
POP and ChEESE

SeisSol for Computational Earthquake Simulations with GPU-Aware MPI
Communication for Local Time Stepping

Alice-Agnes Gabriel 1, Michael Bader 2, Ravil Dorozhinskii 2

Ludwig Maximilian University of Munich 1

Technical University of Munich 2

July 7th 2021

PASC 2021, Virtual Conference

Outline of talk

Introduction
GPU computing in SeisSol
POP audit
LTS in a Nutshell
Analysis and Improvements
Conclusion

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 823844

A. Gabriel, R. Dorozhinskii, M. Bader | POP and ChEESE | | July 7th 2021 2

What is SeisSol?

SeisSol - software for simulating seismic waves and earthquake dynamic

based on:
– Discontinious Galerking method
– ADER time-integration scheme
– tetrahedral meshing

supports:
– elastic and visco-elastic wave propagation models
– plasticity model
– Local and Global Time Stepping schemes
– point sources and rupture surfaces to model source terms
– fused-simulations

originally came with:
– MPI+OpenMP parallelization
– code generator - YATeTo DSL, [4]

A. Gabriel, R. Dorozhinskii, M. Bader | POP and ChEESE | | July 7th 2021 3

ADER-DG in a Nutshell Update Scheme

Qn+1
k = Qn

k + M−1(K ξDk A∗k + K ηDk B∗k + K ζDk C∗k) (1)

− 1
|J|M

−1(
4∑

i=1

|Si |F−,iDk Â+
k)

− 1
|J|M

−1(
4∑

i=1

|Si |F+,i,jk ,hkDk(i)Â
−
k(i))

Cauchy-Kowalewski

Dk =
O−1∑
j=0

(tn+1 − tn)j+1

(j + 1)!
∂ j

∂t j Qn
k (2)

∂ j+1

∂t j+1 Qn
k = M−1

[
(K ξ)T (∂ j

∂t j Qn
k
)
A∗k + (K η)T (∂ j

∂t j Qn
k
)
B∗k + (K ζ)T (∂ j

∂t j Qn
k
)
C∗k

]
(3)

A. Gabriel, R. Dorozhinskii, M. Bader | POP and ChEESE | | July 7th 2021 4

Source Code Structure and Code Generation with YATeTo

Writes

Returns code

inserts calls

Returns code

Returns code

Returns code

GEMM Generators

generate

Generated Code

Figure: Compilation process (from [2])
Figure: Simplified source code structure
(from [2])

Listing: Example of YATeTo DSL
volumeSum = self.Q[’kp’]
for i in range(3):
volumeSum += self.db.kDivM[i][self.t(’kl’)] * self.I[’lq’] * self.starMatrix(i)[’qp’]

volume = (self.Q[’kp’] <= volumeSum)
generator.add(’volume’, volume)

A. Gabriel, R. Dorozhinskii, M. Bader | POP and ChEESE | | July 7th 2021 5

GPU computing in SeisSol

Figure: CPU/GPU task parallelism

Binary Batched Operations:
trivial grid/block distribution
easy to estimate run-time resources i.e., shared memory, registers

But:
finer granularity w.r.t CPU-like parallelism
lower arithmetic intensity

A. Gabriel, R. Dorozhinskii, M. Bader | POP and ChEESE | | July 7th 2021 6

GemmForge

A

B

Pre-loaded into
share memory

Located in
global memory

m free registers
of a team

Register array of
 an active thread

A row of matrix B

n

An element of matrix A
loaded in a register

+ + + + + +

* * * * * *

Figure: Sum of parallel outer products (from [2])

Benchmark:
Le = D · Ae · Be + Le (4)

where L,A ∈ RB×9 and B ∈ R9×9.
D ∈ RB×B represents either a mass or
stiffness matrix.

Implementation:
Te = Ae · Be

Le = D · Te + Le
(5)

35 56 84 35 56 84
0.00

1.00

2.00

3.00

4.00

5.00

6.00

cuBLAS GemmForge

Parameter, B

P
er

fo
rm

an
ce

, T
F

LO
P

/s

Single Precision Double Precision

Figure: GemmForge vs. cuBLAS (from [2])

Figure: Roofline model analysis (from [2])
A. Gabriel, R. Dorozhinskii, M. Bader | POP and ChEESE | | July 7th 2021 7

POP audit I
Global Time Stepping Local Time Stepping

Figure: Strong/Weak scaling of SeisSol using LOH.1 benchmark obtained on Marconi 100

Conclusion
Computation scaling and communication efficiency rapidly deteriorate for LTS

MPI communication cost grows progressively with scale

A. Gabriel, R. Dorozhinskii, M. Bader | POP and ChEESE | | July 7th 2021 8

POP audit II

Figure: Execution timeline (single step) for GTS

– GPUs idle during message exchange

– Rank 17 starts and finishes later than
the other ranks

CPU predominantly in CUDA
synchronization while kernels
execute on GPU

– In general, traces and analysis are
much more complicated for LTS
scheme

A. Gabriel, R. Dorozhinskii, M. Bader | POP and ChEESE | | July 7th 2021 9

LTS in a Nutshell

Figure: Local time stepping in motion (from [3])
Figure: Example of elements distribution over 6
LTS clusters (from [2])

Courant-Friedrichs-Lewy condition:
– necessary condition for convergence
– determined by local wave speed and element size

Workload per element, proposed by Breuer, Heinecke, and Bader in [1]:

wk = RL−lk (6)
where R is update cluster ratio, L is the total number of clusters and lk is a linear index of the time cluster to
which element k belongs.

A. Gabriel, R. Dorozhinskii, M. Bader | POP and ChEESE | | July 7th 2021 10

Time Clustering & Mesh partitioning

A. Gabriel, R. Dorozhinskii, M. Bader | POP and ChEESE | | July 7th 2021 11

2 Inherited Problems

A. Gabriel, R. Dorozhinskii, M. Bader | POP and ChEESE | | July 7th 2021 12

Balancing Strategies I

1. Original without any memory balancing:

wk = RL−lk (7)

denoted as “exponential”

2. Exponential LTS weights with memory balancing:

wk ∈ R2 | wk =

[
RL−lk

1

]
(8)

denoted as “exponential balanced”

3. Equal time clusters partitioning:

wk ∈ RL | w i
k =

{
1, if i = lk
0, otherwise (9)

denoted as “encoded”

A. Gabriel, R. Dorozhinskii, M. Bader | POP and ChEESE | | July 7th 2021 13

Balancing Strategies II

Figure: Distribution of 10mio elements over 16 partitions

A. Gabriel, R. Dorozhinskii, M. Bader | POP and ChEESE | | July 7th 2021 14

Strong Scaling I

A. Gabriel, R. Dorozhinskii, M. Bader | POP and ChEESE | | July 7th 2021 15

Strong Scaling II

A. Gabriel, R. Dorozhinskii, M. Bader | POP and ChEESE | | July 7th 2021 16

Strong Scaling III: Improving Mesh Quality

A. Gabriel, R. Dorozhinskii, M. Bader | POP and ChEESE | | July 7th 2021 17

Tracing SeisSol Proxy

Figure: Time Cluster with 262144 (218) elements

Figure: Time Cluster with 1024 (210) elements
A. Gabriel, R. Dorozhinskii, M. Bader | POP and ChEESE | | July 7th 2021 18

Weak Scaling

A. Gabriel, R. Dorozhinskii, M. Bader | POP and ChEESE | | July 7th 2021 19

Conclusion

• Algorithmic and hardware problems
seems to be a general problem for GPU-LTS implementations

• Found two workload and memory balancing strategies
a new research direction

• Weak scaling was achieved and looks reasonably good
• Communication may be further improved

adding heavy edges along time cluster boarders

A. Gabriel, R. Dorozhinskii, M. Bader | POP and ChEESE | | July 7th 2021 20

References I

[1] Alexander Breuer, Alexander Heinecke, and Michael Bader. “Petascale local time
stepping for the ADER-DG finite element method”. In: 2016 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). IEEE. 2016,
pp. 854–863.

[2] Ravil Dorozhinskii and Michael Bader. “SeisSol on Distributed Multi-GPU
Systems: CUDA Code Generation for the Modal Discontinuous Galerkin Method”.
In: The International Conference on High Performance Computing in Asia-Pacific
Region. 2021, pp. 69–82.

[3] Michael Dumbser, Martin Käser, and Eleuterio F Toro. “An arbitrary high-order
Discontinuous Galerkin method for elastic waves on unstructured meshes-V.
Local time stepping and p-adaptivity”. In: Geophysical Journal International 171.2
(2007), pp. 695–717.

[4] Carsten Uphoff and Michael Bader. “Yet Another Tensor Toolbox for discontinuous
Galerkin methods and other applications”. en. In: ACM Transactions on
Mathematical Software 46.4 (2020). DOI: 10.1145/3406835.

A. Gabriel, R. Dorozhinskii, M. Bader | POP and ChEESE | | July 7th 2021 21

https://doi.org/10.1145/3406835

	Introduction
	GPU computing in SeisSol
	POP audit
	LTS in a Nutshell
	Analysis and Improvements
	Conclusion
	References

