective is to estimate the probability the network fails after a unit of time.

2.3.3.1 Creation process for systems with binary inputs

2.3.3.1.1 The initial idea

The creation process was �rst introduced by Elperin et al. [53] for solving connectivity-based
problems, where the backbone model is an undirected graph (or network) G = (V, E) with V =
{v1, · · · , vm} and E = {e1, · · · , en} denoting the node set and edge set, respectively. The nodes are
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assumed to be perfect, but each i-th edge ei, where i = 1, · · · , n, can either fail or not fail with
probability pi and 1 − pi, respectively. The state of each edge, denoted as Xi for i = 1, · · · , n, is
modeled as an independent Bernoulli random variable, Ber(xi; 1−pi), with 1 denoting the functional
state and 0 otherwise. The quantity of interest is the probability that a set of K nodes in the graph
is disconnected, denoted as pf . The index set of K terminal nodes is denoted as K.

This static model can be reformulated as a graph evolution process referred to as the creation process,
wherein the edge-set and, hence, also the graph (or network) evolve over an arti�cial time t. Let
G(t) = (V, E(t)) denote this process, where E(t) collects the functional edges up to time t. Initially, all
edges are failed, so E(t = 0) = ∅. Each edge then undergoes an independent repair at a random time
Ti, characterized by a continuous cumulative distribution function (CDF) FTi(t) , Pr(Ti ≤ t), t ≥ 0
such that FTi(t = 1) = 1− pi. Once the edge is repaired, it is permanently added into E(t). In this
way, the snapshot of the graph at t = 1, i.e., G(t = 1), aligns with the original static model since each
edge in G(t = 1) is down independently with probability pi. Moreover, since the repair of additional
edges will not disconnect the network, i.e., connectivity is a coherent network performance, it su�ces
to compute the probability that the critical time T ∗, when the graph G(t) �rst becomes connected,
is larger than 1; otherwise put, pf = Pr(T ∗ > 1).

Depending on the choice of FTi(t), di�erent creation processes can be de�ned [17]. In most cases,
however, an exponential distribution is favored due to its memoryless property, which signi�cantly
simpli�es the computation complexity. In the remainder of this section, we will focus on this par-
ticular case. Speci�cally, the repair time of the i-th edge, Ti, takes the following CDF:

λi = − ln(pi),

FTi(t) = 1− exp(−λi · t), t ≥ 0. (2.23)

Also, Ti and Tj are independent for i 6= j. It is evident that the probability Ti exceeding 1 is given
by Pr(Ti > 1) = 1− FTi(1) = pi.

The repair time of all edges, t1, · · · , tn, speci�es the order, π , (π1, · · · , πn), in which the edges are
repaired. Speci�cally, the π1-th edge, eπ1 , is repaired �rst, followed by eπ2 , eπ3 , and so forth. The
repair time also determines a realization of the creation process G̃(t), which remains in ∅ until tπ1
and in G(V, {eπ1 , · · · , eπl}) between tπl and tπl+1

for l = 1, · · · , n, with tπn+1 = inf. In addition,
there must be a critical order, denoted as [π], such that G(V, {eπ1 , · · · , eπ[π]

}) is connected and
G(V, {eπ1 , · · · , eπ[π]−1

}) is not. In other words, the repair of eπ[π]
transforms the graph from a

disconnected state to a connected state. Therefore, by de�nition, the critical time t∗ equals the
time the π[π]-th edge is repaired, that is, tπ[π]

. Let ∆tl , tπl+1
− tπl denote the sojourn time of

G̃(t) in G(V, {eπ1 , · · · , eπl}) and ∆t0 = tπ1 be the sojourn time of G̃(t) in ∅. The critical time t∗

can be rewritten as
∑[π]−1

l=0 ∆tl. Note that since t1, · · · , tn are not �xed but generated from the
independent exponential distribution described by Eq. (2.23), π, [π],∆tl, t

∗ are also random. These
random variables are denoted as Π, [Π],∆Tl, T

∗ in the remaining part of this section. A realization
of the creation process for the toy example in Subsection 2.2.2.1 is illustrated in Fig. 2.4.
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Figure 2.4: A realization of the creation process for the toy example. Ti denotes the exponential
repair time of the i-th edge, where i ranges from 1 to 6. ti denotes a realization (or an observed
value) of Ti, and the collection of t1, · · · , t6 de�nes a trajectory of the creation process, illustrated
by the timeline in the �gure. Given this trajectory, π, [π], t∗,∆ti represent the order in which the
edges are constructed, the critical order, the critical time, and the sojourn time, respectively.

2.3.3.1.2 Permutation Monte Carlo

The creation process enables to devise an estimator of pf that is often more e�cient than crude
MCS. Speci�cally, pf can be rewritten as

pf = EΠ

[
ET ∗|Π [I{T ∗ > 1} | Π]

]
, (2.24)

where the outer expectation can be estimated through a crude MCS estimator. That is:

p̂
(pMCS)
f =

1

N

N∑
k=1

ET ∗|π(k)

[
I{T ∗ > 1} | Π = π(k)

]
, π(k) ∼ pΠ(π), k = 1, · · · , N. (2.25)

Here, N is the number of samples and pΠ(π), denotes the distribution of the permutation Π. The

estimator p̂
(pMCS)
f is referred to as the pMCS estimator and is unbiased. Note that the idea of

sampling in the permutation space can be traced back to at least [50]. However, the creation process
provides a natural way of de�ning the permutation, that is, the order in which edges are repaired in
the creation process. The probability of Π = π can be calculated through [53]

Pr(Π = π) =

∫ ∞
0

∫ ∞
tπ1

· · ·
∫ ∞
tπn−1

n∏
i=1

λi exp(−λi · ti)dti =
n∏
i=1

λπi∑n
j=i λπj

. (2.26)
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Eq. (2.26) indicates a sequential sampling strategy of π, wherein πl is selected from indices that
have not been previously chosen, that is, {j = 1, · · · , n | j 6= π1, · · · j 6= πl−1}, with probability
proportional to λj .

In addition, given Π = π, the critical order [π] is �xed, and the sojourn time ∆Tl = Tl+1 − Tl for
l = 1, · · · , n− 1 follows the independent exponential distribution [17] which can be written as:

Pr(∆Tl > τ,Π = π) =

∫ ∞
0

∫ ∞
tπ1

· · ·
∫ ∞
tπl+τ

· · ·
∫ ∞
tπn−1

n∏
i=1

λi exp(−λi · ti)dti,

Pr(∆Tl > τ | Π = π) =
Pr(∆Tl > τ,Π = π)

Pr(Π = π)
= exp(−τ

n∑
j=l+1

λπj ). (2.27)

Note that Eq. (2.27) also applies for ∆T0 = T1 − 0 and is irrelevant to πl+1, · · · , πn, i.e., Pr(∆Tl >
τ | Π = π) = Pr(∆Tl > τ | π1, · · · , πl). This is because, when π1, · · · , πl are �xed, the summa-

tion π1, · · · , πl is also �xed. As it holds that T ∗ =
∑[π]−1

l=0 ∆Tl, the critical time T ∗ conditional on
Π = π, denoted as T ∗ | π, is the sum of [π] exponential distributed random variables, and follows
a generalized Erlang distribution (or hypoexponential distribution). The CDF of the generalized
Erlang distribution is well-known and can be evaluated through established algorithms. This facil-
itates computing the conditional expectation in Eq. (2.25), as it corresponds to the complement of
the CDF of T ∗ | π(k) evaluated at t∗ = 1.

The pMCS method has a smaller variance than crude MCS [53] but involves more complex and
costly computation when evaluating the expectation in Eq. (2.25), i.e., the generalized Erlang distri-
bution's CDF. The computational cost of pMCS heavily depends on the algorithm used to calculate
the CDF and the method for �nding the critical number [π]. Botev et al. [17] recommended
employing the scaling and squaring algorithm [103] for evaluating the CDF of generalized Erlang
distribution, which is more robust but less e�cient than the algorithm utilized in Gertsbakh and
Shpungin [64]. In cases where the exact calculation of the CDF is not feasible, employing approx-
imation techniques is recommended [62]. Additionally, the determination of [π] requires multiple
performance function evaluations. Parades et al. suggested a binary search method that requires
evaluating the network performance at most log2(n) times [114]. The e�ciency of pMCS can be
further enhanced by merging redundant edges during edge repairs [53], a technique also known as
'turnip' [64]. In connectivity-based problems, redundant edges are unrepaired edges with endpoints
already connected by previously repaired edges since, when repaired, these edges will not form new
connections. We refer to [53, 64] for a more comprehensive and detailed introduction to the 'turnip'
technique.

In general, the pMCS method is unsuitable for rare event estimation, e.g., when the network is highly
reliable, and pf is small. For such cases, the creation process needs to be combined with the multi-
level splitting [104, 17, 18] or importance sampling [71]. This will be detailed in Subsection 2.3.4.4.
Also, note that, besides the network connectivity, pMCS applies to any coherent network perfor-
mance function. So far, the input random variables must be independent and Bernoulli distributed,
but this restriction will be relaxed in the following section.
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2.3.3.2 Creation process for systems with multi-state inputs

The creation process can be extended to encompass multi-state systems [63, 18, 24]. Let X =
(X1, · · · , Xn) denote the input random vector that collects the capacity of all edges, and g(mf)(x) be
the network performance function. Suppose each input variable Xd for d = 1, · · · , n is independent
and can take nd + 1 states, denoted as sd,0 < sd,1 < · · · < sd,nd , with probability pd,0, pd,1, · · · , pd,nd ,
respectively. The objective is then to estimate the failure probability de�ned as pf , Pr(g(mf)(X) <
γ).

In the literature, multiple strategies have been developed for extending the creation process to multi-
state systems [63, 18, 24, 64]. One possibility is to associate each state sd,i, for i = 1, · · · , nd and
d = 1, · · · , n, with an independent exponentially distributed random variable Td,i with rate λd,i [18].
Each d-th edge's capacity is initially set to its minimal value, sd,0, and progressively restored as the
arti�cial time t reaches the values in Td,1, · · · , Td,nd . In particular, at time t = Td,i, i = 1, · · · , nd, if
the current edge capacity Xd is less than sd,i, it is upgraded to sd,i; otherwise, no action is taken.
We therefore interpret Td,i as the deadline for restoring the d-th edge, Xd, to at least its i-th state
sd,i. In this way, an extended creation process denoted asX(t) = (X1(t), · · · , Xn(t)) can be de�ned.
For d = 1, · · · , n and i = 0, · · ·nd − 1, Xd(t) ≤ sd,i holds if and only if the deadlines for restoring
Xd to larger capacities are not met, i.e., Td,j > t for j = i + 1, · · · , nd. Hence, it holds that
Pr(Xd(t) ≤ sd,i) = exp(−t

∑nd
j=i+1 λd,j). The rate parameters λd,i, i = 1, · · · , nd, d = 1, · · · , n are

then chosen such that the marginal distribution of the process at time t = 1, X(1), coincides with
the initial static model. In other words, for each d = 1, · · · , n, it must hold that:

Pr(Xd(1) ≤ sd,i) = exp(−
nd∑

j=i+1

λd,j) =

i∑
j=0

pd,j , i = 0, · · ·nd − 1. (2.28)

By solving the equation set in Eq. (2.28), it can be derived that

λd,nd = − ln(

nd−1∑
j=0

pd,j) = − ln(1− pd,nd),

λd,i = − ln(

i−1∑
j=0

pd,j)− λd,i+1 − · · · − λd,nd , i = nd − 1, · · · , 1. (2.29)

Now, Pr(g(mf)(X) < γ) can be written as Pr(g(mf)(X(1)) < γ). Moreover, since the performance
function g(mf) is coherent (or monotonic), Pr(φ(X) ≤ γ) is equivalently the probability that the
critical time T ∗, when g(mf) �rst reaches γ, is greater than t = 1, i.e., Pr(g(mf)(X) < γ) = Pr(T ∗ > 1).
The critical time T ∗ can be expressed as a function of all Td,i's, a total of

∑n
d=1 nd independent

exponentially distributed variables. After collecting these variables in a larger vector, i.e., letting
T , (T1,1, · · · , T1,n1 , · · · , Tn,1, · · · , Tn,nn), a pMCS estimator similar to Eq. (2.25) can be de�ned for
multi-state systems. The permutation, however, is now de�ned over

∑n
d=1 nd states (edge capacities)

in T .

An alternative approach is the multi-level creation process [24]. In this process, each edge in-
dexed by d is linked to an exponentially distributed repair time, Td, with rate λd. The edge
is initially set to its worst state, sd,0, and undergoes an independent repair at time Td. Fol-
lowing this repair, the new state is determined by the time interval during which the repair oc-
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curs. Speci�cally, suppose that the timeline [0,∞) is partitioned into the following nd + 1 subin-
tervals: [τd,0 = 0, τd,1), [τd,1, τd,2), · · · , [τd,nd−1, τd,nd = 1), and [τd,nd = 1, τd,nd+1 = ∞), with
0 < τd,1 < τd,2 · · · < τd,nd−1 < 1 denoting nd − 1 distinct levels. In the multi-level creation
process, the post-repair state of the d-th edge is sd,i if and only if the repair takes place during the
(nd + 1 − i)-th interval, i.e., τnd−i ≤ Td < τnd+1−i. Recall that sd,0 < · · · < sd,nd . Thus, an earlier
repair will never degenerate the edge's state. In addition, to be consistent with the static model,
the repair rate λd and the levels τ1, · · · , τnd−1 must be chosen such that Pr(Xd(t = 1) = sd,i) = pd,i
for each d = 1, · · · , n and i = 0, · · · , nd. Here, Xd denotes the state for the d-th edge and is a
function of the arti�cial time t in the multi-level creation process. Consequently, it can be derived

that λd = − ln(pd,0), and τd,i =
ln(1−pd,nd−···−pd,nd−i+1)

ln(pd,0) , for d = 1, · · · , n and i = 1, · · · , nd − 1. It is

possible to devise a pMCS method with the multi-level creation process; however, given a permuta-

tion π, the critical time T ∗ =
∑[Π]−1

l=0 ∆Tl no longer follows a generalized Erlang distribution. This
is because the critical order [π] given π is a random variable that also depends on the sojourn time
∆Tl, l = 1, · · · , n. In general, large sojourn time leads to poor post-repair performance and, hence,
a potentially large critical order.

2.3.3.3 Smoothing the discrete network performance with the creation process

In the creation process, one estimates Pr(T ∗ > 1) instead of Pr(g(conn)(X) = 0) or Pr(g(mf)(X) < γ),
where the critical time T ∗ is a deterministic function of a set of independent exponential distributions,
i.e., T1, · · · , Tn, and is a continuous random variable. In this way, the original network performance
g, which is discrete, is substituted with a continuous one, that is, T ∗. To illustrate the smoothing
e�ect of the creation process, let us consider a system with only one binary-state component X,
which can either fail, denoted as X = 0, or not fail, denoted as X = 1, with probability p = 0.001
and 1 − p, respectively. The network performance is de�ned as g(X) = X, and the probability
Pr(g(X) = X = 0) is of interest. The CDF of g(X), or equivalently X, is a discontinuous step
function with a 'jump' of p at 0 and 1−p at 1. The creation process of X is governed by an arti�cial
repair time T , which follows the exponential distribution with rate λ = − ln p. Since the system only
has one component, the critical time T ∗ is identical to T and has a continuous exponential CDF.
The di�erence between the CDF of g(X) = X and T ∗ is further illustrated in Fig. 2.5.

The new performance function T ∗(t1, · · · , tn) facilitates leveraging rare event estimation techniques
originally proposed for continuous system performance to solve network reliability problems, but it
is also more expensive to compute, often requiring multiple calls to the original performance function
g. For tackling connectivity-based problems, the creation process has been incorporated in multi-
level splitting [104], generalized splitting [17], sequential Monte Carlo [133], importance sampling
[71], among others. For maximum �ow problems, Botev et al., [18] combined the modi�ed creation
process with the generalized splitting method, and Cancela et al., [24] integrated their multi-level
creation process with splitting. These combinations will be detailed later in Subsection 2.3.4.4.

2.3.4 Multi-level splitting methods

Multi-level splitting is a popular technique for estimating rare events. The idea of splitting dates
back to [79] and has been intensively investigated in the past three decades. Many variants have been
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Figure 2.5: Left: the CDF of the g(X) = X, which is a Bernoulli distributed variable, is also
depicted in the red line. Right: the probability that T ∗ > t of the example in Subsection 2.3.3.3.

developed in di�erent contexts, sometimes with di�erent names, e.g., SuS in civil engineering [7],
the RESTART method in telecommunication [135], nested sampling within the context of Bayesian
analysis [129]. The core idea, however, is similar. That is to express the rare event, denoted as F ,
as the intersection of nested intermediate events F0 ⊂ F1 ⊂ · · · ⊂ FM = F , i.e.,

F =
M⋂
l=0

Fl, (2.30)

and to decompose the probability of the rare event as the product of a sequence of larger conditional
probabilities, i.e.,

pf = Pr(F ) =
M∏
l=1

Pr(Fl|Fl−1). (2.31)

Usually, F0 = ΩX represents the initial sample space, so its probability measure equals one. While
Pr(F1|F0) can be directly estimated through crude MCS, the remaining conditional probabilities are
estimated by splitting the previous trajectories. The �nal estimator takes the form:

p̂
(MS)
f =

M∏
l=1

P̂r (Fl | Fl−1) . (2.32)

A comprehensive review of this group of methods and their applications in di�erent �elds is out of
the scope of this thesis. Instead, we aim to illustrate the basic idea and major variants in a general
mathematical framework known as the over�ow problem [57, 27], where the rare event is modeled as
the threshold exceedance by a deterministic function. Building on this preliminary knowledge, we
summarize recent developments in multi-level splitting techniques for network reliability assessment.

2.3.4.1 Problem settings

Let Y (t) denote a time-homogenous Markov process with a state space y ∈ ΩY , a �xed initial
point y(0), and a transitional kernel K(y | y∗) that represents the conditional distribution of y
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given y∗. Events A and B are two disjoint subsets of ΩY , characterized by a deterministic function
h : ΩY → R and a threshold γ. The objective is then to estimate the probability that the random
process reaches B before A. This is referred to as the dynamic over�ow problem. In particular,
de�ne A , {y ∈ ΩY |h(y) < 0} and B , {y ∈ ΩY |h(y) ≥ γ > 0}, and let τA and τB denote the �rst
time Y (t) enters A and B, respectively. The target probability can be written as Pr(τB ≤ τA).

Alternatively, one substitutes the Markov process Y (t) with a d-dimensional vectorX and estimates
the probability that a deterministic function g ofX ∈ ΩX is greater or equal to a speci�ed threshold
γ, i.e., Pr(g(X) ≥ γ). Let ΩX denote the sample space of X, and pX(x) be its distribution. This
is the static over�ow problem. Note that all network performance functions discussed in this thesis,
i.e., g(conn), g(mf), and g(bz), can be formulated as static over�ow problems. In particular, the failure
probability Pr(g(conn) = 0) equals Pr(g(conn) ≥ 1), and Pr(g(mf) < γ) can be equivalently expressed
as Pr(−g(mf) ≥ −γ) + ε, where ε > 0 denotes a negligible positive number, e.g., 10−20.

The dynamic over�ow problem can be reformulated as a static one by interpreting ΩX as a functional
space of trajectories (or realizations) of Y (t), denoted as y(t). The performance function g(y(t)) ,
sup0≤t≤τA h(y(t)) then maps each trajectory y(t), t > 0 to its maximum h value before entering A.
On the other hand, by devising an arti�cial Markov chain with an augmented state space, the static
over�ow problem can also be reformulated in a dynamic setting [26, 19].

When the threshold γ is large, Pr(τB ≤ τA) (or Pr(g(X) ≥ γ)) is often small, and crude MCS
becomes impractical when simulating Y (t) and computing the deterministic function h (or g) are
computationally demanding. In fact, to maintain a constant coe�cient of variation in MCS, the
number of trajectories to sample is proportional to 1

Pr(τB≤τA) (or 1
Pr(g(X)≥γ)). Multi-level splitting

is one of several variance reduction techniques that address this issue.

2.3.4.2 Implementation details

2.3.4.2.1 Splitting for dynamic over�ow problems

In dynamic over�ow problems, the intermediate events {Fl}Ml=0 are de�ned as follows:

Bl , {y ∈ ΩY | h(y) ≥ γl},
Fl , {y(t) ∈ ΩY (t) | τBl ≤ τA}, (2.33)

where − inf = γ0 < γ1 < · · · < γM = γ denotes a sequence of levels that characterizes the inter-
mediate events. M is the number of intermediate levels, and ΩY (t) denotes the trajectory space of
the process Y (t). Since Bl−1 ⊂ Bl for each 1 ≤ l ≤ M , it is impossible to enter Bl−1 later than Bl;
otherwise put, τBl−1

≤ τBl . Consequently, Fl is nested in Fl−1 for 1 < l < M , and both Eqs. (2.31)
and (2.30) are valid.

For e�ciently estimating the conditional probabilities, the multi-level splitting methods begin with
N0 independent trajectories (or realizations) of the Markov process Y (t). Each trajectory is simu-
lated until it enters either B1 or A. Trajectories entering the event A �rst are terminated immedi-
ately, while the remaining ones are split at the moment they reach B1, denoted as τB1 . Speci�cally,

each k-th survival trajectory is replicated n
(k)
1 times until τB1 . Assume there are in total R1 survival
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trajectories. The total number of copies (or o�springs), denoted as N1, is then given by
∑R1

k=1 n
(k)
1 ,

and the ratio R1
N0

is an unbiased estimator of Pr(F1 | F0). In the subsequent iteration, each trajec-
tory copy is extended independently from its entrance state until it enters either B2 or A. Note that
these trajectories are not independent since some of them share parts of history. The number of

survival trajectories and their copies are then denoted as R2 and N2 =
∑R2

k=1 n
(k)
2 , respectively, and

the ratio R2
N1

is employed as an unbiased estimator for Pr(F2 | F1). The procedure continues until
RM trajectories reach the rare event FM = F . The �nal estimator of Pr(F ) is then given by

p̂
(MS)
f =

M∏
l=1

P̂r (Fl | Fl−1) =
M∏
l=1

Rl
Nl−1

. (2.34)

There are two di�erent ways of splitting: �xed splitting (FS) and �xed e�orts splitting (FE) [57]. In

FS, each survival trajectory is replicated a �xed number ηl of times at the l-th iteration, i.e., n
(k)
l = ηl

for each k, resulting in a total of Nl = ηl ·R1 copies (or o�spring). The parameter ηl is also known as
the splitting factor in literature [57, 114]. The optimal but impractical choice of ηl is

1
Pr(Fl+1|Fl) [65].

The choice of a large ηl leads to an explosion of Nl, while a small ηl may cause the extinction of the
trajectories. In both cases, the e�ciency of FS is poor. By contrast, in FE, Nl is �xed and needs
to be assigned to Rl survival trajectories. For instance, one can generate Nl copies uniformly with
replacement from Rl survival trajectories. This is known as random assignment in literature [57, 59,
85]. The number of replicas for each survival trajectory then follows the multinomial distribution.
Alternatively, one can replicate each survival trajectory bNlRl c times, and sample uniformly without

replacement the remaining Nl − Rl · bNlRl c copies. This is known as the �xed assignment. Other
assignment methods include residual sampling [26] and strati�ed sampling [85].

Regardless of whether FS or FE is utilized and irrespective of the assignment method in FE, the
multi-level splitting estimator (see Eq. 2.34) is unbiased [85]. However, they di�er in the estimator
variance. Garvels and Kroese [57] concluded in their comparative study that FE with �xed assign-
ment usually leads to smaller variance. In some simpli�ed settings (e.g., when M=2), an analytical
expression of the variance can be derived by analyzing the entrance states [58].

The e�ciency of the multi-level splitting method relies on an appropriate choice of intermediate
levels {γl}Ml=1, which are often speci�ed through a pilot run. Although A and B are de�ned through

the deterministic function h, any other function h̃ : ΩY → R such that A , {y ∈ ΩY | h̃(y) < γ̃0}
and B , {y ∈ ΩY | h̃(y) ≥ γ̃}, can be employed to set levels and to drive the Markov process. The
selection of h̃, however, is non-trivial and still remains an open question. Additional insights are
given in the discussion on the optimal importance function in Garvels et al. [58].

2.3.4.2.2 Generalized splitting for static over�ow problems

Splitting Multi-level splitting can be adapted to static over�ow problems [15]. Thereby, the
intermediate events are de�ned by:

Fl , {X ∈ ΩX | g(x) ≥ γl}. (2.35)

Here, − inf = γ0 < γ1 < · · · < γM denotes the sequence of intermediate levels. It is evident that
these intermediate events are nested, so Pr(F ) can be estimated by Eq. (2.32). For estimating

36



Chapter 2. A review of the state-of-the-art network reliability methods

the conditional probabilities {Pr(Fl | Fl−1)}Ml=1 in static settings, the multi-level splitting method
proceeds as follows. At the initial iteration, the method generates N0 independent samples from
pX(x), removes those falling outside of F1, and replicates samples that remain. These survival
samples are also known as the seeds or elite samples. Suppose there are R1 seeds, and after either

�xed splitting or �xed e�ort splitting, each k-th seed is replicated n
(k)
1 times. The total number

of replicas N1 then equals
∑R1

k=1 n
(k)
1 . These N1 replicas follow the distribution p(x | F1), but are

highly correlated. To reduce the dependence among replicas, a transition kernel K1 that is invariant
to p(x | F1) is applied to each replica, resulting in N1 enriched samples that still follow p(x | F1).

This is equivalent to arranging N1 Markov kernels in R1 'forks', with n
(k)
1 branches rooting in the

k-th seed. Suppose R2 out of N1 samples fall in F2. The above splitting and one-step Markov move
are then iterated until l = M , and Eq. (2.34) is an unbiased estimator of Pr(F ).

The multi-level splitting methods can also be interpreted as the particle integration method with the
Feynman-Kac model [26, 114]. Hence, various theoretical results available for particle integration
methods can be leveraged to establish the unbiasedness, asymptotic variance, and other properties
of the above multi-level splitting estimator [43].

Generalized splitting To further reduce the dependence among samples, it is possible to organize
Markov kernels into multiple chains rather than forks, thus allowing them to mix properly. This
approach is referred to as the generalized splitting in Botev and Kroese [16]. Speci�cally, let us
consider generating n samples from the distribution p(x | Fl) with a seed x∗ in Fl. In splitting, this
is done by sampling from the transition kernel Kl(x | x∗), i.e., xj ∼ Kl(x | x∗) for all j = 1, · · · , n.
Recall that Kl(x | x∗) is the conditional probability (or density) of x given the seed x∗ and is
invariant to p(x | Fl). Since these samples share the same parent, they can be highly correlated. By
contrast, in generalized splitting, the j-th sample xj is generated fromKl(x | xj−1) with j = 1, · · · , n
and x0 = x∗, thus decreasing the dependence between, e.g., x1 and xn. At each level of splitting, the
transition kernels are determined using Markov Chain Monte Carlo (MCMC) algorithms. Selecting
an inappropriate algorithm can result in highly correlated intermediate samples, leading to signi�cant
errors. In the context of generalized splitting, commonly used MCMC algorithms include adaptive
conditional sampling [111] (an adaptive variant of the preconditioned Crank-Nicolson algorithm
[41]), Hamiltonian Monte Carlo [106], Gibbs sampling [60], among others.

The generalized splitting can be directly embedded into the multi-level splitting method by replacing
the original splitting and one-step Markov move. The initial samples are still independently drawn
from pX(x), but in the subsequent iterations, samples are generated by initiating a Markov chain
from each seed. Suppose that, at each l-th iteration, Rl out of Nl−1 samples fall in Fl. The �nal
estimator of Pr(F ) is then given by Eq. (2.34).

In Botev and Kroese [16], the authors devised a �xed generalized splitting scheme, where the average

length of the chain at iteration l equals 1

P̂r(Fl|Fl−1)
, with P̂r(Fl | Fl−1) estimated from a pilot run.

This �xed generalized splitting method is proven to be unbiased. On the other hand, one can also
devise a �xed e�ort generalized splitting scheme in which the total number of samples is �xed at each
iteration. However, since now the length of the chain depends on the sampling history, in particular,
the number of seeds at each iteration, the proof in Botev and Kroese [16] no longer applies, and the
unbiasedness of this method needs to be revalidated.
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2.3.4.2.3 The adaptive selection of the levels and subset simulation

The e�ciency of the multi-level splitting (or generalized splitting) algorithms is heavily dependent
on the choice of the intermediate events or, equivalently, on how the levels are structured. However,
an appropriate selection of levels requires a comprehensive prior knowledge of the system, which is
often not available before the simulation. Most of the aforementioned multi-level splitting methods
require a pilot run to determine the levels. However, obtaining a good choice of levels necessitates
a substantial pilot cost, ultimately reducing the overall e�ciency, and it can be di�cult to balance
the cost in advance.

The intermediate levels can also be chosen adaptively during the splitting algorithm, such that
the conditional probability P̂r(Fl | Fl−1) is approximately equal to a constant value p0. This is
known as the adaptive multi-level splitting (AMS) method. This approach was �rst discussed in
Garvels [59] for solving dynamic over�ow problems and was subsequently investigated in Cerou and
Guyader [27] for a one-dimensional Markov process. In the approach, at the l-th iteration of AMS,
the level γl is selected as an empirical p0-quantile of the maximal h values reached by the Nl−1

trajectories generated in the previous iteration. Only the trajectory with maximal h value larger or
equal to γl is kept and further replicated until the moment it �rst enters Bl , {y ∈ ΩY | h(y) ≥ γl}.
Suppose Rl trajectories survive and split into Nl replicas through either �xed or �xed e�ort splitting.
These replicas are then simulated until the end, i.e., until they �rst enter A, to determine the next
level γl+1. An interesting variant of AMS is to choose γl as the smallest maximal h value among
trajectories, which is often referred to as the 'last sample' implementation. This variant can be
viewed as a limiting case of the �xed-e�ort multi-splitting method, where the number of iterations
M approaches in�nity, so it is also unbiased [29].

Botev and Kroese [15] further embedded the generalized splitting in AMS and proposed the adaptive
generalized splitting method (ADAM). Although ADAM is only used as a pilot run for the generalized
splitting method in Botev and Kroese [16], it can be employed as a stand-alone algorithm for
estimating Pr(F ). In Chapter 7 of this thesis, we show that ADAM is even more e�cient than
generalized splitting when taking into account the additional pilot cost for the latter. Note that the
ADAM method was initially and independently proposed in the �eld of civil engineering, where it
is referred to as SuS [7]. Both SuS and ADAM are asymptotically unbiased [7].

When g(X) is a continuous random variable, and samples can be generated independently from
p (x | g(X ≥ γl)), Cerou et al. [26] proved that this ideal version of AMS is only asymptotically
unbiased and derived its limiting distribution as the sample size Nl, l = 1, · · · ,M becomes in�nity.
Interestingly, the 'last sample' variant of AMS is unbiased in this ideal case [67].

A brief summary of the aforementioned multi-level methods is given in Table. 2.2. Note that whether
a multi-level splitting method is unbiased or not is sensitive to slight changes in the algorithm and
the problem. For instance, the unbiasedness of the algorithm proposed by Guyader et al. [67] builds
on the continuity of the random variable g(X), and the generalized splitting method in Botev and
Kroese [16] may not maintain its unbiasedness when employing a �xed e�ort scheme.
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Table 2.2: Di�erent multi-level splitting methods

reference problems levels splitting approach unbiased

main Alg. [59, 85] dynamic �xed FS,FE+RA,FE+FA yes

AMS [29, 27] dynamic adaptive FE+RS unknown

main Alg. [28] dynamic adaptive FE+RS yes

SuS+splitting [37] dynamic adaptive FS asymptotically

Alg.1 [26] static �xed FE+RS yes

Alg.2 [26] static adaptive ideal asymptotically

main Alg. [67] static adaptive ideal yes

Alg.3.1 [15] static �xed FE+RA yes

Alg.3.2 [15] static adaptive FE+RA unknown

GS [16] static �xed GFS yes

ADAM [16] static adaptive GFE+FA asymptotically

Alg.5.1 [16] static �xed FE+FA yes

SuS [7] static adaptive GFE+FA asymptotically

Abbreviations: Alg: algorithm; AMS: adaptive multi-level splitting; GS: generalized split-
ting; ADAM: adaptive generalized splitting; SuS: subset simulation; dynamic: dynamic over-
�ow problems; static: static over�ow problems; FS: �xed splitting; GFS: generalized �xed
splitting; FE+FA: �xed e�ort splitting with �xed assignment; FE+RA: �xed e�ort splitting
with random assignment; FE+RS: �xed e�ort splitting with residual sampling; GFE+FA:
generalized �xed e�ort splitting with �xed assignment; ideal: direct sample from p(x | Fl)

2.3.4.3 The optimal selection of parameters in an ideal case

In practice, the selection of the parameters in the multi-level splitting methods is of great importance.
A bad choice will decrease the e�ciency of the algorithm. The optimal selection of parameters can be
derived for an ideal but impractical case, where samples are generated independently from p(x | Fl−1)
for estimating the conditional probability Pr(Fl | Fl−1) [57]. In such a case, Eq. (2.32) becomes a
product of a sequence of crude MCS estimators.

Regarding �xed-e�ort splitting, Garvels and Kroese [57] demonstrated that, given a substantial
computational budget (e.g., the overall number of samples or trajectories generated by the al-
gorithm), the variance of the estimator in Eq. (2.32) can be minimized by con�guring parame-
ters as follows: set M ≈ − log(Pr(F ))/2, N0 = N1 = . . . = NM−1, and choose levels such that
Pr(Fl|Fl−1) = exp(−2) ≈ 0.135. Recall that M is the number of levels, and Nl, l = 0, · · · ,M − 1
denotes the sample size at each iteration.

Using the multi-level branching theory, Glasserman et al. [65] derived a similar strategy for selecting
�xed splitting parameters. In particular, they suggest setting M ≈ − log(Pr(F ))/2, s1 = s2, · · · ,=
sM−1 ≈ e2 and selecting levels such that Pr(Fl|Fl−1) = exp(−2) ≈ 0.135. Recall that ηl denotes
the splitting factor for the l-th level. The initial sample size N0 should be equal to 1

M of the total
budget.

These theoretical results derived for the ideal case shed insights into choosing parameters in practical
settings. For instance, when adaptively choosing the levels in AMS, ADAM, or SuS, the conditional
probabilities should be equal, and the sample size at each iteration should also be equal. However,
all of these results are based on the implicit assumption that, given the (l − 1)-th level γl−1, there
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is always a γl > 0 such that Pr(Fl | Fl−1) = exp(−2). As will be shown later in this thesis,
this assumption does not always hold in network reliability assessment, particularly when g(X) is
discrete, with signi�cant 'jumps' in its CDF. In such cases, it is advisable to adapt the conditional
probabilities and the sample size per level. This further motivates the idea of the adaptive e�ort
subset simulation method (aE-SuS) in Chapter 4.

2.3.4.4 Multi-level splitting methods for network reliability assessment

In network reliability assessment, most standard problems can be reduced to static over�ow prob-
lems, as described in Subsection 2.3.4.1. Di�erent from structural reliability assessment, the network
performance g(X) is often a discrete random variable due to binary or multi-state variables in X or
due to the discrete nature of g. By contrast, all adaptive methods listed in Table 2.2 for static prob-
lems, along with their corresponding mathematical analyses, are tailored to continuous performance,
potentially limiting their applicability to discrete performance. For instance, the 'last particle' ver-
sion of the AMS method cannot be used [67], and SuS will lead to substantial errors when signi�cant
'jumps' appear in the CDF of g(X) [7]. At �rst glance, �xed-level methods may not appear to su�er
from this discontinuity issue. However, they heavily depend on pilot runs, often utilizing adaptive
methods, and therefore, still face potential issues. In the literature, multi-level splitting methods
are commonly integrated with the creation process for rare event estimation in network analysis [38,
17, 104, 18, 24, 25], but this is not always necessary. In fact, we �nd that it is often more e�cient
to directly adapt the conditional probabilities and sample size in SuS, and this novel approach will
be detailed in Chapter 4. Note that in certain situations the network performance is continuous
or approximately continuous, especially in large-scale networks, and in such cases, SuS is directly
applicable [143, 144, 77].

The creation process can be integrated into the multi-level splitting. In the creation process, the
network performance g(X) is replaced by the critical time T ∗ when the network �rst becomes
functional, and one estimates the probability of T ∗ exceeding 1, instead of Pr(g(X) ≥ γ). On the
one hand, this is still a static over�ow problem, but with a continuous performance T ∗(T1, · · · , Tn),
which can be directly integrated with not only GS [17, 18], but also any other multi-level splitting
methods for estimating rare events in networks. On the other hand, the creation process with
exponential repair time is a Markov process [17] and provides a natural way of de�ning the dynamic
over�ow problem. The graph-evolution trajectory G̃(t) terminates when the graph �rst becomes
functional at the critical time T ∗, i.e., τA , T ∗, and τB , 1. It is then evident that Pr(T ∗ > 1) can
be reformulated as a dynamic over�ow problem Pr(τB < τA). The intermediate levels for splitting
are positioned along the arti�cial timeline [104, 24], denoted as 0 = τ0 < τ1 < · · · < τM = 1, and
the intermediate domains are de�ned by {G̃(t) | τl < τA}.

Alternatively, multi-level splitting can be incorporated into pMCS methods for generating pivotal
permutations with a large critical order [133]. These permutations often correspond to a larger
expectation value in Eq. (2.25 ), making them important. However, they are rare events if directly
sampled from Eq. (2.26). The incorporation of multi-level splitting facilitates a more e�cient search
for these pivotal permutations, resulting in reduced variance. By contrast, pMCS can be embedded
into the multi-level splitting method proposed in Murray et al. [104] for estimating the conditional

probabilities { Pr(Fl)
Pr(Fl−1)}

M
l=2 [23].
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2.3.5 Importance sampling

We consider the case where the goal is to estimate the probability that the input vector X falls in
the failure domain F , denoted as Pr(X ∈ F ). In network reliability assessment, the domain F is
characterized by the network performance function g(X) and a speci�ed threshold γ. The precise
de�nition of F depends on the problem at hand and has been outlined in Section 2.1.

The basic idea of importance sampling (IS) is to sample from a proposal distribution, also known as
IS distribution, under which the rare event is more likely to occur and to correct the resulting bias
in the estimate by multiplying each sample in the IS estimator with an appropriate likelihood ratio
L [82]. Let pIS(x) be the IS distribution and {x(k)}Nk=1 be the N samples generated from pIS(x).
The IS estimator of Pr(X ∈ F ) can then be written as

p̂
(IS)
f =

1

N

N∑
k=1

I{x(k) ∈ F} pX(x(k))

pIS(x(k))
, (2.36)

where the likelihood ratio (or IS weight) L(x) , pX(x)
pIS(x) can be interpreted as an adjustment factor

that compensates for the fact that samples are generated from pIS(x) instead of pX(x) [110]. The
IS estimator in Eq. (2.36) is unbiased if the intersection of the failure domain F and the support of
pX(x) is included in the support of pIS(x) [110]. The variance of the estimator crucially depends
on the choice of the IS distribution. A proper choice of the IS distribution can lead to a signi�cantly
smaller variance than that of crude MCS. Indeed, the theoretical optimal IS distribution p∗IS(x) that
results in zero variance of the estimator is equal to the input distribution conditional on F . That is

p∗IS(x) =
pX(x)I{x ∈ F}

pf
, pX(x|F ). (2.37)

Unfortunately, p∗IS(x) cannot be directly used since its analytical expression relies on a prior knowl-
edge of the sought failure probability pf . Nevertheless, the optimal IS distribution p∗IS(x) still
provides guidance for selecting an appropriate IS distribution. A common approach is to perform an
initial �rst/second-order reliability method analysis [100] or employ a Markov chain simulation al-
gorithm [6] to form a distribution that resembles p∗IS(x). Alternatively, one can approximate p∗IS(x)
in an adaptive manner through the application of the CE methods [122, 123].

In connectivity-based problems, the input vector X = (X1, · · · , Xn) is binary, indicating the states
of network edges: 0 for failure and 1 for operational. The network fails when it is disconnected. For
such cases, L'Ecuyer et al. [86] proved that the optimal IS distribution p∗IS(x) can be reformulated
as follows:

p̃d = pd
u(x1, · · · , xd−1, xd = 0)

u(x1, · · · , xd−1)
, d = 1 · · ·n,

p∗IS(x) =

n∏
d=1

p̃
I{xd=0}
d (1− p̃d)I{xd=1}, (2.38)

where pd = Pr(Xd = 0) is the failure probability of the d-th edge, and u(x1, · · · , xd) denotes the
network failure probability given X1 = x1, · · · , Xd = xd (u(∅) denotes the unconditional failure
probability.) Eq. (2.38) suggests a sequential sampling scheme to obtain samples from the op-
timal IS distribution: �rst sample X1 from the Bernoulli distribution Ber(x; 1 − p̃1), then given
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x1 sample X2 from Ber(x; 1 − p̃2) and so forth. However, this approach is impractical as u(∅)
and {u(x1, · · · , xd)}n−1

d=1 are unknown. To circumvent this issue, the approximate zero-variance im-
portance sampling (AZIS) method replaced u(x1, · · · , xd) by its approximation û(x1, · · · , xd) [86].
Speci�cally, one identi�es the minimal cut that has the highest probability in Gd, a graph formed
by removing failed edges and merging functional edges in x1, · · · , xd, and takes its probability as
û(x1, · · · , xd). This minimal cut can be identi�ed in polynomial time after equipping each i-th edge
in Gd with the weight− ln(pi) [127]. More importantly, under this minimal-cut-maximum-probability
approximation strategy, the coe�cient of variation of the resulting AZIS estimator is proven to be
bounded. The AZIS method can be enhanced by integrating the graph reduction techniques, such
as the series-parallel reduction [87]. Moreover, it can be extended to account for node failures, which
are commonly encountered when analyzing railway telecommunication systems [118].

The multi-level CE method [122, 82] provides an alternative approach for approximating the optimal
IS distribution p∗IS(x). Its fundamental idea involves iterative minimization of the Kullback-Leibler
(KL) divergence between a parametric model and a sequence of intermediate target distributions
that gradually approach pX(x). The distribution obtained in the �nal iteration is employed as the
IS distribution. For network reliability problems with binary or multi-state input, the obvious choice
of the parametric model is the multivariate categorical distribution. However, as will be illustrated
later in Chapter 5, there is a signi�cant over�tting issue when the edge failure probability is small.
Also, as the network performance is discrete, the original adaptation of the intermediate target dis-
tributions is not always feasible and can even get stuck. In the literature, the two issues are avoided
by integrating the creation process into the multi-level CE method [71]. Consequently, the discrete
network performance is transformed into a continuous one, the critical time T ∗, with input now
becoming a set of exponentially distributed repair times. The product of independent exponential
distributions can then be employed as the parametric model [71]. Since the IS distribution of the
repair time obtained by the multi-level CE method also de�nes an IS distribution for the permu-
tations in pMCS, it is therefore natural to consider combining both methods. Note that there are
network reliability problems that have a continuous performance. e.g., the shortest path problem,
for which the CE method is directly applicable [66].

2.4 Other widely used approaches

In this section, we discuss other methods for network reliability assessment.

2.4.1 Probability density evolution method

The probability density evolution method (PDEM) was initially developed for the analysis of nonlin-
ear stochastic dynamic systems [90]. This method captures the distribution of the structural response
and accommodates the uncertainty inherent in both structural properties and external excitations.
At the core of this method lies the generalized density evolution equation (or Li-Chen equation).
For speci�c systems, solving this equation concurrently with the structural dynamic equations, the
closed-form solution of the response's probability density function (PDF) can be derived [78]. For
general systems, however, only numerical solutions are accessible. Speci�cally, the numerical method
begins with a set of representative points selected to minimize a speci�ed discrepancy, such as the
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GF discrepancy [35]. These representative points partition the sample space of the random parame-
ters into disjoint subdomains, each associated with a representative point. Within each subdomain,
the time derivative of the response (e.g., velocity is the time derivative of the displacement) is �rst
calculated through deterministic dynamic analysis, with the random parameters in dynamic struc-
tural functions �xed at the associated representative point. The resulting derivative trajectories are
then used for driving the �nite di�erence methods for numerically solving the generalized density
evolution equation. This is called the point evolution scheme, and the e�ciency hinges on the se-
lection of the representative points set and the con�guration of the �nite di�erence scheme such
as the grid size [132]. If the performance of infrastructure networks is continuous and governed by
stochastic dynamic equations, the PDEM can be employed for assessing the functional reliability of
these networks. This idea has already been explored for buried pipeline systems [98, 97] and water
supply systems [102, 101].

2.4.2 Matrix-based system reliability method

The matrix-based system reliability method is another practically e�cient method [80] for precisely
calculating the failure probability of networks. This method necessitates an explicit expression of
the failure event F as the union, intersections, or complements of the component events Ei,j , which
denotes the i-th component in the j-th state. The failure event vector cF can then be e�ciently
constructed through matrix operation [39] of component event vectors cEi,j , which are often easy to
construct. Even for multi-state components, these event vectors are binary, indicating whether or
not each system state belongs to F or Ei,j [80]. For instance, in a system consisting of n tri-state
components, the total number of system states amounts to 3n, so cF (resp. cEi,j ) is a binary vector

of size 3n, and if the k-th system state belongs to F (resp. Ei,j), c
F
k = 1 (resp. c

Ei,j
k = 1). For binary

components, however, the matrix operation for computing cF can be substituted with more e�cient
logical operations [39]. Let the vector pΩX collect the probability of each system state in ΩX , which
can be easily calculated when network components are independent or subject to common cause
failure [80]. Finally, the failure probability is calculated by (cF )T · pΩX .

2.4.3 Linear programming and multi-scale decomposition

In cases where cF can be e�ciently constructed, yet the description of the input distribution pX(x)
is incomplete, obtaining the narrowest bounds of the failure probability involves solving a linear
programming problem [130]. This can happen, for instance, when the dependence structure of
network components is unknown, and only the marginal (or uni-component in Kang et al. [80])
distributions are available. However, the number of optimization variables grows exponentially in
the number of network components, which restricts the applicability of this bounding technique to
networks of limited size. Through incorporating a multi-scale decomposition of the network [45], the
linear programming technique can be applied to larger networks. The basic idea of the multi-scale
decomposition is to introduce a set of super-components, each comprising one or a few network
components, and reformulate the failure event as an intersection, union, or complement of super-
component events, which in turn should be represented as a function of component events. The
linear programming problem is then addressed to �rst determine the probability bounds of super-
component events; these established bounds subsequently serve as constraints for bounding the �nal
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failure probability. In this way, the initial linear programming problem, characterized by a large
number of optimization variables, is transformed into several smaller nested linear programming
problems, thereby signi�cantly reducing the computational cost. As a trade-o�, the resulting bound
is no longer the tightest. Note that the selection of super-components signi�cantly in�uences the
overall e�ciency of the method, and an inappropriate choice can even lead to less e�cient results
compared to the crude approach. Also, besides linear programming, the multi-scale modeling of the
network can also be incorporated with other network reliability methods [94, 89, 131].

2.4.4 System and survival signatures

When inputs are binary and exchangeable, i.e., they follow an independently and identically dis-
tributed Bernoulli distribution, network reliability can be characterized by using the system signature
[124]. The signature is de�ned as the portion of the functional system states among those with a
speci�ed number of functional components. In particular, let us consider a n-component system
with component failure probability denoted as p. Assume that all system states possessing i func-
tional components and resulting in the system functionality are included in the set Si. The system
signature Φ(i) can then be expressed as |Si|

(ni)
for each i = 0, · · · , n, where the denominator

(
n
i

)
is

the binomial coe�cient computing the total number of states with exact i functional components,
and |Si| is the cardinality of Si. Due to the exchangeability of the components, the probability
of these states are all equal, so the signature Φ(i) can be interpreted as the conditional reliability
given exactly i functional components. Consequently, according to the total probability theorem,
the reliability can be calculated as

1− pf =

n∑
i=1

Φ(i)

(
n

i

)
pn−i(1− p)i. (2.39)

Note that Φ(i) is decoupled from the input distribution, making Eq. (2.39) particularly suitable for
time-dependent reliability assessment, e.g., for computing the survival function of the system. In this
context, the component failure probability is often characterized by a random time to failure, but
the network performance function remains the same, so Φ(i) only needs to be calculated once. When
there are K > 1 types of components, and the exchangeability is con�ned to components of the same
type, the system signature is generalized to the survival signature Φ(i1, · · · , iK) [40], which is de�ned
as the fraction of the functional system states conditional on i1 functional components of type 1,
i2 functional components of type 2, and so forth. Similarly to the system signature, Φ(i1, · · · , iK)
can also be interpreted as conditional reliability and is also decoupled from the probabilistic inputs.
Estimating the survival signature can be accomplished through analytical methods, such as ROBDD
[121], or by utilizing sampling-based algorithms [14, 46]. For large-scale networks with multiple
types of components, the number of signatures is typically large, and an e�cient estimation of these
signatures still remains an open question. Survival signatures can also be expanded to address issues
involving multi-state inputs [117] or dependent component failures [61].

In static network reliability settings, the estimation of system signatures through sampling can
be integrated into a broader strati�ed sampling framework, where each stratum is characterized
by a speci�ed number of failed components. Van Slyke and Frank [134] have previously explored
this idea for independent and identical inputs and utilized a proportional allocation strategy for
distributing the computation budget. As for independent but non-identical inputs, the strati�ed
sampling approach is still in development.
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Chapter 2. A review of the state-of-the-art network reliability methods

2.5 Conclusions and summary

We have reviewed the state-of-the-art network reliability methods. To conclude, a concise overview
of these methods is provided in Table 2.3. The table is self-explanatory, constructed from the
information provided in this chapter.

Table 2.3: A brief overview of network reliability methods detailed in Chapter 2

subsections dependent inputs multi-state inputs coherent g error metric generally unsuitable for

BDD 2.2.1 adaptable1 adaptable not required exact large n, complex4 g

cut(path)-based 2.2.2 adaptable applicable2 required exact(or bounds) large n, complex5 g

SSD 2.2.3 adaptable applicable required reliability bounds large n, high pi

matrix-based 2.4.2 applicable applicable not required exact large n, complex6 g

MCS 2.3.1 applicable applicable not required MSE small pf

counting-based 2.3.2 unknown3 unknown not required (ε, δ)-approx. small pi, complex7 g

pMCS 2.3.3 unknown applicable required MSE costly g, small pf
creation process
+splitting

2.3.4.4 unknown applicable required MSE costly g

creation process
+CE

2.3.5 unknown applicable required MSE costly g

SuS 2.3.4.4 applicable applicable not required MSE g with high discontinuity

CE 2.3.5 applicable applicable not required MSE small pi

signatures 2.4.4 adaptable adaptable not required exact(or MSE) large n

PDEM 2.4.1 applicable applicable not required error bounds sensitive to the grid size
1 The method needs to be adapted, and the required adaptation can be found in literature.
2 The method can be applied directly, or if adaptation is necessary, the speci�c adjustments are detailed in Chapter 2.
3 The method needs to be adapted, and the required adaptation is not known by the author.
4 The performance metric g without an e�cient construction of its ROBDD.
5 The performance metric g without an e�cient searching algorithm for all maximum lower vectors (or minimal upper vectors).
6 The performance metric g, for which the failure event F cannot be explicitly expressed as the union, intersection, or complements of the
component events Ei,j .
7 The performance metric g that cannot be encoded as a Σ1

1 form.

In the following, we compare di�erent network reliability methods and also highlight their respective
limitations when estimating rare events in infrastructure networks. In particular, calculating the
failure probability of general networks is NP-hard, and no e�cient exact algorithms are believed to
exist. Although for connectivity-based performance metrics, practically e�cient approaches, such
as ROBDD, cut(path)-based, and matrix-based methods can be adopted, their adaptation to more
complex metrics is non-trivial. Only a few network performance metrics enable e�cient construction
of the ROBDD or an e�cient searching algorithm for all maximum lower vectors (or minimal upper
vectors), and in most cases, the failure event cannot be expressed as the union, intersection, or
complement of the component events. While deterministic approximation approaches, such as SSD,
are signi�cantly more general and �exible, their e�ciency is rooted in the coherency or monotonicity
of the performance metric, whereby one calculation of the metric is su�cient to rule out a number
of states. Physics-driven metrics, however, do not necessarily admit such a monotonic structure,
and the justi�cation can be tricky. Moreover, the methods mentioned above are not scalable in high
dimensions except under speci�c conditions, e.g., when a well-structured ROBDD can be e�ciently
constructed, or when the probability mass is concentrated in a few states. On the other hand, they
provide reliable error estimates, either exact value or deterministic bounds of pf .
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2.5. Conclusions and summary

By contrast, the stochastic approximation, or sampling-based methods are more e�cient in high
dimensions and are natural choices for handling complex performance metrics. However, it may
require a high number of samples to achieve an acceptable accuracy. Since critical infrastructures are
designed to be highly reliable with a notably small failure probability, such a limitation is prominent,
especially when calculating the performance metric is computationally intensive. Hence, variance
reduction techniques become essential. The standard SuS may lead to signi�cant error if the CDF of
g(X) contains notable discontinuities or 'jumps', while CE-based IS encounters the over�tting issue,
particularly when the component failure probability pi is small. To address these challenges, variance
reduction techniques are frequently coupled with smoothing techniques, which transform the discrete
metric into a continuous one in network reliability assessment. Some of these transformations are
problem-speci�c and only apply to connectivity-based problems; others, such as the creation process,
require multiple calculations of the original network performance metric, thus introducing signi�cant
additional costs. Consequently, creation-process-based methods, such as pMCS, creation process +
CE, creation process + splitting are sensitive to costly network performance function g. The error
associated with these sampling-based methods is often assessed through an estimated MSE of the
failure probability estimator p̂f , which can be inaccurate when p̂f is highly skewed. The counting-
based method o�ers a more rigorous (ε − δ)-approximation of pf , but it necessitates encoding the
network performance metric g in a Σ1

1 form, which is challenging for physics-based metrics. Also, the
method will introduce signi�cant computational costs if component failure probability pi is small.

These limitations further justify the necessity of this thesis, which aims to bridge the gap between
current network reliability methods and the challenges encountered in the reliability calculation of
infrastructure networks. To this end, we extend two standard variance reduction techniques, multi-
level splitting, and CE-based importance sampling, to handle the network reliability problems, and
this will be elaborated in Part II of this thesis.
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Chapter 3

Concluding remarks

3.1 Summary

In this thesis, we expand upon two widely adopted variance reduction techniques, speci�cally, SuS
and CE-based importance sampling, to assess network reliability and enhance their performance in
the context of physics-driven network performance metrics.

In Chapter 4, we propose an adaptive e�ort subset simulation (aE-SuS) algorithm designed to ef-
fectively address any signi�cant discontinuities that may exist in network performance. When such
discontinuity appears, standard SuS can lead to signi�cant errors and even fail to reach the fail-
ure domain. To circumvent this issue, the aE-SuS algorithm adjusts the conditional probabilities
based on the empirical conditional CDF at each level and adapts the number of samples accordingly
to ensure an approximately equal number of seeds at each level. For binary network performance
metrics, such as connectivity, the aE-SuS reduces to crude MCS. By contrast, if the network per-
formance is almost continuous, aE-SuS behaves similarly to standard SuS. The e�ciency of the
aE-SuS algorithm for network reliability assessment relies on an MCMC algorithm that enables ef-
�cient sampling in discrete space. To this end, we present three di�erent MCMC algorithms: the
adaptive conditional sampler equipped with the Rosenblatt transformation, a novel independent
Metropolis-Hasting algorithm (both introduced in Chapter 4), and the Gibbs sampler [146].

In Chapter 5, we identify the over�tting issue when �tting a categorical distribution in CE meth-
ods. To mitigate this issue, we introduce a consistent Bayesian estimator of the parameters of the
categorical distribution, which incorporates prior information. This Bayesian estimator can be inte-
grated into the iCE method for rare event estimation, resulting in an unbiased importance sampling
distribution. We term this method as BiCE. In contrast to the proposed approach, the standard iCE
method, despite its higher computational cost, can exhibit signi�cant bias. The adaptation strategy
of the iCE method is also substantiated by two theorems, which guarantee the convergence of the
algorithm for network reliability assessment in ideal settings.

Since the independent categorical distribution cannot capture the dependence among network com-
ponents, in Chapter 6, we update the parameters of a more �exible parametric distribution, specif-
ically, the categorical mixture, so as to form a better approximation of the optimal importance

47



3.2. Outlook

sampling distribution. The major contribution therein is a generalized version of the expectation-
maximization algorithm to approximate the weighted MAP. The number of mixture components
is determined as a by-product of the generalized EM algorithm using the Bayesian information
criterion.

In Chapter 7, we provide uni�ed benchmarks to streamline the comparison of di�erent network
reliability algorithms and to explore potential synergies between them. Speci�cally, we introduce a
hybrid approach that leverages the respective strengths of both aE-SuS and annealed particle inte-
gration methods. The new approach is unbiased and works well for discrete network performance.
Furthermore, we expand existing sensitivity methods to identify critical network components em-
ploying failure samples. For aE-SuS, we generalize the approach in Zwirglmaier et al. [146] and
express the component importance measure as a function of the threshold. This is illustrated in
Chapter 7. Similar ideas can be adapted to BiCE, as detailed in Chapter 6.

3.2 Outlook

Both multi-level splitting and CE-based importance sampling rely on sampling from a sequence of
intermediate distribution that gradually approaches the failure domain. Ideally, we would be able
to sample independently from the intermediate target distribution. In practice, however, MCMC
sampling generates dependent samples, and the CE-based methods sample from a distribution that
only resembles the target one. To enhance the e�ciency of SuS or multi-level splitting methods, it is
essential to develop MCMC algorithms that e�ectively sample in combinatorial spaces, and for CE-
based methods, the key challenge lies in identifying a suitable approximation for the intermediate
target distribution. The BiCE method provides a more �exible approach for updating distribution
models by introducing a prior term or a penalization term in the CE-based optimization problem.
However, the selection of an appropriate prior remains an open issue, necessitating further detailed
investigation. Note that, although the methodologies developed in this thesis are generally applicable
to a wide range of black-box systems, the underlying physics governing the network's performance is
well understood. Thus, a logical step for future investigation involves leveraging embedded physics
to devise more e�cient MCMC algorithms and to identify good proxies of the intermediate target
distributions. This demands collaboration with electrical engineering professionals and researchers.
If the probabilistic input model possesses any intrinsic structure, it is also bene�cial to leverage such
information. As an example, exploring network reliability methods that account for common cause
failures presents a promising direction.

Another promising avenue worth exploring is the development of network reliability algorithms that
ensure a reliable error estimate. In practical applications, there is no crude MCS reference, and the
true failure probability is also unknown. Thus, it is ine�cient to merely produce an estimate of the
failure probability; the quality of the estimate becomes equally essential. For adaptMCS methods,
the quality is re�ected by the estimated variance through one single run of the algorithm, but this
variance estimate can be poor. Alternatively, these algorithms can be validated through benchmark
models, but the extrapolation from the benchmarks to the real applications can be misleading. This
further underlines the need for error-accountable adaptMCS algorithms, which ensures a reliable
error estimate, e.g., an (ε, δ)-approximation of pf .
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Chapter 3. Concluding remarks

As for other network reliability algorithms, future research can be conducted to address their limita-
tions as illustrated in Table 2.3. This includes generalizing the creation-process-based or counting-
based methods for dependent inputs, formulating e�cient construction strategies in BDD for general
metrics, developing smart searching algorithms for maximum lower vectors or minimal upper vectors,
and exploring alternative smoothing techniques beyond creation process. Additionally, validating
the coherency of speci�c physics-based metrics or transforming non-coherent metrics into coherent
ones would also broaden the scope and applicability of methods grounded on coherency. In static
network reliability assessment, system signatures can be further included into the strati�ed sampling
framework. While the strati�ed sampling method is well-established for identical components, its
extension to encompass non-identical or even dependent components seems unexplored, providing
another entrance point for the future research.

Besides network failure probability, the criticality of network components also provides valuable
insights for decision-making, reliability management, and resilience planning. In practice, the crit-
icality are quanti�ed by various component importance measures. Incorporating the calculation
of these metrics into the network reliability methods outlined in Table 2.3 is therefore of great
importance and worth exploring in the future.
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Abstract

Many system reliability problems involve performance functions with a discontinuous distribution.
Such situations occur in both connectivity- and �ow-based network reliability problems due to binary
or multi-state random variables entering the de�nition of the system performance or due to the
discontinuous nature of the system model. When solving this kind of problem, the standard subset
simulation algorithm with �xed intermediate conditional probability and �xed number of samples per
level can lead to substantial errors since the discontinuity of the output can result in an ambiguous
de�nition of the sought percentile of the samples and, hence, of the intermediate domains. In this
paper, we propose an adaptive subset simulation algorithm to determine the reliability of systems
whose performance function is a discontinuous random variable. The proposed algorithm chooses the
number of samples and the intermediate conditional probabilities adaptively. We discuss two MCMC
algorithms for the generation of the samples in the intermediate domains: the adaptive conditional
sampling method and a novel independent Metropolis-Hastings algorithm that e�ciently samples in
discrete input spaces. The accuracy and e�ciency of the proposed algorithm are demonstrated by
a set of numerical examples.
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4.1 Introduction

Infrastructure networks, such as power grids and water supply systems, deliver essential services to
society. Failures of such networks can have severe consequences. Quanti�cation of the probability
of survival or, conversely, the probability of failure of such systems is essential in understanding and
managing their reliability; this is the main purpose of network system reliability assessment.

For reliability analysis purposes, the performance of the system can be assessed by the limit state
function (LSF), also known as performance function or structure function, g(X). X is an n-
dimensional vector of random variables with joint cumulative distribution function (CDF) FX and
represents the uncertainty in the model input. By convention, failure of the system occurs for all
system states x for which g(x) 6 0. The probability of failure of the system is de�ned as

pf , P(g(X) 6 0) =

∫
g(x)60

dFX(x) (4.1)

The vector of basic random variablesX entering the de�nition of the LSF of network systems usually
contains discrete random variables, which results in an LSF with discontinuous distribution. This
is due to the fact that the performance of the network is often calculated through a function of a
large number of binary or multi-state components. Moreover, real-world infrastructure networks are
often designed to be highly reliable. This leads to high-dimensional reliability assessment problems
with small failure probabilities [42].

Network performance is often measured through connectivity or 'travel time'(or �ow) [14]. In
connectivity-based problems, one evaluates the probability that a given set of nodes is connected,
given that each component of the network fails with some probability. Typically, both the system
performance and the component state are modeled as binary random variables. In this context,
g(X) is known as the structure function [32]. A set of sampling-based methods have been proposed
for such kind of problems (e.g., [17, 16, 12, 25, 26, 27, 8, 37]), and a comparative study can be found
in [34, 30].

In this paper, we focus on �ow-based problems where the system performance and/or the compo-
nent are typically modeled as multi-state or continuous random variables instead of binary ones,
and, hence, most of the sampling techniques tailored for connectivity-based problems cannot be
implemented directly. One of the major concerns in this area is the maximum �ow that a stochastic
network can deliver, i.e., the probability that the maximum �ow from one or more source nodes to
one or more terminal nodes is less than a prede�ned demand level. A number of sampling-based
methods have been proposed for this type of problem [19, 18, 20, 1, 10, 31, 21, 13, 41]. However, all
these methods assume that the edge capacities are independent and discrete random variables, which
is often unrealistic. [42] employs the standard subset simulation (SuS) algorithm [4] to e�ciently
solve maximum-�ow reliability problems, where both the edge capacity and the network performance
are modeled as continuous random variables. [40] use the standard SuS algorithm in the reliability
analysis of gas pipelines. However, as discussed in this paper, the adaptive approach of the standard
SuS for determining the intermediate levels is not suitable for LSFs with discontinuous distribution,
which is the case for most network reliability problems. As an example, Fig. 4.1 shows the CDF of
the LSF of the IEEE39 bus benchmark system (described in Section 5.4). The CDF is discontinuous
with 'jumps'. To overcome this limitation, one may construct a problem equivalent to the original
one but with LSFs with continuous distribution and then use SuS to solve this equivalent problem.

61



4.1. Introduction

0 0.2 0.4 0.6
g(x)

10-5

10-3

1

Figure 4.1: CDF of the LSF of the IEEE39 bus benchmark system of Section 5.4

This approach has been explored by Ching and Hsu [14] for connectivity-based problems, where a
virtual random walk model is solved to get a continuous proxy of the original binary connectivity.
Typically, such transformations need to be derived for the problem at hand.

The generalized splitting method [7] has also been employed to solve both connectivity- [8] and �ow-
based problems [9] in combination with tailored and e�cient Gibbs samplers. It should be stressed
that the determination of the intermediate levels in the generalized splitting method is through a
pilot run of the adaptive multilevel splitting algorithm [7, 8, 6], which is essentially the standard
SuS algorithm. Therefore, the transformation of discontinuously distributed LSF to a continuous
one is also needed for these approaches.

The basic idea of SuS is to express the probability of failure as a product of larger conditional
probabilities of a set of intermediate nested events. Two ingredients of the SuS algorithm are
essential for obtaining an accurate and e�cient estimator. The �rst is the e�cient simulation of
conditional samples, which is achieved through Markov Chain Monte Carlo (MCMC) methods [4,
28]. The second is the proper choice of the intermediate events. Similarly to the cross entropy
method [29, 35], the intermediate failure events in SuS are chosen adaptively so that the estimates
of the conditional probabilities equal a prede�ned value p0. This is achieved through generating a
�xed number of samples in each conditional level, sorting the samples according to their LSF values,
and determining the p0-percentile of the samples, which is set as the threshold de�ning the next
intermediate failure event. When solving network reliability problems, the discontinuous nature of
the LSF can result in a large number of samples in a certain conditional level having the same
LSF value. In such cases, the standard SuS method will result in an ambiguous de�nition of the
intermediate domains. In extreme conditions, all samples generated at a certain level might have
the same LSF value, in which case the sample process can get stuck and might not reach the failure
domain.

To address this issue, we introduce a novel variant of SuS called adaptive e�ort subset simulation
(aE-SuS) method. Our method chooses the number of samples per level and the respective condi-
tional probability adaptively to ensure that an adequate number of samples fall in the subsequent
intermediate domain. Compared with other non-sampling based methods (e.g., [5, 11, 24, 39, 23]),
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the proposed method facilities using advanced deterministic network analysis algorithms considering
complex network dynamics like cascading failure. On the other hand, owing to its sampling nature,
the aE-SuS algorithm may require a large number of simulations to achieve an acceptable result. It
should be stressed that the proposed aE-SuS algorithm is applicable for dependent input random
variables, and any MCMC algorithm that enables e�cient sampling of the intermediate conditional
distributions can be combined with the proposed algorithm.

The paper is organized as follows: Section 2 gives a brief introduction to the standard SuS. Sec-
tion 3 discusses two MCMC algorithms in the context of network reliability assessment. Section 4
introduces the basic idea as well as the implementation details of the aE-SuS method. In Section
5, the performance of the proposed algorithm is illustrated by a set of numerical examples, a one-
dimensional multi-state problem, a multidimensional �ow-based problem with combined continuous
and binary capacities, a binomial experiment with small success probability, and a benchmark power
transmission network system. The paper closes with the conclusions in Section 6.

4.2 Standard subset simulation

4.2.1 Brief introduction of subset simulation

The basic idea of SuS is to express the rare failure event F = {x : g(x 6 0)} as the intersection
of a sequence of nested intermediate events F1 ⊃ F2 ⊃ · · · ⊃ Fm. Owing to the nestedness of the
intermediate events, the failure event can be expressed as F = ∩ml=1Fl. The failure probability can
then be decomposed as the following product of conditional probabilities:

P (F ) =
m∏
l=1

P (Fl|Fl−1) (4.2)

where F0 is the certain event. Ideally, the intermediate events are selected such that each condi-
tional probability is large, typically > 0.1. In this way, the original problem of estimating a small
probability is transformed to a sequence of m intermediate problems of evaluating larger conditional
probabilities.

The estimation of each conditional probability P(Fl|Fl−1) requires sampling from the distribution of
the random variables conditional on Fl−1, denoted as Q(·|Fl−1), where Q(·|F0) represents the initial
input distribution and equals the generalized derivative of the input CDF FX(·). Q(·|F0) can be
sampled by standard Monte Carlo sampling, but the distributions Q(·|Fl), l > 0, are only known
point-wise up to a normalizing constant and, hence, cannot be sampled directly. Therefore, MCMC
sampling is employed. The sampling process in the l-th conditional sampling level is performed
as follows: (1) Select the samples P(l−1) from the (l − 1)-th level that fall in Fl as the seeds S(l)

(P(0) is generated through Monte Carlo sampling). (2) From each seed, start a Markov chain that
has the target distribution Q(·|Fl) as the stationary distribution, and record all the states as new
samples P(l). (3) Take the samples P(l) located in Fl+1 as new seeds S(l+1) and estimate P(Fl+1|Fl)
as |S

(l+1)|
|P(l)| where |S(l+1)| and |P(l)| denote the number of seeds and samples, respectively. The above

three steps are repeated successively until F is approached. We note that the number of samples
per level |P(l)| is usually �xed prior to the analysis.
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De�ning the intermediate events a priori is typically challenging. Hence, in standard SuS the in-
termediate failure events are chosen adaptively during the simulation such that each conditional
probability equals a prede�ned constant p0. This standard SuS approach is also termed (�xed ef-
fort) adaptive multilevel splitting [7]. In this variant, step (3) in the above sampling process is
modi�ed as follows: Order the samples P(l) by their LSF values. The �rst p0-percent of these sorted
samples are then taken as seeds for the next sampling level and the LSF value of the p0-percentile bl+1

is used to de�ne the boundary of the next intermediate domain, such that Fl+1 = {x : g(x) 6 bl+1}.
The resulting SuS estimator of the probability of failure is given as:

p̂f = pm−1
0

Nf

N
(4.3)

where N and Nf represent the number of samples and failure samples at the �nal level, respectively.
The standard SuS algorithm is summarized in Algorithm 1.

Algorithm 1: SuS algorithm

Input: p0 ∈ (0, 1), an integer N multiple of 1
p0

1 l← 0, bl ← inf
2 while bl > 0 do
3 if l = 0 then
4 Generate N samples {xk}Nk=1 from the initial distribution Q(·|F0)
5 else

6 Generate N samples {xk}Nk=1 from the target distribution Q(·|Fl) with an MCMC

algorithm with seeds S(l)

7 Sort {xk}Nk=1 by increasing order of their LSFs g(·), and denote the sorted samples as
{x̄k}Nk=1

8 bl+1 ← g(x̄p0·N )
9 if bl+1 6 0 then
10 bl+1 ← 0

11 Nf =
∑N

k=1 I{g(x̄k) 6 0}

12 Take the S(l+1) , {x̄k}p0·Nk=1 as the seeds for the next level
13 l← l + 1

14 p̂f ← pl−1
0

Nf
N

Output: p̂f

As previously mentioned, MCMC sampling is applied to generate samples from each conditional
distribution Q(·|Fl). In SuS, the seeds S(l) already follow approximately the target distribution [4];
hence, a burn-in period is not considered in practice. Since the samples generated from the same
seed are states of the same Markov chain, they will be dependent; their correlation depends on the
autocorrelation function of the underlying Markov chain. The stronger the correlation between sam-
ples, the larger the variance of the estimates of the conditional probabilities. Additionally, samples
that share the same history, namely, their Markov chains are branches with roots at the same Monte
Carlo sample, will be correlated, even when they are at di�erent levels. Such correlation introduces
a dependency on the conditional probability estimators, which further increases the variance of the
SuS estimator. Hence, the quality of the �nal probability estimate strongly depends on the particular
choice and setting of the MCMC algorithm.
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4.2.2 Accuracy of the Subset Simulation estimator

The accuracy of the SuS estimator of the probability of failure p̂f can be assessed by the mean-square
error, which is decomposed as:

MSE(p̂f ) = (pf − E(p̂f ))2 + Var(p̂f ) (4.4)

The �rst term on the right-hand side of Eq. (4.4) represents the bias contribution, and the second
term is the variance of the SuS estimator.

Assume �rst that the intermediate events are de�ned before the simulation. In the Monte Carlo
level (l = 0), samples P(0) are generated from Q(·|F0) independently, and therefore the seeds S(1)

follow the distribution Q(·|F1). This will lead to so-called perfect sampling when simulating the
Markov chains in the next level. Since the chains have already reached the stationary state at
the beginning, no burn-in time is needed, and all samples P(1) will follow Q(·|F1). In this way,
samples P(l) generated in any l-th conditional level will follow the target distribution Q(·|Fl) and
the corresponding estimator of the conditional probability p̂(Fl+1|Fl) will be unbiased. Moreover,
[7] proves that the resulting failure probability estimator p̂f is also unbiased if both intermediate
events and length of the Markov chain are prede�ned, i.e., if they are independent of the simulation
process.

Since the intermediate events are selected adaptively in SuS, samples S(l) will not completely follow
the target distribution. As a result, both the conditional probability estimator and failure probability
estimator will be slightly biased. Nevertheless, compared to the variance of the estimator, the
squared bias is one order of magnitude smaller [4] and, hence, its contribution to the mean-square
error (MSE) of the estimator is negligible. In other words, the error of the SuS is mainly due to the
variance of the failure probability estimator rather than the bias. The most common and reliable
way to calculate the variance Var(p̂f ) is to run SuS several times and to use the sample variance as
the unbiased estimation of the Var(p̂f ). One can also evaluate the variance approximately through a
single run of the SuS. More details can be found in [4] and [28]. However, this approximate estimator
is shown to underrepresent the true variance of p̂f , especially for small target pf .

4.3 Markov Chain Monte Carlo algorithm for network reliability

assessment

Most MCMC algorithms that are widely used in risk analysis can be regarded as variants of the
Metropolis-Hastings (M-H) algorithm. These include, for example, Gibbs sampling [8][9], conditional
sampling [28] and Hamiltonian Monte Carlo [38]. To sample from the intermediate target distribution
Q(·|Fl) in SuS, M-H algorithm proceeds in the following two steps [28]:

1. Generate a candidate sample v from the distribution Q
(l)
p (·|xk) which is termed the proposal

distribution.

2. Accept or reject v.
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xk+1 =

{
v, with prob. α

xk, with prob. 1− α
where

α = I {v ∈ Fl}min

{
1,

Q(v|F0)Q
(l)
p (xk|v)

Q(xk|F0)Q
(l)
p (v|xk)

}

It can be shown that the M-H algorithm satis�es the detailed balance condition independent of the
choice of the proposal distribution. In this section, we �rst discuss the adaptive conditional sampling
method of [28] in the context of network reliability assessment and then propose a more e�cient yet
less general independent M-H algorithm, which is applicable in problems with discrete input spaces.

4.3.1 Adaptive conditional sampling in standard normal space

4.3.1.1 Implementation in standard normal space

Let U denote an n-dimensional random vector that has the independent standard normal distri-
bution. The original random vector X can be expressed in terms of the vector U through an
isoprobabilistic mapping T : Rn → Rn. One can de�ne the reliability problem in the U -space as
follows:

pf = P(g(X) 6 0) = P(G(U) 6 0) =

∫
G(u60)

ϕn(u)du (4.5)

where G(U) = g(T (U)) and ϕn(u) is the n-dimensional independent standard normal joint proba-
bility density function (PDF). The mapping T (·) can be obtained by the Rosenblatt transformation,
which is implemented as follows:

x1 = F−1
X1

(Φ(u1))

x2 = F−1
X2

(Φ(u2)|x1)

...

xn = F−1
Xn

(Φ(um)|x1, · · · , xn−1)

(4.6)

where Φ represents the CDF of standard normal distribution and FXd(·|x1, · · · , xd−1) denotes the
conditional CDF of Xd given X1 = x1, · · · , Xd−1 = xd−1. If any subset of X consists of discrete
random variables, then it is possible that the functions FXd(·|x1, · · · , xd−1) are not strictly invertible.
Therefore, we use the following extended de�nition of the inverse of a CDF

F−1(a) = inf(x : F (x) ≥ a) (4.7)

We note that, in such cases, the Rosenblatt transformation is not one-to-one, and hence, the inverse
mapping from X to U is not uniquely de�ned.

4.3.1.2 Adaptive conditional sampling algorithm

Having de�ned the transformation from the original X-space to the U -space, SuS can be used to
solve the reliability problem in the transformed space. At the l-th level of SuS, MCMC sampling is
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applied to sample from the conditional standard normal density pU (·|Fl). Sampling according to this
density can be performed by application of the aCS algorithm. Before describing the aCS algorithm,
we �rst discuss its non-adaptive variant, the standard conditional sampling (CS) algorithm. The
transition from the current state uk to a new state uk+1 using CS is as follows: First, a candidate v
is generated. The CS sampler imposes that the candidate and the current state are jointly Gaussian
with standard normal marginal distribution ϕn(·) and prede�ned symmetric cross-correlation matrix,
R. One then samples v from the joint Gaussian distribution conditional on the current state, i.e.,
from N (v;Ruk, I−RRT), where I is the identity matrix. The candidate is accepted if it is located
in the intermediate failure domain Fl, in which case it is set as the new state uk+1. Otherwise, uk
is taken as the new state. CS can be summarized as follows:

1. Generate candidate sample v from the normal distribution N (v;Ruk, I −RRT).

2. Accept or reject v.

uk+1 =

{
v,v ∈ Fl
uk,v /∈ Fl

It can be proven that the above transition satis�es the detailed balance condition with respect to the
target distribution pU (·|Fl), hence, pU (·|Fl) is the stationary distribution of the generated Markov
chain [28, 3]. In fact, CS can be regarded as the M-H sampler with proposal distribution taken
as N (v;Ruk, I − RRT) [28]. We further note that the CS sampler will never generate repeated
candidates, which results in an acceptance probability that is independent of the dimension of the
vector U . Hence, it is suitable for application to high-dimensional problems.

The performance of the CS sampler depends on the choice of the matrix R or, equivalently, the
covariance matrix of the proposal distribution N . Usually, R is chosen as a diagonal matrix with
d-th diagonal term equal to ρd, which implies a component-wise sampling scheme, i.e., the d-th
component of candidate, vd, is sampled from N (vd; ρduk,d, 1−ρ2

d). Large values of ρd lead to a strong
correlation between the current and the next state, but small values also lead to increased correlation
due to the high rejection rate in the second step of CS. The correlation of the generated Markov

chains can be controlled by choosing ρd or, equivalently, the standard deviation σd =
√

1− ρ2
d

adaptively, employing intermediate results from the simulation. In adaptive MCMC algorithms,
the chain correlation is usually controlled by matching a near-optimal acceptance probability of the
chain [2]. The aCS algorithm [28] adapts the sampling parameters by running batches of Na chains
starting from randomly selected seeds. After running each batch, the acceptance probability is
estimated, and the sampling parameters are adapted to match a pre-de�ned acceptance probability
α∗. The aCS algorithm for generating N samples according to pU (·|Fl) starting from seeds S(l) is
given in Appendix 4.A.

4.3.2 Independent Metropolis-Hastings algorithm

In network reliability assessment, the probability content at the intermediate domains in SuS typi-
cally centers at multiple discrete system states (modes), and hence, the intermediate target distri-
bution is multimodal. To e�ciently sample from such distribution, we propose a novel independent
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M-H algorithm. The algorithm is applicable when all input random variables are discrete and ex-
ploits the information of the discarded samples in previous sampling levels to form a proper proposal
distribution in the M-H algorithm that is independent of the current state of the chain. Speci�cally,
let Xl represent the set of samples discarded at level l, in other words, the generated samples at level

l that are not in the (l + 1)-th intermediate domain. The proposal distribution Q
(l)
p (x) of the M-H

algorithm at level l is then de�ned as the original input distribution Q(x|F0) excluding the states
visited by the previously discarded samples. That is,

Q(l)
p (x) ∝ Q(x|F0)I {x /∈ ∪i=0,...,l−1Xi} (4.8)

Since all samples in ∪i=0,...,l−1Xi are located outside the intermediate domain Fl, Fl is included

in the support of the proposal distribution, Ω
(l)
p = x /∈ ∪i=0,...,l−1Xi. This is illustrated in Fig.

4.2. Moreover, the proposal distribution has exactly the same shape as the intermediate target

 

Figure 4.2: Schematic diagram of proposal distributions. (The black dots represent the basic
random events, and the dotted curve indicates the intermediate failure domain)

distribution in Fl as they are both proportional to the input distribution Q(x|F0). The acceptance
rate α of the candidate generated by this proposal is given as

α = I {x ∈ Fl}min

{
1,
Q(x|F0)Q(xk|F0)

Q(xk|F0)Q(x|F0)

}
= I {x ∈ Fl} (4.9)

Note that both the generation and the acceptance of the candidate are independent of the current
state. In the literature, M-H samplers whose proposal distribution is independent of the current
state are termed independent M-H samplers. We note that the samples generated by this algorithm
are not independent since we get a repeated sample when rejecting the candidate. This is the main

di�erence between the independent M-H algorithm and rejection sampling with envelope 1
E[α]Q

(l)
p (x),

which generates independent samples [22]. In the latter, one gets a new sample only when the
candidate is accepted and, hence, the computational cost of rejection sampling is much higher than
the independent M-H algorithm, especially as the mean acceptance rate E[α] is small. The average
acceptance probability, E[α], can be calculated through dividing P(X ∈ Fl) by P(X /∈ ∪i=0,...,l−1Xi),
i.e.,

E
Q

(l)
p

[α] =
P(X ∈ Fl)

P(X /∈ ∪i=0,...,l−1Xi)
(4.10)

The magnitude of E[α] tends to decrease as the intermediate level goes higher. Additionally, the
sample size at each level, the dimension of the problem, and the input distribution will also in�uence
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the mean acceptance rate E[α]. The in�uence is investigated in detail through a binomial experiment
in Section 4.5.

The implementation of the above independent M-H algorithm is relatively simple and can be per-
formed in the following two steps:

1. Generate candidate sample v from the proposal distribution Q
(l)
p (x).

2. Accept or reject v.

xk+1 =

{
v,v ∈ Fl
xk,v /∈ Fl

To sample from the proposal distribution, Q
(l)
p (x), one can sample directly from the input distri-

bution and keep those samples that di�er from the previous discarded samples. However, such a
process can be quite ine�cient when the proposal distribution is far from the input distribution, for
instance, at deep intermediate levels. Such an issue can be circumvented by applying the bound-
based sampling algorithm [34], given that the input random variables are multivariate categorical
distributed. Details on this algorithm can be found in Appendix 4.B.

4.4 Adaptive e�ort subset simulation method

In each conditional level l of the SuS method with a �xed number of samples per level and adaptive
estimation of the intermediate events, the p0-percentile of the LSF values of the samples P(l), bl+1,
is used to de�ne the boundary of the intermediate domain. This adaptive approach works well when
only a few samples are located on the boundary g(x) = bl+1, i.e., a few samples have the same
LSF value as the p0-percentile. However, it can happen that many samples fall on this boundary,
particularly in the following cases:

(1) X includes discrete random variables.

(2) The LSF is de�ned such that the probability measure of the set {x : g(x) = bl+1} is strictly
greater than zero.

(3) The parameters of the MCMC algorithm are inappropriately set, resulting in the candidates
being rejected successively many times.

While case (3) can be avoided by an appropriate implementation of the MCMC algorithm, cases
(1) and (2) are common in the context of network reliability assessment. This will result in an
ambiguous de�nition of the intermediate domain Fl+1 and can lead to an inaccurate estimate of the
failure probability. In extreme situations, all samples generated in a certain level will have the same
LSF value and the adaptive sampling process can get stuck and never reach the failure domain.

In this section, we modify the standard SuS algorithm to circumvent this problem. The resulting
algorithm modi�es the adaptive selection of the intermediate domains and adapts the number of
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samples per level (sampling e�ort) throughout the simulation. We term the proposed approach
aE-SuS. As will be made clear, these modi�cations enable the application of the method to general
network reliability problems. The proposed algorithm is introduced in the following and summarized
in Algorithm 2.

4.4.1 Intermediate domains

In order to provide a clear (unambiguous) de�nition of the intermediate domains, one can apply the
following adaptive approach. At each conditional level, generate a set of samples P(l) and de�ne
a temporary event Ftemp as {x : g(x) 6 bl+1} where bl+1 is the p0-percentile of the LSF values of
P(l). If Ftemp = Fl, de�ne the next intermediate event Fl+1 as {x : g(x) < bl+1}, otherwise set
Fl+1 = Ftemp. This approach guarantees that Fl+1 ( Fl, which avoids a degeneracy of the sampling
process.

Because of the discrete nature of g(x), it might be di�cult to check whether Ftemp = Fl or not
when Fl = {x : g(x) < bl}. Therefore, we check if bl+1 = max{g(x) : x ∈ P(l)} instead. The latter
condition checks whether the p0 percentile of the LSF values equals the maximum LSF value of the
samples P(l), and is a necessary (but not su�cient) condition of Ftemp = Fl. Note that Fl+1 ( Fl still
remains true after this modi�cation, since Fl/Fl+1 6= ∅ and contains at least the samples taking the
maximum LSF value in P(l). The above adaptive approach for choosing the intermediate domains
is described in lines 11-20 of Algorithm 2.

4.4.2 Sampling at the intermediate levels

The approach for selecting the intermediate domains, introduced in Section 3.1, could potentially
lead to a very small number of failure samples per level, which reduces the accuracy of the estimates
of the intermediate conditional probabilities. We hence need to adapt the number of samples per
level to ensure that these estimates remain accurate. We �rst calculate the number of samples
that fall into the domain Fl+1 (the number of seeds Ns). If this number is smaller than a prede�ned
constant C, we increase the current sampling e�ort Nc and append P(l) with N new samples. Denote

the extended sample set as P(l)
ext. The new samples should also follow the target distribution Q(·|Fl),

and hence approximately P(Fl+1|Fl) of these samples should be located in Fl+1. Therefore, one
needs to further generate N = Nc · C−NsNs

samples to get approximately C seeds, which is shown in
line 22 of Algorithm 2. Note that N > 0 always holds. In the algorithm, the constant C is taken as
a prede�ned proportion tol ∈ (0, 1) of p0 ·N0, the product of initial conditional probability and the
initial sample size. Larger tol will lead to more accurate but less e�cient results. We have found
tol ∈ (0.5, 0.8) to be a good choice for the investigated cases.

In practice, the above appending process may need to be iterated several times to achieve at least
C seeds. For a �xed Fl+1, with every iteration and increasing number of samples, the number of
the seeds will keep increasing until the desired threshold C is achieved. By doing this, even in
the extreme case where all the samples in P(l) have the same LSF value, the sampling process will
keep moving forward towards the failure domain and will no longer get stuck in this level as in the
standard SuS algorithm.
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To append new samples that follow the target distribution Q(·|Fl), we propose to extend the Markov
chains generated in the initial intermediate sampling step (iter = 0, in Algorithm 2). This is
illustrated in Fig. 4.3. As shown in the �gure, for each seed in S(l), a Markov chain is constructed
in the 0th iteration. The last sample (tail) of this chain is then taken as the seed for the chain in
the next iteration. The transition distribution of the chain remains unchanged. The above process
may be iterated several times and is described as Algorithm 3. For iteration it = 0, · · · , the input of
Algorithm 3 consists of 4 values: the number of samples to append N , the number of Markov chains
Nch = |S(l)|, the transition distribution of each chain {Γi}Nchi=1 , which is determined by the target

distribution Q(·|Fl) and the employed MCMC algorithm, and the seed for each chain {e(it)
i }

Nch
i=1 ,

which is taken as S(l) when it = 0 and otherwise as the tail of the Markov chains from the previous

iteration {t(it−1)
i }Nchi=1 . The output of the algorithm is N new generated samples P(l)

new and the tail

(last sample) of each chain {t(it)i }
Nch
i=1 .

 

Figure 4.3: Schematic diagram of the appending method.

4.5 Examples

4.5.1 Multistate random variable

Consider a discrete random variable X with 7 states {x1, · · · , x7}. We consider two cases. In case 1,

the CDF of X, FX(·), is set such that FX(xi+1)
FX(xi)

≤ 10, while in case 2, there is a big 'jump' between

the third and the fourth state, i.e., FX(x4)
FX(x3) ≈ 599. The CDF of X for the two considered cases is

given in Table 4.1 and is illustrated in Fig 4.4. The LSF is de�ned as g(X) = X + 5 such that the
failure probability P(X 6 −5) equals 10−5 for both cases.

We implement SuS and the proposed aE-SuS, respectively, in standard normal space to evaluate the
failure probability and compare them with crude MCS. The MCMC algorithm is aCS. For SuS, the
sampling e�ort is �xed to 1,000, and the conditional probability is 0.1. For aE-SuS, the parameters
are set to be tol = 0.5, N0 = 1,000, p0 = 0.1. Each method is run 1,000 times to get the relative
bias, coe�cient of variation, and average computational cost of the failure probability estimator.
The results for case 1 and case 2 are shown in Tables 4.2 and 4.3 respectively. In both cases, aE-SuS
shows good accuracy, a negligible bias, and a much smaller coe�cient of variation than crude MCS.
We note that the coe�cient of variation of crude MCS is given for the same computational e�ort

71



4.5. Examples

Algorithm 2: Adaptive e�ort subset simulation algorithm

Input: tol ∈ (0, 1), p0 ∈ (0, 1), an integer N0 multiple of 1/p0

1 l← 0, bl ← inf, N ← N0, P(l) ← ∅
2 while bl > 0 do
3 iter ← 0, Ns ← 0
4 while Ns < tol ·N0 · p0 do

5 if l = 0 then
6 Generate N samples {xk}Nk=1 from the initial distribution Q(·|F0) and add them

to P(l)

7 else

8 Generate N samples {xk}Nk=1 from the target distribution Q(·|Fl) with
appending algorithm and add them to P(l)

9 Nc ← |P(l)| // total sample size

10 Sort the elements of P(l) by increasing order of their LSF values g(x), and denote

the sorted samples as {x̄k}Nck=1

11 if iter = 0 then
12 bl+1 ← g(x̄p0·N0)
13 if bl+1 6 0 then
14 bl+1 ← 0

15 Ns ←
∑Nc

k=1 I{g(x̄k) 6 bl+1}, Fl+1 , {x : g(x) 6 bl+1}
16 Break

17 else if bl+1 < g(x̄Nc) then

18 Ns ←
∑Nc

k=1 I{g(x̄k) 6 bl+1}, Fl+1 , {x : g(x) 6 bl+1}
19 Break

20 Ns ←
∑Nc

k=1 I{g(x̄k) < bl+1}, Fl+1 , {x : g(x) < bl+1}
21 if Ns < tol ·N0 · p0 then

22 N ← dNc · tol·N0·p0
max(1,Ns)

e −Nc > 1

23 iter ← iter + 1

24 Take the S(l+1) , {x̄k}Nsk=1 as the seeds for the next level

25 N ← N0 −Ns, P(l+1) ← S(l+1), l← l + 1

26 p̂(Fl|Fl−1)← Ns
Nc

27 p̂(F )←
∏l
j=1 p̂(Fj |Fj−1)

Output: p̂(F )
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Algorithm 3: Appending algorithm

Input: N , Nch, {Γi}Nchi=1 , {e
(it)
i }

Nch
i=1

1 Randomly choose mod(N,Nch) elements from the set {1, 2, · · · , Nch}, say χ
2 P(l)

new ← ∅
3 for i = 1, · · · , Nch do

4 if i ∈ χ then

5 j ← b N
Nch
c+ 1

6 else

7 j ← b N
Nch
c

8 x0 ← e
(it)
i

9 for k = 1, · · · , j do
10 Sample xk from transition density Γi(·|xk−1)

11 Add xk to P
(l)
new

12 t
(it)
i ← xj

Output: P(l)
new, {t(it)i }

Nch
i=1

as the proposed aE-SuS method. In contrast, SuS gives a strongly biased estimate of the failure
probability with a high coe�cient of variation in the �rst case and falls into a dead loop in the
second case.

Table 4.1: CDF of X for Example 5.1.

State -6 -4 -3 -2 -1 0 1

CDF(case1) 1e-5 1e-4 1e-3 1e-2 1e-1 5e-1 1

CDF(case2) 1e-5 3e-5 5e-5 3e-2 1e-1 5e-1 1

-6 -4 -3 -2 -1 0 1
State

10-6

10-4

10-2

100

Case1
Case2

Figure 4.4: CDF of X for Example 5.1.
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Table 4.2: Statistical characteristics of the estimator of the probability of Example 5.1 (Case 1).

relative bias(%) coe�cient of variation average computational e�ort

SuS -97.8 3.747 7,222

aE-SuS 3.5 0.376 5,970

MCS 0 4.093 5,970

Table 4.3: Statistical characteristics of the estimator of the probability of Example 5.1 (Case 2).

relative bias(%) coe�cient of variation average computational e�ort

SuS / / /

aE-SuS 2.4 0.242 44,737

MCS 0 1.495 44,737

4.5.2 Multidimensional �ow-based problem

In this example, the failure event is de�ned as

n∑
i=1

Xi(1− Yi) > t (4.11)

where Xi are independent and identically distributed (iid) according to the normal distribution
N (·;µ, σ2) and Yi are also iid and follow the Bernoulli distribution Ber(1 − pfc) with outcomes
{0, 1}. Each Xi can be regarded as a loss variable associated with a failure event with probability
pfc. The failure event is further de�ned as the total loss exceeding the prede�ned threshold t. Let

X̃i = −Xi ∼ N (·;−µ, σ2), t̃ = −t, and Ỹi = 1−Yi ∼ Ber(pfc). The failure probability then becomes

pf = P

(
n∑
i=1

−Xi(1− Yi) 6 −t

)
= P

(
n∑
i=1

X̃iỸi 6 t̃

)

=

n∑
i=0

P

 n∑
j=1

Ỹj = i

P

 n∑
k=1

X̃kỸk 6 t̃

∣∣∣∣ n∑
j=1

Ỹj = i


=

n∑
i=1

(
n
i

)
pifc(1− pfc)n−iΦ

(
t̃− (−µi)√

i · σ2

)
+ (1− pfc)nI(t̃ > 0)

(4.12)

Eq. (4.12) shows that the failure probability pf is a function of n and t̃ when �xing µ, σ and pfc. For
di�erent n, we choose t̃ such that the failure probability equals p∗f . In this way, we de�ne a series of
failure events of di�erent dimensions but with the same failure probability, p∗f . Note that there is a
'jump' of value (1− pfc)n at the origin coordinate; this value decreases as the dimension increases.
Fig. 4.5 shows the failure probability pf as a function of t̃ for the case n = 1 (the dimension is
2) and n = 50 (the dimension is 100). The failure probability can also be regarded as the CDF of∑n

i=1 X̃iỸi.
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Figure 4.5: Failure probability pf vs. t̃ for the �ow problem of Example 5.2.

Next, MCS, standard SuS, and aE-SuS are carried out to obtain the failure probabilities. SuS
and aE-SuS are performed in standard normal space with aCS as the MCMC algorithm. Here,
we set pfc = p∗f = 10−3, µ = −10, σ = 1 and vary n from 1 to 50. tol,N0 and p0 for aE-SuS
are set to be 0.5, 1,000, 0.1, respectively. As shown in Fig. 4.6, the computational cost of aE-
SuS, which is measured by the total number of LSF evaluations, decreases rapidly with increasing
dimension and reaches around 4,000 calls of the LSF for higher dimensions. In order to obtain the
statistical characteristics of the aE-SuS estimator and to compare them with MCS and standard
SuS, 500 independent trials of aE-SuS and SuS are carried out. The results of MCS are calculated
theoretically with the same computational cost (total number of samples Ntot) as aE-SuS. The MCS

estimator is unbiased, and the coe�cient of variation is
1−pf√
Ntot·pf

. Fig. 4.7 and Fig. 4.8 illustrate the

relative bias and the coe�cient of variation of both aE-SuS and MCS. We see that the behavior of
aE-SuS is similar to that of MCS in low dimensions where the jump at the origin is large, while in
high dimensions where the jump of the CDF becomes smaller, aE-SuS is more e�cient. We note that
the in�uence of the number of random variables on the performance of the MCMC algorithm used in
aE-SuS is insigni�cant. This is due to the fact that the aCS is specially designed for high-dimensional
problems.

Fig. 4.9 compares the square root of MSE (RMSE, calculated through estimates of the two terms of
Eq. (4.4)) of aE-SuS with di�erent settings of standard SuS. It can be seen that even with well-tuned
parameters (p0 = 1/40), standard SuS can lead to signi�cant errors in low to moderate dimensions
where the jump in the CDF of the LSF is large.

As the 'jump' vanishes for large n, the results of aE-SuS become similar to that of standard SuS. In
low dimensions, the aE-SuS algorithm behaves similarly to crude MCS.

4.5.3 Binomial experiment

This example studies the behavior of the independent M-H algorithm proposed in Section 3.2.
Consider a binomial experiment with n trials. Each trial is an independent event that has two
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Figure 4.6: Computational cost of the aE-SuS for Example 5.2.
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Figure 4.7: Relative bias (aE-SuS vs. MCS) for Example 5.2.

outcomes: 0 and 1. The probability that a trial is successful (takes outcome 1) is equal to p, and we
evaluate the probability that at least t trials are successful. The LSF is then de�ned as:

g(X) = t−
n∑
i=1

Xi

where Xi represents the outcome of the i-th trial. The exact failure probability can be expressed
as 1− FB(t− 1;n, pfc) where FB(·;n, p) is the CDF of the binomial distribution with parameters n
and p.

In order to study the performance of the independent M-H algorithm in di�erent dimensions, we �x
p at 10−3 and vary n. For each n, aE-SuS with the independent M-H algorithm is run 200 times
with parameters tol = 0.8, p0 = 0.1, N0 = 2,000.
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Figure 4.8: Coe�cient of variation (aE-SuS vs. MCS) for Example 5.2.
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Figure 4.9: RMSE (aE-SuS vs. SuS) for Example 5.2.

For di�erent dimensions and conditional levels of aE-SuS, the mean acceptance rate of the indepen-
dent M-H algorithm, E(α), is calculated through Eq. (4.10) and is summarized in Table 4.4. Note
that P(X ∈ Fl) and P(X /∈ ∪i=0,...,l−1Xi) in Eq. (4.10) are abbreviated as P(Fl) and P(∪Xi), respec-
tively. One can see that both P(Fl) and P(∪Xi) decrease as conditional level l increases. However,
P(∪Xi) drops much slower than P(Fl) at high levels, which results in small E(α). This is because, to
form a good proposal in the independent M-H algorithm, the states that need to be excluded from
the input distribution grow exponentially with l. This e�ect is more pronounced in high dimensions,
leading to a faster decrease of E(α). At the fourth level, the mean acceptance rate for n = 100 is
only 0.2% of the rate for n = 25 in this example.

Nevertheless, if the mean acceptance rate is not too small, the independent M-H algorithm performs
well. For instance, if we �x the threshold t at 4, the results of 200 independent runs of aE-SuS are
summarized in Table 4.5. For all 4 cases, aE-SuS is slightly biased with less computational cost than
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crude MCS for achieving the same coe�cient of variation. Note that the average computational cost
for n = 25 is much higher than the other three cases, which is due to the larger 'jumps' in the CDF
of the LSF.

Table 4.4: Mean acceptance rate of the independent M-H algorithm for Example 5.3.

n = 25 n = 50 n = 75 n = 100

l = 1
(g(X) < t)

P(Fl) 0.025 0.049 0.072 0.095

P(∪Xi) 0.025 0.049 0.072 0.095

E(α) 1 1 1 1

l = 2
(g(X) < t− 1)

P(Fl) 2.95 · 10−4 0.0012 0.0026 0.0046

P(∪Xi) 2.95 · 10−4 0.0012 0.0026 0.0046

E(α) 1 1 1 1

l = 3
(g(X) < t− 2)

P(Fl) 2.26 · 10−6 1.89 · 10−5 6.40 · 10−5 1.50 · 10−4

P(∪Xi) 2.26 · 10−6 1.89 · 10−5 1.87 · 10−4 0.0017

E(α) 1 1 0.34 0.087

l = 4
(g(X) < t− 3)

P(Fl) 1.24 · 10−8 2.22 · 10−7 1.15 · 10−6 3.63 · 10−6

P(∪Xi) 1.24 · 10−8 9.70 · 10−6 1.84 · 10−4 0.0017

E(α) 1 0.023 0.0063 0.0021

Table 4.5: Statistics of the aE-SuS estimator for Example 5.3.

n = 25 n = 50 n = 75 n = 100

pf 1.24 · 10−8 2.22 · 10−7 1.15 · 10−6 3.63 · 10−6

relative bias(%) 2 3 5 2

coe�cient of variation 0.15 0.14 0.20 0.34

average cost 8.23 · 104 3.77 · 104 2.68 · 104 2.09 · 104

MCS cost 3.58 · 109 2.30 · 108 2.17 · 107 2.38 · 106

4.5.4 Power network system

In this example, we consider the IEEE39 bus benchmark system, which consists of 39 nodes and
46 weighted edges. The topology of the network is illustrated in Fig. 4.10 where orange circles
represent the source nodes and grey circles represent the terminal nodes. Edges are weighted by
their reactance values shown on the right-hand side of Fig. 4.10 and by their capacities shown on
the left-hand side. The line capacity is modeled here as being proportional to the number of most
e�cient paths between any source and terminal node pair passing through that line. This example
was previously investigated by Scherb et al. [36] to quantify the network reliability considering
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cascading e�ects and spatially distributed hazards and by ro-Velasquez and Straub [33] to select
representative failure scenarios.

source nodes

terminal nodes

Figure 4.10: IEEE39 bus system, with edge thicknesses proportional to their estimated capacities
(left) and reactances (right)[36].

The state of each node is considered as an independent Bernoulli random variable, with component
failure probability randomly chosen from the uniform distribution U [0, 10−2]. The LSF is then
de�ned as a function of the system state x, which is a binary vector, as follows:

g(x) =
E(x)

E(1)
− threshold (4.13)

E(x) =
1

|SN ||TN |
∑

s∈SN,t∈TN,t 6=s
effst(x) (4.14)

effst is the e�ciency of the most e�cient path from source node s to terminal node t, which is
evaluated as the inverse of the sum of the reactance values along that path. E(x) is the e�ciency
of the whole system associated with the system state x (The vector 1 is the intact system state). It
is equal to the mean value of all the effst from each source node in set SN to each terminal node
in set TN .

In order to model cascading e�ects, Eq. (4.13) is modi�ed to

g(x) =
E(C(x))

E(1)
− threshold (4.15)

where C(x) is the �nal system state after cascading e�ects due to overloading of system components.
These are triggered by overloading in individual lines following initial failures and are modeled
following [36] and [15].

The threshold is �xed to 0.3, which means the system is considered as failed when its e�ciency
is less than 30% of that of the intact system. We apply the aE-SuS algorithm in the original
Bernoulli space and set the parameters N = 2,000, p0 = 0.1, tol = 0.8. The MCMC algorithm is the
independent M-H algorithm. Fig. 4.11 shows the empirical CDF of g(X) obtained by MCS and the
aE-SuS algorithm, respectively. The aE-SuS algorithm is run 200 times to obtain the mean value,
10 percentile, and 90 percentile of the empirical CDF, while a single MCS run with 106 samples is
carried out for validation.
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The average computational cost of aE-SuS is 9,507 calculations of the LSF g(·), and the relative
bias of the failure probability is 0.9%, while the coe�cient of variation is 0.338. To achieve the same
coe�cient of variation as aE-SuS, crude MCS needs 1.74 · 105 calculations of the LSF in theory,
which is signi�cantly larger than that of aE-SuS. The average CPU time over 200 repetitions of
aE-SuS is reported as 682 seconds on a 3.50GHz Intel Xeon E3-1270v3 computer. As a comparison,
the CPU time for crude MCS with 1.74 · 105 samples on the same machine is 9.83 · 103 seconds,
which is about 14 times larger than the CPU time of aE-SuS.

The standard SuS algorithm is not applicable for this example due to the large jump in the CDF of
the LSF.

Figure 4.11: Results obtained by aE-SuS and MCS for IEEE39 network of Example 5.4.

4.6 Conclusions

We introduce adaptive e�ort subset simulation, which enables solving reliability problems with
performance functions that follow a discontinuous distribution. Such problems often occur in network
reliability assessment because of discrete random variables appearing in the input random vector or
due to discontinuities in the function that de�nes the system performance. The proposed method
modi�es the adaptive selection of the intermediate domains of the standard SuS and adapts the
number of samples and the respective conditional probability throughout the simulation to ensure
that there is an adequate number of seeds at each level.

Any MCMC algorithm that enables e�cient conditional sampling can be combined with the proposed
algorithm. We implement the aCS algorithm in an underlying standard normal space. If the input
random variables are all discrete, we propose a more e�cient yet less general independent M-H
algorithm, which operates in the original space. The mean acceptance rate of the independent M-H
algorithm tends to decrease with an increase of the intermediate simulation level with a decreasing
rate depending on the dimension of the input space. Hence, the algorithm becomes ine�cient in
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estimating small probabilities of high-dimensional systems. The acceptance rate of the aCS algorithm
is independent of the input dimension. However, aCS performs worse than the independent M-H
algorithm in moderate dimensional discrete input spaces.

Numerical results demonstrate that the aE-SuS estimator is only slightly biased and has substantially
higher e�ciency than crude Monte Carlo in problems where standard SuS fails to converge. The
computational cost of the aE-SuS algorithm depends highly on the magnitude of the jumps in the
distribution of the LSF.
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4.A Adaptive conditional sampling algorithm

The aCS algorithm presented herein di�ers from the one of [28], which assumes that N = 1−p0
p0

Nseed.
N is the number of new generated samples and Nseed represents the number of seeds. The imple-
mentation of the aCS is summarized in Algorithm 4. In the algorithm, l is the intermediate level,
and n is the dimension. Fl is the intermediate event. Sl represents the seeds, and λl−1 is the updated
scaling parameter at the l− 1-th level. It is suggested in [28] to choose λ0 as 0.6. a∗, Na, {σ0,d}nd=1

are respectively the optimal acceptance rate, number of chains to consider for adaption, and the
starting values for standard deviation. The suggested values can also be found in [28].

4.B Bound-based sampling algorithm

The original bound-based sampling algorithm [34, 26] is proposed for connectivity-based problems in
multivariate Bernoulli spaces. However, it can be modi�ed to sample from the proposal distribution

at level l of the independent M-H algorithm of Section 3.2, Q
(l)
p (x) ∝ Q(x|F0)I {x /∈ ∪j=0,...,l−1Xj},

if the input random variables follow the multivariate categorical distribution. That is

Q(x|F0) =
n∏
d=1

nd∑
i=1

I{xd = i}θd,i (16)

where θd,i represents the probability that the d-th component xd equals value i given all preceding
components x1, ..., xd−1. n and nd represent the number of components and the number of the states
of xd, respectively. For each component d, it holds that

∑nd
i=1 θd,i = 1.

The bound-based sampling algorithm proceeds in a component-wise scheme and is shown in Algo-
rithm 5. Following this algorithm, one generates samples in the space {x : x /∈ ∪j=0,...,l−1Xj} with
probability proportional to the input distribution Q(x|F0). A detailed proof can be found in [26].
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Algorithm 4: Adaptive conditional sampling algorithm

Input: N , Fl, S(l), λl−1

1 Ns ← |S(l)|, λ← λl−1

2 De�ne a∗, Na, {σ0,d}nd=1 according to [28]

3 Randomly sort the seeds S(l)

4 Randomly choose mod(N,Ns) elements from the set {1, 2, · · · , Ns}, say χ
5 P(l) ← ∅, c1 ← 0, c2 ← 0
6 for i = 1, · · · , Ns do

7 σd ← min(1, λσ0,d), ρd ←
√

1− σ2
d; d = 1, · · · , n

8 if i ∈ χ then

9 j ← b NNs c+ 1

10 else

11 j ← b NNs c
12 u0 ← the i-th seed
13 for k = 1, · · · , j do
14 for d = 1, · · · , n do

15 %% sample the d-th component of candidate v
16 vd ← N (·; ρduk−1,d, σ

2
d)

17 if v ∈ Fl then
18 uk ← v
19 c1 ← c1 + 1, c2 ← c2 + 1

20 else

21 uk ← uk−1

22 c1 ← c1 + 1

23 Add uk to P(l)

24 if i is a multiple of Na then

25 λ← λexp(( i
Na

)−1/2[ c2c1 − a
∗])

26 c1 ← 0, c2 ← 0

27 λl ← λ

Output: P(l), λl

Algorithm 5: Bound-based sampling algorithm

Input: Q(x|F0)
1 for d = 1, · · · , n do

2 Calculate Pr(x /∈ ∪j=0,...,l−1Xj |x1, · · · , xd−1)
3 for i = 1, · · · , nd do
4 Calculate Pr(x /∈ ∪j=0,...,l−1Xj |x1, · · · , xd−1, xd = i)

5 θ∗d,i ← θd,i
Pr(x/∈∪j=0,...,l−1Xj |x1,··· ,xd−1,xd=i)

Pr(x/∈∪j=0,...,l−1Xj |x1,··· ,xd−1)

6 Sample xd from the categorical distribution Cat(x;θ∗d)

Output: candidate x
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Abstract

We identify the zero count problem (or over�tting) of cross-entropy-based methods in the context
of network reliability assessment and propose a consistent Bayesian estimator that mitigates this
issue. Thereby, we derive the posterior predictive distribution of importance sampling distribution
parameters that replaces the weighted maximum likelihood estimation employed in the standard
cross entropy optimization. For rare event estimation, we embed the Bayesian estimator into the
improved cross entropy (iCE) method and provide theoretical insights into the adaptive selection of
intermediate target distributions in the iCE. The modi�ed version of the iCE, termed the Bayesian
iCE (BiCE), is proved to be unbiased. By contrast, even with higher computational costs, the
standard iCE method is often signi�cantly biased when solving network reliability problems. Our
numerical investigations indicate that a uniform prior in the proposed BiCE method performs sub-
optimally, and an informative symmetric Dirichlet prior is suggested.
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5.1 Introduction

Infrastructure networks, such as power transmission networks and water supply systems, operate as
the backbones of urban communities. Hence, it is essential to properly quantify the risk of network
failure, which involves quanti�cation of the failure probability of the network system. A network
is considered as failed when it cannot deliver a speci�ed level of performance. Mathematically, the
failure is described through a function g(·), known as a performance function, structure function, or
limit state function (LSF). Let X be a n-dimensional vector of random variables with joint density
function pX(x). The failure event F collects all system states x whose LSF g(x) is less than or
equal to 0, i.e., F , {x : g(x) ≤ 0}. The probability of failure is de�ned as

pf , P(g(X) ≤ 0) = Ep[I{g(X) ≤ 0}], (5.1)

where I{·} represents the indicator function, and Ep denotes expectation with respect to the density
pX(x).

The network performance is often measured through connectivity or �ow. In connectivity-based
problems, one evaluates the probability that a given set of nodes are disconnected [34, 5], and
typically, both the network performance and the component state are modeled as binary random
variables. In �ow-based problems, one is interested in the �ow that a network can deliver, e.g.,
the maximum number of passengers that can be transported from one city to another through the
railway network. Multi-state or continuous random variables are often involved in this class of
problems. For water supply systems and power grids, the �ow is driven by the physical law and
operation strategies, and the initial failure of network components leads to a recon�guration of the
power �ow that may trigger additional cascading failure.

A set of methodologies have been proposed for evaluating the reliability in the above two classes
of problems, among which sampling-based methods such as Monte Carlo simulation (MCS) and its
di�erent variants feature prominently [31, 21, 22, 1, 19, 13, 44, 50, 6]. For rare event simulation, i.e.,
when the failure probability pf is small, crude MCS is ine�cient or even infeasible when the LSF
is expensive to compute. In such cases, advanced sampling techniques such as subset simulation
[51, 8, 52, 9, 28, 14] and importance sampling (IS) [11, 26, 49] should be employed to decrease the
required number of LSF evaluations for obtaining an accurate estimate of pf . An alternative is the
use of surrogate-based methods to construct approximation models, also known as surrogate models,
that imitate the behavior of the computationally demanding LSF. However, for network reliability
problems, where the inputs are discrete, and the LSF is often discontinuous, the crucial assumptions
of smoothness and regularity of classical surrogate models such as Kriging and polynomial chaos
expansions are not always met [37]. Alternatively, Dehghani et. al. [18] employ Bayesian additive
regression trees as the surrogate model for the reliability analysis of power grids. However, when the
failure probability is small, e.g., of magnitude 10−4 ∼ 10−7 as in our paper, their method requires a
large initial sample set, which can introduce signi�cant overhead.

In the present paper, we employ the IS technique for rare event estimation in static (or time indepen-
dent) network reliability problems. In particular, we focus on an enhanced version of the multi-level
cross entropy (CE) method [45], termed the improved cross entropy method (iCE) [40]. The basic
idea of iCE is to perform a smooth transition from the input density to the optimal IS density
via a parametric distribution model whose Kullback-Leibler (KL) divergence from the optimal IS
is iteratively minimized. In the context of network reliability assessment with discrete multi-state
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components, the obvious choice of the parametric family is the categorical distribution. However,
updating the categorical model with the CE or iCE method can perform poorly, especially when the
sample size is small. This is because the probability assigned to a certain category often converges
to 0 when no samples fall into this category during the adaptive sampling process. This is known
in the literature as the zero count problem [38]. Neglecting a certain category in the IS distribution
can lead to a bias in the IS estimate of pf . To avoid such an issue, one may think of transfer-
ring the discrete random variable space to a continuous one through, for example, the Rosenblatt
transformation [14] and employ continuous parametric families in the iCE method. However, the
network reliability problem becomes more challenging after this non-linear transformation, and the
iCE method often fails to converge. Hui et. al. [27] combine the cross entropy method with the
graph creation process [20] and e�ciently estimate the connectivity reliability of networks using an
independent exponential parametric model. Note that this method is computationally demanding
and applies only to coherent binary systems. In this paper, we employ the independent categorical
distribution as IS distribution and propose an approach for learning its parameters during the iCE
sampling process that avoids the zero count problem. The proposed algorithm, termed Bayesian
improve cross entropy method (BiCE), employs the posterior predictive distribution to update the
parametric family instead of the weighted maximum likelihood estimator used in the standard CE
method. Compared with other non-sampling-based methods (e.g., [33, 25, 41, 36, 12]), the proposed
BiCE method facilitates using advanced network analysis algorithms that account for complex net-
work dynamics. However, the BiCE may require a large number of samples to achieve acceptable
results.

The rest of the paper is organized as follows. A brief introduction to the IS approach is given in
Section 2. In Section 3, we review the CE and iCE methods and provide some new insights into
these two methods. In Section 4, we �rst illustrate the problem that occurs when updating the
categorical distribution using CE or iCE, and then propose the BiCE method to circumvent this
problem. A set of numerical examples is given in Section 5 to illustrate the e�ciency and accuracy
of the proposed approach.

5.2 Importance sampling

Estimation of pf in Eq. (5.1) using crude MCS is straightforward; one generates N samples from
the joint density function pX(x) and then takes the sample mean of the indicator function as the

unbiased estimator of pf . The coe�cient of variation (c.o.v.) of the MCS estimate equals
√

1−pf
N ·pf ;

therefore, for small pf the required number of samples for achieving an accurate result is large. For
rare event estimation, acceleration techniques to speed up the occurrence of the failure events are
necessary. IS is an e�cient and widely utilized method for the simulation of rare events. The basic
idea of IS is to sample from a proposal distribution, also known as IS distribution, under which the
rare event is more likely to occur and to correct the resulting bias in the estimate by multiplying
each sample in the IS estimator with an appropriate likelihood ratio L [44]. Speci�cally, let pIS(x)
denote the IS density and {xk}Nk=1 be the N samples generated from pIS(x). The IS estimator of
the failure probability in Eq. (5.1) reads

p̂f =
1

N

N∑
k=1

I{g(xk) ≤ 0} pX(xk)

pIS(xk)
, (5.2)
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where the likelihood ratio (or IS weight) L(x) , pX(x)
pIS(x) can be interpreted as an adjustment factor

that compensates for the fact that samples are generated from pIS(x) instead of pX(x) [39]. The IS
estimator in Eq. (5.2) is unbiased if the failure domain F is included in the sample space of pIS(x)
[39]. The variance of the estimator mainly depends on the choice of the IS distribution. A proper
choice of the IS distribution can lead to a signi�cantly smaller variance than that of crude MCS.
Indeed, the theoretical optimal IS distribution p∗X(x) that results in zero variance of the estimator
is equal to the input distribution conditional on the occurrence of the failure event. That is

p∗X(x) =
pX(x)I{g(x) ≤ 0}

pf
= pX(x|F ). (5.3)

Unfortunately, p∗X(x) cannot be directly used since its analytical expression relies on a prior knowl-
edge of the sought failure probability pf . Nevertheless, the optimal IS distribution p∗X(x) still
provides guidance for selecting an appropriate IS distribution. A common approach is to perform
an initial �rst/second order reliability method analysis [35] or employ a Markov chain simulation al-
gorithm [3] to form a distribution that resembles p∗X(x). Alternatively, one can approximate p∗X(x)
in an adaptive manner through the application of the CE or iCE methods, which are discussed in
detail in Section 3.

5.3 Cross entropy and improved cross entropy method

5.3.1 Cross entropy method

The CE method determines the IS distribution in the estimator in Eq. (5.2) through minimizing the
KL divergence between the theoretical optimal IS distribution p∗X(x) and a prede�ned parametric
family of distributions. The KL divergence, which is also known as relative entropy, is a measure
of how one distribution di�ers from another. Speci�cally, let h(x;v) denote a family of parametric
distributions, where v ∈ V is a parameter vector. The KL divergence between p∗X(x) and h(x;v) is
de�ned as [46]

D(p∗X , h) = Ep∗X

[
ln

(
p∗X(X)

h(X;v)

)]
= Ep∗X [ln(p∗X(X))]− Ep∗X [ln(h(X;v))]. (5.4)

In order to obtain a precise IS estimator, the KL divergence D(p∗X , h) needs to be small. In fact,

one can prove that the c.o.v. of the IS estimator, δ(P̂f ) is lower-bounded by [4]

δ(P̂f ) ≥
√

exp(D(p∗X , h))− 1

N
. (5.5)

According to Eq. (5.5), if we require that δ(P̂f ) ≤ 0.1, the KL divergence D(p∗X , h) should be less
or equal than ln(1 + 0.01N). Conversely, a large KL divergence leads to a high c.o.v. and hence an
imprecise result.

The CE method determines the optimal parameter vector v∗ through minimizing the KL divergence
of Eq. (5.4), i.e., through solving

v∗ = arg min
v∈V

D(p∗X , h). (5.6)
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Since the �rst term on the right hand side of Eq. (5.4) does not depend on v, Eq. (5.6) is equivalent
to

v∗ = arg min
v∈V

−Ep∗X [ln(h(X;v))]. (5.7)

Typically, the optimization problem in Eq. (5.7) is convex and can be solved by the Lagrange
multiplier method [10]. However, the objective function depends on the optimal IS distribution
p∗X(x), which is not known in closed form, and therefore Eq. (5.7) cannot be solved analytically.
Instead, we estimate v∗ through solving an alternative objective function, which is introduced in
the following. Substituting p∗X in Eq. (5.7) with the expression of Eq. (5.3), one gets

v∗ = arg max
v∈V

Ep[I{g(X) ≤ 0} ln(h(X;v))] (5.8)

The expectation in Eq. (5.8) can be approximated through IS, which gives the importance sampling
counterpart of the CE optimization problem. That is

v̂ = arg max
v∈V

1

N

N∑
k=1

pX(xk)I{g(xk) ≤ 0}
pref (xk)

ln(h(xk;v)), xk ∼ pref (·). (5.9)

Here, pref (x) is the IS distribution used to estimate the expectation in Eq. (5.8) and is termed the
reference distribution in the CE method [46]. Similarly to the original CE optimization problem,
the optimization problem in Eq. (5.9) can also be solved by the Lagrange multiplier method.

One should distinguish h(x;v∗) from h(x; v̂) in the CE method [16]. h(x;v∗) represents the dis-
tribution that has the smallest KL divergence D(p∗X , h) among a set of distributions and hence is
termed the sub-optimal IS distribution. h(x; v̂) is the distribution we use as the IS distribution, i.e.,
the distribution resulting from the solution of the optimization problem of Eq. (5.9). We term it
the chosen IS distribution for the rest of the paper. Note that, as long as the parametric family is
�xed, the 'distance' between the optimal IS distribution and the sub-optimal IS distribution is also
�xed. The objective of the CE method is �nding a good estimator v̂ that is close to the optimal but
inaccessible CE parameter v∗.

Remark 5.3.1. In general, if h(x;v) is a properly parameterized exponential family, v̂ can be in-
terpreted as the self-normalized IS estimator of v∗. The accuracy of the self-normalized IS estimator
is measured by the e�ective sample size (ESS). For more details, we refer to 5.A.

Remark 5.3.2. v̂ can also be interpreted as a weighted maximum likelihood estimation (MLE) of
v [23] and therefore may su�er from the same drawbacks as MLE (e.g., over�tting). To circumvent
the over�tting issue of v̂, we propose a novel Bayesian estimator µ̃ for the CE method in Section
5.4. The proposed estimator converges to v∗ as the sample size goes to in�nity.

5.3.2 Cross entropy method for rare events and improved cross entropy method

The e�ciency and accuracy of the CE method depend on the choice of the reference distribution
pref (x) in Eq. (5.9). A potential choice for pref (x) is the input distribution pX(x). However, for
the case where F = {x : g(x) ≤ 0} is a rare event, sampling directly from pX(x) will lead to a large
number of zero indicators in Eq. (5.9), and, hence, an inaccurate result.
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In such a case, the reference distribution can be chosen adaptively. Let p(t)(x), t = 1, ..., T denote a
sequence of intermediate target distributions that gradually approaches the optimal IS distribution
p∗X(x). The CE optimization problem is then solved iteratively by �nding a good approximation
to each intermediate target distribution, resulting in a sequence of CE parameter vectors {v̂(t), t =
1, ..., T} and distributions {h(x; v̂(t)), t = 1, ..., T}. The distribution one obtains in the t-th iteration,
h(x; v̂(t)), is used as the reference distribution pref (x) for the CE procedure in iteration t+ 1. For
the �rst iteration, the input distribution pX(x) is used as the reference distribution. In this way,
one takes h(x; v̂(T−1)) as the reference distribution pref (x) for Eq. (5.9), and h(x; v̂(T )) as the �nal
IS distribution. The goal is to make v̂(T ) a good estimator of v∗. Typically, the intermediate target
distributions p(t)(x) are not prede�ned but are chosen adaptively during the iterations. Depending
on the way of adaptively selecting p(t)(x), one distinguishes the (multilevel) CE method and its
improved version, the improved cross entropy (iCE) method.

For the CE method, the intermediate target distributions are de�ned as:

p(t)(x) ,
1

Z(t)
pX(x)I{g(x) ≤ γ(t)}, t = 1, ..., T (5.10)

where {γ(t), t = 1, ....T} is a parameter vector that satis�es γ(t) ≥ 0, and Z(t) is a normalizing
constant. The CE optimization problem for Eq. (5.10) reads

v(t,∗) = arg max
v∈V

Ep[I{g(X) ≤ γ(t)} ln(h(X;v))]. (5.11)

The sample counterpart of the CE optimization problem for Eq. (5.11) reads as follows:

v̂(t) = arg max
v∈V

1

N

N∑
k=1

pX(xk)I{g(xk) ≤ γ(t)}
pref (xk)

ln(h(xk;v)), xk ∼ pref (·). (5.12)

In the t-th iteration, the CE method proceeds through the following three steps: (1) Generate a set
of samples P(t) , {xk, k = 1, ..., N} from the reference distribution pref (x) = pX(x) in the �rst
iteration and pref (x) = h(x, v̂(t−1)) thereafter. (2) Calculate the LSF value g(·) for each xk. Set
γ(t) as the sample ρ-quantile of {g(xk), k = 1, ..., N}. ρ represents a hyperparameter of the CE
method and is typically chosen between 0.01 and 0.1 [30]. (3) Solve the optimization problem of
Eq. (5.12) with P(t) to get a new parameter vector v̂(t). The above three steps are iterated until
for some iteration T , γ(T ) ≤ 0. One then sets γ(T ) = 0 and carries out step (3) one last time to get
v̂(T ).

In the iCE method, the intermediate target distributions are de�ned as:

p(t)(x) ,
1

Z(t)
pX(x)Φ

(
−g(x)

σ(t)

)
, t = 1, ..., T (5.13)

where σ(t) > 0 and Φ is the cumulative distribution function (CDF) of the standard normal

distribution. Note that lim
σ→0

(Φ(−g(x)
σ )) = I{g(x) ≤ 0}, meaning that for a decreasing sequence

σ(1) > · · · > σ(T ), the sequence of distributions gradually approaches the optimal IS distribution
p∗X(x). We note that alternative smooth approximations of the indicator function could be used
instead of Φ to de�ne the intermediate target distributions [48].

The CE optimization problem for Eq. (5.13) reads

v(t,∗) = arg max
v∈V

Ep[Φ(−g(X)/σ(t)) ln(h(X;v))]. (5.14)
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The sample counterpart of Eq. (5.14) can then be expressed as

v̂(t) = arg max
v∈V

1

N

N∑
k=1

pX(xk)Φ(−g(xk)/σ
(t))

pref (xk)
ln(h(xk;v)), xk ∼ pref (·). (5.15)

According to 5.A, when h(x;v) represents a properly parameterized exponential family, v̂(t) is a self-
normalized IS estimator of v(t,∗), independent of the choice of the intermediate target distributions.
For the iCE method, the weight function of the self-normalized IS estimator of v(t,∗) equals

W (x;σ(t)) =
pX(x)Φ(−g(x)/σ(t))

pref (x)
. (5.16)

A common choice for measuring the accuracy of a self-normalized IS estimator is the ESS, whose
approximate expression is given in Eq. (45). With prede�ned sample size N , ESS is only a function
of the c.o.v. of the weight, δ

(
W (X;σ(t))

)
,X ∼ pref (x), which further depends on the reference

distribution pref (x) and the parameter σ(t).

In the t-th iteration of iCE, one �xes the reference distribution pref (x) as h(x; v̂(t−1)) (as pX(x)
in the �rst iteration) and selects σ(t) such that the sample c.o.v. of the weights {W (xk;σ

(t))}Nk=1

equals a prede�ned target value δtar, i.e., one solves the following optimization problem:

σ(t) = arg min
σ∈(0,σ(t−1))

|δ̂
(
{W (xk;σ)}Nk=1

)
− δtar|, xk ∼ pref (x). (5.17)

where W (xk;σ) represents the weight in Eq. (5.16) and is a function of the optimization variable σ.
In this way, the sample ESS equals N

1+δ2tar
. Hence, the accuracy of the self-normalized IS estimator

v̂(t) is tuned by the hyperparameter δtar. A large δtar leads to an inaccurate v̂(t), while a small
δtar increases the number of the intermediate target distributions p(t)(x) required to approach the
optimal IS distribution p∗X(x), thereby reducing the overall e�ciency of the iCE method. This will
be illustrated in detail in Section 5.4. In general, 1.5 is a good choice for δtar in the iCE method
[40]. Once σ(t) is �xed, the optimization problem of Eq. (5.15) can be solved for the parameter
vector v̂(t). The corresponding distribution h(x; v̂(t)) is then used as the reference distribution for
the (t+ 1)-th iteration.

The above procedure is iterated until the c.o.v. of the likelihood ratio [39] for sampling from p(t)(x)
instead of p∗X(x) is smaller than δε, i.e.,

δ

(
p∗X(X)

p(t)(X)

)
= δ

(
I{g(X) ≤ 0}

Φ(−g(X)/σ(t))

)
≤ δε, X ∼ p(t)(x). (5.18)

In practice, we sample P(t) = {xk}Nk=1 from h(x; v̂(t)) rather than p(t)(x), and check whether the

sample c.o.v. of I{g(xk)≤0}
Φ(−g(xk)/σ(t))

is less or equal than δε. Typically, δε is chosen the same as δtar [40].

The algorithm for the iCE method is shown in Algorithm 6.
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Algorithm 6: Improved cross entropy algorithm

Input: N , δtar, δε, LSF g(x), input distribution pX(x)
1 t← 1, tmax ← 50, σ0 ←∞
2 h(x; v̂(t−1))← pX(x)
3 while true do

4 Generate N samples {xk}Nk=1 from h(x; v̂(t−1)) and calculate the corresponding LSF
values {g(xk)}Nk=1

5 Compute the sample c.o.v. δ̂ of
{

I{g(xk)≤0}
Φ(−g(xk)/σ(t−1))

}N
k=1

6 if t > tmax or δ̂ ≤ δε then
7 Break

8 Determine σ(t) through solving Eq. (5.17)

9 Compute v̂(t) through solving Eq. (5.15)
10 t← t+ 1

11 T ← t− 1

12 Use h(x; v̂(T )) as the IS distribution and calculate the IS estimator p̂f through Eq. (5.2)
Output: p̂f

5.4 Bayesian improved cross entropy method for the categorical

parametric family

In this section, we consider the iCE method for estimating a rare event with a discrete random input
X, which often occurs in network reliability assessment. For discrete inputsX, the probability mass
function of X, pX(x), de�nes the probability of the corresponding outcome, i.e., pX(x) = Pr(X =
x). We consider a slightly di�erent de�nition of the intermediate target distribution in Eq. (5.13),
which results from the de�nition of an auxiliary LSF ga(x):

ga(x) ,

{
g(x), if g(x) > 0

0, if g(x) ≤ 0
. (5.19)

Note that the failure probability pf is unchanged if the original LSF in Eq. (5.1) is substituted with
the auxiliary one, so we can equivalently estimate the probability that ga(X) ≤ 0 for pf , i.e.,

pf = P(ga(X) ≤ 0) =
∑
x∈ΩX

pX(x)I{ga(x) ≤ 0}, (5.20)

where ΩX is the sample space of the input random variables. In this way, the intermediate target
distribution in Eq. (5.13) becomes

p(t)(x) ,
1

Z(t)
pX(x)Φ

(
−ga(x)

σ(t)

)
, t = 1, ..., T. (5.21)

In the following, we discuss the properties of the iCE method with the intermediate target distribu-
tion in Eq. (5.21). In particular, we examine the adaptation of the intermediate target distribution
following Eq. (5.17) and formulate a theorem stating that, under certain assumptions, the result-
ing distribution sequence gradually approaches the optimal IS distribution. For the independent
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categorical parametric family, i.e., the joint distribution consisting of independent components that
follow the categorical distribution, we further illustrate the over�tting issue of the standard iCE
method. Based on this observation, we introduce a novel approach called the Bayesian improved
cross entropy (BiCE) method that circumvents this problem.

5.4.1 Adaptation of the intermediate target distribution

The adaptation of the intermediate target distribution p(t)(x), or equivalently the parameter σ(t),
plays an important role in achieving a balance between the e�ciency and accuracy of the iCE
method. Therefore, it is worth taking a closer look at the updating formula of σ(t) in Eq. (5.17) and
(5.18). To simplify the problem, we make the following assumptions:

Assumption 1. The intermediate target distributions p(t)(x), t = 1, ..., T are included in the para-
metric family h(x;v) and therefore can be perfectly matched by h(x;v(t,∗)), t = 1, ..., T .

Assumption 2. The sample size is in�nite such that v̂(t) is the same as v(t,∗).

Under these two assumptions, the sample c.o.v. of the weight in Eq. (5.17) converges to the true

c.o.v. δ
(

Φ(−ga(X)/σ)

Φ(−ga(X)/σ(t−1))

)
,X ∼ p(t−1)(x), which is a function of σ. We write this function as δ(t)(σ)

for the rest of this paper. According to Eq. (5.18), the adaptive procedure of the iCE method is
stopped when δ(t)(0) ≤ δε. In [15], we introduce the following two theorems:

Theorem 5.4.1. Under Assumptions 1 and 2, δ(t)(σ) is a strictly decreasing function of σ over
[0, σ(t−1)].

Theorem 5.4.2. Under Assumptions 1 and 2, it holds δ(t)(σ(t−1)) = 0 and δ(t)(0) =
√

Z(t−1)

0.5pf
− 1 >

0, where Z(t−1) is the normalizing constant of p(t−1)(x) and can be expressed as

Z(t−1) = 0.5pf +
∑

ga(x)>0

pX(x)Φ

(
− ga(x)

σ(t−1)

)
. (5.22)

As a corollary, the optimization problem of Eq. (5.17) has a unique solution σ(t) that is smaller than
σ(t−1), resulting in a strictly decreasing sequence of σ, i.e., σ(1) > σ(2) > · · · > σ(t). Additionally,
since Z(t) is a strictly increasing function of σ(t) according to Eq. (5.22), we have Z(1) > Z(2) > · · · >
Z(t), and this further leads to another decreasing sequence of δ(t)(0), i.e., δ(1)(0) > δ(2)(0) > · · · >
δ(t)(0), which is sure to converge but does not necessarily converge to zero. If for some iteration
T it holds δ(T )(0) ≤ δε, we terminate the adaptive procedure of iCE. The adaptation of σ(t) under
Assumptions 1 and 2 is intuitively illustrated in Fig. 5.1. All symbols in the �gure have the same
meaning as before.

In practice, the parametric family h(x;v) has limited �exibility, and the sample size is also �nite due
to limited computational budgets. Nevertheless, we expect that the results given in Theorems 4.1
and 4.2 still apply when h(x;v(t)) forms a good approximation of p(t)(x), which is con�rmed in the
numerical experiments in Section 5.5. The adaptation of p(t)(x) in iCE is tuned by hyper-parameters
δtar and δε. A small δε indicates a strict (even infeasible) convergence criterion for p(t)(x), which
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Figure 5.1: A schematic diagram of adaptive selection of σ(t).

leads to a more accurate yet less e�cient result. Similarly, a small δtar leads to a σ(t) close to
σ(t−1), which lowers the speed of the intermediate target distribution approaching the optimal IS
distribution, thereby reducing the overall e�ciency of the iCE algorithm. Conversely, a small δtar
implies a large ESS and hence high accuracy of v̂(t) in each t-th iteration of iCE method. In this
paper, we suggest selecting δtar = δε from 1 to 2 [40], which is justi�ed by the numerical examples
in Sec. 5.5. We also �nd that, instead of the original weight function de�ned in Eq. (5.16), using
the alternative weight function

W alt(x;σ) ,
Φ(−ga(x)/σ)

Φ(−ga(x)/σ(t−1))
(5.23)

when solving σ(t) through Eq. (5.17) will lead to a better convergence of the iCE algorithm for
network reliability assessment, especially when δε is small.

5.4.2 Parametric distribution family for discrete inputs and zero count problem

To form a good approximation of p(t)(x) in the iCE method, a proper choice of the parametric
family is necessary. In the context of the reliability of systems with multi-state components, the
obvious choice of the parametric model is the multivariate categorical distribution, which assigns a
probability to each system state of the network, i.e., to each possible state in the sample space of the
input distribution. The multivariate categorical distribution has great �exibility as it includes all
possible distributions de�ned in the sample space of the network components. However, the number
of parameters of this model grows exponentially with the input dimension (number of components),
making this model impractical even for moderate dimensions. Therefore, we consider independent
categorical distributions.

Suppose X is a n dimensional input random vector with statistically independent components
and each d-th component Xd follows the categorical distribution taking values {sd,1, · · · sd,nd} with
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probabilities {pd,1, · · · , pd,nd}. nd is the number of sample states of Xd. The independent categorical
family for X has the following general form:

h(x;v) =

n∏
d=1

hd(xd;vd) =

n∏
d=1

nd∏
i=1

v
I{xd=sd,i}
d,i , 0 ≤ vd,i ≤ 1,

nd∑
i=1

vd,i = 1, (5.24)

where hd(xd;vd) =
nd∏
i=1

v
I{xd=sd,i}
d,i represents a univariate categorical distribution for Xd that assigns

a probability of vd,i to each i-th state sd,i of Xd, and v = {vd}nd=1 gathers the parameters of all
components of the independent categorical family h(x;v).

The optimal parameter v(t,∗) is obtained through solving Eq. (5.14), which gives[46]

v
(t,∗)
d,i = Ep(t) [I{Xd = sd,i}]. (5.25)

The explicit expression of v(t,∗) requires knowledge of the normalizing constant of p(t) and hence
cannot be directly used in the iCE method. Through optimizing the alternative objective function
in Eq. (5.15), the near-optimal parameter v̂(t) is explicitly given by

v̂
(t)
d,i =

∑N
k=1W (xk;σ

(t))I{xk,d = sd,i}∑N
k=1W (xk;σ(t))

, d = 1, ..., n, i = 1, ..., nd, (5.26)

where samples {xk}Nk=1 are generated from the reference distribution pref (x) = h(x; v̂(t−1)), and

W (xk;σ
(t)) = pX(xk)Φ(−ga(xk)/σ(t))

pref (xk) . The expression of Eqs.(5.25) and (5.26) can also be obtained

by considering that the independent categorical distribution is a member of the exponential family
[38]. Note that v̂(t) is the self-normalized estimator of v(t,∗). Additionally, v̂(t) can be regarded as
the weighted MLE of v. This is because the objective function in Eq. (5.15) can be interpreted as
a weighted log-likelihood function LL(v), with data set {xk}Nk=1 and weights {W (xk)/N}Nk=1.

Similarly to the MLE of independent categorical distribution, v̂(t) su�ers from over�tting, which is
also known as the zero count problem in the context of MLE with categorical data [38], and results
in poor performance when the sample size is small. In particular, if there is no sample whose d-th

component equals sd,i, sd,i will be assigned a zero probability according to Eq. (5.26), i.e., v̂
(t)
d,i = 0.

In the context of the iCE method, the parameter vector v̂(t) is employed to generate samples at
the (t + 1) iteration, and hence, sd,i will not occur in any of the newly generated samples. In

this way, we have v̂
(t)
d,i = v̂

(t+1)
d,i = · · · = v̂

(T )
d,i = 0, resulting in a reduced sample space of the �nal

IS distribution h(x; v̂(T )). However, for the optimal IS distribution, state sd,i is not necessarily
negligible. In other words, the reduced sample space may only cover a part of the failure domain F ,
thereby underestimating the failure probability pf .

5.4.3 Bayesian improved cross entropy method

In this subsection, we propose an accurate yet e�cient algorithm termed the Bayesian improved
cross entropy method (BiCE) that circumvents the zero count problem. In this approach, instead of
employing a weighted MLE v̂(t), a prior distribution is imposed on v(t), and the posterior predictive
distribution is derived, which is then employed to update the independent categorical family in iCE.
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We insert the expression of the independent categorical parametric family of Eq. (5.24) into Eq. (5.15)
and rewrite the objective function, or the weighted log-likelihood function LL(v), as follows

LL(v) =
N∑
k=1

W (xk;σ
(t))

N
ln

(
n∏
d=1

hd(xk,d;vd)

)

=

n∑
d=1

N∑
k=1

W (xk;σ
(t))

N
ln (hd(xk,d;vd))

,
n∑
d=1

LLd(vd), (5.27)

where LLd(vd) is the weighted log-likelihood function of a one-dimensional categorical family hd(xd;vd),

with data set {xk,d}Nk=1 and weights {W (xk;σ(t))
N }Nk=1. From Eq. (5.27), we �nd that, once the

sample set is �xed, the parameter vectors vd, d = 1, · · · , n, are decoupled from each other in the
expression of LL(v), that is, the in�uence of each vd on the outcome of LL(v) is separated (or
additive). Additionally, we note that the feasible region for each parameter vector vd, that is
Vd : {0 ≤ vd,i ≤ 1; i = 1, · · · , nd|

∑nd
i=1 vd,i = 1}, is independent. Therefore, the original optimiza-

tion problem can be decomposed into n simpler subproblems, in which LLd(vd) is maximized with
respective to vd ∈ Vd. The solutions to the subproblems are then concatenated to give a solution

to the original problem, i.e., v̂(t) = [v̂
(t)
1 ; · · · ; v̂

(t)
n ]. Therefore, it is su�cient to discuss the following

subproblem:

v̂
(t)
d = arg max

vd∈Vd

N∑
k=1

W (xk;σ
(t))

N
ln (hd(xk,d;vd)) .

Note that multiplying the objective function with a positive constant α or taking an exponential of
the objective function does not change the solution to the optimization problem, so we have

v̂
(t)
d = arg max

vd∈Vd

N∑
k=1

αW (xk;σ
(t))

N
ln (hd(xk,d;vd))

= arg max
vd∈Vd

N∏
k=1

(hd(xk,d;vd))
αW (xk;σ

(t))

N . (5.28)

The objective function in Eq. (5.28) can be regarded as a weighted likelihood function for hd(xd;vd)

with data set {xk,d}Nk=1 and weights {αW (xk;σ(t))
N }Nk=1. In this work, α is chosen such that the

weighted likelihood function coincides with the standard likelihood function with unit weights when
W (xk), k = 1, ..., N are all equal, which gives

α =
N2∑N

k=1W (xk;σ(t))
. (5.29)

Inserting the above expression of α and substituting the parametric family hd(xk,d;vd) with the
expression in Eq. (5.24) into Eq. (5.28) gives

v̂
(t)
d = arg max

vd∈Vd

nd∏
i=1

v
∑N
k=1(I{xk,d=sd,i}wk)

d,i , arg max
vd∈Vd

Ld(vd), (5.30)
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where wk , N W (xk;σ(t))∑N
k=1W (xk;σ(t))

is the weight for the k-th sample xk, and Ld(vd) is the weighted

likelihood function for the categorical distribution hd(xd;vd) with data set {xk,d}Nk=1 and weights
{wk}Nk=1. Note that when W (xk;σ

(t)), k = 1, ..., N are all equal, Ld(vd) degenerates into a standard
likelihood function with unit weights, i.e., wk = 1, k = 1, ..., N . The analytical solution to the
optimization problem in Eq. (5.30) is obtained as

v̂
(t)
d,i =

1

N

N∑
k=1

wkI{xk,d = sd,i}, i = 1, ..., nd, (5.31)

which coincides with the expression of v̂(t) in Eq. (5.26). Note that 0 ≤ v̂d,i ≤ 1, and
∑nd

i=1 v̂
(t)
d,i = 1.

The basic idea of the proposed BiCE method is to employ a Bayesian approach for estimating the
parameter vector vd that aims at avoiding the over�tting problem through adding a regularization
term in Eq. (5.28). In particular, the weighted likelihood function in the second line of Eq. (5.28) is
multiplied by a prior distribution over the parameter vector vd. Instead of solving the regularized
optimization problem, we derive the full posterior predictive distribution for the categorical distri-
bution. The imposed prior distribution acts as an additional information set, and through Bayes'
rule, we combine the two sources of information. If one source contains more information than the
other, the posterior distribution will be pulled towards it; the relative 'strength' between the prior
and the data is adjusted by the α and also the prior parameters.

The prior f ′(vd) is chosen to be a Dirichlet distribution in this paper, which is the conjugate prior
for the parameter vector vd of a categorical distribution. The PMF of the Dirichlet distribution can
be expressed as follows

f ′(vd) = Dir(vd;θd) =
1

B(vd)

nd∏
i=1

(vd,i)
θd,i−1I{vd ∈ Vd}, (5.32)

where θd = {θd,i > 0}ndi=1 represents the parameter vector of the prior, and B(vd) is the normalizing
constant with B(·) being the multivariate Beta function.

Combining Eq. (5.32) with the weighted likelihood in Eq. (5.30), the posterior distribution f ′′(vd)
is also a Dirichlet distribution. In fact, according to Bayes' rule, f ′′(vd) can be expressed as

f ′′(vd) ∝ f ′(vd)Ld(vd)

∝
nd∏
i=1

(vd,i)
Nv̂

(t)
d,i+θd,i−1I{vd ∈ Vd}

= Dir(vd;N v̂
(t)
d + θd). (5.33)

We then utilize the full distribution of the posterior f ′′(vd) for updating the categorical parametric

family hd(xd;vd). That is, we calculate the probability µ̃
(t)
d,i that each state sd,i of hd(xd;vd) occurs

under the Dirichlet posterior distribution in Eq. (5.33). Based on the total probability theorem, µ̃
(t)
d,i

can be calculated through

µ̃
(t)
d,i =

∫
Vd
hd(sd,i;vd)f

′′(vd)dvd =

∫
Vd
vd,iDir(vd;N v̂

(t)
d + θd)dvd = EDir[Vd,i].
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Since the mean value of a Dirichlet distribution Dir(vd;θd) is explicitly given by
θd,i∑nd
j=1 θd,j

, i =

1, ..., nd, [38], we further have

µ̃
(t)
d,i =

Nv̂
(t)
d,i + θd,i∑nd

j=1

(
Nv̂

(t)
d,j + θd,j

)
=

Nv̂
(t)
d,i + θd,i

N +
∑nd

j=1 θd,j

= λdv̂
(t)
d,i + (1− λd)

θd,i∑nd
j=1 θd,j

, (5.34)

where λd ,
N

N+
∑nd
j=1 θd,j

denotes the combination factor.

According to Eq. (5.34), this estimator µ̃
(t)
d,i can be written as a linear combination of the weighted

MLE v̂
(t)
d,i , which exploits the information of the weighted samples, and the prior estimator

θd,i∑nd
i=1(θd,i)

,

which can explore a di�erent range of the sample space. The relative 'strength' of v̂
(t)
d,i is indicated

by the combination factor λd and is tuned by
∑nd

i=1 θd,i. Evidently, the smaller the
∑nd

i=1 θd,i, the

more dominant the v̂
(t)
d,i , and vice versa. We, therefore, favor a balanced prior with an appropriately

large
∑nd

i=1 θd,i, that will not dominate the estimator but can act as a regularizer to deviate the

potentially over�tted weighted MLE v̂
(t)
d,i . A further investigation of the prior distribution is left for

future work, and in this paper, we simply employ a symmetric Dirichlet prior for each vd, and set

θd,i = b; i = 1, ..., nd, d = 1, ..., n, (5.35)

where b is the hyperparameter. A natural choice of b is one, which implies an uninformative uniform
prior. However, selecting a larger b leads to better results in our numerical investigations. We hence
suggest choosing b heuristically as a proportion κ of the sample size per level N so that the resulting
combination factor λd = 1

1+κnd
is a positive constant independent of N . The larger κ, the smaller

the combination factor λd, and hence, the larger the in�uence of the prior term on µ̃
(t)
d,i. To construct

a balanced prior, an appropriate κ is investigated through a parameter study performed in Section
5, where we �nd that b = κN = 0.01N is a good choice for all investigated cases.

We note that, µ̃
(t)
d,i converges to v̂

(t)
d,i as the sample size N approaches in�nity. Considering that v̂

(t)
d,i

is the normalized IS estimator of the optimal CE parameter v
(t,∗)
d,i in Eq. (5.25), both µ̃

(t)
d,i and v̂

(t)
d,i

will converge to v
(t,∗)
d,i . Therefore, similar to v̂

(t)
d,i , the accuracy of µ̃

(t)
d,i is guaranteed for a large sample

size. Conversely, µ̃
(t)
d,i is positive even for a small sample size. It holds that µ̃

(t)
d,i ≥

b
N+b·nd = κ

1+κ·nd .
Hence, the 'zero count problem' is less likely to occur.

In this way, µ̃
(t)
d = (µ̃

(t)
d,1, ..., µ̃

(t)
d,nd

) forms a new parameter vector for the one-dimensional categorical

family hd(xd;vd). hd(xd; µ̃
(t)
d ) is also known as the posterior predictive distribution in Bayesian

statistics, so we term µ̃
(t)
d the Bayesian estimator of vd. After obtaining the Bayesian estimator µ̃

(t)
d

for each dimension d = 1, ..., n through Eq. (5.34), we concatenate the results to get the Bayesian

estimator µ̃(t) for the independent categorical distribution h(x;v), i.e., µ̃(t) = [µ̃
(t)
1 ; ..., µ̃

(t)
d ]. The

posterior predictive distribution h(x; µ̃(t)) is then employed as the reference distribution pref (x)
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for the (t + 1)-th iteration in iCE. The resulting algorithm is termed the Bayesian improved cross
entropy method (BiCE) and is given in Algorithm 7.

It should be stressed that the BiCE estimator p̂f is theoretically unbiased since

E[p̂f ] = E[E[p̂f |µ̃(T )]] = E[pf ] = pf . (5.36)

µ̃(T ) collects the parameters of the posterior predictive distribution h(x; µ̃(T )) in the �nal T -th level,
or the �nal IS distribution. Di�erent from the standard iCE method, where these parameters can
converge to zero due to the zero count problem (or over�tting), they are guaranteed to be positive
in BiCE. Hence, each state in the failure domain can be reached by the IS distribution obtained by
BiCE, and this IS estimator is unbiased, i.e., it holds E[p̂f |µ̃(T )] = pf .

Algorithm 7: Bayesian improved cross entropy algorithm

Input: N , δtar, δε, b, auxiliary LSF ga(x), input distribution pX(x)
1 t← 1, tmax ← 50, σ0 ←∞
2 h(x; µ̃(t−1))← pX(x)
3 while true do

4 Generate N samples {xk}Nk=1 from h(x; µ̃(t−1)) and calculate the corresponding LSF
values {ga(xk)}Nk=1

5 Compute the sample c.o.v. δ̂ of
{

I{ga(xk)≤0}
Φ(−ga(xk)/σ(t−1))

}N
k=1

6 if t > tmax or δ̂ ≤ δε then
7 Break

8 Determine σ(t) through solving Eq. (5.17) using the alternative weight function de�ned
in Eq. (5.23)

9 Calculate W (xi) for each i = 1, ..., N through Eq. (5.16)

10 Compute µ̃
(t)
d,i through Eq. (5.34), for each d and i with θd,i given by Eq. (5.35)

11 t← t+ 1

12 T ← t− 1

13 Use h(x; µ̃(T )) as the IS distribution and calculate the IS estimator p̂f through Eq. (5.2)
Output: p̂f

Remark 5.4.1. Instead of using the full posterior distribution, one can also utilize the mode of the

posterior distribution ṽ
(t)
d as a point estimate of vd, which is known as the maximum a posteriori

(MAP) estimator in Bayesian statistics. By de�nition, the MAP estimator can be expressed as

ṽ
(t)
d = arg max

vd∈Vd
f ′′(vd). (5.37)

Substituting the posterior f ′′(vd) with the expression in Eq. (5.33) and then solving the optimization
problem in Eq. (5.37) with the Lagrange multiplier method gives us

ṽ
(t)
d,i =

Nv̂
(t)
d,i + θd,i − 1

N
∑nd

i=1 v̂
(t)
d,i +

∑nd
i=1(θd,i − 1)

=
N

N +
∑nd

i=1(θd,i − 1)
v̂

(t)
d,i +

∑nd
i=1(θd,i − 1)

N +
∑nd

i=1(θd,i − 1)

θd,i − 1∑nd
i=1(θd,i − 1)

. (5.38)
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Comparing Eq. (5.38) and Eq. (5.34), we �nd that the MAP estimator ṽ
(t)
d,i with prior parameter

θd,i > 1 is the same as the Bayesian estimator µ̃
(t)
d,i with prior parameter θd,i− 1. When θd,i = 1, the

MAP estimator ṽ
(t)
d,i reduces to the weighted MLE v̂

(t)
d,i.

Remark 5.4.2. If the symmetric Dirichlet prior described in Eq. (5.35) is applied in the BiCE

method, it holds that µ̃
(t)
d,i = N

N+b·nd v̂
(t)
d,i + b

N+b·nd according to Eq. (5.34), which means the probability

that Xd equals sd,i in the posterior predictive distribution is at least b
N+b·nd (or κ

1+κ·nd when b is
chosen as a minor proportion κ of N). To avoid this probability being close to zero, the number of
states for Xd, nd, should not be too large.

Remark 5.4.3. Although derived in the context of the iCE method, the Bayesian estimator µ̃
(t)
d,i

can also be combined with other CE-based methods for obtaining an unbiased network reliability
estimator.

5.5 Examples

For testing the performance of the BiCE method, we investigate three numerical examples: a toy
example with algebraic LSF, a multi-state two-terminal reliability problem, and a direct current
(DC) power �ow problem for the IEEE39 benchmark. We compare the proposed BiCE method with
the iCE method in terms of their relative e�ciency with respect to crude MCS, a concept that is
borrowed from statistics [32]. The relative e�ciency measure reads as follows

relE�(p̂f ) ,
pf · (1− pf )

MSE(p̂f )× Cost(p̂f )
, (5.39)

where MSE(p̂f ) represents the mean square error of the failure probability estimator p̂f , and the
cost of an algorithm is measured by the number of evaluations of the LSF. Note that the relative
e�ciency of crude MCS is always equal to one.

5.5.1 Parameter study: system with linear limit state functions

In this example, we consider an LSF g1(x), which is a linear combination of 50 random variables.
The coe�cients of the �rst and the last 10 random variables are set to be 2 and 0, respectively, while
for the remaining random variables, the coe�cients are �xed at 1. The LSF reads

g1(x) =

10∑
d=1

2 · xd +

40∑
d=11

1 · xd +

50∑
d=41

0 · xd. (5.40)

5.5.1.1 Binary input

We �rst assume that {Xd}50
d=1 are independent and identically distributed (i.i.d.) Bernoulli random

variables with success probability 10−3, i.e., the probability that each Xd takes the value 1 is 10−3.
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We estimate the probability that g1(X) ≥ 6 using the BiCE and compare the result with that
of the standard iCE approach. The exact solution is 1.387 · 10−7 through the convolution of two
binomial distributions. We �x the sample size N at 500 and 2, 000 for BiCE and iCE, respectively,
and set δtar = δε = 1 for both methods. 5, 000 repeated runs of each estimator are carried out to
calculate the relative bias, the sample c.o.v., and the average computational cost (i.e., the average
number of calls of the LSF) of the estimator. Also, the in�uence of di�erent prior parameters on the
performance of BiCE is investigated. We apply the symmetric Dirichlet prior de�ned in Eq. ( 5.35)
and vary the parameter b therein. We note that when nd = 2 the Dirichlet distribution degenerates
into the Beta distribution. The results are summarized in Table 5.1.

Table 5.1: Performance of BiCE for Example 5.1.1.

method BiCE BiCE BiCE BiCE BiCE iCE

sample size, N 500 500 500 500 500 2, 000

prior parm., b 1 5 10 25 50 /

relative bias 0.012 0.011 0.007 0.007 0.006 -0.375

sample c.o.v. 0.196 0.122 0.155 0.287 0.787 0.372

comp. cost 4, 660 4, 127 3, 555 2, 495 1, 500 19, 967

relE� (×104) 4.01 11.64 8.42 3.51 0.78 0.13

We can see from the table that the iCE method, even with N = 2, 000 samples per level, which is
four times larger than the number of samples used with the BiCE, performs poorly with a strong
negative bias. This is due to the zero count problem described in Subsection 5.4.2; the failure states
of some of the input random variables are ignored throughout the sampling process, which leads
to an under-representation of the failure domain. By contrast, BiCE with an uninformative prior
b = 1, works well, resulting in an e�cient yet accurate estimator. The performance of the BiCE can
be further enhanced through employing a larger b. The prior with b = 5 = 0.01N is the optimal
choice in this example for which the e�ciency of BiCE is 1.16 · 105 times larger than that of crude
MCS. Selecting a larger value of b leads to poorer results.

To further illustrate the zero count problem, Fig. 5.2 shows the in�uence of the number of samples
per level, N , on the c.o.v. and the relative bias of the BiCE and iCE estimates. In this �gure, the blue
solid line represents the BiCE method with uninformative prior and target c.o.v. δtar = δε = 1; the
red dashed line shows the BiCE method with uninformative prior and target c.o.v. δtar = δε = 1.5.
Both variants show a negligible relative bias for all considered N . In contrast, the relative bias of
the standard iCE method is almost -100% when the number of samples is small, i.e., N = 500, and
gradually approaches 0 as N increases. Obviously, the zero count problem is less likely to happen
for a larger number of samples per intermediate level.

5.5.1.2 Multi-state input

Next, we assume that {Xd}50
d=1 follows the i.i.d categorical distribution with categories 0, 1, and 3.

The probabilities assigned to these categories are 0.899, 0.1, and 10−3. In this subsection, we estimate
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Figure 5.2: Parameter study for Example 5.1.1. (left) c.o.v. (right) relative bias.

the probability that g1(x) ≥ 19. The exact value of this probability is approximated through crude
MCS with 107 samples, resulting in 7.3 · 10−5. 5000 repeated runs of BiCE with hyperparameters
δtar = δε = 1 and N = 1, 000 are performed. The obtained results are then compared with the
standard iCE approach with δtar = δε = 1 and N = 2, 000, and are summarized in Table 5.2.
Similarly to the binary case in Subsection 5.1.1, the BiCE with the uniform prior, that is, the case
where b = 1, outperforms the standard iCE approach, and the performance can be further improved
through applying a larger b. In this example, b = 0.01N = 10 appears to be a good choice.

Fig. 5.3 shows the performance of the iCE and the BiCE methods for varying the number of samples
per intermediate level for multi-state input. Similarly to Fig. 5.2, which is given for binary input,
the relative bias of the iCE method approaches zero as N goes from 500 to 5, 000.

Table 5.2: Performance of BiCE for Example 5.1.2.

method BiCE BiCE BiCE BiCE BiCE iCE

sample size, N 1, 000 1, 000 1, 000 1, 000 1, 000 2, 000

prior parm., b 1 10 20 50 100 /

relative bias -0.004 -0.014 -0.054 -0.047 -0.047 -0.375

sample c.o.v. 0.285 0.107 0.132 0.254 0.684 0.124

comp. cost 7, 484 5, 997 4, 999 3, 000 2, 000 15, 966

relE� 22.529 157.171 134.71 68.428 14.570 5.642

5.5.1.3 Adaptive selection of σ(t) of intermediate target distributions

Fig. 5.4 shows the adaptive selection of σ(t) of intermediate target distributions in the BiCE method.
We adopt b = 1, δtar = δε = 1 and discuss four di�erent settings: binary input in Eq. (5.40) with
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Figure 5.3: Parameter study for Example 5.1.2. (left) c.o.v. (right) relative bias.

moderate N , multi-state input with moderate N , binary input with large N and multi-state input
with large N . The ordinate in each sub�gure represents the sample c.o.v. of the weight W alt(X;σ)
de�ned in Eq. (5.23), which is a function of σ at each t-th intermediate level. These functions are
depicted in colored solid lines in the sub�gure.

In the �rst few intermediate levels, the weight W alt(X;σ) is highly skewed for a small σ, and hence,
the sample c.o.v. derived from a limited number of samples can be signi�cantly biased. We observe
a notable increase of the sample c.o.v. when increasing the sample size.

For higher levels, however, the sample c.o.v. is more robust to the change in the sample size. The
sample c.o.v. is a strictly decreasing function of σ and has a unique intersection with the dotted line,
the target c.o.v., δtar, which further indicates a unique solution σ(t) to Eq. (5.17) at each t-th level.
This behavior is consistent with Theorems 4.1 and 4.2. Each σ(t) corresponds to a grey vertical
line in the sub�gure. We can see that the adaptation of σ(t) is similar for both moderate and large
sample settings in this example.

5.5.2 Multi-state two-terminal reliability

Fig.5.5 shows the topology of a multi-state two-terminal network with 11 nodes and 20 edges (or
arcs), which is motivated by the third example of [42]. The capacity of each edge, that is, the
maximum �ow that can pass through the edge, takes the same three states 0, 3, and 5 with probability
10−3, 0.1, and 0.899, respectively. Also, the states of each edge are independent. We are required to
estimate the probability that the maximum �ow from the source node s to the sink node t is less or
equal to a prede�ned demand Dtar = 6. The true value of the probability is approximately 1.8 ·10−4

according to the crude MCS results (with sample size 2 · 106), and this value is employed to assess
the accuracy of the proposed BiCE approach. We choose δtar = δε = 1 and N = 1, 000 and use an
uninformative uniform prior, Dir(·;θ = [1, 1, 1]T ) for each dimension in BiCE, i.e., we set b = 1. The
relative bias, sample c.o.v., average computational cost, and relative e�ciency of 200 repeated runs
of the BiCE are -0.004, 0.100, 9, 385, and 59.091, respectively, indicating an e�cient yet accurate
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Figure 5.4: Adaptive selection of σ(t) in the BiCE method with b = 1, δtar = δε = 1. (left top)
binary input, N = 500. (right top) multi-state input, N = 1000. (left bottom) binary input,

N = 105. (right bottom) multi-state input, N = 105.

estimator. In contrast, the standard iCE with hyperparameters δtar = δε = 1 and N = 2, 000 will
seriously underestimate the failure probability. On the other hand, the performance of the BiCE
estimator can be improved through setting b = 0.01N = 10. These results are summarized in Table
5.3. Table 5.4 shows the PMF of the �nal IS distribution in BiCE averaged over 200 repetitions.
We can see from this table that the IS distribution of the 14-th edge di�ers the most from the input
distribution in BiCE, followed by edges 16/17 and edges 4/13/19. This indicates that these are the
most important edges for the failure probability. For the remaining edges, the IS distribution di�ers
only slightly from the input distribution.

 

Figure 5.5: Topology of the network for example 5.2.
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Table 5.3: Performance of BiCE for Example 5.2.

method BiCE BiCE iCE

sample size, N 1, 000 1, 000 2, 000

prior parm., b 1 10 /

relative bias -0.004 -0.021 -0.253

sample c.o.v. 0.100 0.089 0.168

comp. cost 9, 385 8, 650 20, 400

relE� 59.091 76.793 2.952

Table 5.4: The PMF of the IS distribution in BiCE for Example 5.2
(averaged over 200 repetitions).

state edge 14 edge 16 edge 17 edge 4 edge 13 edge 19 the rest

0 0.334 0.170 0.179 0.128 0.123 0.127 ≈ 0.002

3 0.628 0.355 0.348 0.254 0.254 0.250 ≈ 0.10

5 0.037 0.475 0.473 0.618 0.623 0.624 ≈ 0.898

5.5.3 Power transmission network with cascading failure

In this example, we consider the IEEE39 benchmark system, a simpli�ed model of the high voltage
transmission system in the northeast of the U.S.A. The model was �rst presented in 1970 [7] and
has been extensively used as a benchmark model in power system analysis [2, 47, 43].

It consists of 39 buses, including 10 generators and 19 load buses, 34 transmission lines, and 12
transformers. The topology of the network is illustrated in Fig. 5.6 where all the buses are modeled
as nodes and transmission lines together with transformers are modeled as edges, so there are in
total 39 nodes and 46 edges in the model. In the �gure, orange circles stand for the source nodes,
representing the 10 generators, and grey circles represent the terminal nodes, the 19 load buses.
Edges are weighted by their reactance values shown on the right-hand side of Fig. 5.6 and by their
capacities shown on the left-hand side.

Through solving the DC load �ow problem described in the literature (e.g. [24] for IEEE39 bench-
mark model), one can derive the actual DC �ow that passes through each edge of the network. An
edge fails when the DC �ow exceeds its capacity, and the initial edge failures change the topology
of the network, resulting in a new con�guration of the �ow across the remaining components, which
in turn may lead to further overloading of the edge. This phenomenon is also known as cascading
failure and is modeled here based on [17]. The system will �nally reach an equilibrium state where
no further edges are overloaded. In general, only a part of the original power demand at the load
buses (the terminal nodes) can be matched in the equilibrium.

We assume that nodes will never fail, and the state of each edge follows an i.i.d Bernoulli distribution,
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with component failure probability 10−3. The LSF is then de�ned as a function of the system state
x, which is a binary vector, as follows:

g3(x) = 30%− L(x), (5.41)

where L(x) denotes the percentage of the original power demand that cannot be matched when the
system achieves the equilibrium after the cascading failure, and the failure probability is de�ned as
the probability of such percentage loss being greater or equal than the threshold, 30%.

A crude MCS procedure with 106 samples is used to validate the results of the proposed method,
which gives a failure probability of 9.3 · 10−5. We then apply the BiCE algorithm and set the hy-
perparameters N = 1, 000, δtar = δε = 1.5. Two di�erent kinds of prior distributions are considered
here, the uninformative prior Beta(·;θ = [1, 1]T ) and an informative prior Beta(·;θ = [10, 10]T ),
which correspond to setting b = 1 and b = 10, respectively. The second and third column of Table
5.5 shows the performance of the BiCE methods after 500 repeated runs. The e�ciency of BiCE
with the uninformative prior (b = 1) is 5.5 times higher than that of crude MCS and is also higher
than that of iCE. With an informative Dirichlet prior (b = 10), the e�ciency is 105 times higher than
that of MCS. By contrast, the iCE estimate is signi�cantly biased and has much lower e�ciency.
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Figure 5.6: IEEE39 bus system, with edge thicknesses proportional to their capacities (left) and
reactances (right).

Table 5.5: Performance of BiCE for Example 5.3.

method BiCE BiCE iCE

sample size, N 1, 000 1, 000 2, 000

prior parm., b 1 10 /

relative bias 0.0049 -0.009 -0.409

sample c.o.v. 0.5836 0.143 0.305

comp. cost 5, 746 5, 000 11, 870

relE� 5.494 104.741 3.480

107



5.6. Conclusions

5.6 Conclusions

This paper studies the cross entropy (CE) methods in the context of network reliability assessment.
We distinguish three distributions involved in the CE procedure: the optimal importance sampling
(IS) distribution p∗X(x), the suboptimal IS distribution h(x;v∗), and the chosen IS distribution
h(x; v̂). Given a certain parametric family, the 'distance' between p∗X(x) and h(x;v∗) is �xed,
and the objective of the CE method is to �nd a good estimator v̂ that is close to the optimal
but inaccessible CE parameter v∗. For parametric models that belong to the exponential family,
v̂ is the self-normalized IS estimator of the optimal CE parameter v∗, and hence converges to v∗

as the sample size goes to in�nity. Moreover, we show that v̂ can be viewed as the solution of a
weighted maximum likelihood estimator (MLE) problem given the samples obtained at a certain
level of the adaptive CE sampling process. In network reliability assessments with discrete multi-
state inputs, the parametric family can be chosen as the independent categorical distribution. In
these approaches, the CE estimator v̂ su�ers from the 'zero count problem,' which is essentially
the over�tting issue, resulting in a poor IS estimator with a strong negative bias. This paper
derives the posterior predictive distribution h(x; µ̃) to update the categorical model instead of the
original maximum likelihood estimation v̂. By introducing the symmetric Dirichlet prior as shown in
Eq. (5.35), the probability assigned to each d-th category of the parametric model is at least b

b·nd+N ,
where b is the hyperparameter. Hence, the 'zero count problem' is less likely to occur. The Bayesian
estimator µ̃ is consistent, i.e., µ̃ converges to v∗ as the sample size goes in�nity. Combining the
Bayesian estimator µ̃ with the standard improved CE (iCE) procedure, a modi�ed iCE method called
Bayesian improved cross entropy (BiCE) method is proposed for network reliability analysis, which is
theoretically unbiased. The e�ciency and accuracy of the proposed method are illustrated through a
set of numerical examples, from which it is found that BiCE with an appropriately chosen informative
prior can signi�cantly enhance the performance of the iCE method. Our numerical investigations
indicate that a uniform prior performs only sub-optimally. In all examples, we observed signi�cantly
better performance with a symmetric, informative prior with b = 0.01N . It should also be stressed
that the BiCE estimator can be skewed, and this is probably due to the limited capacity of the
parametric model because of its assumption of independence. If the suboptimal IS distribution
h(x;v∗) itself is far from the optimal IS distribution p∗X(x), independent on close µ̃ is to v∗, the
resulting IS estimator is bound to perform poorly
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5.A Self-normalized importance sampling and cross entropy method

In this Appendix, we �rst introduce the self-normalized IS estimator for estimating the expectation of
a general functionH(x) and then prove that, in the CE (or iCE) method, the chosen parameter vector
v̂ is the self-normalized IS estimator of the sub-optimal vector v∗ for the exponential parametric
family.
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5.A.1 Self-normalized importance sampling

We consider the following expectation of a general function H(x):

µ = Eπ[H(X)]. (42)

The input distribution π(x) is only known pointwise to an unknown constant Z. That is

π(x) =
1

Z
πu(x). (43)

πu(x) is the unnormalized form of π. In such case, the standard IS estimator of Eq. (5.2) cannot be
applied since the likelihood ratio L, which is de�ned as the ratio of the input distribution π(x) to
the IS distribution pIS(x), is intractable. Instead, the following self-normalized IS estimator can be
applied

µ̄ =

N∑
k=1

W (xk)∑
kW (xk)

H(xk), (44)

where W (xk) ,
πu(xk)
pIS(xk) . It can be proved that the self-normalized IS estimator is consistent, i.e.,

the estimator converges to the exact value as N goes in�nity, under the condition that the sample
space of the input distribution π(x) is included in that of the IS distribution pIS(x) [39]. The
estimator of Eq. (44) can be less e�cient than the standard Monte Carlo estimator that samples
directly from π(x). The e�ciency of the self-normalized estimator with respect to the crude Monte
Carlo estimator can be measured by the so-called e�ective sample size (ESS) [29]. ESS represents
the number of samples that a crude MCS would need in order to yield the same variance as that of
the self-normalized IS estimator of Eq. (44). The ESS can be approximated through the following
expression [29]

ESS ≈ N

1 + δ2(W (X))
, X ∼ pIS(x), (45)

where δ(W (X)) represents the coe�cient of variation of the weights W (X) in Eq. (44), and N is
the sample size of the self-normalized IS estimator of Eq. (44).

5.A.2 Cross entropy method with exponential parametric family

In this subsection, we aim at �nding a distribution from the exponential family h(x;v) that has
the minimal KL divergence with respect to the distribution π of Eq. (43). Note that the optimal
IS distribution p∗X(x) in Eq. (5.3) and the intermediate target distribution p(t) in Eq. (5.13) (or
Eq. (5.10)) can be regarded as special cases of π, with πu set equal to pX(x)I{g(x) ≤ 0} and
pX(x)Φ(−g(x)/σ(t)) (or pX(x)I{g(x) ≤ γ(t)}), respectively.

The corresponding CE optimization problem is given as

v∗ = arg max
v∈V

∑
x∈ΩX

πu(x) ln(h(x;v)) (46)

where ΩX is the sample space of X. The summation in Eq. (46) is substituted with the integral for
continuous X. The sample counterpart of Eq. (46) reads

v̂ = arg max
v∈V

1

N

N∑
k=1

πu(xk)

pref (xk)
ln(h(xk;v)), xk ∼ pref (·). (47)
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The exponential family of distributions is de�ned as the collection of distributions that have the
following general form:

f(x;η) = a(x)exp(ηTt(x)−A(η)), (48)

where η = (η1, ..., ηm)T is often referred to as the canonical parameter. The statistic t(x) =
(t1(x), ..., tn(x))T is referred to as the su�cient statistic. The functionA(η) is known as the cumulant
function.

In the following, we reparameterize the exponential family with v = ∇ηA(η). Through inserting
h(x;v) into Eq. (46) and setting the gradient of the objective function equal to zero, we get v∗c =
Eπ[t(X)] [30]. Typically, v∗c satis�es the constraint v ∈ V, and we have v∗ = v∗c . Note that the
explicit expression of v∗ depends on a prior knowledge of the distribution of π(x), or equivalently a
knowledge of the unknown constant Z and therefore cannot be directly used. In such case, the sample

counterpart Eq. (47) is solved instead, which gives us v̂ =
∑N
k=1W (xk)t(xk)∑N

k=1W (xk)
, where W (xk) = πu(xk)

pref (xk) .

According to Eq. (44), v̂ is the self-normalized estimator of v∗ withH(x) being the su�cient statistic
t(x). The accuracy of the estimator v̂ can be measured by the ESS de�ned in Eq. (45).
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Abstract

We employ the Bayesian improved cross entropy (BiCE) method for rare event estimation in static
networks and choose the categorical mixture as the parametric family to capture the dependence
among network components. At each iteration of the BiCE method, the mixture parameters are
updated through the weighted maximum a posteriori (MAP) estimate, which mitigates the over�t-
ting issue of the standard improved cross entropy (iCE) method through a novel balanced prior, and
we propose a generalized version of the expectation-maximization (EM) algorithm to approximate
this weighted MAP estimate. The resulting importance sampling distribution is proved to be un-
biased. For choosing a proper number of components K in the mixture, we compute the Bayesian
information criterion (BIC) of each candidate K as a by-product of the generalized EM algorithm.
The performance of the proposed method is investigated through a simple illustration, a benchmark
study, and a practical application. In all these numerical examples, the BiCE method results in an
e�cient and accurate estimator that signi�cantly outperforms the standard iCE method and the
BiCE method with the independent categorical distribution.
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6.1 Introduction

In February 2021, three heavy winter storms swept over Texas and triggered one of the worst energy
network failures in Texas state history, which soon led to a severe power, food, and water shortage.
A conservative estimate of the property damage is over 195 billion US dollars and more than 246
(estimated) people died during this event. These devastating consequences highlight the need for
understanding and managing the reliability of infrastructure networks. This requires an e�ective
means for quantifying the probability of survival or, conversely, the probability of failure of network
systems.

In this context, the network is often simpli�ed as a graph, whose edges or/and nodes are subjected to
random failure. The network's performance is therefore a random variable and the probability that
the network cannot deliver a certain level of performance is referred to as the failure probability pf .
Mathematically, pf is de�ned through a performance function, g(·), which gives the safety margin of
the network performance, and through a probabilistic input, pX(·), that quanti�es the uncertainty
of the system state X , [X1, ...Xd, ..., XD]T . Xd represents the state of the d-th component of the
network, either edge or node, and D is the total number of components. In particular, pf reads

pf , Pr{g(X) 6 0} =
∑
x∈ΩX

I{g(X) 6 0}pX(x), (6.1)

where ΩX is the sample space of X, and I{·} represents the indicator function. Note that X
is often discrete in the context of network reliability assessment. Hence, in Eq. (6.1) the failure
probability pf is written as a summation of the input distribution pX(·) over the failure domain
F , {x ∈ ΩX : g(x) 6 0}.

The static(or time-independent) performance of networks can often be measured by either connectiv-
ity or '�ow' [66]. For computer and communication networks, the connection among di�erent parts
of the network is of major concern, resulting in three di�erent types of connectivity-based problems,
namely the two terminals, K terminals, and all terminals connectivity problems [2], while for road
networks and food supply chains, one is primarily interested in the '�ow' that a network can deliver,
e.g., the maximum �ow that can be transported from A to B. These �ow-based problems involve
multi-state (even continuous) components or/and network performance and can often be regarded
as an extension of the connectivity-based problems [40].

In Table 6.1, we summarize three state-of-art methods for solving connectivity/�ow-based problems,
where CB is short for the counting-based method [19, 46], SSD is for the state-space decomposition
[18, 1, 37, 38, 45], and CP is for creation process embedded methods [20, 28, 43, 58, 5, 6, 9, 10]. Other
widely used methods include, sum of disjoint products [3], binary decision diagram [27], matrix-based
system reliability method [31, 55], and various minimal-cutsets/pathsets-based methods, e.g., [47,
39, 8, 65].

For power grids and water supply systems, the '�ow' is often driven by the physical law (e.g. Kirch-
ho�'s law for power �ow) and operation strategies, and the network is not necessarily coherent.
Hence, approaches built on the coherency assumption are not directly applicable. A set of methods
have been proposed to solve such problems, among which sampling-based methods feature promi-
nently. These include crude Monte Carlo simulation (MCS) [22, 61], subset simulation [62, 64, 30,
12, 66], adaptive importance sampling (IS) [32, 34, 12, 13], and active learning methods [7, 17].
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Table 6.1: Comparison of di�erent methods for connectivity-based problems

CB SSD CP

introduction [1,2] [3-7] [8-13]

not suitable for small comp. failure prob. large scale network costly g(·)

multi-state extension unknown possible possible

coherent system needed needed needed

error estimate user-speci�c reliability bound relative error

We mainly focus on the static rare event estimation for network performance in this paper, and
therefore, methods for time-dependent network reliability estimation such as the probability density
evolution method (PDEM) [36] and modern stochastic process methods [40] are not included here.

Recently, the authors employed the improved cross entropy method (iCE) for solving network re-
liability problems and introduced a Bayesian approach to circumvent the over�tting issue of the
standard iCE. The proposed method is termed Bayesian iCE (BiCE) [13]. Therein, the paramet-
ric model for approximating the optimal IS distribution is an independent categorical distribution
and hence does not account for the dependence among components in the optimal IS distribution.
This motivates the idea of employing a more �exible categorical mixture as the parametric model
within the BiCE method. This parametric model can be updated at each iteration of the BiCE
method by the generalized EM algorithm, which is introduced in this paper to approximate the
maximum a posteriori (MAP) estimate of the mixture parameters given weighed samples. Note that
the EM algorithm for estimating the MAP of a mixture model is well known [42]; herein we develop
a modi�ed version that accounts for the sample weights. The major contribution of this paper is to
combine this generalized EM algorithm with the BiCE method for handling a more �exible mixture
parametric family. We �nd that the proposed method, termed BiCE-CM, clearly outperforms the
BiCE method with a single independent categorical distribution and provides better results than
the standard iCE method. The key ingredient of the proposed method is a balanced Dirichlet prior
that does not dominate but can still correct the potentially over�tted weighted MLE in the iCE.
A number of components K in the categorical mixture is chosen adaptively through the Bayesian
information criterion (BIC).

The paper is organized as follows: In Sec. 2, we summarize the basic ideas of iCE, followed by a
brief introduction of the categorical mixture model and its approximated inference techniques in
Sec. 3. The BiCE method with a categorical mixture parametric family (BiCE-CM) is introduced in
Sec. 4. The e�ciency and accuracy of the proposed method are demonstrated by a set of numerical
examples in Sec. 5.

6.2 Cross-entropy-based importance sampling

In this section, we give a brief introduction to CE-based IS [16]. The basic idea is to choose
the IS distribution from a prede�ned parametric family h(·;v) that best resembles the optimal IS
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distribution

p∗X(x) =
pX(x)I{g(x) ≤ 0}

pf
= pX(x|F ). (6.2)

The similarity between p∗X(·) and h(·;v) is measured by the Kullback�Leibler (KL) divergence that
is de�ned as follows:

D(p∗X(·), h(·;v)) = Ep∗X

[
ln

(
p∗X(X)

h(X;v)

)]
= Ep∗X [ln(p∗X(X))]− Ep∗X [ln(h(X;v))]. (6.3)

In other words, the CE method determines the optimal parameter vector v∗ in h(·;v) through
minimizing the KL divergence in Eq. (6.3), i.e., through solving

v∗ = arg min
v∈V

D(p∗X(·), h(·;v))

= arg min
v∈V

−Ep∗X [ln(h(X;v))]

= arg max
v∈V

EpX [I{g(X) ≤ 0} ln(h(X;v))]. (6.4)

The problem in Eq. (6.4) cannot be solved in closed form due to the indicator function inside the
expectation, so instead we estimate v∗ through optimizing an alternative objective function that
substitutes the expectation in Eq. (6.4) with an IS estimator. That is, we solve

v̂ = arg max
v∈V

1

N

N∑
i=1

pX(xi)I{g(xi) ≤ 0}
pref (xi)

ln(h(xi;v)), xi ∼ pref (·). (6.5)

{xi}Ni=1 are samples from pref (·), the IS distribution for estimating the expectation in Eq. (6.4), which
is also known as the reference distribution [16]. Note that v̂ can be interpreted as the weighted MLE

of the parametric family with weights {wi ∝ pX(xi)I{g(xi)≤0}
pref (xi)

}Ni=1 [26, 13].

As discussed in [15, 13], one should distinguish the sub-optimal IS distribution h(·;v∗) from the
chosen IS distribution h(·; v̂) in the CE method. h(·;v∗) is conditional on the prede�ned parametric
family while h(·; v̂) additionally depends on the CE procedure, in particular, the choice of the
reference distribution pref (·) and the number of samples. An appropriate reference distribution
leads to an IS distribution h(x; v̂) close to h(x;v∗), which is the optimal choice within the given
parametric family.

For rare event estimation, the reference distribution is chosen in an adaptive way. Let p
(t)
X (·), t =

1, ..., T denote a sequence of intermediate target distributions that gradually approach the optimal
IS distribution p∗X(·). The CE optimization problem is then solved iteratively for �nding a good

approximation to each t-th p
(t)
X (·), and this results in a sequence of CE parameter vectors {v̂(t), t =

1, ..., T} and distributions {h(·; v̂(t)), t = 1, ..., T}. The distribution we obtain in the t-th iteration,
i.e., h(·; v̂(t)), is used as the reference distribution pref (·) for the CE procedure in iteration t + 1.
In this way, one takes h(·; v̂(T−1)) as the reference distribution for Eq. (6.5), and h(·; v̂(T )) as the
�nal IS distribution. For the �rst iteration, the input distribution pX(·) is used as the reference
distribution.
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There are many di�erent ways of designing the intermediate target distributions [16, 44, 57]. For
instance, in the iCE method [44], the intermediate target distribution reads

p
(t)
X (x) ,

1

Z(t)
pX(x)Φ

(
−g(x)

σ(t)

)
, t = 1, ..., T (6.6)

where Z(t) is the normalizing constant and Φ is the cumulative distribution function (CDF) of the
standard normal distribution. The distribution sequence is driven by the parameter σ(t) > 0, and
gradually approaches the optimal IS distribution with decreasing σ(t). The CE optimization problem
for Eq. (6.6) reads

v(t,∗) = arg max
v∈V

EpX [Φ(−g(X)/σ(t)) ln(h(X;v))], (6.7)

and the sample counterpart of Eq. (6.7) can be written as

v̂(t) = arg max
v∈V

1

N

N∑
i=1

W (xi) ln(h(xi;v)),xi ∼ h(·; v̂(t−1)) (6.8)

W (xi) ,
pX(xi)Φ(−g(xi)/σ

(t))

h(xi; v̂(t−1))
. (6.9)

Note that v̂(t) is the weighted maximum likelihood estimation (MLE) of v(t,∗), and for a properly
reparameterized exponential family, v̂(t) is also the self-normalized IS estimator of v(t,∗) [13]. The
accuracy of v̂(t) can be measured by the e�ective sample size (ESS), which is de�ned as the equivalent
sample size required by MCS with the current target distribution to achieve the same variance as
the self-normalized IS. The ESS of v̂(t) in Eq. (6.8) can be approximated by [33]

ESS ≈ N

1 + δ̂2({W (xi)}Ni=1)
, xi ∼ h(·; v̂(t−1)) (6.10)

where δ̂({W (xi)}Ni=1) represents the sample coe�cient of variation (c.o.v.) of the weights vector
{W (xi)}Ni=1. Although the categorical mixture employed in this paper does not belong to the
exponential family, we still expect that a large ESS will generally lead to a more accurate v̂(t).

Given the reference distribution h(xi; v̂
(t−1)), the iCE method �xes N and changes σ(t) for achieving

a constant ESS, and hence an accurate v̂(t). Speci�cally, the intermediate target distribution in the
iCE method is adapted at each t-th iteration by solving

σ(t) = arg min
σ∈(0,σ(t−1))

|δ̂
(
{W (xi;σ)}Ni=1

)
− δtar|, xi ∼ h(·; v̂(t−1)), (6.11)

where δ̂(·) represents the sample c.o.v. of a vector and δtar is the hyperparameter that in�uences
the convergence rate of the intermediate target distributions. A common choice is δtar = 1.5. The
above procedure is iterated until

δ̂

({
I{g(xi) ≤ 0}

Φ(−g(xi)/σ(t))

}N
i=1

)
≤ δε, xi ∼ h(·; v̂(t)). (6.12)

where δε is another hyperparameter and is often chosen to be the same as δtar [44].

It should be stressed that the standard iCE method may su�er from over�tting when the sample
size is small. To mitigate this issue, the BiCE method [13] substitutes the weighted MLE with its

118



Chapter 6. Bayesian improved cross entropy method with categorical mixture models

Bayesian counterpart; therein the posterior predictive distribution is employed to update a single
categorical parametric model in the context of network reliability assessment. In addition, the BiCE
method employs an alternative weight function for solving σ(t) through Eq. (6.11), which is de�ned
as

W (alt)(x;σ) ,
Φ(−g(x)/σ)

Φ(−g(x)/σ(t−1))
. (6.13)

For a more detailed discussion and theoretical justi�cation of Eq. (6.13), we refer to [14] and [13].

In this paper, we consider a more �exible parametric model, the categorical mixture, in the BiCE
method. Before introducing the proposed CE approach, we �rst give an introduction to the cate-
gorical mixture model and its associated inference techniques in the following section.

6.3 The categorical mixture model

The categorical mixture model can be de�ned as:

hcm(x;η) =

K∑
k=1

αkhc(x;θk) =

K∑
k=1

αk

D∏
d=1

nd∏
j=1

θ
I{xd=sd,j}
k,d,j . (6.14)

The probability distribution hcm(·;η) is modelled as a linear combination of K independent categor-
ical components, denoted here as hc(·;θ). In this paper, hc(·;θ) denotes the independent categorical
distribution with parameters θ. Speci�cally, in the k-th mixture component, the probability that
the d-th component Xd takes the j-th state sd,j is θk,d,j , where k = 1, ...,K; d = 1, ..., D; j = 1, ..., nd.
D and nd denote the number of input random variables Xd and the number of states for each Xd.
αk, k = 1, ...K, are the non-negative mixture weights that sum to one. All model parameters are
collected in the vector η, i.e., η , {αk,θk)}Kk=1.

The mixture model described in Eq. (6.14) is invariant with respect to the permutation of the com-
ponent labels. As a result, the parameter estimation is unidenti�able [24]. Additionally, Eq. (6.14)
remains invariant also (1) when adding a mixture component with zero weight, or (2) when replicat-
ing any of the mixture components and splitting the associated weight [24], which leads to a broader
class of unidenti�ability of the model parameters [53].

6.3.1 MLE of the categorical mixture and EM algorithm

Suppose we want to �t a categorical mixture described in Eq. (6.14) with N samples, X , {xi}Ni=1,
and consider the case where the number of mixture components is known to be K. The most
common approach is through MLE. The log-likelihood is

lnL(η;X ) , ln

(
N∏
i=1

hcm(xi;η)

)
=

N∑
i=1

ln

(
K∑
k=1

αkhc(xi;θk)

)
. (6.15)

The MLE for the categorical mixture cannot be obtained in closed form. If one observes the allocation
variable zi for each i-th sample xi, the log-likelihood function in Eq. (6.15) takes the following form:
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lnL(c)(η;X ) =

N∑
i=1

ln (αzihc(xi;θzi)) =

K∑
k=1

∑
i∈Ck

ln (αkhc(xi;θk)) . (6.16)

The allocation variable zi speci�es which mixture component generates xi, and Ck , {i : i =
1, ..., N, zi = k} collects the indexes of all the samples generated by the k-th component of the
mixture. Eq. (6.16) is often termed the complete data log-likelihood in the context of MLE to
di�erentiate it from the log-likelihood in Eq. (6.15). Maximizing Eq. (6.16), is equivalent to �tting
a categorical distribution hc(·;θk) for each Ck and letting the associated weight αk be proportional
to |Ck|, the number of samples in Ck. Note that the closed-form solution to the MLE is well known
for the single categorical distribution.

However, the allocation variables {zi}Ni=1 are not observed; they are latent variables. One approach
is to estimate the latent variables through a clustering algorithm. However, clustering of categorical
data is usually not straightforward, especially in the high-dimensional sample space.

For �nding a mode of the log-likelihood function shown in Eq. (6.15), one usually resorts to the EM
algorithm, which iteratively updates and optimizes the so-called Q function, an auxiliary function
that computes the expectation of the complete data log-likelihood in Eq. (6.16). That is,

Q(η; {pZi(·)}Ni=1) =

N∑
i=1

EZi∼pZi (·) [ln (αZihc(xi;θZi))]

=
N∑
i=1

K∑
k=1

pZi(k) ln (αkhc(xi;θk)) , (6.17)

where pZi(·) is a customary distribution for the i-th allocation variable Zi. pZi(k) represents the
probability that the i-th sample is generated by the k-th component of the mixture. Note that
pZi(·) can be an arbitrary distribution without necessarily being related to η. According to Jensen's
inequality, the log-likelihood function lnL(η;X ) in Eq. (6.15) is bounded from below by the Q
function plus a constant [42]. That is

lnL(η;X ) =

N∑
i=1

ln

(
K∑
k=1

pZi(k)
αkhc(xi;θk)

pZi(k)

)

>
N∑
i=1

(
K∑
k=1

pZi(k) ln
αkhc(xi;θk)

pZi(k)

)

= Q(η; {pZi(·)}Ni=1) +

N∑
i=1

H(pZi(·)). (6.18)

H(pZi(·)) ,
∑K

k=1−pZi(k) ln(pZi(k)) > 0 is the entropy of the distribution pZi(·) and is a constant
with respect to η. The inequality (6.18) takes the equal sign if

pZi(k) =
αkhc(xi;θk)∑N

k′=1 αk′hc(xi;θk′)
, γi,k(η) (6.19)

holds for each k = 1, ...,K and i = 1, ..., N . [γi,k(η)]N×K is also termed the responsibility matrix in
the literature [42].
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Eq. (6.19) indicates that, for any given η denoted as η(cur), one can choose pZi(·) = γi,·(η
(cur))

for each Zi, such that lnL(η(cur);X ) = Q
(
η(cur);η(cur)

)
+ C(η(cur)), where Q

(
η(cur);η(cur)

)
is

short for Q
(
η(cur); {γi,·(η(cur))}Ni=1

)
and C(η(cur)) ,

∑N
i=1 H(γi,·(η

(cur))). This is also known as
the expectation step (E step) of the EM algorithm, in which we compute the responsibility matrix
[γi,k(η

(cur))]N×K via Eq. (6.19) and formulate the Q function.

In the next step, the maximization step or the M step for short, the EM algorithm �xes pZi(k) =
γi,k(η

(cur)) for each i and k and maximizes the Q function over η to �nd a new η denoted as η(nxt)

whose Q function is larger than that of η(cur), i.e., Q
(
η(nxt);η(cur)

)
> Q

(
η(cur);η(cur)

)
. Since the

Q function (plus a constant) is a lower bound of the log-likelihood as shown in Inequality(6.18),
the log-likelihood of η(nxt) is also larger than that of η(cur). In fact, we have lnL(η(nxt);X ) >
Q
(
η(nxt);η(cur)

)
+C(η(cur)) > Q

(
η(cur);η(cur)

)
+C(η(cur)) = lnL(η(cur);X ). The point here is that

optimizing the Q function is much easier than optimizing the log-likelihood function in Eq. (6.15).
Speci�cally, the M step solves the following optimization problem:

η(nxt) = arg max
η

Q(η;η(cur))

= arg max
η

N∑
i=1

K∑
k=1

γi,k(η
(cur)) ln (αkhc(xi;θk)) . (6.20)

For the categorical mixture shown in Eq. (6.14), the closed-form solution η(nxt) = {α(nxt)
k ,θ

(nxt)
k }Kk=1

to the optimization problem in Eq. (6.20) exists and is given by:

α
(nxt)
k =

∑N
i=1 γi,k(η

(cur))∑K
k=1

∑N
i=1 γi,k(η

(cur))
, (6.21)

θ
(nxt)
k,d,j =

∑N
i=1 γi,k(η

(cur))I{xi,d = sd,j}∑N
i=1 γi,k(η

(cur))
. (6.22)

Note that if there is no sample equal to sd,j , the probability assigned to that state, i.e., θ
(t+1)
k,d,j , will

become zero in each k-th mixture component, and this can lead to over�tting, as will be shown later
in Sec. 4.1.

Through iterating the above two steps by setting η(cur) = η(nxt), one ends up with a sequence of
model parameters, η(0),η(1), ...,η(T ), that gradually improves the log-likelihood function. Although
this does not strictly imply the convergence of the EM algorithm to a local maximum, usually this
is the case.

η(0) represents an initial guess of the model parameters. Given the sample set and the stopping
criteria, the �nal estimate of the model parameters only relates to the choice of η(0). A common
strategy for getting an appropriate starting point is to �rst launch several short pilot runs of the
EM algorithm, each with a di�erent initialization, and then to choose the starting point for which
the log-likelihood is the largest. It is noted that the EM algorithm can also start from the M step
instead of the E step, which requires an initial guess of the pZi(·) for each Zi.
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6.3.2 Bayesian inference

In the following, we adopt the Bayesian viewpoint to the inference of mixture models with K
components and interpret the model parameters as random variables, E, whose prior distribution
is denoted as pE(η). The posterior distribution of parameters E given X is given by Bayes' rule as

pE|X (η|X ) =
L(η|X ) · pE(η)

pX (X )
. (6.23)

The resulting predictive distribution reads

pX|X (x|X ) =

∫
ΩE

hcm(x|η) · pE|X (η|X )dη, (6.24)

which is an expectation of the mixture model with respect to the posterior distribution of model
parameters. ΩE represents the sample space of E. The posterior distribution, and hence also
the predictive distribution, is not analytically tractable. Instead, the posterior distribution can be
approximated through MCMC sampling,

pE|X (η|X ) ≈ 1

Np

Np∑
i=1

δ(η − ηi), (6.25)

where δ(·) is the Dirac delta function and {ηi}
Np
i=1 denotes the posterior samples. In this way, the

predictive distribution is a mixture of mixtures consisting of a total of Np ·K mixture components.
The computational cost of computing and sampling from this approximate predictive distribution
is roughly Np times the cost for a K-component mixture, and Np is often large, say thousands.
Therefore in this paper, we resort to a single point estimate of the model parameter, namely the
MAP estimate η̃, for which the posterior distribution pE|X (η|X ) is maximized. Another bene�t of
using the MAP is that it can be obtained directly from the EM algorithm [42], which is signi�cantly
cheaper than running an MCMC algorithm.

The derivative of the EM algorithm for computing the MAP estimate follows the same lines as for
the MLE, with a minor modi�cation to account for the prior. Speci�cally, a log-prior distribution
ln(pE(η)) is added to the originalQ function in Eq. (6.17), and the EM algorithm proceeds iteratively
with the following two steps: (1) E step: compute the distribution of the allocation variables Z
through Eq. (6.19). (2) M step: update the model parameters through maximizing a modi�ed Q
function, i.e.,

η(nxt) = arg max
η

N∑
i=1

K∑
k=1

γi,k(η
(cur)) ln (αkhc(xi|θk)) + ln(pE(η)). (6.26)

In particular, for a conjugate prior distribution pE(η), a closed-form updating scheme can be derived
for the categorical mixture parameters.

6.3.3 Model selection and BIC

In this subsection, we discuss how to select the number of components K in the mixture model
hcm(·;η) using the information provided by the samples X , {xi}Ni=1. Let the initial pool of candi-
date models be {MK}Kmaxk=1 whereMK refers to a mixture of K independent categorical components
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and Kmax is a hyperparameter representing the maximum number of mixture components. From a
Bayesian perspective, we favor the modelM

K̃
with the highest posterior probability, or equivalently

with the highest log-posterior. That is

K̃ = arg max
K

ln pM|X (MK |X )

= arg max
K

lnL(MK |X ) + ln pM(MK)

= arg max
K

ln

(∫
ΩE

L(η|X ,MK)pE|M(η|MK)dη

)
+ ln pM(MK). (6.27)

Here, pM(MK) represents the prior probability for each k-th candidate model, and it is often
assumed to be uniformly distributed among all candidates. L(MK |X ) denotes the integrated likeli-
hood, or the marginal likelihood, and is the integral of the likelihood function L(η|X ,MK) multiplied
by the parameter prior distribution pE|M(η|MK) over the whole sample space of the parameters ΩE .
Note that this is actually the normalizing constant of the posterior distribution of the parameters
inMK , i.e., pE|X ,M(η|X ,MK).

Computing the integrated likelihood involves a high dimensional integration whose closed-form solu-
tion is not available. Nevertheless, it can be approximated through various sampling-based methods
[25, 23, 41]. These methods often rely on computationally expensive MCMC algorithms and are
limited to a small K, for example, up to 6 [24]. The Bayesian information criterion (BIC) serves as
a crude but computationally cheap proxy of the log-posterior probability when pM(MK) ∝ 1. BIC
was �rst introduced by Schwarz [54] for asymptotically approximating the log-posterior probability
of a linear model given observations X from a regular exponential family (see the de�nition in [54]);

therein the BIC is de�ned as lnL(η̂|X ,M))− dim(M) ln(N)
2 , where lnL(η̂|X ,M) represents the mode

of the log-likelihood function evaluated at the MLE point η̂, and dim(M) denotes the number of
free parameters inM. Another commonly used de�nition is given by

BIC(M) , −2 lnL(η̂|X ,M) + dim(M) ln(N). (6.28)

Note that under the de�nition of Eq. (6.28), the model with the smallest BIC is favored.

The derivation of the BIC relies on the Laplace approximation to the likelihood function L(η|X ,M),
which does not apply to multi-modal posterior distributions, and thus BIC cannot be interpreted as
a meaningful approximation to the log-posterior of a mixture model. In spite of this, BIC remains
one of the state-of-art techniques for selecting the number of mixture components in practice[51, 56,
4, 24]. Additionally, BIC can be computed directly as a by-product of the EM algorithm without
employing any computationally expensive MCMC algorithm. Therefore, throughout this paper, we
adopt the BIC as the model selection technique.

6.4 Bayesian improved cross entropy method with the categorical

mixture model

In this section, we introduce the Bayesian iCE method with the categorical mixture model for
network reliability analysis. With slight abuse of notation, we omit the subscript for all prior and
posterior distributions, and use, e.g., p(η) to represent pE(η).
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6.4.1 Motivation

As mentioned in Sec. 6.2, the `distance' between the optimal IS distribution and the suboptimal
IS distribution is only related to the chosen parametric model. For a �xed parametric model,
the `distance' remains �xed assuming that the CE optimization problem is solved exactly. An
inappropriate parametric model will lead to an IS estimator with large variance in the �nal level of
CE-based methods. In particular, this can happen when approximating an optimal IS distribution
that implies a strong dependence between component states with the independent categorical model.

To account for the dependence between the component states, one could use a dependent categorical
distribution. However, it is not straightforward to choose an appropriate dependence structure
that is both easy to sample from and convenient to update. Instead, we consider the mixture of
independent categorical distributions as the parametric model. The �exibility of this mixture model
enables capturing arbitrary dependencies between variables in the optimal IS distribution. In the
CE-based IS, the parametric model is updated by maximizing a weighted log-likelihood function
as shown in Eq. (6.8). Therefore, techniques for MLE can also be used in the CE-based methods
with minor modi�cations to account for the weights. For instance, Geyer et.al., [26] used the EM
algorithm for updating a Gaussian mixture model in the CE method. They found that the Gaussian
mixture model performs consistently worse than the single Gaussian model especially when the
sample size is small. The reason is that the EM algorithm tends to over�t the weighted samples
and hence it is more sensitive to sample sets that misrepresent the target distribution. This can
happen when the geometry/shape of the intermediate target distributions changes signi�cantly in
CE-based methods, which results in one or more modes of the target distribution being missing or
cannot be su�ciently re�ected by the weighted samples. The over�tting issue is even more severe for
updating the categorical mixture in CE methods. If there is no sample falling into a certain category
during the adaptive process, the probability assigned to this category will be zero for all mixture
components, resulting in a potentially biased estimate of the �nal IS estimator. This is also known
as the zero count problem in the context of MLE with categorical data [42]. A detailed discussion
of the zero count problem for the CE method with the independent categorical parametric model
can be found in [13].

6.4.2 Bayesian updating for cross-entropy-based methods

6.4.2.1 The basic idea

To circumvent the over�tting issue of the weighted MLE, we propose to use the Bayesian approach
for updating the categorical mixture in the CE method. At each level, we approximate the weighted
MAP of a K-component mixture, denoted as η̃|MK , through a generalized version of the EM algo-
rithm that works with weighted samples. Here, we use 'approximate' to indicate that the algorithm
is prone to get stuck in a local maximum, but this limitation can be alleviated by launching short
pilot runs as mentioned in Subsec. 6.3.1. Model selection is performed for estimating the optimal
number of components K̃ in the categorical mixture, whereby the number of mixture components
leading to the smallest BIC is selected. Next, we employ the K̃-component categorical mixture with
its parameters �xed at η̃|M

K̃
as the reference/sampling distribution at the (t + 1)-th level in the

CE method. We term the proposed method BiCE-CM.
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6.4.2.2 The generalized EM algorithm

In this subsection, we introduce a generalized version of the EM algorithm and demonstrate its
properties. To this end, we �rst attach a Dirichlet prior, which is the conjugate prior for categorical
distributions, to each model parameter, i.e.,

α , {αk}Kk=1 ∼ Dir(·|a)

θk,d , {θk,d,j}ndj=1 ∼ Dir(·|bk,d)

p(η|MK) = Dir(α|a)
K∏
k=1

D∏
d=1

Dir(θk,d|bk,d), (6.29)

where a = (a1, ..., ak) and bk,d = (bk,d,1, ..., bk,d,nd) are prede�ned concentration parameters. We
obtain an MAP estimate of the model parameters η through maximizing the weighted log-posterior
distribution ln

(
p(w)(η|X ,MK)

)
, which reads:

ln
(
p(w)(η|X ,MK)

)
= lnL(w)(η|X ,MK)) + ln(p(η|MK))

=
N∑
i=1

wi ln (hcm(xi|η)) + ln(p(η|MK)), (6.30)

where L(w)(η|X ,MK) is the weighted likelihood with wi ,
NW (xi)∑N
j=1W (xj)

representing the normalized

weight of the i-th sample xi; herein, the weight functionW (·) de�ned in Eq. (6.9) is normalized such
that the sum of the weights is equal to N . Note that normalizing the weights {W (xi)}Ni=1 does not
change the solution to the original CE optimization problem in Eq. (6.8), i.e., v̂(t), but can modify
the relative strength between the log-prior and the weighted log-likelihood term in Eq. (6.30). As
the sample size N increases, the log-prior term will be dominated by the weighted log-likelihood,
and hence, the solution to Eq. (6.30) coincides with the results obtained from Eq. (6.8) in large
sample settings. On the other hand, when the sample size is small/moderate, the prior term serves
as a regularizer that penalizes the weighted log-likelihood. Di�erent kinds of prior distributions or
regularizers can be applied depending on the problems at hand, but a detailed investigation is left
for future work. In this paper, we focus on the Dirichlet prior as shown in Eq. (6.29).

A generalized version of the EM algorithm is employed to maximize Eq. (6.30), which iteratively
updates the following weighted Q function

Q(w)(η; {pZi(·)}Ni=1) ,
N∑
i=1

wiEZi∼pZi (·) [ln (αZihc(xi;θZi))] + ln(p(η|MK))

=

N∑
i=1

wi

K∑
k=1

pZi(k) [ln (αkhc(xi;θk)] + ln(p(η|MK)). (6.31)

In the E step, we compute the responsibility matrix [γi,k(η
(cur))]N×K via Eq. (6.19) and formulate

Q(w)(η;η(cur)) , Q(w)(η; {γi,·(η(cur))}Ni=1); in the M step, we maximize Q(w)(η;η(cur)) over η,
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resulting in the following updating scheme for the categorical mixture:

α
(nxt)
k =

∑N
i=1wiγi,k(η

(cur)) + ak − 1∑K
k=1

∑N
i=1wiγi,k(η

(cur)) +
∑K

k=1 ak −K
, (6.32)

θ
(nxt)
k,d,j =

∑N
i=1wiγi,k(η

(cur))I{xi,d = sd,j}+ bk,d,j − 1∑N
i=1wiγi,k(η

(cur)) +
∑nd

j=1 bk,d,j − nd
. (6.33)

Similarly to the original EM algorithm, it holds that

ln
(
p(w)(η(nxt)|X ,MK)

)
> Q(w)(η(nxt);η(cur)) + C(w)(η(cur))

> Q(w)(η(cur);η(cur)) + C(w)(η(cur)) = ln
(
p(w)(η(cur)|X ,MK)

)
, (6.34)

where C(w)(η(cur)) ,
∑N

i=1wiH(γi,·(η
(cur))). We end up with a sequence of parameters η(0), ...,η(T )

that converges to one of the modes (or saddle points) of the weighted log-posterior distribution, and
η(T ) is regarded as an approximate weighted MAP, η̃|MK .

6.4.2.3 The weighted MAP mitigates the over�tting and is unbiased

η(T ) can be written as a linear combination of a data-dependent estimate η(T ;D), which exploits the
current data, and a user-de�ned prior estimate η(T ;pri), which can be designed to explore a wider

part of the sample space and thus is capable of �nding potentially missing modes. Taking θ
(T )
k,d,j as

an example, let nxt = T, cur = T − 1 and rearrange Eq. (6.33) as follows:

θ
(T )
k,d,j = λk,d(η

(T−1))θ
(nxt;D)
k,d,j + (1− λk,d(η(T−1)))θ

(pri)
k,d,j . (6.35)

where θ
(T ;D)
k,d,j ,

∑N
i=1 wiγi,k(η(T−1))I{xi,d=sd,j}∑N

i=1 wiγi,k(η(T−1))
, and θ

(pri)
k,d,j ,

bk,d,j−1∑nd
j=1 bk,d,j−nd

. θ
(T ;D)
k,d,j and θ

(pri)
k,d,j are combined

via

λk,d(η
(T−1)) ,

∑N
i=1wiγi,k(η

(T−1))∑N
i=1wiγi,k(η

(T−1)) +
∑nd

j=1 bk,d,j − nd
, (6.36)

which is a factor indicating the relative strength of the data with respect to the combined information

from the data and prior. λk,d(η
(T−1)) tunes the exploitation and exploration behaviour of θ

(T )
k,d,j ; the

larger λk,d(η
(T−1)) is, the more dominant is θ

(T ;D)
k,d,j in Eq. (6.35). A similar interpretation also applies

to α
(T )
k . Moreover, if we set bk,d,j > 1 for each k,d and j, θ

(T )
k,d,j is always positive even when no

samples fall into the category sd,j , i.e., the zero count issue is mitigated in small sample settings.
As a result, the sample space of the reference distribution at each intermediate level will no longer
shrink even with a small number of samples, which ensures an unbiased IS estimator at the �nal
CE level.

6.4.2.4 Implementation details

6.4.2.4.1 Initialization

To initialize the generalized EM algorithm, we launch several short pilot runs, each from a random

realization of the responsibility matrix [γ
(0)
i,k ]N×K . The i-th row of the responsibility matrix is a K-
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component vector generated uniformly and independently over the standard (K − 1)-simplex, i.e.,
the vector follows the symmetric Dirichlet distribution Dir(·|[1, ..., 1]). The responsibility matrix that
achieves the highest weighted log-posterior is chosen as the starting point from which we iteratively
perform the M step and E step until convergence.

6.4.2.4.2 The prior distribution

For selecting an appropriate Dirichlet prior distribution in the BiCE-CM, we rearrange Eq. (6.36)
as follows:

nd∑
j=1

bk,d,j − nd =

(
1− λk,d(ηT−1)

)
λk,d(ηT−1)

·
N∑
i=1

wiγi,k
(
ηT−1

)
. (6.37)

For simplicity, let γi,k
(
ηT−1

)
= 1/K for each i and k, and assume a symmetric Dirichlet prior for

each θk,d, i.e., bk,d,j1 = bk,d,j2 for 1 6 j1 6= j2 6 nd and 1 6 k 6 K, 1 6 d 6 D. θk,d represents the
PMF of Xd implied by the k-th component of the mixture. As a consequence, Eq. (6.37) can be
written as

bk,d,j = 1 +

(
1− λk,d(ηT−1)

)
·
∑N

i=1wi

λk,d(ηT−1) ·K · nd
; j = 1, ..., nd. (6.38)

We then replace
(1−λk,d(ηT−1))
λk,d(ηT−1)

·
∑N

i=1wi by a constant C in Eq. (6.38), which gives

bk,d,j = 1 +
C

K · nd
; j = 1, ..., nd (6.39)

for each θk,d. We will compare di�erent choices of C in the numerical examples. Note that
∑N

i=1wi
re�ects the size (or strength) of the weighted data, and C

K can be interpreted as the size (or strength)
of the prior in each mixture component. As for the mixture weights α, we choose

ak = 1 + ε; k = 1, ...,K, (6.40)

where ε is typically set as a small value, e.g. 10−8.

In fact, we penalize the weighted log-likelihood with the following log-prior term

ln (p(η|Mk)) = lnDir(α|a) +
K∑
k=1

D∑
d=1

lnDir(θk,d|bk,d). (6.41)

For symmetric Dirichlet distributions Dir(α|a) and Dir(θk,d) de�ned in Eq. (6.39) and (6.40), the
probability mode is attained when αk = 1/K, k = 1, ...,K and θk,d,j = 1/nd, j = 1, ..., nd. In other
words, we favor a uniform vector for each θk,d, and a larger C implies a stronger preference. Note
that by selecting a small ε, the penalization of non-uniform α vanishes, so the redundant mixture
components can be assigned a small weight.

6.4.2.4.3 Model selection or not

To discuss whether it is necessary to perform model selection, we consider two categorical mixtures
fm1(·|η,MK1) and fm2(·|η,MK2). Let K1 > K2 and we refer to fm1, fm2 as the larger mixture,
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and the smaller mixture, respectively. Through, for example, adding K1 −K2 redundant mixture
components, each of zero weight to fm2, any distribution that can be represented by the smaller
mixture fm2 can also be represented by the larger one fm1. Therefore, the minimum KL divergence
between the optimal IS distribution and the larger mixture will be less or equal to that of the smaller
mixture, and if we can always �nd the optimal parameters η∗ de�ned in Eq. (6.7), the BiCE-CM
with a larger mixture will perform better or at least equally well than using a smaller mixture.

If the sample size approaches in�nity, the distribution implied by either the weighted MLE η̂ or the
weighted MAP η̃ converges to the distribution implied by the optimal parameters η∗, and if we can
always �nd the weighted MLE or weighted MAP through the generalized EM algorithm, there is no
need to perform model selection, since the larger the K, the closer the chosen IS distribution is to
the optimal IS distribution, and thus the better the performance of the CE method.

In practical settings, the sample size is limited, and the weighted MLE η̂ can be far away from the
optimal parameter η∗. Although by introducing the prior information, the over�tting issue of the
weighted MLE is mitigated, there is still no guarantee that the distribution implied by the weighted
MAP η̃ is close to that of η∗. Even if the weighted MAP of a mixture can be found, it does not
necessarily lead to a closer distribution to the optimal IS distribution than using the weighted MAP
of a smaller mixture, especially when an inappropriate prior distribution is chosen, and hence, we
cannot simply employ a large K.

Another major issue is that in practice the generalized EM algorithm almost always gets stuck at
a local maximum and fails to identify the weighted MAP. Note that there are in total Kn terms
(usually uni-modal) in the likelihood function. Although some of these terms can be merged, a
large sample size n or number of mixture components K generally indicates a more complicated
and jagged posterior surface, whereby our generalized EM optimizer is more likely to get stuck at
a point far from optimal. In such cases, a higher e�ort is required to �nd a good local maximum,
e.g., by launching more pilot runs or designing a special prior that eliminates some of the modes.

In summary, it is challenging to make a general decision on whether or not to perform the model
selection, and we select theK with the highest posterior probability among a set ofKmax candidates.
The posterior probability can be roughly approximated by twice the negative BIC in Eq. (6.28).
Although such an approximation su�ers from major limitations, it remains one of the state-of-art
techniques for selecting the number of components in a mixture model. For more details, we refer
to Sec. 6.3.3.

6.4.2.4.4 The algorithm

The proposed generalized EM algorithm for inference of the categorical mixture is summarized in
Algorithm 8.

128



Chapter 6. Bayesian improved cross entropy method with categorical mixture models

Algorithm 8: The generalized EM algorithm

MainFunc:

Input: {xi,Wi ,W (xi)}Ni=1, C, ε, K, ΩX , {sd,1, ..., sd,nd}Dd=1

1 % ΩX is the sample space of X, W (·) is de�ned by Eq. (6.9)

2 wi ← N · Wi∑N
i=1Wi

for each i = 1, ..., N % normalizing the weights

3 np ← 20 % the number of the pilot runs
4 lp ← 20 % the maximum iteration of the pilot run
5 lo ← 500 % the maximum iteration of the o�cial run
6 LPmax ← −∞ % the maximum weighted log-posterior of the pilot runs
7 it← 1 % the counter for the pilot run
8 while it 6 np do
9 for i = 1, ..., N do

10 Generate {γ(0,it)
i,k }

K
k=1 uniformly over the standard (K − 1) simplex

11 (∼,LP,∼) = Subroutine
(
{xi, wi}Ni=1, [γ

(0,it)
i,k ]N×K ,ΩX , C, ε, lp

)
12 if LP > LPmax then
13 γ

(0)
i,k ← γ

(0,it)
i,k for each i and k, LPmax ← LP

14 it = it+ 1

15 (LL,LP, µ̃K) = Subroutine
(
{xi, wi}Ni=1, [γ

(0)
i,k ]N×K ,ΩX , C, ε, lo

)
16 Compute BICK through Eq. (6.28)

Output: µ̃K , BICK

Subroutine:
Input: {xi, wi}Ni=1, [γi,k]N×K ,ΩX , C, ε, tmax
tol← 1

10·N , r ←∞, t← 1, LP(0) ← 1
while r > tol and t 6 tmax do

M step: plug γi,k, wi and ΩX into Eq. (6.32) and (6.33) and compute αk and θk,d,j
with ak and bk,d,j de�ned in Eq. (6.40) and (6.39), respectively
E step: update γi,k through Eq. (6.19).

compute the weighted log-likelihood LL(t) and the weighted log-posterior LP(t) via
Eq. (6.30)

r ← |LP(t)−LP(t−1)|
LP(t−1) , t← t+ 1

let µ̃ collect all αk and θk,d,j
LL ← LL(t−1), LP ← LP(t−1)

Output: LL, LP, µ̃

6.4.3 Bayesian improved cross entropy method with the categorical mixture
model

The BiCE method [13] substitutes the weighted MLE of model parameters in the original iCE
method with a Bayesian counterpart. In [13], the posterior predictive distribution is derived for
updating the independent categorical distribution. However, for the categorical mixture, a closed-
form expression of the posterior predictive distribution does not exist, and we use the weighted
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MAP estimator instead, which can be approximated through a generalized EM algorithm described
in Subsec. 6.4.2. The proposed BiCE method with the categorical mixture model (BiCE-CM) is
summarized in Algorithm 9.

Algorithm 9: Bayesian improved cross entropy method with the categorical mixture para-
metric family

Input: N , δtar, δε, C, ε, the maximum number of mixture components Kmax, performance
function g(x), input distribution pX(x), x ∈ ΩX

1 t← 1, tmax ← 50, σ0 ←∞
2 h(x; µ̃(t−1))← pX(x)
3 while true do

4 Generate N samples {xk}Nk=1 from h(x; µ̃(t−1)) and calculate the corresponding
performance {g(xk)}Nk=1

5 Compute the sample c.o.v. δ̂ of
{

I{g(xk)≤0}
Φ(−g(xk)/σ(t−1))

}N
k=1

6 if t > tmax or δ̂ ≤ δε then
7 Break

8 Determine σ(t) through solving Eq. (6.11) using the alternative weight function W (alt)(·)
de�ned in Eq. (6.13)

9 Calculate W (xi) for each i = 1, ..., N through Eq. (6.9)
10 for K = 1, ...,Kmax do

11 Compute µ̃K and BICK through Algorithm 8

12 K̃ = arg minK BICK
13 µ̃(t) ← µ̃

K̃
14 t← t+ 1

15 T ← t− 1

16 Use h(x; v̂(T )) as the IS distribution and calculate the IS estimator p̂f
Output: p̂f

6.4.4 Component importance measures from the BiCE-CM algorithm

In the �eld of network reliability assessment, component importance (CI) measures are employed
for ranking components based on their in�uence on the system failure probability. Commonly used
CI measures for binary systems include among others Birnbaum's measure, critical importance
factor, risk achievement worth, and Fussel-Vesely measure [50]. These measures can be extended
to multi-state or continuous systems [49], e.g., after introducing a performance function gi(·) at the
component level [63], i.e., the i-th component fails when gi(xi) 6 0.

The samples from the BiCE-CM method can be used for calculating these CI measures. Taking
Birnbaum's measure (BM) as an example, it is de�ned as the partial derivative of the system failure
probability pf , Pr(g(X) 6 0) with respect to the component failure probability pfi , Pr(gi(Xi) 6
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0):

BMi ,
∂pf
∂pfi

= Pr(g(X) 6 0|gi(Xi) 6 0)− Pr(g(X) 6 0|gi(Xi) > 0)

=
Pr(g(X) 6 0, gi(Xi) 6 0)

Pr(gi(Xi) 6 0)
− Pr(g(X) 6 0, gi(Xi) > 0)

Pr(gi(Xi) > 0)

=
EpX [I{g(X) 6 0}I{gi(Xi) 6 0}]

pfi
− EpX [I{g(X) 6 0}I{gi(Xi) > 0}]

1− pfi
. (6.42)

The expectation in Eq. (6.42) can be estimated through IS using the samples from the �nal level
of the BiCE-CM method, and pfi can be estimated by crude MCS with gi(Xi), which is usually
cheap to evaluate. According to the de�nition, the larger the BMi, the more sensitive the failure
probability pf is to the i-th component, and hence the higher priority the component will have when
allocating the system redundancy.

6.5 Numerical examples

6.5.1 Illustration: a toy connectivity problem

We consider a small network consisting of �ve components. Its con�guration is shown in Fig. 6.1.
Each component can either fail or not fail and hence is modeled by a Bernoulli distributed random
variable. The topologically most important component, component 3, is assigned a failure probability
of 10−3, while for all other components, the failure probability is set to 3 · 10−2. The connectivity
between points A and B is of interest, and we have three major modes in the failure domain:
(0, 0, 1, 1, 1), (1, 1, 0, 1, 1), and (1, 1, 1, 0, 0), corresponding to three minimal cut sets: (1, 2), (3), and
(4, 5), respectively. The probability of each mode equals 8.46·10−4, 8.85·10−4, 8.46·10−4, respectively,
and the total failure probability equals 2.80 · 10−3.

Figure 6.1: Topology of a �ve-component network in Example 5.1.

6.5.1.1 The zero count problem for the iCE

To illustrate the over�tting issue of the standard iCE method when solving this example, we run it
500 times with the setting K = 3, δtar = δε = 1, N = 1000 and plot the histogram of the 500 failure
probability estimates in Fig. 6.2.

The �gure illustrates a highly skewed but also multi-modal distribution of the iCE estimator. The
three peaks re�ect the number of cases where zero, one, or two modes are missing in the �nal IS
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Figure 6.2: Histogram of the failure probability estimates via the iCE or the BiCE-CM method.
(a) results of the iCE. (b) results of the BiCE-CM.

distribution. A 'missing' mode here implies that the mode is assigned a small (even zero) probability
by the IS distribution. Any sample coincides with such a mode will be attached with a large weight,
leading to an outlier that signi�cantly overestimates the failure probability. By contrast, if no sample
is generated from this mode, there will be a signi�cantly negative bias. Note that the number of
samples from the nominal distribution whose third component is safe follows a binomial distribution
and therefore its properties can be calculated theoretically. For instance, the probability that the
third component is safe for all samples generated at the �rst level is equal to (1− 10−3)1000 ≈ 0.368.
In such case, the iCE method will de�nitely miss the mode (3) in all subsequent intermediate levels
(see Eq. (6.22)), and the corresponding failure probability estimates will underestimate the true
value, which is demonstrated in Fig. 6.2.

In Fig. 6.2(b), we show the results for the BiCE-CM method. A balanced Dirichlet prior in Eq. (6.39)
is chosen for mixture parameters, with C = 200 and ε = 10−8. The remaining settings are the same
as those of the iCE method. We can see that by introducing an appropriate prior, all three modes
are found in most of the 500 estimates. A negligible relative bias (0.45%) and a small coe�cient of
variation (0.1) are achieved with an average of 4050 evaluations of g(·).

To investigate the reason for the signi�cant di�erence between the performance of the two algorithms,
we keep track of the reference distributions of all intermediate levels of the iCE method. The results
are shown in Fig. 6.3. Fig. 6.3(a) demonstrates whether the distribution chosen at each level of the
iCE method, i.e., the reference distribution, resembles the target distribution well. Apparently, the
iCE method misses one of the three modes in the optimal IS distribution starting from the second
level and produces a biased estimate.

6.5.1.2 Model selection or not: an empirical perspective

Next, we use the BIC for choosing adaptively the number of mixture components K at each level of
the BiCE-CM. The maximum number of mixture components Kmax is equal to 10. For comparison,
we also perform the BiCE-CM method with a �xed number of K ranging from 1 to 100. Overall, 8
scenarios are considered as listed in Table 6.2. In all cases, a Dirichlet distribution is employed as a
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Figure 6.3: The PMF of the target distribution and of the reference distribution at each iteration
of the iCE method.

priori with C = 200 and ε = 10−8, and δtar = δε is set to 1.

Table 6.2: Case description for example 5.1.2.

Case No. 1 2 3 4 5 6 7 8

number of mixture components, K 1 2 3 5 10 20 100 BIC

We �rst consider a large sample setting, where N = 105, and check the estimated KL divergence
between the intractable target distribution and its mixture approximation, the reference distribution,
at each level of the BiCE-CM method. The results are illustrated in Fig. 6.4. We can see from the
�gure that the estimated KL divergence at each intermediate level decreases as K increases, and
reaches a constant minimum value atK = 3. This result is expected since the optimal IS distribution
has three major modes and can be approximated su�ciently well by a three-component categorical
mixture. Hence, additional �exibility from adding mixture components is not required. However,
for K < 3, the model capacity is inadequate, and increasing K will lead to an IS distribution
signi�cantly closer to the optimal one thus clearly improving the performance of the BiCE-CM.
Fig. 6.4 also demonstrates that selecting the K adaptively via BIC will not improve the results of a
�xed K that is larger than 3, so the model selection is not needed in large sample settings for this
example.

Next, we consider small sample settings, in which the weighted MLE tends to over�t the data.
Although introducing a prior distribution mitigates the over�tting issue for an appropriate choice of
the prior parameters, such a choice is not always straightforward. That is, a poor parameter choice
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Figure 6.4: KL divergence between the intermediate target distribution and the reference
distribution at each level of the BiCE-CM method (a large sample setting).

of the prior for a model with higher K could potentially result in a worse estimator. Such situations
can be avoided by performing model selection. This is demonstrated by the numerical experiment,
where for each scenario we run 500 times the BiCE-CM algorithm with 1, 000 samples and we set
C = 200, ε = 10−8. The results are summarized through a box plot in Fig. 6.5(b).

Figure 6.5: Boxplot of the estimates obtained from the BiCE-CM method. (a) C = 0, ε = 10−8, (b)
C = 200, ε = 10−8, (c) C = 500, ε = 10−8, (d) C = 5000, ε = 10−8.

To measure the quality of the failure probability estimator p̂f , we borrow the de�nition of the
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'e�ciency' in statistics [35], which is de�ned as follows

E�(p̂f ) ,
1

MSE(p̂f )× Cost(p̂f )
, (6.43)

where MSE(p̂f ) represents the mean square error of the estimator p̂f and Cost(p̂f ) is the average
computational cost of getting p̂f , which is measured by the average number of evaluations of g(·)
throughout all numerical examples in this paper. Note that the e�ciency of the MCS equals 1

pf ·(1−pf ) ,

which is independent of the sample size. Hence, the e�ciency improvement over MCS can be
measured through the following relative e�ciency

relE�(p̂f ) ,
pf · (1− pf )

MSE(p̂f )× Cost(p̂f )
. (6.44)

The relative e�ciency of di�erent choices of K is illustrated in Fig. 6.5(b). The optimal choice, as
expected, is K = 3. If guessing an appropriate K is not possible, adaptively selecting K via the
BIC can be a good alternative. Note that this comes at a price of a signi�cant overhead, since at
each iteration, the generalized EM algorithm is performed Kmax = 10 times, while for a �xed K,
we only perform one single run of the algorithm. Nevertheless, for a computationally demanding
performance function g(·), the computational cost is dominated by the evaluation of g(·) and the
overhead resulting from the adaptive selection of K via the BIC should not be critical.

6.5.1.3 Impact of the prior distribution

In this subsection, we study the in�uence of the prior distribution on the performance of the BiCE-
CM method. We consider 4 di�erent values of C, namely 0, 200, 500 and 5, 000. ε is �xed at 10−8 for
all 4 cases. The results are summarized in Fig. 6.5. When C = 0, the BiCE-CM method degenerates
to the standard iCE method that employs the weighted MLE to update the mixture model. Due
to over�tting, the relative e�ciency is poor. When C = 5000, the weighted log-likelihood function
is over-penalized, and the prior estimate dominates the data-related estimate in Eq. (6.35). Owing
to the symmetric Dirichlet prior, the resulting IS distribution is close to an independent uniform
distribution, and the BiCE-CM with di�erent K performs similarly. For this 5-component toy
example, an independent uniform distribution works well, however, as will be shown later, this is
not generally the case. When C is appropriately large, the performance of the BiCE-CM method is
shown in Fig. 6.5(b-c), and has been discussed in Subsec. 5.1.2.

6.5.2 Comparison: a benchmark study

In this subsection, we consider the multi-state two-terminal reliability problems [29], in which we
compute the probability that a speci�ed amount of '�ow' can (or cannot) be delivered from the source
to the sink. This problem has been extensively studied in operations research [48, 29, 59, 6, 9], from
which we borrow two benchmark problems, namely the Fishman network and the Dodecahedron
network, to test the performance of the BiCE-CM method. The results are further compared with
the creation-process-based splitting (CP-splitting) [9], which is a state-of-art technique for solving
multi-state two-terminal reliability problems, especially when the failure probability pf is small.
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The network topology of the two benchmarks is illustrated in Fig 6.6, and we employ the same
problem settings as in [9]. We consider only the edge capacities, each following an independently
and identically distributed categorical distribution. Following this distribution the probability of
each edge capacity being 0, 100, 200 equals p0,

1−p0
2 , 1−p0

2 respectively. We are interested in the
probability that the maximum �ow from the source node s to the sink node t is less or equal to
the threshold thr, i.e., Pr(mf(s, t) 6 thr). We estimate this probability for each combination of
p0 ∈ {10−3, 10−4} and thr ∈ {0, 100}, and for each of the two benchmarks. The reference failure
probability pref in each scenario is calculated using the CP-splitting method with 106 trajectories.
The results are summarized in Table 6.3 and 6.4.

For the BiCE-CM method, we set N = 2000, δtar = δε = 1.5, C = 200, ε = 10−8, and compute the
mean value, c.o.v., the average number of evaluations of g(·), and the relative e�ciency through 500
independent repetitions of the algorithm. For the CP-splitting method, we report the results from
Tables 3 and 4 in [9]. Therein, the c.o.v. is computed for the mean value of 1000 repetitions. To
obtain the c.o.v. of a single repetition, which guarantees a fair comparison between the two methods,
the c.o.v. reported in [9] is multiplied by

√
1, 000. In addition, the number of g(·) evaluations in

CP-splitting is computed by multiplying the number of levels by the number of trajectories, without
considering the pilot run.

(a) Fishman network. (b) Dodecahedron network.

Figure 6.6: Topology of the two benchmarks in Example 5.2.

The performance of the BiCE-CM method for the two benchmarks is demonstrated in Table 6.3 and
6.4, in which the results of the CP-splitting method are enclosed in the parentheses for comparison.

From these two tables, we observe a clear variance reduction in the BiCE-CM estimator without
increasing the computational cost compared to the CP-splitting method. The standard iCE performs
poorly for these two benchmarks due to the choice of a small p0.

Fig. 6.7 illustrates the impact of di�erent prior parameters C and of di�erentK on the performance of
the BiCE-CM method. We herein consider the Dodecahedron network with thr = 0 and p0 = 10−3.
When C = 5000, the prior estimate dominates the data-related estimate in Eq. (6.33) and results
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Table 6.3: Performance of the BiCE method for the Fishman network in example 5.2.

pref mean c.o.v. cost relE�

p0 : 10−3, thr : 100 3.00 · 10−6 3.03(3.00∗) · 10−6 0.05(0.17) 1.03(0.90) · 104 1.2(0.13) · 104

p0 : 10−4, thr : 100 3.00 · 10−8 3.01(3.00) · 10−8 0.04(0.21) 1.40(1.30) · 104 1.5(0.058) · 106

p0 : 10−3, thr : 0 2.03 · 10−9 2.01(2.02) · 10−9 0.04(0.24) 1.40(1.40) · 104 2.1(0.062) · 107

p0 : 10−4, thr : 0 2.00 · 10−12 2.00(2.00) · 10−12 0.04(0.28) 1.80(1.80) · 104 1.7(0.035) · 1010
∗ The number in the parentheses shows the result of the CP-splitting method.

Table 6.4: Performance of the BiCE method for the Dodecahedron network in example 5.2.

pref mean c.o.v. cost relE�

p0 : 10−3, thr : 100 3.05 · 10−6 3.04(3.03∗) · 10−6 0.06(0.20) 1.11(0.90) · 104 8.2(0.92) · 103

p0 : 10−4, thr : 100 3.08 · 10−8 3.00(2.99) · 10−8 0.06(0.23) 1.40(1.30) · 104 7.6(0.49) · 105

p0 : 10−3, thr : 0 2.06 · 10−9 2.01(2.03) · 10−9 0.05(0.26) 1.41(1.30) · 104 1.2(0.057) · 107

p0 : 10−4, thr : 0 2.02 · 10−12 1.99(1.97) · 10−12 0.06(0.27) 1.80(2.10) · 104 7.4(0.34) · 109
∗ The number in the parentheses shows the result of the CP-splitting method.

in a near uniform IS distribution. In such cases, the performance of the BiCE-CM is poor. On the
contrary, when C = 200, which is a minor proportion of the N , the BiCE-CM works well for K
equal to 5 or 10 or when employing BIC.

Figure 6.7: Boxplot of the BiCE-CM estimates for the Dodecahedron network with thr = 0 and
p0 = 10−3. (a) C = 200, ε = 10−8, (b) C = 5000, ε = 10−8.

6.5.3 Application: the IEEE 30 benchmark model with common cause failure

In this subsection, we consider the IEEE 30 power transmission network [60] illustrated in Fig. 6.8.
The network consists of 6 power generators, 24 substations, and 41 transmission lines, which we
assume to be subjected to earthquakes.

The hypocenter of the earthquake is assumed to be �xed and the earthquake magnitude is described
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Figure 6.8: Network topology of the IEEE30 benchmark.

 

Figure 6.9: Dependence structure for the IEEE30 benchmark subjected to earthquakes. The
purple nodes represent the random variables.

by a truncated exponential distribution pM ∝ exp(−0.85m), 5 6 m 6 8. The failures of the
network components are dependent as they occur due to the earthquake, but it is often assumed
that they are conditional independent given the earthquake [52]. Such conditional independence is
depicted in Fig. 6.9 [66], where ri represents the hypocentral distance of the i-th component, and imi

is the intensity measure of i. In the present example, imi is a deterministic function of ri described by
the ground motion predictive equation (GMPE) given in [21]. Si denotes the state of the component
i, whose distribution is indicated by the fragility curves in [11]. For each of the 6 generators,
we consider 5 damage states, namely negligible, minor, moderate, extensive, and complete damage,
which correspond to 0%, 20%, 60%, 80%, and 100% reduction of power production, respectively. The
remaining 24 non-generator buses and all 41 transmission branches have 2 damage states, either safe
or complete failure. The distribution of di�erent network components is summarized in Table 6.5.
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Table 6.5: The distribution of di�erent components for the IEEE30 benchmark.

generators non-generator buses transmission lines

# components 6 24 41

distribution categorical Bernoulli Bernoulli

reference Table 6.6 in [11] Table 6.9 in [11] pf = 5 · 10−2

We measure the network performance by the load shedding based on a direct current optimal power
�ow (DC-OPF) analysis using MATPOWER v7.1 [60]. The system failure is de�ned as over 50%
of the total power demand being shed after the earthquake, which gives the following performance
function:

g(x) , 50%− LS(x)

Dtot
, (6.45)

where LS(x) represents the load shedding with the network con�guration, or state, x, and Dtot

is the total power demand. The failure probability approximated by one single crude MCS with
106 samples is equal to 0.0013, which is then employed as the reference for validating the proposed
BiCE-CM algorithm. For the BiCE-CM, 200 independent runs with N = 2, 000, δtar = δε = 1.5 are
launched, based on which, we calculate the mean, c.o.v. and the relative e�ciency of the BiCE-
CM estimator. The number of mixture components K is adaptively chosen via the BIC, and we
investigate 4 di�erent prior distributions with C ∈ {0, 200, 400, 5000} and ε = 10−8. The results
are depicted in Fig. 6.10, where it is shown that the BiCE-CM with C = 400 performs the best
among the four investigated cases. In particular, it signi�cantly outperforms the C = 0 case, which
represents the standard iCE method. The relative e�ciency of the BiCE-CM with C = 400 is about
6, meaning the e�ciency is around 6 times higher than that of the crude MCS. The average CPU
time of the BiCE-CM is as 371.23 seconds on a 3.50GHz Intel Xeon E3-1270v3 computer. As a
comparison, crude MCS needs 46, 161 samples to achieve the same coe�cient of variation as the
BiCE-CM, which takes 1741.68 seconds on the same computer. Hence, the overhead of BiCE-CM
does not strongly a�ect the overall computation time.

The BM averaged over 200 repetitions of the BiCE-CM algorithm is depicted in Fig. 6.11 for di�erent
components of the IEEE30 benchmark model. For multi-state generators, the failure is de�ned as
the power production being reduced by 80% or more. We can see from the �gure that except
for components 3,4 and 8, the BM evaluated with the BiCE-CM method is consistent with that
evaluated by crude MCS.

6.6 Conclusions

In network reliability assessments, the network components are often strongly dependent given
system failure. Such dependence cannot be captured by the independent categorical distribution
employed in the original Bayesian improved cross entropy (BiCE) paper. To capture this dependence
and improve the performance of the estimate, we employ instead the categorical mixture as the
parametric family of the BiCE. The parameters of the mixture model are updated through the
weighted maximum a posteriori (MAP) estimate. In this way, the over�tting issue encountered in
the standard improved cross entropy (iCE) method, which employs the weighted maximum likelihood
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Figure 6.10: Boxplot of the BiCE-CM estimates for the IEEE30 benchmark model.

Figure 6.11: Birnbaum's measure for di�erent components of the IEEE30 benchmark.

estimate (MLE), is mitigated. The proposed algorithm is termed the BiCE-CM method.

We approximate the weighted MAP through the expectation maximization(EM) algorithm with a
minor modi�cation to account for the weights and the prior. The algorithm results in a monotonically
increasing weighted posterior and converges to a local maximum, a saddle point, or a boundary
point depending on the starting point of the generalized EM algorithm. Moreover, the Bayesian
information criterion (BIC) can be computed as a by-product of the generalized EM algorithm and
is employed as model selection technique for choosing the optimal number of components in the
mixture when the sample size is moderate. The model selection technique is unnecessary in a large
sample setting in which case a large number of mixture components is suggested. A set of numerical
examples demonstrates that the proposed algorithm outperforms the standard iCE and the BiCE
with the independent categorical distribution. Note that there is no guarantee that the BiCE-CM
can �nd all major failure modes. The accuracy and e�ciency of the BiCE-CM depend highly on the
choice of the prior distribution. In this paper, we suggest a balanced prior that works well in all our
numerical examples. A detailed investigation of alternative choices of the prior should be carried
out. In addition, the BiCE-CM method does not directly apply to high dimensional problems due
to the degeneration of the IS weights, and hence, dimensionality reduction techniques should be
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employed in such cases. These two aspects will be addressed in future work.
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Abstract

This paper presents a comprehensive study on rare event estimation in power grids, focusing on
state-of-the-art adaptive Monte Carlo algorithms. We compare these methods for the optimal power
�ow problem in various IEEE benchmark models. Based on the results of our study, we analyze
the pros and cons of each adaptive method and investigate their bene�cial combinations. Overall,
the adaptive e�ort subset simulation (aE-SuS) method and particle integration methods (PIMs) are
promising for high-dimensional reliability analysis. By building on IEEE benchmarks, we provide
fair examples for comparing di�erent emerging methods in static network reliability assessment
while revealing improvements for these methods. In particular, we introduce a hybrid approach that
combines the strengths of both aE-SuS and annealed PIM. Although this method is not as e�cient
as aE-SuS, it signi�cantly outperforms crude Monte Carlo and is unbiased. We then employ the
aE-SuS method and this hybrid approach for risk assessment of the Texas synthetic power grid,
which comprises over 5,000 components.
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7.1 Introduction

Accurate and e�cient network reliability assessment forms the basis of reliability-based decision
making, network optimization, and community resilience. One fundamental problem is to compute
or estimate the failure probability pf , the probability that a network performance metric exceeds a
speci�ed failure threshold γ. The network performance can be described by a function g(·), known as
performance function. In particular, let X describe the state of network components, whose sample
space is ΩX , and whose probability mass function (PMF) is pX(x). I{·} denotes the indicator
function that takes value one when the statement inside the braces is true and zero otherwise. The
failure probability can then be written as:

pf , EX [I{g(X) > γ}]

=
∑
x∈ΩX

I{g(x) > γ}pX(x), (7.1)

with failure de�ned as F , {g(X) > γ}. When quantifying the reliability of a power system,
X can represent the damage state of transmission lines and/or connecting buses, and the system
performance can be either connectivity or power �ow. In such settings, X usually contains discrete
random variables, which can result in a discontinuous distribution of the network performance.

A set of e�cient non-sampling methodologies are applicable for solving such kinds of problems [30,
33, 23]. Many of them rely on speci�c assumptions, such as binary states, independent components,
perfect nodes, and coherent systems, which limit their generality. Other popular non-sampling-
based methods, such as the matrix-based system reliability assessment [9], are restricted to a small or
moderate number of components. Sampling-based methods, including crude Monte Carlo simulation
(MCS) [38, 43] and its di�erent variants, trade e�ciency and accuracy for their broad applicability.
These methods are often non-intrusive and treat the network model as a black box, which facilitates
the use of advanced network models in the analysis. Nevertheless, the accuracy of these methods
depends on the number of samples and the problems at hand, which highlights the importance
of testing di�erent emerging algorithms through uni�ed benchmarks. For rare event estimation,
crude MCS is infeasible when the limit state function is expensive to compute, and hence, advanced
variance reduction techniques or meta-models have been proposed. These techniques include the
standard subset simulation (SuS) [44, 46, 27], various creation process embedded methods [25, 7,
11], and actively trained meta models [10, 19].

Recently, Chan et al. [14, 15, 17] generalized widely used structural reliability algorithms and pro-
posed the adaptive e�ort subset simulation method (aE-SuS) and Bayesian improved cross entropy
(BiCE) method for sampling e�ciently in discrete space. Concurrently, Paredes et al. [34, 35] built
upon particle integration methods (PIMs) [21] and the Gamma Bernoulli approximation scheme
(GBAS) [24] for probably approximately correct estimates.

The present paper tests the performance of these algorithms for rare event estimation in power grids.
In particular, we consider applications on the optimal direct current (DC) power �ow of IEEE bench-
mark models, which are extensively used in the electricity-market applications, network expansion
planning, and contingency analyses [29, 26, 39]. The benchmark study provides uni�ed examples
for comparing di�erent emerging methods in static network reliability assessment while unraveling
the improvement or combination of these methods for larger and more challenging problems. To the
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best of our knowledge, although crucial, a comprehensive comparison across the most competitive
methods is still absent.

Building on the results of the comparative study, we further introduce a hybrid approach that
combines the strengths of both aE-SuS and PIMs, which gives an unbiased estimator even in problems
where signi�cant discontinuity is involved in the network performance. Although it is less e�cient
(See Eq. (7.8) for the de�nition of e�ciency) than aE-SuS, if taking into account the pilot cost, it
signi�cantly outperforms crude MCS and is unbiased. This hybrid approach and the aE-SuS method
are subsequently used for risk assessment of the Texas synthetic power grid to push the boundaries
of solvable problems today. This power grid represents a large-scale network consisting of over
5,000 components. Since selecting the threshold γ in Eq. (7.1) can pose a challenge, we provide the
complete cumulative distribution function (CDF) of the network performance and further compute
the component importance measure for each component and various thresholds. The CDF and the
component importance measure can be computed using samples from one single run of the aE-SuS
algorithm. Additionally, the relative e�ciency [15] of the algorithm, which compares the algorithm's
e�ciency to that of crude MCS, is calculated as a function of the threshold γ.

The rest of the paper is organized as follows: A brief introduction of the methodologies employed
in this paper is given in Section 2. In Section 3, we introduce the optimal power �ow problem and
conduct a comparative study. Additionally, we combine aE-SuS and PIMs to give a more robust
estimator than the original PIMs. Section 4 provides a detailed illustration of applying aE-SuS
for risk assessment in a large-scale synthetic power grid, along with a novel sensitivity analysis.
For comparison, the results of the hybrid approach are also brie�y presented. The codes for the
benchmarks, as well as the adaptive Monte Carlo methods, can be found in the following repository:
https://github.com/chanovo/adaptMCS-benchmarks.

7.2 Adaptive Monte Carlo methods

The adaptive Monte Carlo methods operate in an adaptive manner and rely on generating samples
sequentially from a series of target distributions that gradually approach the system failure domain.
This can be done either through Markov Chain Monte Carlo (MCMC) or by �tting a parametric
model. The former strategy is employed in the multi-level splitting method [13], while the latter one
is found in various adaptive importance sampling approaches. SuS, aE-SuS, and PIMs are special
cases of multi-level splitting, and iCE is an instance of adaptive importance sampling. Consequently,
these methods are referred to as the adaptive Monte Carlo methods in this study. In the following,
we give a brief introduction to the adaptive Monte Carlo methods whose performance is investigated
in the benchmark study.

7.2.1 Particle Integration Methods

Particle Integration Methods (PIMs) consist of sequential systems of samples, or particles, for ap-
proximating intractable integrals over Markov chains [20]. By introducing a set of T nested inter-
mediate failure domains, denoted as ΩX = F0 ⊃ F1 ⊃ · · · ⊃ FT = F , and employing a set of speci�c
transition kernels {Mt(·, ·)}Tt=0, PIMs can also be used to address the static problem of estimating

147



7.2. Adaptive Monte Carlo methods

the system failure probability in Eq. (7.1) [12]. In particular, the nested domains are de�ned as
Ft , {x|L(x) ≥ lt}, t = 1, · · · , T , where −∞ = l0 < l1 < · · · < lT−1 < lT = 1 denote intermediate
levels (or importance scores), and L(·) is a user-speci�ed importance function that closely relates to

the network performance function g(·). An obvious importance function is L(·) = g(·)
γ if γ > 0. The

transition kernel Mt(·, ·) is also user-speci�ed but needs to be invariant with respect to pX(·)I{x∈Ft}
Zt

.
Zt =

∫
ΩX

pX(·)I{x ∈ Ft}dx is the normalizing constant, also known as the partition function in
[20], with Z0 = 1 and ZT = pf . Subsequently, the failure probability can be represented as a tele-

scoping product pf =
∏T
t=1

Zt
Zt−1

=
∏T
t=1 pt, where pt ,

Zt
Zt−1

, k = 1, · · · , T denotes the ratio of two

successive partition functions and can be estimated using the sequence of samples (or particles) in
PIMs. Note that owing to the nestedness of the intermediate domains, pt is actually the conditional
probability of X ∈ Ft, given X ∈ Ft−1, denoted as Pr(Ft|Ft−1).

The PIMs can be divided into the interacting PIM (iPIM) and the annealed PIM (aPIM) [35]. The
iPIM adaptively constructs the intermediate levels (or importance scores), such that the conditional
probabilities p1, · · · , pT−1 are all equal to a constant value p0. We note that the iPIM algorithm
is equivalent to the SuS algorithm as presented in [1]. However, the resulting estimator is biased,
and the bias can be notable, especially when the network performance presents discontinuities. In
contrast, the aPIM is guaranteed to be an unbiased estimator of the true failure probability; however,
it assumes the sequence of intermediate levels to be known. As suggested by Botev and Kroese [6],
one can combine the approaches to a two-step meta-algorithm where the iPIM is run �rst to learn
the sequence of levels, and then the aPIM is run second using the identi�ed sequence, to obtain an
unbiased estimator of the true failure probability. We adopt the iPIM in Algorithm 2 of Paredes et
al. [35], which is a biased estimator similar to SuS. After this, we use aPIM, which is an unbiased
estimator that takes the following form:

p̂
(aPIM)
f = sT−1|XT |, (7.2)

where |XT | denotes the number of particles in the last level and s = 1
p0

is known as the splitting factor;
see Algorithm 1 of [35] for implementation details. This estimator is denoted as the iPIM+aPIM
in the remaining part of the manuscript. Paredes et al. [35] show that, under certain conditions,
optimal tuning of such a meta-algorithm is achieved by setting p0 ≈ 0.2032 and that popular MCMC
samplers, such as the preconditioned Crank-Nicolson and modi�ed Metropolis-Hastings algorithms,
can scale well in high dimensional problems with tens of thousands of random variables.

7.2.2 Adaptive e�ort subset simulation method

Similar to PIMs, the standard SuS also hinges on a sequence of nested intermediate domains ΩX =
F0 ⊃ F1 ⊃ · · · ⊃ FT = F . These domains are de�ned as Ft , {g(x) ≥ lt}, t = 1, · · · , T with
−∞ = l0 < l1 < · · · < lT = γ denoting the intermediate levels and are equivalent to those
de�ned in Section 2.1. The failure probability pf is then expressed as the product of the conditional

probabilities, i.e., pf =
∏T
t=1 pt, where pt , Pr(Ft|Ft−1). The standard SuS selects the intermediate

levels adaptively such that the conditional probabilities, pt, t = 1, · · ·T − 1, all equal a prede�ned
constant p0. This requires sampling from the input distribution conditional on Ft−1, t = 1, ..., T ,
which is accomplished by an MCMC algorithm.

Au and Wang [2] identi�ed issues associated with employing the standard SuS for network perfor-
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mance with a discrete cumulative distribution function (CDF), where a �xed intermediate failure
probability p0 can lead to an ambiguous de�nition of the intermediate failure domains and hence
inaccurate results. Chan et al. [14] addressed this problem in the context of network reliability
assessment and proposed the adaptive e�ort SuS (aE-SuS) algorithm that tackled this issue through
adaptively choosing the intermediate failure probability p0 and the number of samples per level N .
The aE-SuS method can be combined with any MCMC algorithm. Possible choices include the
adaptive conditional sampling algorithm [31] (essentially an adaptive variant of the preconditioned
Crank-Nicolson algorithm used in [35]), ideally suited for high dimensional inputs, an independent
Metropolis-Hasting algorithm that e�ciently samples in low-dimensional discrete spaces [14], or a
Gibbs sampler for performing the reliability analysis conditional on data [47]. The algorithm starts
with an initial choice of p0 and N so that at least N ·p0 ·tol seeds (or failure samples) are obtained at
each level, where tol is a prescribed hyperparameter that tunes the minimal number of seeds. This
leads to an adaptive estimate of the intermediate failure probabilities in terms of the failure samples
and the total number of samples at the respective level. Note that the algorithm's performance
heavily depends on the choice of the MCMC algorithm. If an inappropriate MCMC is selected,
the �nal estimator is highly skewed, and estimating the mean and the variance of a highly skewed
distribution is challenging since they are sensitive to rare outliers.

7.2.3 Connections among SuS, aE-SuS, and PIMs

Although developed independently in a di�erent context, PIMs are closely related to the SuS and
aE-SuS. Speci�cally, the standard SuS is equivalent to the iPIM, where the intermediate levels
are chosen adaptively [35]. Both methods are asymptotically unbiased. The aE-SuS method is a
generalized version of SuS, and hence, also of the iPIM, particularly in the case where the network
performance shows signi�cant discontinuity [14]. By contrast, the aPIM �xes the levels in advance
and provides an unbiased estimator. These levels are determined through a pilot run of the iPIM
in most applications. Since aE-SuS performs at least as well as SuS (or iPIM), employing aE-
SuS is expected to yield superior results during pilot runs, particularly for discontinuous network
performance. This motivates the idea of combining aE-SuS and aPIM to give a more robust estimator
than the original PIMs, which will be detailed in Subsection 3.5. We refer to the hybrid estimator
as aE-SuS+aPIM. The features of di�erent multi-level splitting methods are summarized in Table
7.1.

Table 7.1: Di�erent multi-level splitting methods.

levels conditional probabilities unbiased discontinuity issue

SuS(or iPIM) adaptive �xed, equal to p0 no yes

aE-SuS adaptive adaptive, not equal no no

iPIM + aPIM �xed �xed, equal to p0 yes yes

aE-SuS + aPIM* �xed �xed, not equal yes no

* A hybrid method proposed in this manuscript
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7.2.4 Bayesian improved cross entropy method with categorical mixtures

The cross entropy method is an adaptive importance sampling (IS) method for rare event estimation.
Di�erent from SuS and PiMs, the method does not rely on MCMC sampling; instead, it determines
the IS distribution chosen adaptively through successively approximating a sequence of intermedi-

ate target distributions, denoted as p
(t)
X (·), t = 1, · · · , T , that gradually approaches the optimal IS

distribution p∗(·) ∝ pX(·)I{γ − g(·) ≤ 0}. T denotes the �nal level of the adaptive sequence.

There are di�erent ways of designing intermediate target distributions. Our approach is provided by
the iCE method [32], an improved version of the standard cross entropy method [37]. iCE de�nes
the sequence by smoothing the indicator function I{·} in p∗(·) via the standard normal CDF Φ(·),
i.e.,

p
(t)
X (·) ∝ pX(·)Φ

(
−γ − g(·)

σ(t)

)
, t = 1, ..., T (7.3)

where σ(t) is the scaling parameter. Eq. (7.3) is only known pointwise to an unknown constant, and

it is challenging to sample independently from p
(t)
X . To address this issue, the iCE method speci-

�es a parametric family h(·;v) and iteratively determines the distribution in h(·;v) by minimizing

an estimate of its Kullback�Leibler divergence from p
(t)
X (·). This leads to successive optimization

problems:

v̂(t) = arg max
v

N∑
k=1

W
(t)
k ln(h(xk;v) (7.4)

W
(t)
k ,

pX(xk)Φ
(
−γ−g(xk)

σ(t)

)
h(xk; v̂(t−1))

, xk ∼ h(·; v̂(t−1))

with h(x; v̂(0)) = pX(x). The parameter σ(t) is chosen adaptively such that the e�ective sample

size of the weighted data {xk,W
(t)
k }

N
k=1 at each level is approximately equal. One can prove that

σ(t) decreases monotonically when the input distribution pX(·) is discrete and the intermediate

target distributions p
(t)
X (·), t = 1, ..., T can be perfectly restored from the parametric family, i.e.,

h(·; v̂(t)) = p
(t)
X (·), t = 1, ..., T [17].

Eq. (7.4) indicates that v̂(t) is the weighted maximum likelihood estimation of v given the data set

{xk,W
(t)
k }

N
k=1. Hence, v̂(t) may su�er from over�tting when the sample size N is small. Chan et

al. [15] circumvent this issue by introducing Bayesian statistics in iCE and propose the Bayesian
iCE (BiCE) method. Speci�cally for network reliability assessment, they introduce a symmetric
Dirichlet prior for the independent categorical distribution and substitute the weighted maximum
likelihood estimation v̂(t) with the weighted posterior predictive estimate, or weighted maximum
a posteriori estimate. To further consider the dependence among network components, Chan et
al. [16] employ a more �exible categorical mixture, where the weighted maximum a posteriori can
be e�ciently approximated through a generalized expectation-maximization algorithm. The BiCE
method for network reliability assessment is proven to be unbiased.

In addition to the parameters required by the standard iCE, i.e., the number of samples N and the

parameter δtar that adjusts the convergence of p
(t)
X (·), the BiCE method introduces an additional

parameter b that accounts for the 'strength' of the prior. In addition, the number of clusters in the
mixture, K, should also be chosen in advance if the categorical mixture model is employed.
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7.3 A comparative study

In this section, we conduct a comparative analysis of the adaptive Monte Carlo methods discussed
in Section 7.2. A special focus is placed on evaluating their e�ciency in solving optimal power �ow
problems across various IEEE benchmark models. The dimensions of these benchmarks span from
dozens to several hundred variables. Based on the results of the comparative study, we delve into the
strengths and weaknesses of each method and explore strategies for determining intermediate levels
in aPIM. While an initial comparison of the methods was presented in our conference paper [18], this
manuscript addresses an even more challenging scenario with a failure probability of approximately
10−5. Moreover, we propose a hybrid method that performs better than the original PIMs, especially
when there are substantial discontinuities in network performance.

7.3.1 Optimal direct current power �ow problem

The power �ow in power transmission networks is driven by Kirchho�'s law and various operational
strategies. While alternating current (AC) models can more accurately represent power �ow, partic-
ularly in stability analysis, their solution is computationally challenging due to the need for iterative
solutions, and they require many inputs that are not generally available when performing the relia-
bility analysis. For this reason, we use direct current (DC) power �ow models, which approximate
the �ow by solving a linear equation set, in which the net reactive power injection Qi and voltage
magnitude Vi at each bus are neglected. The results are less accurate than AC's for transient anal-
yses but adequate for system reliability assessment [3]. In addition, instead of modeling cascading
failures, we focus on standard DC optimal power �ow (DC-OPF) problems, where we compute the
optimal power operation strategy that avoids network component failure and, at the same time,
minimizes a speci�ed cost function C(·).

Speci�cally, let η , {P+
i , P

−
i , θi}

nb
i=1 collect the power injection (P+

i ), power consumption (load
P−i ), and voltage angle (θi) at each of the nb buses, to formulate the standard DC-OPF as follows:

min
η
C(η) (7.5)

s.t.G(η) = 0

H(η) 6 0

η(min) 6 η 6 η(max)

where equality constraints in G(η) = 0 represent the active power balance equations, and inequality
constraints in H(η) 6 0 result from the branch �ow limits, i.e., the power �ow over any branch is
always below its capacity. If capacity data is unavailable, we assume that the �ow limit of a branch
is twice the DC power �ow over this branch in the intact network. The limits η(min) 6 η 6 η(max)

include an equality constraint on the voltage angle of the reference bus θ(ref) and lower and upper
bound for other variables in η. If a linear cost function is chosen, the optimization problem is linear
and hence can be e�ciently solved by various linear programming solvers. To this end, a positive
constant cost c is associated with each unit of the power loss, and the cost function equals the
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constant c multiplied by the total power loss lp(η), i.e.,

C(η) , c · lp(η) = c ·

P (dem) −
∑
i∈Γg

P+
i

 , (7.6)

where the constant P (dem) represents the total power demand in the intact network, and Γg collects
the indices of all generators.

We simulate the DC-OPF across various IEEE benchmarks in this comparative study using MAT-
POWER v7.1 [42]. It is worth noting that the built-in solver in MATLAB sometimes encounters
di�culties in locating feasible solutions, particularly within the IEEE300 benchmark. To address
this issue, we relax the minimal power generation requirement when switching on the generator, al-
lowing P+

i to change continuously from 0 to its maximum value. Moreover, we ignore any load that
cannot be dispatched by MATPOWER v7.1. If the built-in 'dual-simplex' algorithm crashes, we
adopt the 'interior-point' algorithm to solve the linear optimization problem. The resulting optimal

(or minimal) total power loss l
(min)
p is rounded to 8 decimal places.

7.3.2 Benchmark settings

The network performance g(x) is measured by the percentage blackout size PBS(x), that is, the
percentage of load shed in DC-OPF. x is an instance of the input random vector X. We are
concerned about the probability that the percentage blackout size exceeds a speci�ed threshold
γ, i.e., pf , Pr(PBS(X) > γ). The threshold is chosen such that the failure probability, pf , is
approximately equal for each benchmark; we consider two scenarios: one with pf ≈ 10−4 and the
other with pf ≈ 10−5.

Solving the optimization problem in Eq. (7.5) with cost function in Eq. (7.6), one evaluates the

minimum power loss l
(min)
p (x) associated with the state of network components x. The percentage

blackout size PBS(x) can then be calculated as:

PBS(x) ,
l
(min)
p (x)

P (dem)
· 100. (7.7)

For each generator, we consider four damage states, namely negligible, minor, major, and complete
damage, corresponding to 0%, 20%, 60%, and 100% reduction of the power production, respectively.
The remaining connecting buses and all transmission lines have two damage states, either functioning
(negligible damage) or failed (complete damage).

The reference failure probability is obtained through crude MCS with 108 samples for the IEEE14,
30, and 57 benchmark models and with 107 samples for larger benchmarks. The coe�cient of
variation (c.o.v.) of the MCS estimators, denoted as δ(MCS), along with detailed problem settings
for each benchmark, are presented in Table 7.2. In addition, Table 7.3 provides a summary of the
state distribution of di�erent network components. Each generator is modeled as a categorically
distributed variable, and each transmission line or connecting bus is Bernoulli distributed.

We compare the di�erent methods by their relative e�ciency with respect to crude MCS, a concept

152



Chapter 7. Adaptive Monte Carlo methods for estimating rare events in power grids

Table 7.2: IEEE benchmark models and their reliability in two di�erent scenarios.

# nodes # lines
Scenario 1 Scenario 2

γ pf (×10−4) δ(MCS) γ pf (×10−5) δ(MCS)

IEEE 14 14 20 54.8 1.1 1% 62.9 1.0 3%

IEEE 30 30 41 40.2 1.0 1% 53.8 0.90 3%

IEEE 57 57 80 54.1 1.0 1% 63.3 1.1 3%

IEEE 118 118 186 13.8 1.0 3% 16.6 1.0 10%

IEEE 300 300 411 26.1 1.0 3% 29.1 1.0 10%

Table 7.3: Probability distribution of network components

type

prob. state
complete major minor negligible

generator 0.01 0.19 0.3 0.5

connecting bus 0.01 / / 0.99

trans. line 0.01 / / 0.99

borrowed from statistics. The relative e�ciency of an estimator p̂f is de�ned as [15]:

relE�(p̂f ) ,
pf · (1− pf )

MSE(p̂f )× Cost(p̂f )
, (7.8)

For adaptive Monte Carlo methods, the computational overhead is typically negligible, i.e., the CPU
time of the algorithm is dominated by running the network model. Hence, the computational cost
can be reasonably measured by the number of evaluations of the network performance. With the
de�nition in Eq. (7.8), the relative e�ciency of crude MCS is equal to one; the larger the relative
e�ciency of an estimator, the more e�cient it is relative to MCS. Intuitively, this means that if the
relative e�ciency equals 2, the MSE of the algorithm will be half of that of crude MCS with the
same cost.

In this benchmark study, we consider the following �ve adaptive MCS algorithms: BiCE with single
categorical distribution, BiCE with the categorical mixture, aE-SuS, the iPIM, and iPIM+aPIM.
For BiCE, we use N = 2, 000, δtar = 1.5, b = 10 and K equals either 1 or 10. For aE-SuS, we set
N = 2, 000, p0 = 0.1, tol = 0.8, and for the iPIM and iPIM+aPIM, we select N = 2, 000, p0 = 0.1,
and use the score function PBS(x)

γ . Additionally, for all multi-level splitting methods, we employ
the adaptive version of the preconditioned Crank-Nicolson sampler, also known as the adaptive
conditional sampler in [31].

7.3.3 Results

We report the relative e�ciency computed from 200 independent runs of each method in Tables
7.4 and 7.5, each for a di�erent scenario. It has been observed that in the majority of settings
explored in this study, 200 repetitions are su�cient to obtain an accurate estimate of the empirical
mean squared error (MSE). The relative bias, c.o.v, and average computation cost of each method
are calculated and reported in Appendix A. Violin plots of the failure probabilities calculated by

153



7.3. A comparative study

the di�erent algorithms are depicted in Fig. 7.1 and 7.2, where the orange solid line represents the
MCS reference, and the orange cross represents the average failure probability estimate over 200
repetitions of the tested algorithms.

For aE-SuS, besides the failure probability estimate, we can also output the empirical CDF of
the survival rate, de�ned as 100 − PBS(X). In other words, we estimate Pr(100 − PBS(X) ≤
100 − γ) = Pr(PBS(X) ≥ γ) with changing γ, and this can be done through a single run of the
aE-SuS algorithm [47]. The mean, 10, and 90 percentile of the empirical CDF, obtained with 200
independent runs of the algorithm, are shown in Fig. 7.3. The mean empirical CDF estimated from
aE-SuS coincides well with the MCS reference.

Table 7.4: Relative e�ciency of di�erent sampling-based methods (Scenario 1, pf ≈ 10−4).

BiCE(K=1) BiCE(K=10) aE-SuS iPIM iPIM+aPIM aE-SuS+aPIM

IEEE 14 58 75 2.5 1.4 1.4(2.3*) 1.3(2.8)

IEEE 30 36 11 3.3 3.2 1.7(3.1) 2.4(5.1)

IEEE 57 16 23 9.0 8.2 4.1(8.0) 6.0(12)

IEEE 118 19 18 8.1 6.1 3.6(7.0) 4.0(8.2)

IEEE 300 1.1 0.68 12 12 5.1(10) 5.1(11)

* The number in parenthesis is the relative e�ciency without considering the pilot cost.

Table 7.5: Relative e�ciency of di�erent sampling-based methods (Scenario 2, pf ≈ 10−5).

BiCE(K=1) BiCE(K=10) aE-SuS iPIM iPIM+aPIM aE-SuS+aPIM

IEEE 14 4.8 16 12 1.1 3.5(5.4*) 5.0(9.8)

IEEE 30 45 69 10 11 6.1(11) 6.4(13)

IEEE 57 5.0 · 102 5.0 · 102 29 38 15(29) 19(40)

IEEE 118 18 10 35 31 16(31) 18(37)

IEEE 300 6.4 0.67 53 61 35(68) 36(73)

* The number in parenthesis is the relative e�ciency without considering the pilot cost.

Figure 7.1: The failure probability estimates of di�erent adaptive MCS methods (Scenario 1,
pf ≈ 10−4).
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Figure 7.2: The failure probability estimates of di�erent adaptive MCS methods (Scenario 1,
pf ≈ 10−4).

7.3.4 Discussion of results

Based on the above results, we summarize the strengths and weaknesses of the di�erent methods
and discuss the optionality of obtaining an unbiased estimator.

7.3.4.1 The pros and cons

We �rst discuss the performance of the BiCE methods, which is demonstrated in the �rst two columns
of Tables 7.4 and 7.5. The �rst column shows the relative e�ciency of the BiCE method with a
single categorical distribution as the parametric model, while in the second column, we consider a
categorical mixture with K = 10 components. The mixture model is more �exible but also easier to
be over�tted with limited data.

The BiCE methods achieve better results than the multi-level splitting methods in lower-dimensional
benchmarks, i.e., in IEEE14, 30, and 57. We attribute this advantage to the independence of
the samples generated in the BiCE methods. On the other hand, the BiCE method, whether
employing a single or mixture categorical distribution, performs poorly in the IEEE300 benchmark
due to the degeneration of the IS weights, which is a well-known issue when performing importance
sampling in high dimensions. Speci�cally, as shown in Fig. 7.1 and 7.2, the BiCE method with
single categorical distribution outputs a highly skewed estimator whose bias and variance cannot be
accurately estimated through 200 repetitions. Note that although the empirical bias is signi�cant,
the BiCE estimator is guaranteed to be unbiased [15], and therefore, the corresponding relative
e�ciency from 200 repetitions is not trustworthy.

The non-parametric multi-level splitting methods are superior in high-dimensional settings. For
instance, in the IEEE300 benchmark, the relative e�ciency of aE-SuS (or PiMs) is considerably
larger than that of BiCE. Furthermore, the performance of aE-SuS, iPIM, and iPIM+aPIM varies
in di�erent settings. In all benchmarks, the iPIM+aPIM method is less e�cient than its aE-SuS and
iPIM counterparts when taking into account the cost of the pilot run (last four columns of Tables
7.4 and 7.5). We also report the relative e�ciency of iPIM+aPIM, calculated without considering
the cost of the pilot run, and even in such a case, the relative e�ciency of iPIM+aPIM is similar to
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Figure 7.3: Empirical CDF of the survival rate, 100− PBS(X), across di�erent benchmarks. The
results with aE-SuS are shown in red; the results obtained with MCS with 107 samples are in black.
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that of aE-SuS. Nevertheless, iPIM+aPIM still signi�cantly outperforms crude Monte Carlo and is
better suited when manipulating the intermediate samples is memory-expensive. The performance
of iPIM and aE-SuS is similar in all benchmarks except the IEEE14, where we observe signi�cant
discontinuity in the CDF of the network performance (See Fig. 7.5). Since the aE-SuS method can
handle the big 'jumps' in network performance, it performs better than the iPIM (or the standard
SuS) in cases with a small number of components. For larger IEEE benchmarks, the CDF of the
network performance becomes smoother, and aE-SuS degenerates into the SuS, which performs
similarly to iPIM. The relative e�ciency of the two methods is, therefore, similar in these larger
benchmarks.

It is also evident that the relative e�ciency of the multi-level splitting methods is signi�cantly higher
in Scenario 2, where the failure probability is one order of magnitude smaller. However, this is not
true for the BiCE methods. As shown in Fig. 7.1 and 7.2, the strong outliers (e.g., in IEEE14 and
IEEE118 benchmarks in Scenario 2) lead to a large MSE and, consequently, a low relative e�ciency
of these estimators.

Overall, the BiCE methods are more e�cient in low to moderate dimensions, while aE-SuS and the
iPIM are better for addressing high-dimensional problems, whereby both methods are similar to the
standard SuS.

7.3.4.2 The optionality of obtaining an unbiased estimator

We use the MSE to assess the accuracy of di�erent adaptive Monte Carlo estimators of the failure
probability, p̂f . The MSE can be decomposed as:

MSE(p̂f ) = (E(p̂f )− pf )2 + Var(p̂f ). (7.9)

This indicates that for a given rare event estimation problem, the MSE of a failure probability
estimator is related to the bias and the variance. An unbiased estimator with a large variance is
also prone to give a poor failure probability estimate that is far from the true value. Eq. (7.9) can

be rewritten in function of the relative bias ε , E(p̂f )−pf
pf

and the c.o.v. δ ,
√

Var((p̂f ))

E2((p̂f ))
:

MSE(p̂f ) = p2
f ·
(
ε2 + (1 + ε)2 · δ2

)
. (7.10)

In this benchmark study, we estimate the relative bias and c.o.v. for each adaptive Monte Carlo
method through 200 independent repetitions of the algorithm. The results are summarized in Table
6-9 in Appendix A. In almost all settings, the c.o.v. of the adaptive Monte Carlo algorithm is
considerably larger than its relative bias, and the MSE is dominated by the variance in Eq. (7.9),
which can also be seen in Figs. 7.1 and 7.2. Therefore, from the viewpoint of e�ciency, as de�ned
in Eq. (7.8)), it is more important to put e�ort into reducing the variance of the estimator than
eliminating its bias.

It should also be stressed that asymptotically unbiased estimators converge to the true failure proba-
bility, pf , as the sample size approaches in�nity, so it is advisable to allocate the entire computational
budget into a single run in practice. However, this strategy can encounter storage issues when deal-
ing with problems with very high dimensions. In such cases, the average of multiple repetitions of
the estimators should be employed, each with a reduced sample size. Note that a smaller sample
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size generally results in a larger bias of the estimator, which cannot be mitigated by averaging the
results. An unbiased estimator, however, does not su�er from this issue and, hence, is better suited
for such an implementation.

7.3.5 A hybrid approach that combines aE-SuS and aPIM

The performance of the aPIM depends highly on the choice of intermediate levels. In [35], the levels
are �xed through a pilot run of the iPIM, where the levels are chosen adaptively such that the
conditional probability is equal to a constant value p0. Consequently, the splitting factors s at each
level of the aPIM are �xed at 1

p0
, which is optimal for continuous network performance.

In particular, for smaller networks, there can be a signi�cant discontinuity in the CDF of the network
performance, as in the IEEE14 benchmark (see Fig. 7.5(a)). In such a case, selecting levels based
on a speci�ed constant p0 is not just suboptimal but can lead to substantial errors [14]. For the
IEEE14 benchmark, the iPIM (and hence also iPIM+aPIM) even gets trapped at the initial level
when selecting p0 = 0.3, which cannot be predicted before executing the algorithm.

Conversely, the aE-SuS method adapts the conditional probabilities pt, t = 1, · · · , T , as well as
the sample size per level N , based on the empirical conditional CDF at each level, making it
well-suited for managing network performance with substantial discontinuities. However, due to
the adaptation of levels, conditional probabilities, and sample size, the aE-SuS estimator can be
biased. This motivates the idea of combining the strengths of both aE-SuS and aPIM to produce
an unbiased estimator in situations involving substantial discontinuities in network performance. In
particular, we employ aE-SuS as the pilot run for �xing the intermediate levels in aPIM. To account
for the di�erence between the importance function L(·) and the network performance function g(·),
a transformation of the levels is necessary. For instance, if the importance function L(·) is de�ned as
g(·)
γ , the levels identi�ed by aE-SuS need to be scaled by γ before being utilized in the aPIM. Besides a

di�erent pilot run, we calculate the splitting factor at the t-th level of the aPIM, denoted as s(t), based
on the conditional probability estimate of that level from aE-SuS. Speci�cally, instead of adopting
a �xed splitting factor s = 1

p0
, we select s(t) as 1

p̂
(aE-SuS)
t

. When signi�cant discontinuity exists in the

network performance, these conditional probabilities may di�er substantially, and consequently, the
splitting factor should also vary. The aPIM estimator in Eq. (7.2) becomes:

p̂
(aPIM)
f =

(
T−1∏
t=1

s(t)

)
|XT |, (7.11)

The relative e�ciency of the aE-SuS+aPIM method across di�erent benchmarks and scenarios is
also reported in Tables 7.4 and 7.5 to facilitate comparison with other methods. It is evident that
aE-SuS+aPIM outperforms iPIM+aPIM (See the last two columns in Table 7.4 and 7.5) and also
crude Monte Carlo, but is less e�cient than aE-SuS if taking into account the pilot costs. On the
other hand, aE-SuS+aPIM provides an unbiased estimator, which may be favorable for applications
in which unbiasedness is a priority.
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7.4 Demonstration: a 2000-bus synthetic power grid

According to the benchmark study, aE-SuS and iPIM are the two most competitive techniques
for addressing high-dimensional problems, where both methods are similar to the standard SuS.
Hence, it is adequate to concentrate on just one of them. In this demonstration, we focus on the
aE-SuS method for risk assessment of a large-scale synthetic power grid that comprises over 5,000
components. The system failure probability and Birnbaum importance measures are computed using
samples from a single run of the aE-SuS algorithm, both as a function of the network performance
threshold. In addition, we also brie�y present the results obtained using the aE-SuS+aPIM approach.

7.4.1 The ACTIVSg2000 synthetic power grid

A synthetic power grid is an arti�cial grid with a similar load pro�le and power generation as the
actual grid. It o�ers a valuable and convenient tool for researchers to analyze the performance of
the grids under di�erent scenarios since the network data for the actual grid is usually con�dential
and inaccessible. The ACTIVSg2000 test case [4] is a synthetic power grid on Texas's footprint,
comprising 2,000 buses and 3,206 transmission lines. The network's topology is depicted in Fig. 7.4,
where each graph edge is a transmission line. The red and black dots represent the generators and
connecting buses, respectively.

Figure 7.4: The topology of the ACTIVSg2000 synthetic power network. The red and black dots
represent the generators and connecting buses, respectively, and the solid lines are transmission

lines.

Similarly to the benchmark study, the distribution of the component damage state is summarized
in Table 7.3, and we measure the network performance through the PBS(X) de�ned in Eq. (7.7).
The empirical CDF of the survival rate, 100− PBS(X), is shown in Fig. 7.5, where the mean, ten
percentile and 90 percentile of the empirical CDF are calculated through 50 independent repetitions
of the algorithm and are compared to crude MCS with 107 samples. We further present the c.o.v.
square and also the relative e�ciency in Fig. 7.6, both as a function of 100−γ. γ is the threshold in
Eq. (7.1). At the initial level (or the MCS level) of the aE-SuS algorithm, the samples are generated
independently from the input distribution, and hence, the relative e�ciency is approximately equal
to 1. In the following conditional levels, sampling is performed through an MCMC algorithm, which
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Figure 7.5: The empirical CDF of the survival rate, 100− PBS(X). The results with aE-SuS are
shown in red; the results obtained with MCS with 107 samples are in black. The x-axis tick labels

indicate the intermediate levels.

Figure 7.6: The relative e�ciency and the (c.o.v)2 of the aE-SuS method. The x-axis tick labels
indicate the intermediate levels.

produces dependent samples. Consequently, the relative e�ciency drops at the beginning of the
second level but increases exponentially thereafter. As the failure probability decreases, the aE-SuS
method becomes increasingly more e�cient than crude MCS. When pf = 10−4, aE-SuS is around four
times more e�cient than its MCS counterpart with c.o.v. 0.53 and cost 9, 240. For comparison, when
excluding the pilot cost, the relative e�ciency for the hybrid method aE-SuS+aPIM is approximately
2.4 with c.o.v. 0.70, and computational cost 8, 402.

7.4.2 Criticality analysis through the aE-SuS algorithm

In network reliability assessment, the criticality of each component is another important aspect of
interest. Various reliability-based component importance measures have been developed for quan-
titatively describing such criticality, which include among others the Birnbaum measure (BM) [5],
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improvement potential [41], Fussell-Vesely measure [40, 22], Bayesian importance measure [5]. Ini-
tially, most of these measures were proposed for binary components, meaning that the component
can only be in either a failure or functional state. However, multiple extensions to accommodate
multi-state components can be found [8, 28, 45, 36]. One possible approach to extend the importance
measure to multi-state or continuous components is by introducing a threshold at the component
level, which di�erentiates between failure and survival states.

In this demonstration, we adopt the BM as the importance measure and assume that a component
fails when it is subjected to at least major damage. Speci�cally, let Ci , {xi = complete damage}, F (γ) ,
{x : PBS(x) ≥ γ}, and Ci, denote the component failure, system failure, component survival, re-
spectively. Note again that the failure domain F (γ) in this demonstration is a function of the
threshold γ. The BM measure is then de�ned as the partial derivative of the network failure prob-
ability Pr(F (γ)) with respect to the component failure probability, denoted as Pr(Ci):

BMi(γ) ,
∂ Pr(F (γ))

∂ Pr (Ci)
= Pr(F (γ)|Ci)− Pr(F (γ)|Ci). (7.12)

Applying Baye's rule, the equation can be reformulated as [47]:

BMi(γ) =
Pr(Ci|F (γ)) · Pr(F (γ))

Pr(Ci)
− (1− Pr(Ci|F (γ))) · Pr(F (γ))

1− Pr(Ci)
, (7.13)

where the component failure probability Pr(Ci) and the conditional component failure probability
Pr(Ci|F (γ)) can be estimated using the samples from the �rst unconditional level and samples
conditional on the failure event F (γ), respectively. Pr(F (γ)) is the main output of the aE-SuS
algorithm.

For illustration, we pick four representative thresholds with the target failure probabilities equal to
10−1, 10−2, 10−3, and 10−4. The BM is then estimated for each threshold through a single run of the
aE-SuS algorithm. Fig. 7.7 demonstrates the results for the most important 20 network components,
where the black dots represent the value averaged over 50 independent repetitions of the aE-SuS
algorithm, and the red crosses depict the MCS reference. It is evident that the aE-SuS estimates
agree well with the MCS reference, especially in the �rst three cases. Note that these sensitivity
results can also be adopted as a diagnosis for the MCMC sampler at di�erent levels in aE-SuS.

In the scenario where the failure probability is 10−4, two components exhibit a signi�cantly higher
BM value than the remaining components. They are both connecting buses located in the center
of the city of Houston (See Fig. 7.8). The failure of these two buses cuts o� the associated load
and breaks down the transmission lines linked to the buses, leading to a critical load shedding in
the network. The remaining critical components are also demonstrated in Fig. 7.8 with blue circles
representing the buses or generators and blue links representing the transmission lines.

7.5 Conclusions

The primary focus of this work is on estimating the occurrence probability of large blackouts within
power grids. Given that power grid systems are not inherently coherent, and large blackouts are
typically rare events, adaptive Monte Carlo methods appear to be particularly suitable. We test

161



7.5. Conclusions

The target failure probability is 0.1

The target failure probability is 0.01

The target failure probability is 0.001

The target failure probability is 0.0001

Figure 7.7: The Birnbaum's measure of the most important 20 components. The black dots
represent the average value over 50 independent runs of the aE-SuS algorithm, while the red

crosses represent the MCS reference.

 

Figure 7.8: The most important 20 components in the ACTIVSg2000 power network. The blue
circles represent the critical buses or generators, and the blue link signi�es the critical transmission

lines.
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and compare the performance of four recently developed adaptive Monte Carlo methods, namely
the adaptive e�ort subset simulation (aE-SuS), Bayesian improved cross entropy method (BiCE),
and particle integration methods (PIMs), either interacting or annealed, for direct current optimal
power �ow problems in di�erent IEEE benchmark models. The dimension of the benchmarks ranges
from dozens to several hundred. We additionally introduce a new hybrid algorithm that employs
aE-SuS as the pilot run of aPIM.

While the unbiased BiCE appears to be the method of choice for smaller systems and provides a
signi�cant improvement over crude MCS, there is still room for more e�cient methods to handle large
dimensional problem settings. The aE-SuS method performs well in large-scale applications where
its performance is comparable to iPIM (or SuS). In all benchmarks, the aPIM is less e�cient than
its aE-SuS and iPIM counterparts due to the additional cost of obtaining appropriate intermediate
levels but gives the option to analysts to obtain unbiased estimates if so desired.

We further investigate the performance of aE-SuS for risk assessment of the Texas synthetic power
grid, which comprises over 5,000 components. Therein, the failure probability and Birnbaum im-
portance measures are computed using samples from a single run of the aE-SuS algorithm, both
as a function of the network performance threshold. The results verify that the aE-SuS method is
promising for rare event estimation in large power grids.

Future directions encompass the development of MCMC algorithms tailored for e�cient sampling
within discrete spaces and the integration of dimension reduction techniques with the BiCE methods.
Furthermore, it is of interest to investigate various metrics for assessing the accuracy of sampling-
based algorithms, particularly those that provide a more re�ned description of computational costs.
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7.A Supplementary results for the benchmark study

Table 6: The relative bias of the di�erent methods (Scenario 1, pf ≈ 10−4).

BiCE(K=1) BiCE(K=10) aE-SuS iPIM iPIM+aPIM aE-SuS+aPIM

IEEE 14 −0.03± 0.01 1 −0.02± 0.01 −0.01± 0.04 −0.11± 0.06 0.00± 0.04 0.05± 0.04

IEEE 30 −0.04± 0.01 0.01± 0.02 −0.03± 0.04 −0.04± 0.04 −0.07± 0.04 0.06± 0.03

IEEE 57 0.05± 0.02 0.02± 0.01 −0.00± 0.02 0.01± 0.03 −0.00± 0.03 0.00± 0.02

IEEE 118 −0.01± 0.02 −0.01± 0.02 −0.01± 0.03 0.06± 0.03 0.01± 0.03 −0.02± 0.03

IEEE 300 −0.33± 0.06 −0.07± 0.09 0.06± 0.02 0.07± 0.02 0.08± 0.02 0.10± 0.02
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Table 7: The relative bias of the di�erent methods (Scenario 2, pf ≈ 10−5).

BiCE(K=1) BiCE(K=10) aE-SuS iPIM iPIM+aPIM aE-SuS+aPIM

IEEE 14 −0.01± 0.09 −0.02± 0.05 −0.10± 0.06 0.03± 0.19 0.05± 0.07 0.04± 0.06

IEEE 30 0.06± 0.03 0.03± 0.03 0.05± 0.07 0.04± 0.07 0.05± 0.06 −0.05± 0.06

IEEE 57 −0.00± 0.01 −0.00± 0.01 0.01± 0.04 0.00± 0.03 −0.09± 0.04 −0.00± 0.03

IEEE 118 0.02± 0.05 0.06± 0.06 −0.04± 0.03 −0.01± 0.04 −0.03± 0.04 −0.02± 0.03

IEEE 300 −0.83± 0.05 0.12± 0.26 0.08± 0.03 0.05± 0.03 0.06± 0.02 0.06± 0.02

Table 8: The coe�. of variation of the di�erent methods (Scenario 1, pf ≈ 10−4).

BiCE(K=1) BiCE(K=10) aE-SuS iPIM iPIM+aPIM aE-SuS+aPIM

IEEE 14 0.11 0.10 0.57 0.74 0.53 0.57

IEEE 30 0.15 0.29 0.58 0.56 0.49 0.47

IEEE 57 0.21 0.18 0.35 0.36 0.36 0.30

IEEE 118 0.23 0.24 0.37 0.40 0.39 0.37

IEEE 300 1.33 1.30 0.29 0.28 0.29 0.29

Table 9: The coe�. of variation of the di�erent methods (Scenario 2, pf ≈ 10−5).

BiCE(K=1) BiCE(K=10) aE-SuS iPIM iPIM+aPIM aE-SuS+aPIM

IEEE 14 1.28 0.69 0.88 2.67 0.88 0.86

IEEE 30 0.39 0.35 0.91 0.92 0.79 0.81

IEEE 57 0.12 0.12 0.53 0.47 0.47 0.47

IEEE 118 0.65 0.83 0.51 0.52 0.49 0.48

IEEE 300 4.35 3.34 0.37 0.36 0.33 0.33

Table 10: The average cost of the di�erent methods (Scenario 1, pf ≈ 10−4).

BiCE(K=1) BiCE(K=10) aE-SuS iPIM iPIM+aPIM aE-SuS+aPIM

IEEE 14 12,030 12,000 10,658 9,250 22,531(13,281) 18,288(8,878)

IEEE 30 12,740 11,230 9,820 9,270 20,828(11,558) 18,857(9,078)

IEEE 57 11,890 11,890 9,240 9,080 18,656(9,576) 18,886(9,726)

IEEE 118 10,000 10,000 9,200 8,930 18,206(9,276) 17,626(8,466)

IEEE 300 10,250 10,000 9,140 9,030 18,459(9,429) 17,393(8,323)

1the standard deviation of the relative bias
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Table 11: The average cost of the di�erent methods (Scenario 2, pf ≈ 10−5).

BiCE(K=1) BiCE(K=10) aE-SuS iPIM iPIM+aPIM aE-SuS+aPIM

IEEE 14 13, 020 13, 950 12, 430 11, 560 33, 022(21, 462) 25, 076(12, 734)

IEEE 30 14, 050 12, 260 11, 980 11, 370 26, 291(14, 921) 24, 115(12, 265)

IEEE 57 12, 100 12, 360 11, 140 11, 060 22, 744(11, 684) 21, 679(10, 569)

IEEE 118 12, 000 11, 730 11, 320 11, 140 23, 221(12, 081) 22, 158(10, 868)

IEEE 300 12, 150 10, 260 11, 050 10, 890 22, 491(11, 601) 21, 520(10, 521)
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