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Abstract: Hepatitis D virus (HDV) is classified according to eight genotypes. The various genotypes
are included in the HDVdb database, where each HDV sequence is specified by its genotype. In this
contribution, a mathematical analysis is performed on RNA sequences in HDVdb. The RNA folding
predicted structures of the Genbank HDV genome sequences in HDVdb are classified according
to their coarse-grain tree-graph representation. The analysis allows discarding in a simple and
efficient way the vast majority of the sequences that exhibit a rod-like structure, which is important
for the virus replication, to attempt to discover other biological functions by structure consideration.
After the filtering, there remain only a small number of sequences that can be checked for their
additional stem-loops besides the main one that is known to be responsible for virus replication. It
is found that a few sequences contain an additional stem-loop that is responsible for RNA editing
or other possible functions. These few sequences are grouped into two main classes, one that is
well-known experimentally belonging to genotype 3 for patients from South America associated
with RNA editing, and the other that is not known at present belonging to genotype 7 for patients
from Cameroon. The possibility that another function besides virus replication reminiscent of the
editing mechanism in HDV genotype 3 exists in HDV genotype 7 has not been explored before and is
predicted by eigenvalue analysis. Finally, when comparing native and shuffled sequences, it is shown
that HDV sequences belonging to all genotypes are accentuated in their mutational robustness and
thermodynamic stability as compared to other viruses that were subjected to such an analysis.

Keywords: RNA graph representation; Laplacian eigenvalues; viral kinetic models; hepatitis delta
virus genotypes; folding energy; mutational robustness

1. Introduction

RNA secondary structures assume functional roles during the virus life cycle and
are therefore a topic of considerable interest [1,2]. Over the years, specific functions of
RNA structure motifs have been examined in many viruses (for example, in the hepatitis C
virus (HCV) [3–5]) by combining computational and experimental approaches. In recent
years, the advent of high-throughput structure-probing methods has opened up exciting
opportunities in elucidating the viral RNA structure repertoire at a large scale [6]. A large
percentage of viral RNA motifs tend to possess linear secondary structures similar to
the ones depicted in [7], which are often stem-loop structures designated by SL for their
identification. Stem-loop structures can be found in a multitude of viruses, e.g., [7], and in
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general, they are important from the evolutionary perspective [8]. In viruses, stem-loop
structural motifs have been investigated in our previous article [9]. This contribution is
a continuation of [9] that specifically considers hepatitis delta virus (HDV), which has
the smallest human viral genome and uses the envelope of hepatitis B virus (HBV) to
generate infectious particles. Two main forms of HDV infection have been described:
(1) co-infection together with HBV, with a high rate of viral clearance in adults clinically
similar to HBV mono-infection [10], or (2) super-infection in the presence of a pre-existing
HBV infection. The latter results in a persistent chronic HDV infection in 70–90% of the
cases and early on was shown to be is associated with a high risk to develop cirrhosis and
primary liver cancer (HCC) [11]. Since the discovery of this virus, eight genotypes with
distinct geographical and ethnic regions and at least nine subtypes have been defined [12].
The lowest inter-genotype divergence of ≥10% was reported between HDV-5 and HDV-2,
whereas the highest inter-genotype difference was estimated for HDV-3 [12], which is
predominant in South America. For certain genotypes, differences in clinical outcomes
have been observed [13]. Genotype 3 is associated with fulminant hepatitis epidemics with
high lethality rates [14].

An important issue in modeling and analyzing RNAs is the representation of their sec-
ondary structure, desirably in a simplified and yet useful manner. Several approaches have
been devised, among which some major pioneering ones are the full graph representation
in which each nucleotide is a node [15], a coarse-grain tree-graph representation in which
each motif is a node [16], and a full tree forming a homeomorphically irreducible tree [17].
All of the aforementioned representations have been implemented in the Vienna RNA
package [18]. The full graph representation is equivalent to the dot-bracket representation
in the Vienna RNA package [18–20] and the ct file in mfold/UNAFold [21–23].

In the context of RNA secondary structure analysis, coarse-grain tree-graphs have
found a variety of uses [16,24–28]. It is also possible to generalize the coarse-grain rep-
resentations to abstract shapes [29]. In [16,24], a coarse-grain representation of the RNA
secondary structure was proposed, which was later named Shapiro’s representation in
the Vienna RNA package. In [25], topological indices were first suggested to be used
for analyzing coarse-grain tree-graphs. In [26,27], it was found that the second smallest
eigenvalue of the Laplacian matrix is able to provide a similarity measure for differentiating
between various RNA tree-graph topologies. The smallest eigenvalue of the Laplacian
matrix is identically zero and then the second smallest eigenvalue, which is called algebraic
connectivity, provides a measure of how much the tree-graph is linear (a path) or compact
(a star) as illustrated in [27]. This concept can be applied when filtering candidates in the
process of RNA deleterious mutation prediction, which was used in the relevant prediction
software RNAmute and its extension [28,30,31]. Aside from design applications that have
to do with conformational switching and multistable RNAs [32], it will also be used here
to detect large conformational switches that were reported in [33] by applying a similar
idea. In passing, it is worthwhile noting that conformational switching is present in both
HCV [34] and HIV [35], as examples, in structural elements of different length scales and
with different mechanisms than the relevant one in HDV. Reverting to [26,27], seminal
theorems by Fiedler and Merris [36,37] were shown to be applicable for the examination
of how the coarse-grain tree-graph representing the RNA secondary structure is shaped.
Following Fiedler’s work on the algebraic connectivity in general graphs, Merris has shown
how tree-graphs can be ordered by their algebraic connectivity [38], alongside a wider
perspective of the Laplacian spectrum of a graph [39,40].

Following [9], in which the dataset was taken from [41], herein, the initial plan was to
apply a similar methodology to perform structural classification in HDVdb [42]. Unlike
in [9], the sequences in HDVdb are no longer small RNAs, and there are only 512 sequences.
Nevertheless, when RNA folding prediction methods are applied on these sequences,
stem-loop unbranched rod structures emerge that are mostly completely linear and can be
represented by a tree-graph that is a path on n vertices. This prompted us to specifically
examine the well-known conformation switch in HDV that was mentioned above [33] and
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check whether our methodology that was outlined in [9] can detect more HDV genotypes
other than the peculiar genotype 3 that is associated with such a conformational switch.
Because all genotypes are represented in HDVdb [42], the topic of genotypes was high-
lighted in our analysis. Our goal was to filter out most sequences in HDVdb that only
exhibit an unbranched rod structure in their folding prediction by energy minimization
and only collect the sequences that exhibit a double-hairpin branched structure, classifying
them according to their genotypes. We performed the filtering using an approach that will
be described in detail, also addressing the advantages of our approach, in the Results and
Discussion sections. In genotype 3, the unbranched rod structure displayed in Figure 1
(containing the essentials of Figure 2A of [43]) is responsible for virus replication, and
the double-hairpin branched structure displayed in Figure 1 (containing the essentials of
Figure 2B of [43]), is responsible for RNA editing. With the issue of genotypes as concen-
tration, aside from examining RNA structures at the level of molecules, we also address
a yet unexplored topic of how genotypes may affect HDV viral kinetics at the level of
cells and provide a future perspective. Finally, as in [9], we also examine the mutational
robustness and thermodynamic stability of HDVdb sequences/structures. We demonstrate
for completeness that these sequences are mutationally robust and thermodynamically
stable, as expected, in comparison to their corresponding shuffled sequences and their
predicted structures.

Figure 1. (A) To the left, the unbranched rod structure of HDV, isolate Peru-1 (L22063), obtained by mfold prediction with
the optimal solution taken, containing the most essential information of Figure 2A of [43]. (B) To the right, the double-hairpin
branched structure of HDV, isolate Peru-1 (L22063), obtained by mfold prediction with the second suboptimal solution
taken, containing the most essential information of Figure 2B of [43]. The five nucleotides “AUAGU” comprising the editing
site are colored.



Mathematics 2021, 9, 2063 4 of 16

2. Materials and Methods

The mathematical analysis consists of two main components that have been put
forth in [9]. The first component relies on filtering rod-like structures that are dominant
in HDV because they correspond to virus replication. These rod-like structures can be
distinguished by their unique coarse-grain tree-graph representation, which is a path on n
vertices. Section 2.1 describes the filtering method that utilizes a formula for the second-
lowest eigenvalue of the Laplacian matrix corresponding to a coarse-grain tree-graph
representation that is a path on n vertices. Section 2.2 describes the second component that
involves an analysis of mutational robustness and thermodynamic stability.

2.1. Defining the Laplacian Matrix of a Tree-Graph and Calculating Its Second Lowest Eigenvalue
for a Path

The coarse-grain tree-graph representation of an RNA secondary structure, also known
as the Shapiro representation [16], enables an initial analysis of the collection of RNA
structures based on their constituent motifs and their compactness. The tree-graph can
then be represented by its corresponding Laplacian matrix.

Let T = (V, E) be a tree with vertex set V = {v1, v2, ..., vn} and edge set E. Let us denote
by d(v) the degree of v where v ∈ V is a vertex of T. The Laplacian matrix of T is L(T) = (lij),
where:

lij =


d(vi), i f i = j,
−1, i f vi, vj ∈ E

0, otherwise.
(1)

The eigenvalues of the Laplacian matrix are independent of the choice of labeling
for the nodes in the tree-graph T, which only amounts to interchanges of the rows and
columns. For example, with the orderly labeling of the linear tree-graph containing four
nodes as in Figure 2, the Laplacian matrix L(T) becomes:

L4 =


1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1

 (2)

The smallest eigenvalue of the Laplacian matrix is identically zero. The second
smallest eigenvalue, which is called the algebraic connectivity [36], provides a measure of
how much the tree-graph is linear (a path) or compact (a star). In the following, we will
derive a formula for the second smallest eigenvalue of a path in an alternative way to the
one used in [36], directly utilizing the tridiagonal structure of the Laplacian matrix.

The Laplacian matrix is a slight deviation from a tridiagonal Toeplitz matrix, which
stems from the fact that tree-graph extreme vertices are bounded to a single neighbor,
rather than two. For example, the tridiagonal Toeplitz matrix corresponding to L4 above is:

L′4 =


2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

 (3)

As noted in [9], calculating the eigenvalues of the Laplacian matrix could be ap-
proached in principle using a methodology similar to that of calculating the eigenvalues of
a tridiagonal Toeplitz matrix. Calculating the eigenvalues of such a matrix (such as L′4)
can be simplified by using a theorem whereby if L′ = h(M) and the eigenvalues of M are
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calculated and denoted as λ1, λ2, . . . , λn, then the eigenvalues of L′ are, respectively, h(λ1),
h(λ2), . . . , h(λn). In a generalized form for the matrix L′n, we obtain:

L′n =


2 0 . 0 0
0 2 . 0 0
. . . . .
0 0 . 2 0
0 0 . 0 2

−


0 1 . 0 0
1 0 . 0 0
. . . . .
0 0 . 0 1
0 0 . 1 0

 = 2•In − 1•Mn (4)

where Mn is an n × n tridiagonal matrix of the following form:

Mn =


0 1 . 0 0
1 0 . 0 0
. . . . .
0 0 . 0 1
0 0 . 1 0

 (5)

Because the eigenvalues of In are trivial, finding the eigenvalues of a tridiagonal
Toeplitz matrix amounts to finding those of Mn. This can be completed in at least two ways.
The first, which is longer, is to use elementary properties of determinants to directly derive
the characteristic polynomial and then find its roots. As worked out in [44], denoting
the characteristic polynomial of the matrix Mn by ϕn(x) and using the transformation
x = 2•cosΘ, the characteristic polynomial becomes, after a considerable derivation:

ϕn(2• cos Θ) =
sin(n + 1)Θ

sin Θ
(6)

which is solved at Θ = kπ
n+1 (k = 1, . . . , n), yielding the eigenvalues:

λk(Mn) = 2• cos
kπ

n + 1
(k = 1, . . . , n) (7)

The second way, which is shorter, is to note that the expansion of the characteristic
polynomial satisfies the three-point recurrence relationship that matches the recursive
formula for the Chebyshev polynomials of the first kind; see also [45]:

Tn(x) = x•Tn−1(x) − Tn−2(x) (8)

where Tn(x) is the Chebyshev polynomial of the first kind of order n, e.g., T1(x) = x and
T2(x) = x2 − 1. For x = cosΘ, the following relationship holds [46]:

Tn(cosΘ) = cos(nΘ) (9)

Thus, we obtain that the zeros of Tn(x) are the roots given by Equation (7). Therefore,
using Equation (4), the eigenvalues of L′n are given by:

λk
(

L′n
)
= 2•λk(In)− 1•λk(Mn) = 2− 2• cos

kπ

n + 1
(k = 1, . . . , n) (10)

Looking back at the Laplacian matrix for a path on n vertices in our application:

Ln =


(2− 1) −1 . 0 0
−1 2 . 0 0

. . . . .
0 0 . 2 −1
0 0 . −1 (2− 1)

 (11)
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which can also be written as:

Ln =


2 0 . 0 0
0 2 . 0 0
. . . . .
0 0 . 2 0
0 0 . 0 2

−


1 1 . 0 0
1 0 . 0 0
. . . . .
0 0 . 0 1
0 0 . 1 1

 = 2•In − 1•Pn (12)

where Pn is similar to Mn of Equation (5) except for two additional ones at the beginning
and end of the main diagonal:

Pn =


1 1 . 0 0
1 0 . 0 0
. . . . .
0 0 . 0 1
0 0 . 1 1

 (13)

Pn is a slight variation on Mn, and using a similar procedure, it is found (e.g., see [44])
that its eigenvalues are given as the roots of:

ϕn(2• cos Θ) =
2•(sin nΘ)• (cos Θ− 1)

sin Θ
(14)

which is solved at Θ = kπ
n (k = 0, 1, . . . , n− 1), hence:

λk(Pn) = 2• cos
kπ

n
(k = 0, 1, . . . , n− 1) (15)

From Equations (12) and (15), it follows that the eigenvalues of Ln are:

λk(Ln) = 2•λk(In)− 1•λk(Pn) = 2− 2• cos
kπ

n
(k = 0, 1, . . . , n− 1) (16)

which leads to the trivial eigenvalue of zero for k = 0, and the smallest second eigenvalue
for k = 1 that is given by:

a(T) = 2(1− cos(π/n)) (17)

The second smallest eigenvalue of the Laplacian matrix is called the algebraic con-
nectivity [36] of T and labeled as a(T). Some of the properties of a(T) that concern the
application presented here are mentioned in the Appendix of [9], in addition to the illustra-
tive calculation of a(T) for the RNA secondary structure example shown in Figure 2.

Note that by convention of the choice of tree-graph representation, those loops with
single isolated nucleotides are not accounted for as nodes, but the 5′–3′ ends are counted
as a node. In the case of a star of four vertices, for example, a(T) = 1.0, which is the upper
bound for the algebraic connectivity. A star applies for a tree-graph possessing three
vertices or more (n ≥ 3), and the algebraic connectivity of a star is always unity [40]. The
algebraic connectivity a(T) is characterized by some special properties described in the
Appendix of [9] that are advantageous for the RNA secondary structure application that is
presented here.
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Figure 2. RNA secondary structure and coarser levels of representation. (A) Secondary structure of
an HDV virusoid sequence taken from [47]. (B) Tree-graph representation of the secondary structure.
(C) Laplacian matrix corresponding to the tree-graph representation. (D) Spectrum of the Laplacian
matrix. (E) Second-smallest eigenvalue of the Laplacian matrix.

2.2. Mutational Robustness and Thermodynamic Stability

For quantitatively measuring mutational robustness, the neutrality η is calculated.
Given an RNA sequence of length N, the neutrality is calculated by:

η = (N − d)/N (18)

where d is the base-pair distance between secondary structure of the original sequence
and secondary structure of the mutant, averaged over all 3N one-mutant neighbors. The
base-pair distance available in the Vienna RNA package is used to calculate the distance
between two RNA secondary structures. The RNA secondary structures in this study
were predicted by energy minimization approach [18,21] using RNAfold available in
the Vienna RNA package [18–20], noting that similar predictions can be completed with
mfold/UNAFold [21–23].

3. Results
3.1. Eigenvalue Analysis

As was conceptualized in [9], we start with an eigenvalue analysis of the HDV genome
sequences that are available in [42]. Despite their length of several hundred nucleotides, the
HDV genome sequences are known to be well predicted by energy minimization methods,
tending to have linear rod-like structures. It is worthwhile noting that the genomes are
circular, and because of the antigenome concept, a reverse complement should be taken
before inserting the sequences as input to energy minimization software that relies on
energy parameters [48] such as mfold (as used in the past in [43]) or RNAfold, choosing
the circular folding option. MPGAfold [33] can also be used, but it is more involved to
apply. Having experimented with some sequences that are relevant to the HDV editing
that takes place in genotype 3 from patients in South America, the branched double-hairpin
structures responsible for editing are found in mfold’s suboptimal solutions as depicted
in Figure 1 (containing the essentials of Figure 2B of [43]). There is a slight difference
between the mfold and RNAfold solutions that worked to our advantage. While the
branched double-hairpin structures are well captured in the manner that suboptimal
solutions were devised in mfold [49], contrary to the detection of conformational switches
by mutations application in [50], it would be more difficult to view them in the way that
suboptimal solutions were devised in RNAsubopt [51]. Nevertheless, the optimal solutions
of RNAfold with the structure ensemble are slightly more sensitive to deviations from
the unbranched structure. Thus, while it is possible to extend our simulations to consider
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the first few suboptimal solutions of mfold, we found that it is enough, for a convincing
sample of sequences that we experimented with, to only consider the optimal solution
of RNAfold as a way to detect branched double-hairpin structures successfully and then
double-check the relevant sequences by examining their suboptimal solutions with mfold
(in some cases, the branched double-hairpin structure will already appear in the optimal
solution of mfold). The following table reports an eigenvalue analysis of all HDV genome
sequences in [42] by calculating their second-smallest eigenvalue of the Laplacian matrix
corresponding to the tree-graph representation of their folding prediction as illustrated in
Figure 2. As explained above, for the folding prediction, we used RNAfold with only the
optimal solution considered. The code for calculating the eigenvalues was written in Java
and is available at https://github.com/ChurkinAlex/RNAStructureEigenvalueCalculator
(accessed on 3 July 2021).

This will further be analyzed in Section 4 with respect to the formula a(T) =
2(1− cos(π/n)) in Equation (17) for a linear tree-graph representation of the RNA sec-
ondary structure to show the tendency of HDV viruses to possess unbranched (rod-like)
stem-loop structures represented by a path on n vertices. From the biological standpoint,
it shows that the dominant structure is the unbranched structure responsible for virus
replication. It should be noted that the number of branched structured sequences could
have been calculated by alternative approaches such as going through each one of the
vertices in the tree-graph and checking whether there is an external loop besides the ones
on the two opposite ends. This is more cumbersome as compared to the mathematical
approach as described above with using Equation (17), simply plugging the number of
vertices n in the equation and checking whether the resultant algebraic connectivity is equal
to the second smallest eigenvalue of the Laplacian matrices corresponding to the tree-graph
representation obtained by our Java code. The running time to calculate the eigenvalues of
the Laplacian matrices is notedly very small because the tree-graph vertices represent RNA
secondary structure motifs (e.g., bulges and loops), and therefore the size of all Laplacian
matrices is smaller than 90 × 90 according to the eigenvalue interval at the top row of
Table 1. Thus, the mathematical approach, in this case, is both more elegant and efficient
as compared to an alternative computational approach that is based on base-pairing or
loop-type identification.

Table 1. Eigenvalue analysis: distribution of the HDV sequences in the various genotypes according
to the second-smallest Laplacian eigenvalue.

Genotype Eigenvalue
(Interval)

Number of
Sequences

Number of Branched
Structured
Sequences

All 0.0013–0.0031 512 187
Genotype 1 (“italiense”) 0.0015–0.0031 321 100

Genotype 2 (“japanense”) 0.0014–0.0021 24 5
Genotype 3 (“peruense”) 0.0013–0.0016 11 4

Genotype 4 (“taiwanense”) 0.0015–0.0020 37 23
Genotype 5 (“togense”) 0.0013–0.0017 23 7
Genotype 6 (“carense”) 0.0014–0.0020 15 9

Genotype 7 (“cameroonense”) 0.0013–0.0021 45 33
Genotype 8 (“senegalense”) 0.0014–0.0016 6 0

Undefined 0.0013–0.0020 30 6

In examining the second column of Table 1 that lists the eigenvalue interval values
themselves, one cannot assert that one particular HDV genotype is more remote or peculiar
than the other HDV genotypes. However, the second eigenvalue of the Laplacian matrix
is just a single similarity measure, and tree edit distances are more informative for this
purpose. Thus, we computed pairwise tree edit distances using RNAdistance in the
Vienna RNA package to perform an analysis considering a few representatives of each
HDV genotype in order to assess the similarity between HDV genotypes. The results are

https://github.com/ChurkinAlex/RNAStructureEigenvalueCalculator
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displayed in Table 2. While the results indicate that there is no particular genotype more
distant from other genotypes, which is in line with the eigenvalue analysis, the tree edit
distance is a more comprehensive similarity measure for such purposes as compared to the
second eigenvalue of the Laplacian matrix, which is not a distance.

Table 2. Tree edit distance analysis: tree edit distances between the eight HDV genotypes.

Genotype
1

Genotype
2

Genotype
3

Genotype
4

Genotype
5

Genotype
6

Genotype
7

Genotype
8

Genotype 1 0 457 463 446 423 416 432 423

Genotype 2 457 0 500 455 450 437 461 430

Genotype 3 463 500 0 469 470 475 471 454

Genotype 4 446 455 469 0 419 440 462 431

Genotype 5 423 450 470 419 0 399 433 378

Genotype 6 416 437 475 440 399 0 442 409

Genotype 7 432 461 471 462 433 442 0 395

Genotype 8 423 430 454 431 378 409 395 0

Although the second eigenvalue of the Laplacian matrix is not a distance, it is still a
useful similarity measure. We observe that for the HDV viral genomes circular folding
predictions that are represented by the Shapiro coarse-grain tree-graph representation, the
values in Table 1 are relatively very small compared to the values calculated for other RNA
secondary structures found in nature (e.g., [26,27]), and the properties of the algebraic
connectivity listed in the Appendix of [9] can be used in a beneficial manner.

3.2. A Directed Structure-Based Search

Having observed in Table 1 that most of the HDV sequences possess unbranched
rod-like structures (64% in total) that can be filtered out, we remain with a smaller pool
of branched structured sequences. Within them, there is even a smaller pool of branched
multi-hairpin structured sequences and a much smaller pool of branched multi-hairpin
structure sequences in which the SL1 upper-left hairpin of Figure 1B (depicting the essen-
tials drawn in Figure 2B of [43]) contains the sub-sequence “GAAC” in the external loop
of the SL1 hairpin. We chose to concentrate on this sub-sequence because it was shown
to be important for RNA editing (e.g., [43]), and it is known that the GAAC tetraloop is a
frequent sequence in the GANC family that has function capabilities. We find that only
a few structures contain this hairpin composition. The structures of genotype 3 from the
Amazon rainforest in South America (Peru, Bolivia, Brazil, Ecuador, Venezuela) contain
it, validating our method, as well as two outliers that can be easily discarded as such.
However, we noticed another group of structures that contain it belonging to genotype 7
from Cameroon, which is further discussed in Section 4. Figure 3 illustrates how the con-
formational switching from an unbranched structure to a branched structure in genotype 7
displayed in Figure 3A resembles and differs from the known conformational switching
that takes place in genotype 3 displayed in Figure 3B. The SL1-like hairpin in Figure 3
contains the sub-sequence “GAAC” in its external loop, and it is also noted that it appears
in the optimal solution of mfold, while the SL1 hairpin in Figure 3 that is exactly composed
of the sub-sequence “GAAC” in its external loop appears in the second suboptimal solution
of mfold, raising the possibility that genotype 7 is more susceptible to conformational
switching than genotype 3.
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Figure 3. (A) Secondary structure prediction by mfold/UNAFold of MG711735 from genotype 7 (up-
per part) with an SL1-like hairpin that contains the sub-sequence “GAAC” as in SL1. Conformational
switching from an unbranched structure to a branched structure appears in the optimal solution.
(B) Secondary structure prediction by mfold/UNAFold of L22063 from genotype 3 (upper part) with
the SL1 hairpin that is known to be responsible for RNA editing. Conformational switching from an
unbranched structure to a branched structure appears in the second suboptimal solution.

It should also be noted that concerning the sub-sequence required for RNA editing,
we have tried searching for the five nucleotides “AUAGU” (representing the AMBER/W
site for genotype 3 in South America) that are mentioned in the caption of Figure 1 and are
colored in the figure itself over the entire Genbank HDV genome sequences file of HDVdb.
We found that they are most prevalent in genotype 7 in Cameroon with 26 out of 69 hits
(38%), with genotype 3 in South America coming second with 10 out of 69 hits (14%), and
with the rest of the genotypes in other geographical locations possessing much lower hits.
However, because of the antigenome concept, finding the reverse complement of these five
nucleotides near SL1 would have shown a precise similarity to the editing mechanism in
genotype 3. In our case, alternative scenarios or mechanisms that are non-explored yet and
utilize conformational switching are also possible.

3.3. Mutational Robustness and Thermodynamic Stability

Finally, to conclude the analysis of HDV sequences, it is worthwhile verifying that
the HDV native sequences are more mutationally robust and more thermodynamically
stable than their corresponding shuffled HDV sequences as expected. Equation (18) is used
to calculate the neutrality, and in all of the calculations, the RNAfold of the Vienna RNA
Package 2.0 [20] is used for RNA structure prediction by energy minimization. Figure 4
depicts the neutrality distribution of native and shuffled HDV sequences for all structures
in the dataset, having used Python’s multiprocessing module (“process” class) to speed up
the calculation. Shuffling is performed by using shuffleseq from EMBOSS with dinucleotide
shuffling. Figure 5 depicts the mean free energy (MFE) distribution for all structures in the
dataset. The reported p-values in the captions are calculated from a T-test to check that the
average neutrality values of the structures of native sequences are significantly larger than
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the average neutrality values of the structures of shuffled sequences and the average MFE
values of the structures of native sequences are significantly smaller than the average MFE
values of the structures of shuffled sequences, respectively.

Figure 4. The neutrality distribution of all structures from our dataset comparing native and shuffled
sequences. Shuffled sequences with dinucleotide shuffling were obtained using shuffleseq from
EMBOSS. Reported p-value (see text) is less than 0.0001.

Figure 5. The MFE distribution of all structures in our dataset comparing native and shuffled
sequences. Shuffled sequences with dinucleotide shuffling were obtained using shuffleseq from
EMBOSS. Reported p-value (see text) is less than 0.0001.

4. Discussion and Conclusions

The mathematical methods that are used herein to analyze HDV genotypes are con-
ceptually within a similar framework as the ones we have used in [9], taking advantage of
the properties of the Laplacian matrix and its second smallest eigenvalue to indicate how
the coarse-grain representation of the RNA secondary structure is assumed in numerous
scenarios but modified to our HDV application that aims to detect conformational switch-
ing. This also applies to the computational methods of using RNA folding prediction by
energy minimization, by which we also calculate neutrality and MFE distributions. The
results obtained in the previous section can now be analyzed, and as a consequence, a
hypothesis can be formulated that suggests that the specific mechanism by which RNA
editing occurs in HDV genotype 3 (as illustrated in detail, for example, in [52]) may not be
limited to genotype 3 from the Amazon rainforest that originated this research [53]. By our
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analysis with HDVdb [42], we may have possibly found traces for it as well in genotype 7
from Cameroon.

From Table 1, one can notice that most of the HDV genome sequences in [42] (64%)
are predicted to fold to an unbranched (rod-like) stem-loop structure represented by a path
on n vertices because this stem-loop structure is responsible for the virus replication. If
we are seeking to detect the branched double-hairpin structure that is responsible for the
virus RNA editing, we can preliminary filter out a large number of sequences for which
their second smallest eigenvalue of the Laplacian matrix corresponds to Equation (17)
for the algebraic connectivity of a path on n vertices. In general, from the perspective
of the ordering of trees by their algebraic connectivity [38], all of the predicted folded
structures tend to have a very low algebraic connectivity number close to zero because
of the tendency to have a linear stem-loop structure (for HDV genome sequences, even
longer in linearity than the examples in the literature that were cited in [9]). By examining
the different genotypes, one can observe in Table 1 that genotype 7 is contrasting the
behavior of the total number of sequences in the first row of Table 1, and about 73% of the
genotype 7 sequences are predicted to fold to a branched structure, which may signal that
this genotype may exhibit an interesting story in its ability to perform a conformational
switch that relates to function. As a possibility, after further filtering according to the
directed structure-based search as described in sub-Section 3.2, it is found that alongside
the known sequences of genotype 3 from South America, a hairpin that appears similar
to SL1 as depicted in Figure 3B can also be detected in genotype 7 from Cameroon, as
depicted in Figure 3A. Three of these sequences from genotype 7, besides MG711735,
are MG711804, MG711754 and LT604971 (if these sequences are inserted into mfold or
RNAfold, the reverse complement should be taken beforehand, and circular folding should
be selected).

For completion of our analysis method that was outlined in [9], by the comparison
between native and shuffled sequences in [35], it is found in Figure 4 that native sequences
are more mutationally robust than shuffled sequences. Additionally, Figure 5 shows
that native sequences are more thermodynamically stable than shuffled sequences. This
can serve as a verification that, indeed, the RNA sequences in [42] significantly exhibit
characteristics of natural RNAs. Furthermore, it can be viewed from Figures 4 and 5
that HDV sequences are accentuated in their mutational robustness and thermodynamic
stability as compared to HCV [54] and HIV [55] and, arguably, to other viruses, because of
their very high amount of base pairing in their unbranched structure. It is also interesting to
note in passing that from the evolutionary perspective, the viral RNA structures explored
in this study and previously in [9] have maintained a high degree of conservation, whereas
the high mutation rate of RNA viruses and their substantial capacity for adaptation could
have made the sequences unidentifiable and likened them to “evolutionary losers” in the
archaeology of coding RNA [56]. A mathematical analysis could also benefit the concepts
that have been described in [56] and relate to ancient-like RNA elements having a specific
structure in genomic viral RNAs.

Future work relating to mathematical modeling of HDV genotypes is to address HDV
viral kinetics across the different genotypes by a simple differential equation model [57,58],
which can be solved by standard mathematical software such as Matlab without the need
for a sophisticated numerical solution as in, for example, [59,60], where the model is
nonlinear. Some parameter values can be fixed based on [61], while others are estimated for
each patient according to each participant’s viral kinetics. As in [62], for HCV genotypes 1
and 2, we hypothesize that HDV genotypes [63,64] can also potentially affect HDV viral
kinetics.

The association between HDV genotypes and RNA folding has not yet been eluci-
dated. Further research in this field may decipher the mechanisms responsible for some of
the clinical phenomena observed in patients infected with HDV. These include the wide
variability between patients in HDV replication rate, HDV vs. HBV dominance, the severity
of clinical presentation following acute HDV infection, and the rate of disease progression
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to cirrhosis and hepatocellular carcinoma. Some of these variations are linked with specific
HDV genotypes, while others occur in patients infected with the same genotype. It is
possible that sequence variations within (sub-genotypic) or across genotypes may yield
different RNA folding patterns, which in turn could modify certain viral functional capaci-
ties such as editing and packaging efficiency as well as RNA–protein interactions. These
conformational–functional alterations may bear an impact on viral infectivity, HBV-HDV
interactions, and immune system activation, eventually translating into distinct clinical
patterns of disease presentation and progression. The outcome of RNA–protein interaction
is likely to provide some key insights into these open questions. More generally, the link
between the cellular level that is addressed by viral kinetics modeling and the molecular
level of examining primary and secondary structures of the RNA molecule might be more
thoroughly understood by the prediction of RNA–protein interactions, a computational
sub-field that has been developed in recent years and is actively being pursued these days,
e.g., [65–67].

Future studies exploring structural-functional associations across HDV genotypes
should center on the following perspective points: (1) the higher viral packaging efficiencies
of genotype 1 vs. genotype 2 isolates; (2) the higher editing efficiencies of genotype 1
compared to those of genotype 2; (3) genotype 2 HDV infection is less frequently associated
with fulminant hepatitis at the acute stage and follows a more benign long-term course
(lower rate of progression to cirrhosis or hepatocellular carcinoma (HCC)) at the chronic
stage as compared to genotype 1; (4) HDV genotype-dependent interactions with HBV
(e.g., [68]).

To summarize, the biological and pathogenetic significance of HDV genotypes has not
yet been elucidated in detail and is worthwhile exploring. Mathematical and computational
methods can assist in these explorations and discover new findings. In this contribution,
it is exemplified how a mathematical analysis of HDVdb [42] in which the aim was to
explore how RNA tree-graphs are ordered by their algebraic connectivity assisted by
the unique properties of the Laplacian matrices of tree-graphs and their second-lowest
eigenvalue in Merris [38,69] can possibly yield new biological findings of clinical relevance.
As per our analysis, we raise the possibility that HDV sequences of genotype 7 from
Cameroon perform conformational switching that may affect their function, akin to a
similar mechanism of RNA editing initially described in genotype 3 in South America. It
is also possible that our analysis hints at another interesting biological function by way
of conformational switching, other than RNA editing, that may take place in genotype 7.
An analysis with a similar methodology can also be applied to other viruses and other
biological agents of interest. From the pathogenetic point of view, a different clinical
outcome of HDV infection has been observed for genotype 3 in comparison to the other
genotypes. Due to the small numbers of genotype 7 cases with clinical information, such
studies on disease outcome would be of interest.

Since the discovery of HDV, it was thought that this type of virus is only present in
humans in an invariable association with HBV. However, recently, HDV-like sequences
have been identified by metagenomic analyses in snakes (Boa constrictor), ducks (Anas
species), rodents, fish, amphibians, and invertebrates (termites) without evidence of any
HBV-like agent supporting infection. Most of these viruses have similar genomic features,
including size and circular and unbranched rod-like structures. The snake-derived HDV
protein bears 50% with L-HDAg. The duck-associated HDV protein shares only a homology
of 32%. Detailed analysis of sequences and secondary structures as shown in this study for
HDV genotypes will provide more insight on the relation of these agents to “human” HDV
with respect to biology and possible pathogenesis.

Another open question is the interaction of certain HDV genotypes to corresponding
genotypes of HBV. From the different genotypes of HBV, genotype F is the most prevalent
in South America and is frequently associated with HDV super-infection. However, the
more recent finding of the co-infection of HDV-3 with different genotypes of HBV suggests
that the association between HDV-3 and HBV-F is not necessarily causally related to a more
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severe clinical course of infection [68]. This indicates that the properties of the genome,
including secondary structures, correlate with clinical outcomes. This may also be true for
HDV-7 by the results of our mathematical analysis.
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