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Abstract: Real estate investment has been an important driving force in China’s economic growth
in recent years, and the relationship between real estate investment and PM2.5 concentrations has
been attracting widespread attention. Based on spatial econometric modelling, this paper explores
the relationships between real estate investment and PM2.5 concentrations using multi-source panel
data from 30 provinces in China between 1987 and 2017. The results demonstrate that compared
with static spatial panel modelling, using a dynamic spatial Durbin lag model (DSDLM) more
accurately reflects the influences of real estate investment on PM2.5 concentrations in China, and
that PM2.5 concentrations show significant superposition effects and spillover effects. Moreover,
there is an inverted U-shaped relationship between real estate investment and PM2.5 concentrations
in the Eastern and Central Regions of China. At the national level, the impacts of real estate
investment on land urbanization and PM2.5 concentrations first increased and then decreased over
time. The key implications of this analysis are as follows. (1) it highlights the need for a unified PM2.5

monitoring platform among Chinese regions; (2) the quality of population urbanization rather than
land urbanization should be given more attention; and (3) the speed of construction of green cities
and building of green transportation systems and green town systems should be increased.

Keywords: real estate investment; PM2.5 concentrations; spatial econometric model; dynamic spatial
durbin lag model (DSDLM)

1. Introduction

Over the past two decades, the impacts of real estate investment on economic growth
and urbanization development, alongside economic development policies, industrial re-
structuring and urbanization, have been an area of interest for recent scholarship on
China [1–4]. In fact, real estate investment is the main factor influencing land urbaniza-
tion. Despite the importance of real estate investment in creating positive local economic
outcomes, it is increasingly being recognized as a leading cause of wastes of land, energy,
water and other resources in high energy consumption and pollution in industrial sectors.
Various studies have explored various impacts of real estate investment in different regions,
including the relationship between real estate investment and environmental and resource
issues in China [5], sustainable development in the real estate investment environment
in different regions [6] and the impacts of environmental interventions on commercial
real estate operations in Canada and the United States [7]. Hence, a key conclusion of the
recent literature has been that real estate investment is closely related to many current envi-
ronmental and resource problems. The purpose of this study is to examine the particular
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consequences of real estate investment on air quality in China, using spatial econometric
analysis.

In recent years, China’s “regional haze” has become more frequent, and many regions
have been plagued by high levels of PM2.5 (fine particulate matter—diameter of 2.5 µm
or less), one of the key components of haze pollution. According to the Air Quality
Guidelines [8] issued by the World Health Organization (WHO) in 2006, clean air is critical
to human health and well-being, so air pollution continues to pose a significant threat to
health worldwide. This can be illustrated briefly by the fact that when the annual mean
PM2.5 concentrations reach 35 µg/m3, the long-term mortality risk increases by about
15% compared with 10 µg/m3. Recent evidence from China Ecological and Environmental
Bulletin [9] also showed that in 2019, among 337 cities in China, the number of days
exceeding standards, with PM2.5 as the core pollutant, accounted for 45% of the total
pollution days. It is clear from the findings that PM2.5 pollution not only poses a serious
threat to human health, but also affects economic development and ecological environment
protection [10], and that key issues related to PM2.5 levels have public health implications.
However, the concentration of PM2.5 varies with real estate investment depending on the
level of economic development and the city’s natural environment, alongside spillover
effects across neighboring areas [5]. Therefore, it seems reasonable to study the relationships
and spatial differences between real estate investment and PM2.5 concentrations in different
Chinese regions.

This study set out to investigate the impacts of real estate investment on PM2.5 concen-
trations and regional differences by employing multi-source panel data from 30 provinces
in China between 1987 and 2017. In this investigation, a dynamic spatial Durbin lag model
(DSDLM) was designed to integrate spatiotemporal effects into the research framework,
aiming to provide policy recommendations for the improvement of real estate investment
quality and haze pollution control. There are several important aspects where this study
makes original contributions to the current literature: (1) in exploring the impact of real
estate investment on PM2.5 concentrations by integrating spatial interaction factors into
the research scope; (2) by adding spatiotemporal hysteretic effects to more accurately
characterize time-space effects of real estate investment on PM2.5 concentrations; (3) by
investigating differences of spatial curve effects among the three major parts of China (i.e.,
the Eastern, Central, and Western Regions); (4) and tracking the conduction mechanism of
land urbanization to discuss the impact of real estate investment on PM2.5 concentrations.

2. Literature Review

Two important themes currently being adopted in research into real estate investment
are economic growth and environmental pollution. Several attempts have been made
in the literature to discuss the positive relationship between real estate investment and
economic growth, highlighting significant regional differences across China [11–15]. On the
question of environmental pollution, copious literature has tended to focus on the impacts
of foreign direct investment (FDI), and it has been confirmed by empirical evidence that
FDI has considerable positive impacts on environmental pollution emissions through panel
models [16–18]. Such approaches, however, fail to address the interaction effects of real
estate investment between regions, since most studies focus solely on the impacts of real
estate investment over time.

Recent studies have largely been concerned with the source and chemical composition
of PM2.5 [19–21], its impact on human health [5,22–25], and its temporal-spatial distribu-
tion and driving factors [19,26–29]. When it comes to pollution sources, research identifies
that natural factors [30,31] and socioeconomic factors are key contributors to levels of
PM2.5. Natural factors, such as temperature, wind speed, air humidity, topography, and
the underlying surface, are notable examples. Moreover, socioeconomic factors include
population density [32], GDP per capita [33], industrial structure [26], energy consump-
tion [34], and other issues such as use of fireworks and firecrackers [22,23,35,36]. Land use
patterns can also be critical. For example, Xu et al. [37] demonstrated that the physical
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properties of underlying land surface have profound effects on PM2.5 concentrations and
that woodland could reduce PM2.5 concentrations; construction land had the opposite
effect. Ding et al. [38] concluded that population density was the greatest determinant
of PM2.5, showing a trend of rising first and then falling. A study by Ji et al. [39] also
found income, urbanization and service industry as having significant impacts on PM2.5.
Chen et al. [40] investigated the causal links between PM2.5 concentrations and energy
consumption, energy intensity, economic growth, and urbanization in countries with differ-
ent income levels, indicating that energy consumption structures were the greatest factor
impacting PM2.5 concentrations in lower-middle-income and low-income countries.

To date, a variety of methods have been used to assess impacts of real estate investment.
Each has its advantages and drawbacks, but it is worth noting that current methods have
proven to be measurable and with specified analysis and software. For example, a great
deal of academic work has involved grey relational analysis [41], geographically weighted
regression (GWR) [42], visualization and spatial measurement methods using ArcGIS,
MATLAB, STARS, and others [26,28,43], geographical detector models [44], Stochastic Im-
pacts by Regression on Population, Affluence, and Technology (STIRPAT) models [45–47],
and the Logarithmic Mean Divisia Index (LMDI) decomposition method [48]. Hybrid
Single-Particle Lagrangian Integrated Trajectory Models (HYSPLIT-4), Potential Source
Contribution Function (PSCF), and Concentration Weighted Trajectory (CWT) are com-
monly associated with the trans-regional transportation of atmospheric particulates and
the identification of potential source regions. These data collection methods are widely
used to understand the transmission and diffusion of various pollutants in different re-
gions and highlight the roles of different factors, including spatial dimensions, in PM2.5
concentrations [49–51].

In reviewing the literature, focusing on the scalability of research, recent scholarship
seems to fall into three categories: the national scale [34,52], urban agglomerations [32,33],
and provincial or city scale [50,53]. It is now understood that relevant research on PM2.5
pollution characteristics and source analyses in China is mainly concentrated on the regions
of Beijing–Tianjin–Hebei, the Yangtze River Delta, the Pearl River Delta and Central Plains
urban agglomerations, and other complex and severely polluted areas [32,33,51,53,54].

Some Chinese regions maintain or enhance their competitiveness in attracting FDI
at the expense of the natural environment [55]. Based on the environmental Kuznets
inverted curve, the impact of economic growth on PM2.5 pollution presents an inverted
U-shaped curve, and the effect of FDI on improving China’s ecological environment
is not obvious [56]. Additionally, previous research has demonstrated that there is an
inverted U-shaped relationship between urbanization and environmental pollution (i.e.,
CO2, wastewater, waste gas, solid waste, and SO2) [57]. Further research has shown
inverted U-shaped curve, non-U-shaped curve, and positive U-shaped curve relationships
between CO2 emissions and urbanization in different Chinese regions [58]. Generally,
existing research provides a good reference for the in-depth empirical analysis conducted
in this study, from both technical and theoretical angles. However, it also highlights that
the impact of real estate investment on PM2.5 concentration has been under-researched,
and that a critical gap in the literature is empirical work based on surveys of multi-source
panel data taking land urbanization as a transmission mechanism. Therefore, this paper
discusses the relationship between local real estate investment and PM2.5 concentration,
and their spatial correlation, through a spatial weight matrix that used spatial econometric
modelling. The purpose is to provide relevant policy suggestions for improving quality of
real estate investment and controlling haze.

3. Methodology and Data Sources
3.1. Methodology
3.1.1. Spatial Weight Matrix

A spatial weight matrix is articulated from geographical or economic information to
characterize spatial dependence [59], and reflects the spatial distances between samples,
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which is the premise of spatial measurement. The spatial weight matrixes commonly
used in econometric modelling are the spatial adjacent weight matrix (SAWM), the spatial
geographic distance weight matrix (SGDWM), and the spatial economic distance weight
matrix (SEDWM), and different statistical results may be produced based on different
matrices [60,61]. This study utilized the SGDWM, the SEDWM, and the spatial economic
geographic distance weight matrix (SEGDWM) to ensure the robustness of the results. Con-
structing the relevant spatial weights matrices involves multiple steps, summarized below.

First: constructing the SGDWM. This spatial weight matrix can be set up in two steps:
the first is to take the reciprocal of the square of the geographic distance as the weight, and
the second one is to directly take the reciprocal of the geographic distance as the weight. In
practical operation, the reciprocal is taken from the spherical distance obtained according
to the longitude and latitude of the two regions. The SGDWM is expressed through the
following equations.

Wd
ij =

1

(dij)
2 (1)

W1 =


Wd

ij

∑
j

Wd
ij

0, i = j
, j 6= i (2)

where Wij is the matrix element of the i-th row and j-th column; dij is the centroid distance
between province i and province j, taking the reciprocal of the square of the geographical
distance to accurately express the spatial relationship between different provinces. To
simplify the model and explain the results easily, the SGDWM is standardized, and W1 is
the weight after standardization.

Second: constructing the SEDWM. This spatial weight matrix is expressed by the
reciprocal of the absolute value of the per capita GDP difference between provinces,
reflecting the economic closeness between provinces.

W2 =


1∣∣∣∣−yi−
−
yj

∣∣∣∣
0, i = j

, j 6= i (3)

where yi and yj denote the average values of real per capita GDP in region i and region
j during the sample period, respectively. The economic distance is introduced into the
spatial weight matrix, which better reflects regional economic development. The SEDWM
is standardized in this paper, and W2 denotes the weight after standardization.

Third: constructing the SEGDWM. Considering the dual effects of economy and
geography, this spatial weight matrix is helpful to judge the connections and differences
between different provinces.

We
ij = Wd

ij × diag(y1/y, y2/y, · · · yn/y) (4)

W3 =


We

ij
∑
j

We
ij

0, i = j
, j 6= i (5)

where yi represents the per capita GDP of province i during the observation period, y
represents the average GDP per capita of all provinces during the observation period, and
Wd

ij represents the spatial geographical distance. Similarly, the SEGDWM is standardized
in this paper, and W3 represents the weight after standardization.

3.1.2. Spatial Autocorrelation

This study supports the view that how and to what extent real estate investment affects
PM2.5 concentrations in China depend on the spatial characteristics of urban agglomeration.
Moran’s I index and Geary’s C index are used to test the stable and significant spatial
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autocorrelation of PM2.5 concentrations, determining whether a spatial econometric model
could be used. The spatial autocorrelation of PM2.5 concentrations in China is calculated
using the global Moran’s I test (Moran, 1950) and Geary’s C test (Geary, 1954). The formula
of Moran’s I index is as follows [62,63].

I =
n
S0
×

∑n
i=1 ∑n

j=1 Wij(xi − x)
(
xj − x

)
∑n

i=1(xi − x)2 (6)

S0 =
n

∑
i=1

n

∑
j=1

Wij (7)

where I is the value of the global Moran’s I; n is the total number of cities; xi and xj represent
the PM2.5 concentrations of city i and city j, respectively. x represents the average PM2.5
concentration value of all cities, and Wij represents the spatial weight value. Moran’s I
value is restricted to a range of [−1, 1]; when I is greater than 0, this indicates that PM2.5
concentrations have a positive spatial autocorrelation. When I is less than 0, it indicates a
negative spatial autocorrelation. Moreover, if I equals 0, it indicates that the area is spatially
distributed at random.

The formula of Geary’s C index is as follows [64].

C = (n− 1)
∑n

i=1 ∑n
j=1 Wij

(
xi − xj

)2

2nS2 ∑n
i=1 ∑n

j=1 Wij
(8)

S2 =
1
n

n

∑
i=1

(xi − x)2 (9)

where xi and xj denote PM2.5 concentrations of city i and city j, respectively. x denotes the
average PM2.5 concentration value of all cities, and Wij denotes the spatial weight matrix.
Geary’s C value is restricted to a range of [0, 2]; when C is greater than 1, it indicates a
negative spatial autocorrelation. When C is less than 1, that indicates a positive spatial
autocorrelation. Moreover, if I is equal to 1, it indicates no spatial autocorrelation.

3.1.3. Spatial Econometric Model

Spatial econometric models include the spatial lag model (SLM), the spatial error
model (SEM), and the spatial Durbin model (SDM) [65]. The SLM model can be expressed
as follows.

Yit = ρ
n

∑
j=1

wijYit + β1REIit + ∑
j

ηjZ
j
it + µi + ξt + εit (10)

where Yit denotes PM2.5 concentrations in a city i at time t, and REIit denotes the amount
of real estate investment at the end of each year. ρ is the spatial regression coefficient;
Z denotes a set of control variables; µi and ξt are the spatial-specific effect and the time-
specific effect, respectively. εit is the random error term and wij is the spatial weight matrix.

When the model concerning the spatial dependence is reflected in the residuals, we
have the SEM, which can be expressed as follows.

Yit = β1REIit + ∑
j

ηjZ
j
it + µi + ξt+ϕit (11)

ϕit = λ
n

∑
j=1

Wij ϕit + εit (12)

where Yit denotes PM2.5 concentrations in a city i at time t, REIit denotes the amount of
real estate investment at the end of each year, η denotes the regression coefficient of control
variables, and Z denotes a set of control variables. ϕit represents the spatial autocorrelation
error term and λ represents the spatial autocorrelation coefficient of the error term.
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When the spatial correlation is presented in both the explained and explanatory
variables, we have the SDM, which can be expressed as follows.

Yit = ρ
n

∑
j=1

wijYit + REIitβ +
n

∑
j=1

wijREIjtγ + µi + ξt + εit (13)

where Yit represents PM2.5 concentrations in a city i at time t, and REIit represents the
amount of real estate investment at the end of each year; the first-order term and quadratic
term of the real estate investment amount REIit are considered in the model. Wij represents
the spatial geographic distance weight matrix of the element in row i and column j, β
represents a vector of regression coefficients, ui denotes the individual effect, and εit
denotes the random error term.

When considering lag factors in the SDM, the formula of the spatial Durbin lag model
(SDLM) is as follows:

yit = αyi,t−1 + θWyi,t−1 + ρ
N

∑
j=1

WijXjt + εit (14)

where yit represents PM2.5 concentrations in a city i at time t, θ represents the regression
coefficient of the explanatory variable, yi,t−1 represents the time lag term of PM2.5 concen-
trations, θWyi,t−1 represents the spatiotemporal lag term, and the other variables are the
same as the above.

To avoid the endogeneity among variables and consider the dynamic effects of time
and the influence of spatiotemporal diffusion, the SDM was extended into the static spatial
Durbin lag model (SSDLM) and dynamic spatial Durbin lag model (DSDLM). Moreover,
the likelihood ratio (LR) test and the Lagrange multiplier (LM) test were used to select a
suitable spatial model. The LM test is generally used for preliminary selection, and the LR
test is generally used for accurate selection, so the LR test is selected in this paper.

3.1.4. Descriptions of Variables

The outcome variable in this study is PM2.5 concentration. The core explanatory
variable is real estate investment (REI). There are two main methods to calculate REI in the
existing research. One is measured by the annual real estate investment of each province,
which has strong dynamic characteristics. The other is to use the perpetual inventory
method to examine the stock of REI, which is comprehensive and objective. According to
the relevant literature, when taking into account the dynamic changes and comprehensive
and objective characteristics of REI, the perpetual inventory method is used to calculate
REI; that is to say REI is measured by the accumulative amount of real estate investment
enterprises by the end of each year.

According to the relevant research, we selected some control variables. The control
variables are:

1© Energy consumption (ENER). It is expressed by the ratio of coal consumption to total
energy consumption. This indicator was selected because China’s energy consump-
tion structure is dominated by coal, but in the process of using coal, it will produce
large amounts of soot, micro-particles, and carbon dioxide, which in the long term
contributes to air pollution [66,67].

2© Research and development input (R&D). It is reflected by the proportion of actual
R&D investment to GDP. This indicator was selected because technological innovation
helps to reduce the air pollution [68,69].

3© Industrial structure (IND). It is expressed by the ratio of the added value of the sec-
ondary industry to GDP. This indicator was selected because industrial production
is one of the most important factors causing environmental pollution, and indus-
trial production activities will inevitably cause resource consumption and pollutant



Land 2021, 10, 518 7 of 21

emissions, but optimization and upgrading of industrial structure are conducive to
improving the environment [70,71].

4© Traffic volume (TRA). It is reflected by the highway passenger transport volume of
each province to investigate the influences of traffic factors on the PM2.5 concentra-
tions. It is reflected by the highway passenger transport volume of each province to
investigate the influence of traffic factors on the PM2.5 concentrations. This indica-
tor was selected because with rapid economic development and the improvement
of people’s living standards, the number and uses of cars have increased signifi-
cantly, and the large amount of vehicle emissions will aggravate the degree of air
pollution [72,73].

5© Per capita education level (EDU). It is expressed by the ratio of the number of educated
people multiply by the weighted total years of education to the total number of
educated. It is expressed by the ratio of the number of educated people multiply
by the weighted total years of education to the total number of educated. This
indicator was selected because human capital is an important indicator of a country
or region’s technological level. A higher level of education per capita will lead to
greater environmental awareness and more investment in technological research and
development, which in turn will help solve the region’s environmental problems [74].

6© Opening-up level (OPEN). It is measured by the proportion of foreign investment to
GDP. This indicator was selected because the level of opening up promotes economic
development, which has a certain impact on the environment. Existing studies
have shown that FDI directly contributes to the reduction of PM2.5, but indirectly
contributes to the increase of PM2.5 emissions [75,76].

7© Environmental regulation (REG). It is reflected by the proportion of investment in
environmental pollution control to GDP. This indicator was selected because its
purpose is to protect the environment and regulate all kinds of behaviors that pollute
the public environment. Effective environmental regulation policies can control and
prevent the expansion and growth of environmental pollution [77,78].

8© Per capita GDP (GDP). It represents the economic growth level in each province, and
it is measured by the GDP deflator, taking the year 2000 as the base period. To reduce
the heteroscedasticity of the data, all variables were adjusted with a natural logarithm,
and the missing data of some indexes were supplemented by the interpolation method.
This indicator was selected because the environmental Kuznets curve (EKC) proposes
that the relationship between per capita income and environmental pollution level
is an inverted U-shaped curve, which discusses the problem between economic
development and environmental pollution [79,80].

9© Population density (POP). It is expressed by the ratio of the population number of
each province to the area of each province. This indicator was selected because the
increase of population density is an important factor in the aggravation of PM2.5
concentrations. The increase of population density will promote the development of
urbanization and the consumption of resources and environment, thereby increasing
the PM2.5 concentrations. However, consumption of clean energy and public transport
services through the population can help reduce air pollution [81,82].

3.2. Data Sources

This paper was based on provincial panel data. Data for 30 Chinese provinces were
gathered from multiple sources at various time points from 1987 to 2017 (shown in Figure 1),
excluding Hong Kong, Macao, Taiwan, and Tibet. Data on PM2.5 concentrations were
obtained from the Center for International Earth Science Information Network (CIESIN)
and the China National Environmental Monitoring Centre (CNEM). The experiments
were run using ArcGIS software to adapt the raster data into the annual average PM2.5
concentration data of 30 provinces. Since no PM2.5 data were available before 2000, the
interpolation method to calculate the fitted value of PM2.5 from 1987 to 1999 was chosen for
analysis [83,84]. Data of the core explanatory variable were from the EPS database. Data
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of the above control variables were from the Chinese Statistical Yearbook (1988–2018), the
Chinese Energy Statistical Yearbook (1988–2018), the Chinese Transport Statistical Yearbook
(1988–2018), the Chinese Statistical Yearbook on Environment (1988–2018), and provincial
statistical yearbooks.
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4. Results and Discussion
4.1. Basic Empirical Results
4.1.1. Spatial Autocorrelation Test of PM2.5 Concentrations

As shown in Table 1, the global Moran’s I index and Geary’s C index were in the
range of 0 to 1 between 1987 and 2017. The global Moran’s I index was greater than
0 and fluctuated up and down around 0.2 in most years, passing the 5% significance
level in most years, and it was significant at the 10% level in a few years. The global
Moran’s I index was between 0 and 1, indicating that PM2.5 concentrations presented a
positive spatial agglomeration. The Geary’s C index was also significant at the 5% level
between 1987 and 2017, and was between 0 and 1, indicating that PM2.5 concentrations
were positively correlated globally. Therefore, there is a strong spatial correlation between
PM2.5 concentrations in 30 provinces of China between 1987 and 2017, and the spatiality of
PM2.5 concentrations cannot be ignored.

Then the log-likelihood ratio (LR) was adopted to test the results (Table 2), showing
that the SLM and the SEM were rejected at the 1% significance level, and it was appropriate
to choose the SDM as the research model. Therefore, the spatial econometric model was
used to obtain the unbiased estimator of the regression coefficient in this study.

Considering that PM2.5 concentrations in the provincial area are usually related to
PM2.5 concentrations in the previous phase, there is not only a spatial autocorrelation but
also temporal dynamic correlation and spatiotemporal effects of PM2.5 concentrations in
provincial areas. Therefore, the SLM was chosen in the final model, and the spatial Durbin
lag model (SDLM) was the final model.
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Table 1. Global spatial correlation test results.

Test Moran’s Geary’s C

Variables I E(I) SD(I) Z p-Value * C E(c) SD(c) Z p-Value *

1987 0.086 −0.034 0.076 1.593 0.056 0.829 1 0.093 −1.842 0.033
1988 0.087 −0.034 0.075 1.605 0.054 0.827 1 0.093 −1.856 0.032
1989 0.088 −0.034 0.075 1.62 0.053 0.825 1 0.093 −1.873 0.031
1990 0.089 −0.034 0.075 1.64 0.051 0.822 1 0.094 −1.895 0.029
1991 0.091 −0.034 0.075 1.666 0.048 0.819 1 0.094 −1.922 0.027
1992 0.093 −0.034 0.075 1.699 0.045 0.815 1 0.094 −1.959 0.025
1993 0.097 −0.034 0.075 1.745 0.041 0.81 1 0.095 −2.007 0.022
1994 0.101 −0.034 0.075 1.807 0.035 0.802 1 0.095 −2.074 0.019
1995 0.107 −0.034 0.075 1.896 0.029 0.793 1 0.096 −2.168 0.015
1996 0.117 −0.034 0.075 2.023 0.022 0.779 1 0.096 −2.305 0.011
1997 0.131 −0.034 0.075 2.208 0.014 0.759 1 0.096 −2.513 0.006
1998 0.152 −0.034 0.075 2.478 0.007 0.731 1 0.095 −2.836 0.002
1999 0.181 −0.034 0.076 2.85 0.002 0.693 1 0.092 −3.333 0
2000 0.218 −0.034 0.077 3.29 0.001 0.651 1 0.088 −3.984 0
2001 0.247 −0.034 0.077 3.649 0 0.624 1 0.086 −4.382 0
2002 0.212 −0.034 0.077 3.215 0.001 0.645 1 0.089 −4.007 0
2003 0.239 −0.034 0.076 3.602 0 0.65 1 0.091 −3.85 0
2004 0.177 −0.034 0.076 2.775 0.003 0.672 1 0.09 −3.632 0
2005 0.162 −0.034 0.076 2.567 0.005 0.702 1 0.089 −3.337 0
2006 0.225 −0.034 0.076 3.402 0 0.664 1 0.089 −3.77 0
2007 0.196 −0.034 0.076 3.015 0.001 0.678 1 0.089 −3.601 0
2008 0.171 −0.034 0.076 2.693 0.004 0.707 1 0.089 −3.298 0
2009 0.171 −0.034 0.076 2.704 0.003 0.714 1 0.09 −3.172 0.001
2010 0.166 −0.034 0.076 2.636 0.004 0.703 1 0.091 −3.273 0.001
2011 0.207 −0.034 0.077 3.139 0.001 0.687 1 0.087 −3.589 0
2012 0.164 −0.034 0.076 2.613 0.004 0.699 1 0.091 −3.298 0
2013 0.227 −0.034 0.077 3.392 0 0.682 1 0.087 −3.678 0
2014 0.18 −0.034 0.076 2.829 0.002 0.701 1 0.092 −3.255 0.001
2015 0.229 −0.034 0.076 3.457 0 0.68 1 0.09 −3.565 0
2016 0.246 −0.034 0.077 3.661 0 0.672 1 0.088 −3.726 0
2017 −0.034 0.077 1 0.087

Note: * means significant within 10%.

Table 2. Spatial model selection test.

Likelihood-ratio test LR chi2(11) = 193.22
(Assumption: slm nested in sdm) Prob > chi2 = 0.000

Likelihood-ratio test LR chi2(9) = 212.05
(Assumption: sem nested in sdm) Prob > chi2 = 0.000

4.1.2. Results of the SSDLM

The parameter estimation results of SSDLM based on PM2.5 concentrations are shown
in Table 3. In the table, columns (1) and (2) represent the results of random effects and fixed
effects of ordinary panel data, respectively; the columns (3) and (4) represent the results
of random effects and fixed effects of the SSDLM taking the spatial geographic distance
weight matrix, respectively. From the comparison of columns (1), (3), and (4), since the
spatial correlation of PM2.5 concentrations is not taken into account, the promotional effect
of real estate investment on PM2.5 concentrations would be overestimated by the ordinary
panel estimation.
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Table 3. Results of the SSDLM.

Explanatory Variables

PM SSDLM

(1) (2) (3) (4)

RE FE RE FE

lnREIit 0.409 *** 0.299 *** 0.360 *** 0.336 ***
(10.19) (5.30) (9.15) (8.79)

(lnREIit)2 −0.0484 *** −0.0485 *** −0.0445 *** −0.0341 ***
(−10.37) (−7.46) (−7.20) (−6.05)

lnENERit 0.0567 *** 0.0797 *** 0.0734 *** 0.0637 ***
(4.27) (5.24) (5.54) (5.00)

lnINDit −0.598 *** −0.346 *** −0.168 * −0.0173
(−7.97) (−3.70) (−1.90) (−0.21)

lnR&Dit 0.315 *** 0.110 −0.0526 −0.0593
(7.02) (1.56) (−1.25) (−1.43)

lnTRAit −0.130 *** −0.0879 −0.213 *** −0.226 ***
(−4.11) (−1.57) (−5.81) (−6.32)

lnEDUit −1.310 *** −1.157 *** −0.800 *** −0.882 ***
(−8.15) (−7.03) (−5.69) (−6.45)

lnOPENit −0.312 *** −0.0258 −0.0386 −0.0263
(−8.65) (−0.44) (−1.02) (−0.71)

lnREGit 0.0986 *** 0.0445 −0.0126 0.0111
(4.12) (1.22) (−0.54) (0.50)

lnGDPit 0.728 *** 0.880 *** −0.821 *** −0.913 ***
(11.91) (12.12) (−4.40) (−4.97)

lnPOPit −0.184 *** 2.633 *** 2.265 *** 3.359 ***
(−6.04) (8.36) (5.84) (11.14)

_cons 3.769 *** −17.72 *** −19.38 ***
(6.30) (−8.22) (−4.33)

ρ 0.390 *** 0.352 ***
(6.54) (5.79)

Log-likehood −849.547 −727.744
N 930 930 930 930

Note: *** means significant within 1%, and * means significant within 10%.

The sign and significance of the core explanatory variable tended to be consistent.
From the core explanatory variable, the coefficients of the first-order and quadratic terms
of the real estate investment showed a positive correlation and a negative correlation,
respectively, at the significance level of 1%, indicating that there was an inverted U-shaped
curve relationship between real estate investment and PM2.5 concentration at the national
level which followed the law of Kuznets curve (EKC). At the initial stage of real estate
investment, PM2.5 concentrations increased; however, with the real estate investment
increasing to a certain level, PM2.5 concentrations gradually reduced.

The coefficients of control variables showed that large-scale use of coal energy signifi-
cantly increased PM2.5 concentrations; mass use of public transportation was conducive to
reducing PM2.5 concentrations; improvements in education levels were helpful in raising
public awareness of environmental protection and reducing PM2.5 concentrations; im-
provement of economic development level also helped to reduce PM2.5 concentrations;
population density and PM2.5 concentrations had a significant positive correlation, and
scale effects of population agglomeration were far greater than agglomeration effects. Other
variables such as industrial structure, R&D level, and environmental regulation did not
show any significant correlations with PM2.5 concentrations.

Although the autoregressive coefficient ρ in Table 3 is significant, it is still necessary
to further investigate its direct effects, indirect effects, and total effects in the SSDLM (Xu,
2016). These results are summarized in the following Table 4.
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Table 4. Results of direct, indirect, and total effects under the SSDLM.

Explanatory
Variables Direct Effects Indirect Effects Total Effects

lnREIit 0.400 *** 1.886 *** 2.286 ***
(10.54) (10.36) (11.75)

(lnREIit)2 −0.038 *** −0.092 *** −0.130 ***
(−6.84) (−9.22) (−13.33)

lnENERit 0.079 *** 0.417 *** 0.496 ***
(6.43) (5.27) (5.94)

lnINDit 0.048 2.026 *** 2.074 ***
(0.58) (5.63) (5.08)

lnPOPit 3.421 *** 2.178 * 5.598 ***
(11.63) (1.90) (4.67)

lnR&Dit −0.0593 −0.0974 −0.157
(−1.41) (−0.50) (−0.76)

lnTRAit −0.217 *** 0.238 ** 0.020
(−5.88) (2.11) (0.16)

lnEDUit −0.721 *** 4.860 *** 4.139 ***
(−4.72) (4.47) (3.50)

lnOPENit −0.0310 −0.230 *** −0.261 ***
(−0.85) (−2.74) (−2.66)

lnREGit −0.0255 −1.111 *** −1.136 ***
(−1.05) (−7.21) (−6.68)

lnGDPit −0.921 *** −0.376 −1.297 ***
(−5.24) (−1.32) (−4.95)

Note: *** means significant within 1%, ** means significant within 5%, and * means significant within 10%.

In Table 4, the results show that from the static point of view: (i) The local real estate
investment not only affects local PM2.5 concentrations, but also affects neighborhood PM2.5
concentrations through spillover effects. (ii) The use of coal energy not only directly affects
the increase of PM2.5 concentrations in the local area, but also indirectly increases PM2.5
concentrations in the adjacent area. (iii) The industrialization level of the province would
increase PM2.5 concentrations of neighboring provinces through indirect effects. (iv) The
increase of population density not only directly affects PM2.5 concentrations in the local
area, but also has spillover effects on PM2.5 concentrations in the adjacent area. (v) The
research and development input and the opening-up level reduce PM2.5 concentrations in
the region and its neighboring provinces. (vi) The per capita education level reduces PM2.5
concentrations in the region, and its indirect effect is positive, indicating that accumulation
of talents in the region indirectly leads to decreasing PM2.5 concentrations in the neighbor-
ing provincial areas. The possible reason is that people with higher levels of education have
strong environmental awareness, and when they flow out from neighboring provinces, it
is not conducive to the reduction of PM2.5 concentrations in neighboring provinces. (vii)
The total amount of public transport and per capita GDP restrain the increase of PM2.5 con-
centrations in this region with the growth of the economy. (viii) Environmental regulation
restrains PM2.5 concentrations in neighboring provinces through indirect effects.

The above research results showed that the SSDLM studied the impact of real estate
investment on PM2.5 concentrations only from the spatial dimension, and there might be
bias because PM2.5 concentrations of a province were not only affected by the neighboring
provinces but also depended on the impact of the previous PM2.5 concentrations. Adding
the time lag term to the dynamic spatial panel model was helpful for verifying whether the
spatial autocorrelation of PM2.5 concentrations was significant. In addition, the SSDLM
only focused on the spatial differences of the real estate investment on PM2.5 concentrations
among different provinces at the same time point, while the dynamic spatial Durbin lag
model (DSDLM) could reflect the temporal differences of the real estate investment on
PM2.5 concentrations. PM2.5 concentrations are a dynamic and continuous environmental
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factor, and the DSDLM should be used to investigate spatial spillover effects of PM2.5
concentrations, so a DSDLM was constructed for further testing.

4.1.3. Results of the DSDLM

In Table 5, from the overall regression results of the dynamic model, the sign and
significance of the estimated results of the core explanatory variable tended to be consistent
under the spatial geographic distance weight matrix. From the explained variable, the time
lag term of PM2.5 concentrations showed a positive correlation at the 1% significance level,
indicating that PM2.5 concentrations had certain dynamic and continuous characteristics in
time; that is to say, if PM2.5 concentrations in the previous period were high, then PM2.5
concentrations in the later period was likely to rise. The time-space lag term of PM2.5
concentrations showed a negative correlation at a significance level of 1%, indicating that
previous PM2.5 concentrations in the neighboring provinces had an inhibitory effect on
local PM2.5 concentrations.

Table 5. Estimation results of the DSDLM.

Variables DSDLM Direct Effects Indirect Effects Total Effects

lnPM2.5(i,t−1) 0.941 ***
(161.99)

WlnPM2.5(i,t−1) −0.683 ***
(−19.28)

lnREIit 0.0220 *** 0.030 ** 0.145 0.175
(2.82) (2.56) (1.22) (1.36)

(lnREIit)2 −0.002 * −0.003 *** −0.014 * −0.016 **
(−1.92) (−2.73) (−1.94) (−2.20)

lnENERit −0.000 −0.004 −0.065 ** −0.069 **
(−0.16) (−1.10) (−2.22) (−2.17)

lnINDit 0.031 ** 0.039 ** 0.153 0.193
(2.10) (2.16) (1.19) (1.35)

lnR&Dit 0.012 * 0.011 −0.019 −0.007
(1.65) (1.21) (−0.23) (−0.09)

lnTRAit −0.021 *** −0.026 *** −0.102 ** −0.128 **
(−3.20) (−3.56) (−2.23) (−2.55)

lnEDUit 0.037 0.011 −0.573 −0.562
(1.46) (0.29) (−1.47) (−1.34)

lnOPENit −0.008 −0.010 −0.049 −0.060
(−0.83) (−1.02) (−0.88) (−1.00)

lnREGit −0.003 −0.010 −0.127 * −0.137 *
(−0.93) (−1.52) (−1.72) (−1.72)

lnGDPit 0.042 0.0460 0.013 0.059
(1.41) (1.49) (0.14) (0.60)

lnPOPit −0.095 * −0.070 0.575 0.504
(−1.70) (−1.17) (1.23) (1.02)

ρ 0.717 ***
(22.38)

Log-likelihood 905.6915
N 930

Note: *** means significant within 1%, ** means significant within 5%, and * means significant within 10%.

Under the spatial geographic distance weight matrix, the autocorrelation coefficient
ρ of PM2.5 concentrations was significant at the significance level of 1% and showed a
positive correlation—namely, PM2.5 concentrations showed a significant positive spatial
spillover effect, and PM2.5 concentration in a province was affected by the diffusion of
PM2.5 concentrations in neighboring provinces.
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The autocorrelation coefficient of the explained variable was larger than that of the
static model, which might because that explanatory variables of the DSDLM only con-
sidered the spatial correlation. However, in the DSDLM, when the time lag factor of
PM2.5 concentrations was separated from spatial correlation factors, the autocorrelation
coefficient value increased significantly and was significant at the significance level of
1%. This confirmed that the SSPDM ignored dynamic and continuous characteristics of
PM2.5 concentrations, leading to estimation bias of explanatory variables for the explained
variable.

From the level and significance of the time-lag term coefficient and changes in the
spatial autocorrelation coefficient, dynamic spatial panel modelling confirmed that PM2.5
concentrations were more affected by the time lag term, with the superposition effect being
greater than the spillover effect. At the same time, PM2.5 concentrations in China showed
characteristics of accumulation, intersection, and continuous evolution in the spatial and
temporal dimension.

Through the dynamic spatial econometric model, it was found that the real estate
investment had a significant impact on PM2.5 concentrations. The first-order and quadratic
coefficients of the real estate investment showed a positive correlation and a negative
correlation, respectively, at the significance level of 1%, meaning that there was an inverted
U-shaped curve relationship between the real estate investment and PM2.5 concentrations
at the national level, and when the real estate investment level reached a certain level,
PM2.5 concentrations would be reduced.

4.2. Robustness Test

From the coefficients of control variables, industrial structure (IND) and research and
development input (R&D) were positive at the significance level of 1%, which indicated
that these variables had positive impacts on PM2.5 concentrations; traffic volume (TRA)
and population density (POP) were negative at the significance levels of 1% and 10%,
respectively, which indicated that the development of population urbanization and the
increase of urban public transportation would reduce PM2.5 concentrations (Ehrhardt-
Martinez, 1998).

To ensure the robustness of spatial autocorrelation of PM2.5 concentrations, we con-
ducted the test by changing the spatial weight matrix. As shown in Table 6, in addition
to the spatial geographic distance weight matrix, the spatial economic distance weight
matrix and the spatial economic geographic distance weight matrix were also used in this
study. The results showed that most of the explained variable and the core explanatory
variable of the three models were all at the significance level of 1%, indicating that the
spatial geographic distance weight matrix model had good robustness. As mentioned
above, there were some differences in different models, and differences in other control
variables were not obvious.
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Table 6. Results of the robustness test.

Variables

Spatial Geographic
Distance Weight

Matrix

Spatial Economic
Distance Weight

Matrix

Spatial Economic
Geographic Distance

Weight Matrix

(1) (2) (3)

lnPM2.5(i,t−1) 0.941 *** 0.947 *** 0.941 ***
(161.99) (159.90) (158.67)

WlnPM2.5(i,t−1) −0.683 *** −0.654 *** −0.511 ***
(−19.28) (−13.61) (−3.18)

lnREIit 0.022 *** 0.016 * 0.042 ***
(2.82) (1.82) (6.04)

(lnREIit)2 −0.002 * −0.002 ** −0.009 ***
(−1.92) (−2.01) (−10.92)

lnENERit −0.000 −0.002 −0.004
(−0.16) (−0.84) (−1.25)

lnINDit 0.031 ** 0.022 0.072 ***
(2.10) (1.47) (4.24)

lnR&Dit 0.0123 * 0.008 0.024 ***
(1.65) (1.04) (2.78)

lnTRAit −0.021 *** −0.025 *** −0.033 ***
(−3.20) (−3.71) (−4.18)

lnEDUit 0.037 0.042 0.027
(1.46) (1.53) (0.93)

lnOPENit −0.008 −0.009 0.026 **
(−0.83) (−0.86) (2.37)

lnREGit −0.003 0.002 −0.003
(−0.93) (0.46) (−0.82)

lnGDPit 0.043 0.069 ** 0.046 ***
(1.41) (2.19) (3.46)

lnPOPit −0.095 * −0.124 ** −0.133 **
(−1.70) (−2.14) (−2.44)

ρ 0.717 *** 0.744 *** 0.267 ***
(22.38) (19.70) (2.78)

Log-likelihood 905.6915 873.4387 627.1621
Note: *** means significant within 1%, ** means significant within 5%, and * means significant within 10%.

4.3. Heterogeneity Test

The above research reveals characteristics of the spatial relationship between the real
estate investment and PM2.5 at the global level, so what are the characteristics locally?
Is there spatial heterogeneity? First of all, after adding a quadratic term for real estate
investment, the core explanatory variables of the three regions passed the significance test,
so they were reserved. The dynamic spatial Durbin lag model (DSDLM) was adopted in
this paper, and the results are shown in Table 6.

In Table 7, for the explanatory variables and the explained variable in different regions,
differences between the estimation results and significance are not obvious under the three
kinds of the spatial weight matrix, and they all had good robustness.
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Table 7. Estimation results of the regional heterogeneity.

Variable
Eastern Region Central Region Western Region

(1) (2) (3) (1) (2) (3) (1) (2) (3)

LnPM2.5(i,t−1) 1.004 *** 0.895 *** 0.957 *** 0.785 *** 1.195 *** 0.850 *** 1.373 *** 0.810 *** 1.402 ***
(61.01) (49.73) (50.92) (25.95) (47.92) (37.31) (90.45) (50.99) (95.41)

WlnPM2.5(i,t−1) −2.650 *** −1.201 *** −0.450 *** −0.493 *** −0.930 ** −0.545 *** −0.364 *** −2.266 *** −0.182 **
(−47.88) (−22.34) (−10.16) (−9.87) (−11.15) (−12.21) (−5.49) (−23.76) (−2.27)

lnREIit −0.285 *** −0.0235 −0.456 *** 0.064 * 0.248 *** 0.569 *** −0.674 *** −0.566 *** −0.135 ***
(−11.30) (−1.08) (−15.94) (1.71) (7.36) (9.88) (−31.78) (−33.01) (−9.95)

(lnREIit)2 −0.045 *** −0.089 *** −0.035 *** −0.007 * −0.05 *** −0.007 * 0.043 *** 0.035 *** 0.036 ***
(−17.42) (−37.85) (−13.37) (−1.71) (−14.81) (−1.68) (22.81) (18.13) (23.16)

ρ 1.426 *** 1.301 *** 0.537 *** 0.499 *** 2.741 *** 0.968 *** 2.617 *** 2.204 *** 0.279 ***
(30.10) (26.96) (12.52) (10.99) (40.67) (24.77) (40.71) (29.48) (3.22)

R-squared 0.004 *** 0.005 *** 0.008 *** 0.004 *** 0.001 ** 0.003 *** 0.003 *** 0.003 *** 0.006 ***
Control Yes Yes Yes Yes Yes Yes Yes Yes Yes

N 330 330 330 240 240 240 330 330 330

Note: *** means significant within 1%, ** means significant within 5%, and * means significant within 10%.

From the perspective of the explained variable, the dynamic and spatial effects of
PM2.5 concentrations were significant in the Eastern, Central, and Western Regions. The
spatial-temporal effects coefficients of the three regions were negative, and all passed the
significance test. The above results showed that there was no significant difference in
time between the path dependence and spatial spillover effects of PM2.5 concentrations
in the three regions, which showed that PM2.5 concentrations in different regions had
spatial convergence.

From the perspective of core explanatory variable, (i) the real estate investment and
its quadratic term coefficients in the Eastern Region both showed negative correlations
at the significance level of 1%, which indicated that there was a right tail for the inverted
U-shaped relationship between the real estate investment and PM2.5 concentrations in
the Eastern Region; (ii) the real estate investment and its quadratic term coefficients in
the Central Region showed a positive and negative correlation at the significance level of
1%, which indicated that there was a left tail for the inverted U-shaped curve relationship
between the real estate investment and PM2.5 concentrations in the Central Region; (iii) the
real estate investment and its quadratic term coefficients in the Western Region showed
a negative and positive correlation at the significance level of 1%, which indicated that
the marginal impact of real estate investment on PM2.5 concentrations was gradually
increasing, and the increasing relationship between the two was always relatively gentle.
However, it is worth noting that pollution caused by the real estate investment was in the
initial stage of the destruction of the ecological environment, and it would cause high cost
of environmental remediation in the transition stage. Thus, the Western Region should pay
attention to air pollution caused by industrial transfer from the Eastern and Central Region.

It was found that the impact of the real estate investment on PM2.5 concentrations
in the three regions of China had a certain differentiation, which verified the impact of
unbalanced regional development. Specifically, in recent years, with the improvement
of green environmental protection technology and environmental protection awareness,
the real estate investment in the Eastern Region paid more attention to the impact of
PM2.5 concentrations under the strict environmental standards; the results showed that
the Central Region tolerated the environmental pollution caused by real estate investment
when pursuing economic development, but when the economic development level reached
a certain level, it would improve the environmental protection standards, to alleviate the
impact of the real estate investment on PM2.5 concentrations; the results showed that to
pursue higher economic growth, the environmental impact of real estate investment in
the Western Region was easy to be ignored, at the cost of rising PM2.5 concentrations.
In general, the impact of real estate investment on regional PM2.5 concentrations had a
regular mechanism of decreasing and rising between the Eastern Region and the Central
and Western Region.
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4.4. Analysis of the Conduction Mechanism

The above results show that the impact of real estate investment on regional PM2.5
concentrations had characteristics of differential nature, complexity, stage, and dynamism.
Hence, what is the conduction mechanism of real estate investment to regional PM2.5
concentrations? Due to the incentive of financial demand, especially land financial de-
mand, local governments in China have a strong desire to promote the development of
land urbanization. The realization of land finance needs to introduce market-oriented
commercial real estate investment to obtain high land transfer fees. Considering that real
estate investment influences the process of urbanization, the land urbanization mechanism
is taken as the conduction mechanism of PM2.5 concentrations on the quality of urban
development for exploratory analysis in this paper. Specifically, land urbanization (LUR)
is calculated by the proportion of the built-up area to the total area of the administrative
region, and land urbanization is selected as the outcome variable, and the core explanatory
variable and control variables remain unchanged.

In general, under the three kinds of the spatial weight matrix, the signs and significance
of the variable estimation results in the whole province region were not much different,
and the results had good robustness. From the perspective of the explained variable,
land urbanization had obvious path dependence and spatial spillover effects, and the
spatial-temporal effects were more significant (Table 8).

Table 8. Estimation results of the conduction mechanism.

Explanatory
Variable

Explained Variable: Land Urbanization Explained Variable: PM2.5 Concentrations

(1) (2) (3) (1) (2) (3)

lnLURi,t−1 0.935 *** 0.934 *** 0.936 ***
(122.96) (122.90) (125.45)

WlnLURi,t−1 −0.149 ** −0.183 ** 0.091
(-2.52) (−2.10) (0.90)

lnREIit −0.001 −0.002 −0.005 *
(−0.54) (−0.71) (−1.86)

(lnREIit)2 0.000 0.000 0.001 ***
(0.91) (1.24) (3.17)

LnPM2.5(i,t−1) 0.929 *** 0.928 *** 0.944 ***
(199.04) (193.79) (197.78)

WlnPM2.5(i,t−1) −0.517 *** −0.669 *** −0.567 ***
(−16.66) (−16.99) (−14.50)

lnLURit 0.216 *** 0.132 *** 0.282 ***
(7.19) (3.75) (7.93)

(lnLURit)2 0.047 *** 0.029 *** 0.068 ***
(6.99) (3.64) (8.59)

ρ 0.158 *** 0.256 *** 0.141 *** 0.733 *** 0.770 *** 0.882 ***
(2.69) (3.08) (2.42) (23.63) (22.31) (25.43)

Control Yes Yes Yes Yes Yes Yes
R-squared 0.001 *** 0.001 *** 0.002 *** 0.005 *** 0.006 *** 0.006 ***

(21.89) (21.89) (21.92) (21.16) (21.54) (20.97)
N 900 900 900 900 900 900

Note: *** means significant within 1%, ** means significant within 5%, and * means significant within 10%.

From the perspective of core explanatory variable, real estate investment positively
promoted land urbanization, but the significance of its quadratic term coefficient did not
pass the robustness test.

When land urbanization was the core explanatory variable, in general, under the three
kinds of the spatial weight matrix, the signs and significance of the overall variable estima-
tion results were not significantly different, and the results had good robustness. From the
perspective of the explained variable, PM2.5 concentrations also had obvious path depen-
dence and spatial spillover effects at the national level, while the spatial-temporal effect was
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negative, which indicated that PM2.5 concentrations between neighboring provinces had a
certain inhibition. The time lag term of PM2.5 concentrations showed a positive correlation
at the significance level of 1%, indicating that the path dependence of PM2.5 concentrations
also held when land urbanization was taken as the core explanatory variable. From the
perspective of the core explanatory variable, land urbanization and its quadratic term
coefficient showed a positive correlation, and the coefficient had passed the significance
test of 1%, meaning that land urbanization was one of the main factors promoting provin-
cial PM2.5 concentrations. The process of land urbanization is often accompanied by a
large amount of environmental pollution, which has a negative impact on the real estate
investment, leading to impacts of real estate investment on land urbanization and PM2.5
concentrations at the national level.

5. Conclusions and Policy Implications

Based on the panel data of 30 provinces in China from 1987 to 2017, the DSDLM
was used to analyze the impact of the real estate investment on PM2.5 concentrations by
utilizing three kinds of spatial weight matrix. The main conclusions are as follows: (i) At
the national level, there is an inverted U-shaped curve relationship between real estate
investment and PM2.5 concentrations, and a weak U-shaped curve relationship between the
real estate investment and the land urbanization: the impacts of the real estate investment
on the land urbanization and PM2.5 concentrations first increase and then decrease over
the period of analysis. (ii) The impact of the real estate investment on PM2.5 concentrations
shifts at the regional level; there is an inverted U-shaped curve relationship between real
estate investment and PM2.5 concentrations in the Eastern and Central Regions, which
shows that PM2.5 concentrations increased first and then decreased with the increase of
the real estate investment. PM2.5 concentrations decreased first and then increased with
the increase of the real estate investment in the Western Region. (iii) Population density
and the use of public transport promotes a reduction of provincial PM2.5 concentrations,
and the real estate investment driving GDP growth will hinder reduction of provincial
PM2.5 concentrations. From the perspective of dynamic development, the argument that
governments should pay more attention to the quality of GDP development and its impact
on provincial PM2.5 concentrations has no statistically significant robustness. It can be seen
that the national change of U shape could be related with environmental regulation and
policy, and the regional differences could be related to wind stagnation and heat convection
in the urban settings.

Therefore, real estate investment does have a significant impact on PM2.5 concentra-
tions in Chinese regions. We argue that to tackle the problems that result from haze, it
is necessary to take urgent action in three areas: increasing regional-level coordination,
focusing on population rather than land urbanization, and creating green transport systems.
These form the basis of the following policy recommendations arising from this study.

Firstly, a unified PM2.5 monitoring platform among regions should be established
to strengthen the coordination and linkages among provinces to tackle environmental
pollution and haze. The results show that the impact of real estate investment on PM2.5 con-
centration has negative neighborhood spatial spillover effects, mainly generated through
the channels of population attraction, talents attraction, and driving the high energy con-
sumption and high pollution real estate related industries in the surrounding areas. In
addition, relevant policies and measures should be formulated to guide high energy con-
sumption and high-pollution industries driven by the real estate investment to regional
geographic agglomeration, and alleviate and reduce PM2.5 concentrations by improving
resource allocation efficiency and technological progress.

Secondly, development quality of population urbanization rather than land urbaniza-
tion should be paid more attention to, and it is necessary to reduce land waste and save
the land. The real estate investment should take on enhancing the bearing capacity of the
surrounding cities, strengthening infrastructure, and improving the level of the public
services as the development directions, and finally improve the population absorption
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capacity of the surrounding small and medium-sized cities, and reduce the negative impact
of the real estate investment on the ecological environment as much as possible.

Finally, speeding up the construction of green cities and building green transportation
systems and green town systems would help reduce PM2.5 concentrations resulting from
transport. Thinking sustainably about real estate investments to improve air quality in
Chinese regions also requires a focus on reducing pollution resulting from rising car
usage. Relevant studies show that increasing urban green spaces and implementing
sustainable public transport systems can effectively reduce PM2.5 concentrations, and that
different green space coverage levels of urban green space have different effects on reducing
atmospheric particulate matter [85,86], hence the need for multidimensional approaches to
reducing PM2.5 concentrations overall.
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