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Abstract: The aim of the present investigation was to assess if a mobile electroencephalography (EEG)
setup can be used to track mental workload, which is an important aspect of learning performance
and motivation and may thus represent a valuable source of information in the evaluation of cognitive
training approaches. Twenty five healthy subjects performed a three-level N-back test using a fully
mobile setup including tablet-based presentation of the task and EEG data collection with a self-
mounted mobile EEG device at two assessment time points. A two-fold analysis approach was
chosen including a standard analysis of variance and an artificial neural network to distinguish the
levels of cognitive load. Our findings indicate that the setup is feasible for detecting changes in
cognitive load, as reflected by alterations across lobes in different frequency bands. In particular, we
observed a decrease of occipital alpha and an increase in frontal, parietal and occipital theta with
increasing cognitive load. The most distinct levels of cognitive load could be discriminated by the
integrated machine learning models with an accuracy of 86%.

Keywords: mHealth; EEG; N-back; cognitive effort; wearable

1. Introduction

Research and technological advances of the last several decades have led to an in-
creased awareness of the importance of personalized approaches to human medical care
and wellbeing. In the domain of mental health, data-driven individualized feedback is
cautiously being integrated to support diagnosis and the development of personal treat-
ment schemes. Mental health apps are a promising approach to collecting data at several
time points with minimal distortion of the everyday life routines of the participant. How-
ever, empirical support is often lacking (see review [1]) as many applications are limited
to self-reported data. While such data is an important source of information, it may be
distorted by interoceptive ability and social desirability biases. In addition, many psychi-
atric disorders are underpinned by alterations on the neural level that cannot be captured
by self-reporting measures but may represent a valuable source of information for the
development and evaluation of treatment schemes. For example, electrophysiological data
such as electroencephalography (EEG) and electrocardiography (ECG) have been used to
generate information on the emotional state [2] or the stress level of an individual [3] as
well as for diagnostic purposes and the evaluation of treatment progression [4].

In particular, EEG measurements are a promising indicator of mental workload [5]
which is a general term describing the relationship between the task demands and mental
resources needed to be employed to complete a task. The actual workload is related to
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several aspects including task demands and working memory capacity. In an attempt to
classify workload, Hogervorst and colleagues [5] compared the performance of several
physiological markers, including skin conductance, respiration, ECG, pupil size, eye blinks,
and EEG while inducing different levels of workload with an N-back task. According
to the authors, classification of workload was best for the EEG data. Importantly, the
performance of the classification did not significantly improve upon combining different
features. In previous studies, cognitive load has been associated with variations in different
EEG frequency bands. Most consistently, changes in the alpha and theta frequency bands
have been reported in response to different levels of workload [6–8]. For example, alpha
power has been shown to increase during rest, i.e., when mental load is low [6]. Upon
intensification of mental workload, alpha power has been shown to decrease [9]. The
opposite response pattern can be observed for theta frequency bands, which show an
increase with rising mental effort [10].

Thus, EEG-informed assessment of mental workload may provide a feasible solution
for the objective evaluation of task difficulty. This is highly relevant to many practical
applications, including safety assessment in the context of driver or pilot fatigue [11,12] and
working efficiency or learning [13]. In a clinical context, objective measures of workload
could access the success of cognitive trainings, which are promising for the betterment of
brain injury or stroke survivors [14,15], as well as for patients with mental disorders [16].
An objective and easy to measure physiological marker for brain function improvement
could support clinical decision making by providing additional information on the effi-
cacy of treatment options and hence, information that is important in the context of the
start or termination of the therapy. In addition, deriving objective markers for cognitive
load could be used to develop adaptive training protocols, thereby increasing training
efficiency and creating individually tailored training protocols without the necessity for
human monitoring. This is important since two essential problems are associated with
self-monitoring of cognitive load. Firstly, the user needs to have an adequate interoceptive
awareness of the mental effort needed for the task. Secondly, the monitoring necessitates a
dual-task performance (i.e., completing the task and monitoring cognitive workload) that
will require additional cognitive resources and hence may reduce task performance and
learning [13]. Flexible adjustment of the training based on an objective marker of mental
effort may enhance training performance by preventing excessive demands on the patients
that may decrease motivation.

So far, research has mostly implemented clinical or research-grade EEG devices to
measure brain function in healthy individuals and patients. While these devices offer
advantages in terms of high signal quality, their setup is time consuming and cannot
be used in home-care scenarios. To realize an implementation of personalized care in
daily medical routines that extends beyond health care in hospitals, facilitation of use
of the devices, an optimal cost-benefit association, and time-efficiency are essential. The
development of mobile sensors provides the possibility to perform measurements quickly,
easily, and without the necessity of visiting a medical facility, thus promoting the expansion
of health-care options in the natural settings of the patients. For example, Hussain and
Park [17] proposed a set-up with mobile EEG built into a sleeping mask for ischemic stroke
patients’ monitoring, employing machine learning algorithms for group classification. In
another work, Murphy et al. [18] used machine-learning on dry-electrode EEG data to track
cognitive aging.

In this project, we aimed to determine the potential of a mobile EEG device to detect
changes in electrical brain activity based on cognitive load. In order to achieve this goal, we
implemented a fully mobile setup consisting of a mobile EEG device connected to a tablet to
execute the cognitive performance task. In line with previous investigations, we expected
to observe frequency band changes, particularly a reduction in alpha and an increase in
theta band power depending on cognitive load, as measured by a modified version of
the N-back task. To create a comprehensive display of the data, we combined a statistical
approach with a machine learning-based condition classification. Furthermore, we wanted
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to assess the usability of the setup by the participants to evaluate if its self-responsible use
in daily life is feasible.

The current investigation contributes to our understanding of the applicability of
mobile EEG devices in the context of the assessment of cognitive load. This aspect is of
high importance since it may serve as a starting point for various applications in daily life
such as the development of an assistive tool for cognitive trainings in patients to monitor
and flexibly adapt the difficulty level of the training. In the following, we will describe the
experimental set-up (tasks, hard- and software), the two-fold analysis approach (standard
analysis of variance and the artificial neural network), and the findings on the feasibility of
our set-up and user experience.

2. Materials and Methods
2.1. Participants

Twenty-five healthy volunteers participated in this monocentric prospective study.
One participant was excluded from data analysis based on the results of the clinical
interview resulting in a final sample for data analysis of 24 (age in years: 24.4 ± 3.3;
17 female; see Table 1). All participants were recruited by advertisement at the RWTH
Aachen University Hospital, native German speakers and right-handed according to the
Edinburgh Handedness Inventory with the exception of one individual. All participants
had normal or corrected-to-normal vision. Inclusion criteria were age between 18–65 years,
voluntary participation and ability to consent; severe psychiatric disorders and epilepsy
served as exclusion criteria. To objectify the criterion “severe psychiatric disorder” the
screening of the German version of the Structured Clinical Interview for assessment of
DSM-IV-TR criteria [19] was performed by medically trained personnel. According to the
interview, participants had no history of or current psychiatric disorder. All participants
gave their written informed consent prior to inclusion in the study and received 20 € as
compensation for their participation. The study was submitted to and approved by the
local ethics committee of the Faculty of Medicine of the RWTH Aachen University (EK
284/18). The pre-registration at the German clinical trial register (Deutsches Register
klinischer Studien, DRKS00016150) comprised the hypothesized theta and alpha effects as
primary outcome. Analysis of the P300 component will be reported at a later time point.

Table 1. Descriptive statistics.

M SD Min Max Range

Education 15.8 2.6 13 21 8
Education father * 15.2 3.3 9 18 9

Education mother * 14.7 3.4 9 21 12
Digit span forwards 8.2 1.9 5 12 7

Digit span backwards 6.8 1.4 5 11 6
Verbal intelligence (WST) 102.5 8.1 89 118 29

System Usability Scale (SUS) 79.6 11.2 57.5 95.0 37.5

Notes. N = 24. * one missing data point, n = 23.

Prior to the start of the main study, the technical setup was tested on the researchers
to prevent unexpected failure of hardware or software components as well as to check the
overall experimental flow.

2.2. Experimental Setup
2.2.1. Experimental Procedure

Participants were invited to the lab on two days (see Figure 1). The two measurement
days were separated by at least one week, but not more than two weeks. Measurements
took place at the same time of day for each participant individually; however, measurement
times between participants varied. On day 1, the diagnostic screening took place and
sociodemographic data was acquired. All participants completed two neuropsychological
measures: a verbal intelligence test (Wortschatztest—WST, [20]) and a working memory
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test (digit-span task). Furthermore, the German version of the Positive and Negative Affect
Scale (PANAS, [21]) was administered to assess the affective state of the participants. In
order to investigate the usability of the device, participants had to complete the Technology
Usage Inventory (TUI-II, [22]). On day 1, two subscales of this inventory were selected: (a)
technology anxiety and (b) curiosity. After completion of the questionnaires, all participants
received a verbal explanation on the setup of the mobile EEG device. Subsequently,
subjects were asked to independently use the device under the guidance of a simplistic user
manual with illustrations of the application of the device. At this stage of the experiment,
participants received help from the investigator if they were not able to place the electrodes
adequately themselves to ensure a sufficient signal-to-noise ratio.
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Figure 1. Study protocol. Participants completed two lab visits. On day 1 they received a diagnostic screening and
neuropsychological assessment, and had to fill in the pre-assessment of the usability questionnaire. On day 1 and day 2,
participants completed the PANAS to assess the affective state prior to and after the EEG recordings. Prior to the start of the
cognitive tasks, participants received standardized instructions for the setup of the mobile EEG device. After successful
application, a fixation cross was displayed and participants were instructed to keep eyes open, followed by two minutes
of rest with eyes closed. Afterwards, participants completed the N-back task with three difficulty levels (presented in
randomized order) and the Go/No-go task. On day 2 only, participants filled in the TUI-II-post questionnaire and the
System Usability Scale after completion of the tasks.

The EEG measurements started with a baseline recording which included fixating
on a cross for 2 min, resting with closed eyes for 2 min, and tapping on the screen ten
times. After the baseline measurement, the N-back task was performed, followed by a
Go/No-go task. Analysis of the data from the Go/No-go task was not in the focus of the
current manuscript. Prior to starting the Go/No-go task, the investigator ensured that
the electrode setup was still functional. If a malfunction was detected, the EEG setup was
corrected. After the EEG measurement the PANAS was administered a second time to
evaluate changes in the affective state. In line with the work of Brouwer and colleagues [7],
the current investigation focuses on data of the N-back task as a measure of cognitive load
and data quality only.

Day 1 and day 2 were constructed in exactly the same way with exception to the
questionnaires. On day 2, only the PANAS questionnaire was administered prior to and
after the measurement as well as the post evaluation of the TUI-II including the subscales
‘skepticism’, ‘interest’, ‘accessibility’, ‘user-friendliness’, and ‘usefulness’. In addition, all
subjects completed the System Usability Scale (SUS, [23]).

2.2.2. Hardware

In the present study, we used a consumer grade EEG device, namely the Emotiv Epoc+
with sampling rate of 128 Hz (EMOTIV Inc., San Francisco, CA, USA). One of the reasons
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to use this device is its relatively large brain area coverage (14 electrodes, located bilaterally
over the occipital lobe (2), temporal lobes (2), parietal lobe (2), and frontal lobe (8); see
Figure 2A). It is important to note that the rigid plastic frame determines the position of
the individual electrodes. This is compensated by the fact that the saline solution-based
electrodes and wireless construction allow for a very fast and easy mounting, which can be
used independently by participants who are naive to the method. Importantly, the Emotiv
Epoc has been validated for a variety of research purposes [24], including an investigation
on simultaneous collection of mobile EEG and clinical EEG on patients with epilepsy.
Results of those studies indicate lower signal-to-noise ratio in the data from the mobile
device compared to clinical-grade devices, and limited brain coverage [25]. However, the
quality of the data from the Emotiv Epoc recordings had adequate quality to track epilepti-
form discharges [26], specific ERP (event-related potentials) changes [24,25], and frequency
domain fluctuations [27], rendering it a promising candidate for the current investigation.
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Figure 2. (A) Electrode placement. The figure depicts electrodes that are covered by the Emotiv Epoc mobile EEG device.
Frontal electrodes are depicted in blue (n = 8), temporal electrodes in green (n = 2), parietal electrodes in yellow (n = 2) and
occipital electrodes in red (n = 2). (B) Mobile setup. Display of the mobile EEG device and the tablet that was used for
stimulus presentation. The figure illustrates an example of the N-back task. Participants were instructed to press the ‘button’
(visible on the lower part of the tablet screen) upon detection of a target stimulus. The rectangular button covered an area of
172 mm × 20 mm.

The mobile EEG device was connected to an Android tablet (Sony Xperia Z2) via
Bluetooth. Since the primary goal was to create a fully mobile setup, we decided to
use a tablet as a display medium. In addition, the tablet is beneficial in terms of the
facilitation of use. We implemented simplistic graphic design choices that allow for an
easy navigation through the experiments and control via tapping on the screen. To ensure
similar distances to the display screen across participants and fast reactions, the tablet was
placed on a bracket. The screen of the tablet had a size of 295.8 cm2 with a resolution of
1920 × 1200 pixels (16:10 ratio, ~224 ppi density).

2.2.3. Software

A custom application developed for Android 6.0 API 23 (Marshmallow) was used for
the connection to the mobile EEG. Data recording was performed in the background while
the experiment interface was presented. Experiment data, such as stimuli types and task
descriptions, were read from an XML format. During experiments, tasks were presented
visually and button presses were recorded. The area that was sensitive to the ‘button press’
of the participants was defined as a rectangular Android button of size 172 mm × 20 mm.
Visualization of the “pressed button” served as a feedback to the subject to avoid multiple
responses to a single stimulus. Event information in discrete time steps were stored in
the European Data Format (EDF) with a resolution of 128 Hz (one sample equals 7.81 ms).
With a stimulus onset interval of 1600 ms, the actual measured time between stimuli was
on average 1599.36 ms with a standard deviation of 9.74 ms. Response times were recorded
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with the timestamp provided by the Android system’s clock. Impedance values were
regularly collected during the recording for each channel and added to the EDF data files.

2.2.4. N-Back Task

An N-back task with three difficulty levels but identical stimuli and target rates was
implemented to manipulate cognitive load (see Figure 3). The task design was adapted
from Mathiak and colleagues [28]: A sequence of 150 black digits (font: Roboto, height:
16.2 mm) was presented to the participants in each condition on a grey background in full
screen mode (Figure 2B). One third of these digits (n = 50) were targets in each condition.
The presented digits (1 through 8) were shown for 1600 ms each, and immediately followed
by the next digit resulting in a total duration of 4 min for each condition. Participants were
instructed to respond as fast and accurately as possible. In the first condition ‘zero-back’
(difficulty level 1, L1) participants had to press a button each time the digit “1” was shown.
In the second condition ‘three-even’ (difficulty level 2, L2) participants were instructed
to press a button whenever three consecutive digits were even. In the third condition
‘two-back’ (difficulty level 3, L3) the participants were asked to press a button whenever
the presented digit was identical to the second to last digit.
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Figure 3. Illustration of the three difficulty levels of the N-back task. Participants were instructed to press a button as fast as
possible whenever a target appeared. Each condition contained 150 stimuli (50 targets) that appeared on the screen for 1600
ms each. (A) Participants were instructed to press a button whenever the digit ‘1’ appeared on the screen. (B) Participants
had to press a button when three digits in a row were even. (C) Participants were asked to press a button when the digit
was identical to the second to last digit.

Two independently pseudo-randomized versions of each condition were created
(version A & B). The versions were constructed in a parallel way, i.e., the same amount
of stimuli and targets. However, the randomization of digits differed between conditions.
Randomization of the digits was performed with the constraint that the same number is
not shown twice in a row and with a defined target rate of 33%. Half of the participants
completed version A on day 1 and version B on day 2, and the other half completed both
versions in reversed order. Furthermore, the order in which the three conditions were
presented was randomized for each participant. At the beginning of each condition the
participants were asked to focus on a fixation cross presented in the middle of the screen
for 1 min. This period formed the baseline for EEG analyzes (L0).

2.3. Data Analysis
2.3.1. Software

Data preprocessing and feature extraction was performed using MATLAB 2019a
(The Mathworks, Natick, MA, USA) and EEGLAB 2019 [29]. Statistical analysis was
conducted using the Statistical Package for the Social Science (SPSS) software, version
25 (IBM, Armonk, NY, USA).

2.3.2. Behavioral Data

To validate the difficulty levels of the N-back task in the present sample, average
response times for each condition across days were calculated and subjected to repeated
measures ANOVA with the within-subject factor condition [L1, L2, L3]. Paired sample
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t-tests were carried out for post hoc evaluations. To further quantify the performance and
minimize biases due to non-adherence to task instructions (e.g., randomly pressing the
button), we calculated the ‘fraction correct’ as a measure of accuracy such as proposed by
Brouwer and colleagues [7] as the number of correct responses divided by the total number
of stimuli. In parallel to the reaction time task, the ‘fraction correct’ data was subjected to a
repeated-measures ANOVA with the within-subjects factor condition [L1, L2, L3].

To assess usability of the setup, this study applied the SUS; the composite score was
established according to [23] by calculating the sum of the scores for each individual item
and multiplying the sum by 2.5. Items were rated on a five-point Likert scale. This proce-
dure results in a composite score ranging between 0 and 100. In addition, the composite
score of the TUI-II was used to evaluate usability of the device [22]. Items were rated on a
seven-point Likert scale.

2.3.3. EEG Data Preprocessing

The implemented preprocessing pipeline can be separated into six consecutive steps
(see Figure 4): (1) band pass filtering, (2) automatic channel removal, (3) epoch extraction,
(4) automatic epoch removal, (5) extraction of scaled power for each frequency band, and
(6) rejection of outliers in band power. Mobile EEG has been shown to have a lower
signal-to-noise ratio compared to clinical grade devices [26], and therefore it is particularly
important to track the amount of the removed data. Accordingly, we collected the respective
statistics on each preprocessing step.
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1. Filtering. Previous research [27] established optimized frequency filtering for the
Emotiv Epoc at a 128 Hz sampling rate including a high-pass filter at 1 Hz and a
low-pass filter at 40 Hz. Implementing of high-pass filtering as a first step in the
preprocessing pipeline is of particular importance, as the unfiltered slow drift is
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heavily represented in the data. The chosen level of the low-pass filter ensures the
removal of the power line.

2. Corrupted channels removal. The standard EEGLAB function (pop_rejchan) was
used to remove the complete corrupted channels based on their normalized kurtosis.

3. Epoch extraction. The filtered data was divided into epochs, covering a 1500 ms period
after the stimulus presentation [30]. The resting state data, recorded during a fixation
cross presentation on the screen while participants were assigned no specific task,
were cut into 1500 ms segments and served as a baseline condition. The following
information was additionally stored for each epoch: (1) target or non-target stimulus
and (2) response exhibition prior to the next stimulus display.

4. Removal of abnormal epochs. EEGLAB kurtosis-based deviation detection func-
tion was used to remove epochs with artefacts. The epochs with an absolute am-
plitude above 1500 or impedance below 100 (internal device-specific units) were
removed subsequently.

5. Relative band powers extraction. Power measures for the EEG bands were extracted
for each epoch using the following boundaries [31]: delta (1–3.5 Hz), theta (3.5–7.5 Hz),
alpha (7.5–12.5 Hz), and beta (12.5–30 Hz). The resulting values were further log-
arithmically scaled [32] to improve the power distributions across the bands and
normalized by the similarly scaled and averaged full band (1–40 Hz) power dur-
ing the baseline condition L0. Normalization was performed separately for each
participant and each day.

6. Band power threshold. Epochs with any relative frequency band value exceeding the
threshold of 1.3 were removed.

In this work, we did not specifically handle EMG (electromyography), ECG (electro-
cardiography), or EOG (electrooculography) artifacts. The most prominent contaminations
caused by those artifacts are removed through frequency filtering, removal of abnormal
epochs, or by power band threshold.

2.3.4. Statistical Analysis

The statistical analysis was performed to investigate differences in the logarithmic
band power between conditions, taking into account the inter-personal and inter-session
variations. The preprocessed data was averaged across records to prevent artificially
improved results due to the high number of epochs within the same (subject, day, condition,
electrode) combination, which cannot be treated as independent entries. In addition, the
data was averaged across the brain lobes (see Figure 2A). The EEG data was analyzed
using a repeated measures ANOVA with the within-subject factors condition [L0, L1, L2,
L3], where L0 reflects the baseline, Frequency Band [delta, theta, alpha, beta], Lobe [Frontal,
Parietal, Temporal, Occipital], and Day [Day 1, Day 2]. Our results are obtained on the data
which includes all epochs, without separation into the target versus nontarget stimuli or
response correctness.

2.3.5. Machine Learning

In this paper, we applied artificial neural networks (ANN) to classify the experimental
conditions. The ANN approach proved to be efficient in EEG applications, in particular,
when combined with spectral features such as frequency bands or wavelets [33]. Standard
feed-forward shallow networks, as implemented in MATLAB 2019a, were used. The
classification solution can be presented as three steps: (1) data division, (2) optimization
of the ANN architecture, and (3) averaging across randomizations to improve model
robustness. This separation should highlight the high number of degrees of freedom which
needed to be addressed before the final parameter choices were made.

1. Train/test data division. We expected high data variation in this data set. Therefore,
we tested four different approaches regarding the data division into test and training
sets. Firstly, participants were randomly divided into three groups of 16, 4, and
4 individuals each and the corresponding data was used as training, validation, and
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test sets, respectively. The validation set served parameter adjustment purposes to
avoid that the parameters are optimized to perform best on the test set only. Subject-
wise data division is the most desirable for the potential applications as it allows us to
work with the new participants’ data without personal calibration. Secondly, all data
from day 1 was used as a training set, the first half of the day 2 data as a validation set,
and the second half of day 2 as a test set. This approach reflects a situation in which
personal calibration is required, but further new input from the same person can be
analyzed directly. Next, all data from day 1 and first half of the day 2 data served as a
training test. The last part of day 2 was divided into 2 equal parts for validation and
test. Lastly, a leave-one-out approach was explored once the parameter optimization
was finished. This allowed us to use more data for the training of the model and to
investigate how promising it would be to skip personal calibration if more training
data becomes available.

2. Optimization of the ANN architecture (see Figure 5). Our initial input vector size
equals to 4 (number of the used frequency bands) × 14 (number of channels) = 56.
We performed a consecutive search through the combinations of 1 to 3 layers as well
as with 1, 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, and 90 nodes (same for each layer).
The network output was a vector of size 2, which assigned the input data to one
of the two classes. By default those classes were difficulty level 0 (L0) and 3 (L3).
The network architecture with the best accuracy in differentiation between those
two classes was chosen for further experiments. It is important to note that the data
was being permuted before entering the ANN structure in order to optimize the
training process.

3. Averaging across multiple randomizations. To control for the effect of the initial
weight randomization of ANNs, training in every architecture setup step was re-
peated 30 times and the results were averaged. After the optimal network size was
fixed, 10 instances of the ANN were trained on the train set to create a voting sys-
tem. This way, potentially large fluctuations of the results due to the initial weight
randomization were smoothened to obtain more robust results.
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3. Results
3.1. Behavioral Data
3.1.1. Reaction Time Data

The repeated measures ANOVA with the factor Condition [L1, L2, L3] revealed a
significant main effect (F(2,46) = 12.78, p < 0.001, ηp

2 = 0.357; see Figure 6). Post hoc paired
t-test for each pair of conditions (i.e., L1 vs. L2, L1 vs. L3, L2 vs. L3) were calculated.
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Results indicate a significant difference between L1 and L2 (t(23) = −3.95, p = 0.001) and L1
and L3 (t(23) = −5.22, p < 0.001). No significant difference was detected between L2 and L3
(t(23) = −1.01, p > 0.2). On average, reaction times were 596.9 ms (±59.4 ms) for condition
1, 656.9 ms (±95.6 ms) for condition 2, and 675.4 ms (±59.4 ms) for condition 3.
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3.1.2. Accuracy of Responses

The ‘fraction correct’ (FC; i.e., the number of correct responses in comparison to all
responses) was calculated across days and entered repeated measures ANOVA with the
factor condition. The main effect was significant (F(2,46) = 41.26, p < 0.001, ηp2 = 0.642).
Post hoc paired samples t-tests revealed a significant difference between all conditions
(L1 and L2: t(23) = 3.23, p < 0.005; L1 and L3: t(23) = 8.97, p < 0.001; L2 and L3: t(23) = 5.31,
p < 0.001). FC decreased across conditions—and hence with an increase in cognitive
load —with a mean FC of 0.998 (±0.003) in condition 1 (L1), 0.98 (±0.03) in condition
2 (L2) and 0.93 (±0.03) in condition 3 (L3). Accordingly, all participants performed above
chance level with FC scores of 0.88 and higher. The distribution of the data was skewed
to the left—in particular for L1. According to the Shapiro-Wilk test, the assumption of
normality was violated. However, based on a sufficiently large sample size and the relative
robustness of the repeated measures ANOVA and t-statistics against non-normality if the
other assumptions are met, we decided to report the results [34–36]. Four data points can
be considered outliers in L2 based on a criterion of ±3SD. These data points represented
individuals with a higher number of mistakes across conditions. Since the FC scores of
the respective individuals were still clearly above chance, we did not exclude them from
analysis. In addition, test-statistics were not heavily influenced by these values.

3.1.3. Usability

In the current investigation, participants indicated on average a SUS composite score
of 79.6 (±11.2) indicating subjectively perceived good usability [37]. Notably, more than
70% of the participants had a score higher than 80% (n = 17).
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According to the TUI-II, participants had low levels of anxiety with regard to testing
new technology (technology anxiety: 1.7 ± 0.63) and were curious to test it (curiosity:
4.2 ± 1.3) prior to the training. Upon completion of the training, participants indicated that
they have little skepticism with regard to the setup (2.1 ± 0.7) and had medium levels of
interest (5.2 ± 0.9), accessibility (4.5 ± 0.9), and usefulness (4.5 ± 1.0). The highest ratings
were obtained for user-friendliness (5.9 ± 0.9), indicating that participants experienced the
use of the mobile EEG setup as convenient.

3.2. EEG Data
3.2.1. Statistical Results

Results of the repeated measures ANOVA were organized by lobes to increase com-
prehensibility of the data. This approach was chosen due to high intra-lobe consistency of
the data. Importantly, eight electrodes represent the frontal lobes, whereas the parietal, tem-
poral, and occipital lobes are represented by two electrodes each. The repeated measures
ANOVA revealed a significant three-way interaction between Lobe, Band, and Condition
(F(27,594) = 14.42, p < 0.001) indicating band-specific effects. In addition, significant main
effects of Band (F(3,66) = 19.28, p < 0.001), Lobe (F(3,66) = 17.59, p < 0.001) and Condition
(F(3,66) = 5.15, p < 0.005) emerged. No significant effect for Day was found (F(1,22) = 0.49,
p > 0.4). To increase comprehensibility of the results, we grouped the findings by frequency
bands (see Figure 7 and Table A1 in the Appendix A).
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Figure 7. Marginal means with confidence intervals in three-factor ANOVA of power measures. The panels illustrate the
logarithmically scaled power measure in the different EEG frequency bands (A): theta, (B): delta, (C): alpha, (D): beta. On
the x-axis, the different conditions are mapped with increasing cognitive load (L0: baseline; L1: detection; L2: one-back; L3:
2-back). Data are averaged for electrodes over the four cerebral lobes (red: frontal; yellow: temporal; cyan: occipital; orange:
parietal). Stars in the same color highlight significant post hoc comparisons across conditions for the respective lobe (e.g., a
blue star on the line between L1 and L2 indicates a significant difference between these conditions for the frontal lobe with
* p < 0.01). The robust replication of the primary hypotheses using the mobile technology can be observed as: increase of
frontal theta (red curve and stars in Panel A) and occipital alpha (blue in Panel C) with increasing cognitive load (from L0 to
L4) decreased with higher cognitive load. Further, a similar pattern emerges for the delta band and potentially the beta
band as well. * p < 0.01, a.u.: arbitrary unit.
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Post hoc t-tests confirmed an increase of frontal theta relative band power for all
comparisons between conditions apart from L1L2 (p < 0.01). For occipital and parietal theta,
comparisons between baseline L0 and L2/L3 revealed significant differences (p < 0.01). In
addition, occipital alpha relative band power was significantly reduced for the comparisons
between L1 and L2/L3 (p < 0.01).

In addition, we explored the relative power in beta and delta frequency bands. Sig-
nificant differences emerged for frontal delta (all comparisons apart from L2–L3; p < 0.01)
and occipital delta (all comparisons apart from L1–L2 and L2–L3; p < 0.01). For parietal
delta only the comparison between baseline L0 and L2/L3 revealed significant differences
(p < 0.01). Overall, relative delta frequency band power increased with task difficulty. For
parietal beta, significant differences were found for L0–L3 and L1–L3 (p < 0.01; see Table A1
in the Appendix A), reflecting an increase of relative band power with task difficulty.

In summary, we could confirm the pre-registered primary endpoints in terms of a
reduction of occipital alpha and an increase of frontal theta with increasing cognitive load.
Effects similar to the theta band emerged in the delta and—to a lesser extent—in the beta
frequency domains.

3.2.2. Classification of the Conditions with Machine Learning
ANN Optimization for Different Data Division Setups

To investigate the fitting properties of ANN, we tested different network architectures
(number of layers and nodes) for 56 features (4 bands, 14 electrodes) and the 3 different
options of the data division (random participant assignment, first day only chosen as a
train set, half of the second day added to the train set). Only very small differences emerged
between different architectures, which may be attributed to efficient internal MATLAB
optimization algorithms. The differences between versions of train and test data separation
were more substantial and in line with our expectations. Namely, the optimal result in
accuracy (86.24%) was achieved using 1.5 days of the experiment as a train set for the
remaining 0.5 day as test set.

Performance in Different Recognized Classes

Applying the optimal network architecture for each train/test separation, we investi-
gated the pairwise separation of the conditions: L0 vs. L1, L0 vs. L2, L0 vs. L3, L1 vs. L2,
and L2 vs. L3. Additionally, we increased the number of ANN output classes to four (the
rest of the architecture remains the same), and classified all four conditions simultaneously.
The average accuracy is displayed in Figure 8 in reference to chance level (orange lines at
25% for all four and 50% for two conditions). The highest accuracy was obtained for L0 and
L3 after training with 1.5 day data (86.24%). For better illustration, the receiver operating
characteristic curves (ROC) for train and test data are presented on Figure 9. Sensitivity and
specificity of the test data are well-balanced with the values 0.83 and 0.86 correspondingly,
precision of 0.78 and recall of 0.83. This result confirmed that the most discriminative work-
load levels led to the highest difference in the separating features. The lowest accuracy of
40% emerged in classification of all four workload levels with randomized individuals, still
remaining above chance level. The same four-condition discrimination accuracy improved
to 45% when training data came from the same individuals but another day and to 53%
using within-session calibration (1.5–0.5 day data split).

The confusion matrix for the four conditions’ classification reveals that the errors are
rather evenly distributed and the closer together the conditions are, the higher the chance
of confusions (Figure 10).
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Figure 10. Confusion matrix for four conditions discrimination (classes 0, 1, 2, 3). Overall, an accuracy
of 48.4% almost doubles the random guess baseline (25%) and the confusion between neighboring
classes is higher than between more distinct ones.

Data Subsets: Target/Non-Target, Correct/Incorrect

It can be expected that the EEG data differentiates depending on the presented stimu-
lus being a target or non-target, and possibly based on correctness of the subject’s response.
Therefore, we tested different data subsets including epochs with the target stimulus (no
assumption on the response), epochs with target stimulus and correct response, non-target
stimulus (no assumption on the response), and with correct response (no assumption on
the stimulus type). Our data indicates that performance is the worst for target stimulus
and correct responses combined and the best results were obtained for all available epochs.
The classification is performed for conditions L1 and L3 since L0 neither includes the
presentation of stimuli nor the recording of responses. Suspecting that those results are due
to the data quantity and not its intrinsic properties, we randomly subsampled the larger
data subsets to the size of the subset with target stimuli and correct responses. However,
the tendency remains the same and overall accuracy drops because of the reduced size of
the training set.

Leave-One-Out

For the optimized size of the neural network, we applied a leave-one-out approach.
While this approach has limited suitability for the optimization procedure, it can be suc-
cessfully used for further investigations. In particular, it shows a potential in collecting
more data and allows to gain better understanding of the interpersonal data variability.
On Figure 11, the results for leaving the subject x (x = 1, 3, ..., 25) out are presented. The
resulted average is 81.12%, which is substantially higher than 74.31% on the test set in



Sensors 2021, 21, 5205 15 of 21

16-4-4 subject-wise data division. The highest results on Figure 11 (green) go as high as
96%. In contrast, the lowest result for the subject 22 (red) yields 61%. The variation of the
results appears very large.
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Figure 11. The results of cross validation with a leave-one-out approach. The classifier separates L0 and L3 in the 1.5 days
of training data condition. Subject 2 was removed during the initial data preparation stage due to insufficient data quality.
The average score was 81.1% and all subjects achieved accuracy above chance level.

4. Discussion

Technological advances in the last decade have led to considerable changes in the
health-care system, offering novel approaches to assessment and treatment. The aim of
the present investigation was threefold: we wanted to assess (1) if a mobile EEG setup
can be used to track cognitive load in healthy participants, (2) if the different levels of
effort can be classified based on machine learning approaches, and (3) the ease of use
perceived by the participants. The mobile EEG solution with tablet-based interaction can
detect changes in cognitive load as reflected by alterations in different frequency bands.
Importantly, an increase in frontal theta and a decrease in occipital alpha was confirmed
as robustly observed by clinical and research EEG devices. In addition, the integrated
machine learning models could discriminate above chance level and between the most
distinct conditions with an accuracy of 86%. A majority of participants indicated good
usability and the data quality was at least in an acceptable range. Accordingly, the set-up
may be a feasible method to track distinct levels of mental effort or cognitive load.

4.1. Behavioral Data

First of all, we investigated the feasibility of the implemented task to induce differ-
ent levels of mental effort as reflected by the behavioral data. We expected significant
differences in the fraction of correct responses as well as mean reaction times reflecting
the increasing difficulty level across conditions. Behavioral outcomes largely confirmed
different difficulty levels of condition 1–3. Accordingly, reaction times increased across
conditions; however, only comparisons between condition 1 (L1) with condition 2 (L2)
and 3 (L3) were significant. As a second indicator of task difficulty, the fraction of cor-
rect responses (FC) as a measure of accuracy was calculated. All comparisons between
conditions were significant. While these results are in line with our expectations, larger
differences between conditions (i.e., more distinct difficulty levels) may have facilitated
data interpretation of the EEG signal. This is an important aspect that should be considered
in upcoming investigations. Based on previous research, we did not integrate a more diffi-
cult condition such as a 3-back trial to prevent feelings of frustration and drop-out [7,38].
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Instead, we chose the current design as a trade-off between distinct difficulty levels and
feasibility for participants.

4.2. Cognitive Load & EEG Spectral Power

EEG spectral power can be used as a proxy of cognitive load. In particular, it has been
shown that alpha and theta spectral power are meaningful indicators of mental effort [7].
Across lobes and conditions, we observed a drop in the alpha spectral power. However,
this drop was only significant for the occipital lobe. In previous studies, decreased occipital
alpha activity has been associated with higher cognitive effort [30] such as indicated by an
increased level of visual scanning [39]. In addition, Gundel and Wilson [39] detected an
increase in frontal theta activity that was associated with mental effort. Our findings are
in line with this observation: we reported an increase in theta—and beta—bands across
conditions. Previously, an increase in both bands has been associated with higher cognitive
load (for review see [40]). In particular, theta spectral power is indicative of the allocation
of cognitive resources rendering it a useful predictor of cognitive load [30,40]. In line
with our observations, this holds particularly true for frontal regions [41]. Beta has been
linked to states of increased alertness and engagement [42]. While it is often located most
prominently at occipital and temporal sites, significant effects in our investigation emerged
in the parietal lobe. Differences in the observed data pattern may result from specific aspects
of the task design. Following this line of interpretation, it has been shown that different
tasks used to induce workload result in differences in the data structure [30]. For delta, we
observed a continuous increase in the spectral power with higher cognitive load. This is
in line with observations linking delta band spectral power to tasks necessitating internal
concentration [43]. Accordingly, our data largely confirms results of previous investigations,
and thus supports the feasibility of mobile EEG setups to track mental effort.

4.3. Classification with Mahine Learning

The applied machine learning models showed promise in the context of potential
practical applications to discriminate between cognitive load levels. The obtained results
reached an accuracy level of 86% for discrimination between most distant conditions. This
is in line with the observations by Hogervorst and colleagues [5]. In parallel to our findings,
the authors observed best performance for the most distinct conditions reflecting rest and
highest task load.

Exploring different train/test data divisions showed that personal calibration im-
proves the results substantially; however, adding session calibration is the most promising
setup. On the other hand, the leave-one-out approach revealed that increasing the training
data set further improves the accuracy from 74% (16-4-4 division) to 81% on average. In
addition, we observed very high variance in the leave-one-out setup ranging from 61% to
96%. One possible explanation is that the low classification accuracy in some cases results
from the higher difficulty of condition 3 (L3) of the N-back task.

Our results are consistent with those reported by Brouwer and colleagues [7]. Their
machine learning models were designed to distinguish the 0-back from 2-back conditions.
The best performing models resulted in 80–90% range of accuracy, similarly revealing large
personal variation and reduced accuracy when conditions were closer together. Despite the
design differences, our results are in line with previous investigations and thus support the
potential of mobile EEG devices to discriminate cognitive states associated with different
levels of cognitive load. Interestingly, filtering data by target or non-target marking and by
the response correctness declined the performance of the classifier. The differences may be
related to the high variation due to the data set size and should be further investigated.

While our research was focused on the application of mobile EEG sensors for workload
quantification and the comparison of the results to preceding investigations with similar
task designs, it is important to track the development of the more general machine-learning
methods applied to EEG-based workload classification. Our results are consistent with
earlier projects such as [44] that used similar methods (e.g., shallow neural networks).
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Importantly, the accuracy reported for cross-task classification is rather low, which is in
line with the high data variability we observed. More recent publications suggest that
larger data sets in combination with more complex deep-learning algorithms, such as
recurrent and convolutional networks or even their combinations [45,46] may be promising
alternatives that need further investigation. Moreover, deep learning algorithms are a
promising candidate in terms of handling cross-task classification [47]. In this context,
EEG data collected during workload-related task has become openly available [48,49] and
hence pave the way for investigations on a larger scale that can be used to evaluate the
reproducibility of our findings.

4.4. Data Quality

The analysis was conducted using a fully automatic pre-processing pipeline. Follow-
ing Kutafina et al. [27], as an overall index of data quality, the amount of data rejected
on each step of the analysis was recorded. The raw (only filtered and epoched) data set
contain 90 epochs of 1500 ms for the baseline measurement (L0), and 150 epochs of the same
duration for each task condition (L1–L3). After additional processing steps, approximately
14% of the data acquired on Day 1 and 10% of the data acquired on Day 2 were rejected.
The amplitude threshold accounted for approximately two thirds of the rejected data. Our
results indicate that the data rejection rate is within an acceptable range.

4.5. Usability

Participants indicated on average good usability according to the SUS. In addition,
according to the TUI-II, participants showed low levels of anxiety to test the setup and were
curious about the technology. While levels of skepticism were low after completion of the
cognitive tasks, participants perceived the setup as user-friendly (i.e., easy to understand
and use), indicated that they are interested in exploring new technologies, found the setup
accessible and expected a benefit from using it for certain tasks. Apart from the quantitative
assessment, we also evaluated the device handling from the experimenter perspective.
Participants were able to attach the electrodes independently, used the saline solution, and
mounted the device correctly. The feedback on the recording software regarding electrode
impedance facilitates the process. However, the participants expressed concerns about
correct electrode placement, despite a rigid EEG frame. Therefore, attaching the electrodes
is a possible draw-back of the setup. It requires good manual precision and can be difficult
for EEG-naive participants. This obstacle may be particularly prominent in patients who
are elderly or lacking digital literacy. We observed that during the first session, presence
and support by the experimenter was beneficial to facilitate handling of the mobile setup.
Therefore, a supervised training session should be considered when planning home-based
use of the device. Of note, while the rigid plastic construction has many advantages, such
as structured electrode positioning, it caused some discomfort in individual participants.
This aspect has already been discussed by Ekandem and colleagues [50] who stress the
importance of considering the ergonomics of modern low-cost brain computer interfaces—
in particular for prolonged use. Our qualitative assessment of user comfort highlights the
need to investigate these aspects also for short-duration usage (i.e., ~1 h). Navigation of
the tablet, on the other hand, was convenient due to simplistic design and instructions.

4.6. Limitations

Generalizability of the data is limited based on the participant selection. All partici-
pants were university students; hence, it is likely that they are exposed to technology on a
daily basis. Results with regard to usability but also neural activation patterns may differ
for a more diverse audience including older individuals or digitally illiterate. While the
classification approach was able to discriminate with an accuracy 86% between the most
distinct classes, performance may be limited due to the sample size. It has to be determined
if, with a larger training set and added personal calibration, the accuracy of discrimination
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becomes sufficient to provide, for instance, objective assessments of home-based cognitive
computer trainings.

5. Conclusions

In the current investigation, we tested a fully mobile setup for cognitive training tasks
combined with EEG recording to detect cognitive load. The setup was based on a mobile
EEG device combined with a tablet to display the cognitive task to allow for easy mounting
and performing self-testing. Analysis of the behavioral data confirmed differences in task
performance depending on task difficulty. Furthermore, we found a decrease of occipital
alpha frequency band power and an increase of frontal theta frequency band power upon
higher difficulty of the task confirming our main hypothesis. In addition, automatic
cognitive effort classification revealed that the machine learning approach discriminates
between the most distinct levels of cognitive load with an accuracy of 86%.

Our findings suggest feasibility of the fully mobile setup to detect distinct levels of
cognitive load such as reflected by band power changes. In addition, subjectively-rated
usability is adequate with an initial in-person training session of the electrode mounting.
Future investigations are needed to evaluate results in more diverse samples including a
wider age range and patient groups.
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Appendix A

Table A1. Statistics on power measures in the frequency bands.

Baseline Comparisons Active Comparisons

L0–L1 L0–L2 L0–L3 L1–L2 L2–L3 L1–L3

Theta

Frontal t = −5.8, p < 0.001 t = −14.3, p < 0.001 t = −8.4, p < 0.001 t = −2.5, p = 0.02 t = −3.0, p = 0.007 t = −4.7, p < 0.001

Temporal t = −1.8, p > 0.05 t = −1.7, p > 0.05 t = −2.3, p = 0.03 t = 0.4, p > 0.1 t = −1.1, p > 0.1 t = −0.8, p > 0.1

Occipital t = −2.5, p = 0.02 t = −3.2, p = 0.004 t = −3.2, p = 0.004 t = 0.5, p > 0.1 t = −1.4, p > 0.1 t = −1.4, p > 0.1

Parietal t = −2.0, p > 0.05 t = −3.8, p = 0.001 t = −3.1, p = 0.005 t = −1.5, p > 0.1 t = −0.7, p > 0.1 t = −1.9, p > 0.05

Delta

Frontal t = −5.5, p < 0.001 t = −10.4, p < 0.001 t = −8.1, p < 0.001 t = −3.1, p = 0.005 t = −2.5, p = 0.02 t = −4.7, p < 0.001

Temporal t = 0.7, p > 0.1 t = 0.6, p > 0.1 t = −2.3, p = 0.03 t = −0.1, p < 0.1 t = −2.6, p = 0.02 t = −2.3, p = 0.03

Occipital t = −3.1, p = 0.005 t = −3.9, p = 0.001 t = −5.9, p < 0.001 t = −0.7, p > 0.1 t = −2.3, p = 0.03 t = −3.0, p = 0.006

Parietal t = −1.6, p > 0.1 t = −3.5, p = 0.002 t = −4.9, p < 0.001 t = −1.6, p > 0.1 t = −1.5, p > 0.1 t = −2.9, p = 0.01

Alpha

Frontal t = 0.8, p > 0.1 t = 1.4, p > 0.1 t = 1.4, p > 0.1 t = 0.5, p > 0.1 t = 0.8, p > 0.1 t = 1.1, p > 0.1

Temporal t = 1.8, p > 0.05 t = 2.2, p = 0.04 t = 1.6, p > 0.1 t = 0.8, p > 0.1 t = 0.1, p > 0.1 t = 0.6, p > 0.1

Occipital t = 0.8, p > 0.1 t = 2.7, p = 0.01 t = 2.5, p = 0.02 t = 3.1, p = 0.005 t = 1.5, p > 0.1 t = 3.0, p = 0.006

Parietal t = 0.3, p > 0.1 t = 0.5, p > 0.1 t = 1.1, p > 0.1 t = 0.2, p > 0.1 t = 1.0, p > 0.1 t = 1.1, p > 0.1

Beta

Frontal t = −0.7, p > 0.1 t = −0.9, p > 0.1 t = −1.2, p > 0.1 t = −0.4, p > 0.1 t = −0.5, p > 0.1 t = −0.9, p > 0.1

Temporal t = 0.1, p > 0.1 t = −0.3, p > 0.1 t = −2.3, p = 0.03 t = −0.3, p > 0.1 t = −2.1, p = 0.05 t = −2.1, p = 0.05

Occipital t = −0.5, p > 0.1 t = −0.4, p > 0.1 t = −2.6, p = 0.02 t = −0.0, p > 0.1 t = −1.9, p > 0.05 t = −2.3, p = 0.03

Parietal t = 0.6, p > 0.1 t = −1.5, p > 0.1 t = −4.9, p < 0.001 t = −1.8, p > 0.1 t = −2.7, p = 0.01 t = −4.2, p < 0.001
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