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What is SeisSol?

SeisSol - software for simulating seismic waves and earthquake dynamic

based on:
– Discontinious Galerking method
– ADER time-integration scheme
– tetrahedral meshing

supports:
– elastic and visco-elastic wave propagation models
– plasticity model
– Local and Global Time Stepping schemes
– point sources and rupture surfaces to model source terms
– fused-simulations

originally came with:
– MPI+OpenMP parallelization
– code generator - YATeTo DSL, [4]
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ADER-DG in a Nutshell Update Scheme
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Source Code Structure and Code Generation with YATeTo
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Figure: Compilation process (from [2])
Figure: Simplified source code structure
(from [2])

Listing: Example of YATeTo DSL
volumeSum = self.Q[’kp’]
for i in range(3):
volumeSum += self.db.kDivM[i][self.t(’kl’)] * self.I[’lq’] * self.starMatrix(i)[’qp’]

volume = (self.Q[’kp’] <= volumeSum)
generator.add(’volume’, volume)
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GPU computing in SeisSol

Figure: CPU/GPU task parallelism

Binary Batched Operations:
trivial grid/block distribution
easy to estimate run-time resources i.e., shared memory, registers

But:
finer granularity w.r.t CPU-like parallelism
lower arithmetic intensity
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GemmForge
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Figure: Sum of parallel outer products (from [2])

Benchmark:
Le = D · Ae · Be + Le (4)

where L,A ∈ RB×9 and B ∈ R9×9.
D ∈ RB×B represents either a mass or
stiffness matrix.

Implementation:
Te = Ae · Be

Le = D · Te + Le
(5)
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Figure: GemmForge vs. cuBLAS (from [2])

Figure: Roofline model analysis (from [2])
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POP audit I
Global Time Stepping Local Time Stepping

Figure: Strong/Weak scaling of SeisSol using LOH.1 benchmark obtained on Marconi 100

Conclusion
Computation scaling and communication efficiency rapidly deteriorate for LTS

MPI communication cost grows progressively with scale
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POP audit II

Figure: Execution timeline (single step) for GTS

– GPUs idle during message exchange

– Rank 17 starts and finishes later than
the other ranks

CPU predominantly in CUDA
synchronization while kernels
execute on GPU

– In general, traces and analysis are
much more complicated for LTS
scheme
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LTS in a Nutshell

Figure: Local time stepping in motion (from [3])
Figure: Example of elements distribution over 6
LTS clusters (from [2])

Courant-Friedrichs-Lewy condition:
– necessary condition for convergence
– determined by local wave speed and element size

Workload per element, proposed by Breuer, Heinecke, and Bader in [1]:

wk = RL−lk (6)
where R is update cluster ratio, L is the total number of clusters and lk is a linear index of the time cluster to
which element k belongs.
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Time Clustering & Mesh partitioning
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2 Inherited Problems
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Balancing Strategies I

1. Original without any memory balancing:

wk = RL−lk (7)

denoted as “exponential”

2. Exponential LTS weights with memory balancing:

wk ∈ R2 | wk =

[
RL−lk

1

]
(8)

denoted as “exponential balanced”

3. Equal time clusters partitioning:

wk ∈ RL | w i
k =

{
1, if i = lk
0, otherwise (9)

denoted as “encoded”
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Balancing Strategies II

Figure: Distribution of 10mio elements over 16 partitions
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Strong Scaling I
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Strong Scaling II
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Strong Scaling III: Improving Mesh Quality
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Tracing SeisSol Proxy

Figure: Time Cluster with 262144 (218) elements

Figure: Time Cluster with 1024 (210) elements
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Weak Scaling
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Conclusion

• Algorithmic and hardware problems
seems to be a general problem for GPU-LTS implementations

• Found two workload and memory balancing strategies
a new research direction

• Weak scaling was achieved and looks reasonably good
• Communication may be further improved

adding heavy edges along time cluster boarders
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