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Abstract: To retrieve aerosol properties from satellite measurements, micro-physical aerosol models
have to be assumed. Due to the spatial and temporal inhomogeneity of aerosols, choosing an
appropriate aerosol model is an important task. In this paper, we use a Bayesian algorithm that
takes into account model uncertainties to retrieve the aerosol optical depth and layer height from
synthetic and real TROPOMI O2A band measurements. The results show that in case of insufficient
information for an appropriate micro-physical model selection, the Bayesian algorithm improves the
accuracy of the solution.

Keywords: model selection; aerosol retrievals; TROPOMI/S5P

1. Introduction

Aerosols affect the Earth’s climate directly by disturbing the Earth’s radiation budget
and indirectly by altering cloud processes. To better understand the role of aerosols in
the Earth’s climate, it is important to observe concentrations and properties of aerosols.
Satellite sensors provide long-term measurements that can effectively monitor aerosol
information on both regional and global scales.

The information on the aerosol optical depth can be retrieved from the data provided
by satellite sensors, such as the Advanced Very High Resolution Radiometer (AVHRR) [1],
the Moderate Resolution Imaging Spectroradiometer (MODIS) [2], the Visible Infrared
Imaging Radiometer (VIIRS) [3], and the Advanced Himawari Imager (AHI) [4], helping to
understand the temporal and spatial distribution characteristics of atmospheric aerosols.
Aerosol height information can be retrieved from (i) multi-angle instruments, e.g., the Multi-
angle Imaging Spectroradiometer (MISR) [5], and the Advanced Along-Track Scanning
Radiometer (AATSR) [6]; (ii) polarization measurements, e.g., the Polarization and Direc-
tionality of the Earth’s Reflectances (POLDER) [7]; and (iii) measurements in the oxygen
absorption band, e.g., the TROPOspheric Monitoring Instrument (TROPOMI) [8]. A com-
bination of multi-angle and polarization observations [9] can also provide information of
micro-physical parameters such as particle size distribution and refractive index.

However, the information that can be retrieved from space is quite limited. To retrieve
the aerosol parameters, aerosol models characterizing the micro-physical properties have
to be assumed. Aerosol properties exhibit high spatial inhomogeneity because of various
origins and complex processes during transportation in the atmosphere. Aerosol particles
are originated from both natural processes (such as wind-blown desert dust and sea salt,
wild forest fire, and volcano eruption) and anthropogenic activities (such as industrial
activities, artificial vegetation fire, and fossil fuel combustion). The selection of a suitable
aerosol model in the retrieval algorithm relies on the knowledge of emission sources.

There are several databases and sets of aerosol models portraying the aerosol micro-
physical properties on a global scale. The Optical Properties of Aerosols and Clouds (OPAC)
database [10] describes the size distribution and spectral refractive index of 10 aerosol
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components under different humidities. These components can form various aerosol
types through internal mixture. The dark-target algorithm of the Moderate-Resolution
Imaging Spectroradiometer (MODIS) characterizes a set of aerosol models and provides
global distributions of aerosol types for different seasons based on a cluster analysis of
the AERONET climatology [2,11]. The OMI near-UV (OMAERUV) algorithm and the
multi-wavelength algorithm (OMAERO) consider several major aerosol types which are
split into different aerosol models. The selection of an aerosol model is based on spectral
and geographic considerations [12]. A chemical transport model, such as the Goddard
Chemistry Aerosol Radiation and Transport (GOCART) model also supplies distributions
of different aerosol types [13,14]. Besides, a number of studies coping with classification of
aerosol types based on satellite remote sensing were carried out, see, e.g., in [15–19].

In standard retrieval algorithms, an aerosol model is chosen from a set of candi-
date models, and the retrieval is performed as if the selected model reflects the real
scenario. In general, model selection is not a trivial task because for a given measurement,
several models may fit the data equally well. The Bayesian approach and, in particular,
the Bayesian model selection and model averaging Hoeting et al. [20], is a statistical method
using measurement data to select the best fitting models from a set of candidate models
without any prior seasonal or geographical information. The Bayesian method provides a
posteriori probability densities for given models, also known as model evidences. In the
Bayesian model selection, we select the model with the highest evidence, while in the
Bayesian model averaging, we combine the retrieval results corresponding to different
candidate models weighted by their evidences. Määttä et al. [21] introduced the Bayesian
approach into the aerosol model selection of the OMAERO algorithm, Kauppi et al. [22]
applied the Bayesian approach to real data of OMI, while Sasi et al. [23,24] applied the
Bayesian approach to EPIC (Earth Polychromatic Imaging Camera) [25] synthetic measure-
ments.

In this paper, for the first time, we use the Bayesian approach to jointly retrieve the
aerosol optical depth and aerosol layer height from TROPOMI/S5P (Sentinel-5 Precur-
sor) [26] measurements in the O2A band (758–771 nm). TROPOMI is a hyperspectral instru-
ment on board the Copernicus Sentinel-5 Precursor satellite launched on 13 October 2017,
measuring the solar radiance backscattered by atmosphere and Earth’s surface in the ul-
traviolet (UV), visible (VIS), near-infrared (NIR), and shortwave infrared (SWIR) spectral
ranges. The aerosol parameters are retrieved using NIR measurements with a spectral
resolution of ∼0.45 nm. As the first atmospheric monitoring mission within the Coperni-
cus program, TROPOMI has a very high spatial resolution of 3.5 × 7 km2 (3.5 × 5.5 km2

since 6 August 2019), as compared with its predecessors. In particular, the spectra in
O2A band (758–771 nm) provides a way to retrieve the aerosol height information. The
physical principle of aerosol height detection in O2A band lies on the fact that the aerosol
layer attenuate the reflection of solar radiance by the lower atmosphere at high oxygen
absorption wavelengths. This attenuation decreases as the decline of oxygen absorption
coefficient. To our best knowledge, currently no satellite passive sensor except TROPOMI
can provide official product of aerosol height information.

The paper is organized as follows. In Section 2, we review the Bayesian model
selection approach and discuss its application to aerosol retrievals. Section 3 describes the
sets of aerosol models used in our numerical analysis. The accuracy of the Bayesian model
selection approach is analyzed in Section 4 for synthetic measurements and in Section 5 for
real data over a wild fire scene in South Africa.

2. Methodology

We have developed a retrieval algorithm dedicated to satellite remote sensing of
aerosol and cloud parameters. The physics-based retrieval algorithm comprises a forward
model calculating radiative transfer of electromagnetic radiation through a planetary atmo-
sphere and an inversion module solving a nonlinear minimization problem. In the forward
model, the radiative transfer calculation depends on the discrete ordinate method with
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matrix exponential. To speed up the computation in the oxygen absorption band from
sensors (e.g., TROPOMI) with very high spectral resolution, we have implemented acceler-
ation techniques like the telescoping technique [27,28], the false discrete ordinate approach,
the correlated k-distribution method [29], and the principal components analysis [30,31].
The inversion is performed by the means of Tikhonov regularization with optimal strategies
for constructing the regularization parameter and matrix [32,33]. For further details about
the retrieval algorithm and its forward model, we refer to the works in [34–36].

In this study, the aerosol optical depth τ and the layer height h are retrieved in the O2A
band (758–771 nm). The retrieval algorithm can deal with four types of aerosol profiles:
Gaussian, exponential decay, elevated box, and a combination of exponential decay and
ground box. To simplify the analysis, the aerosol layer is assumed to be homogeneous,
spreading evenly from near surface to the top aerosol layer height h. Considering Nm
aerosol models, the retrieval of the state vector x = [τ, h] is an inverse problem relying on
the solution of the nonlinear equation

yδ = Fm(x) + δm, (1)

where yδ is the measurement vector, Fm(x) is the forward model corresponding to the
aerosol model m with m = 1, . . . , Nm, δm = δmes + δaerm the total data error vector, δmes
the measurement error vector, and δaerm the aerosol model error vector, i.e., the error due to
an inadequate aerosol model. In our analysis, Fm(x) is the vector of the log of the simulated
radiances corresponding to aerosol model m, i.e., [Fm(x)]i = ln Im(λi, x), where {λi}M

i=1 is
a set of M wavelengths in the considered spectral domain.

The data model (1) is transformed into a model with white noise by using the
prewhitening technique. The procedure is as follows. Assuming that

1. δmes is a Gaussian random vector with zero mean and covariance matrix Cmes =

σ2
mesCmes, where σ2

mes is the measurement error variance and Cmes a normalized
measurement error covariance matrix;

2. δaerm is a Gaussian random vector with zero mean and covariance matrix Caerm =

σ2
aermIM, where σ2

aerm is the aerosol model error variance and IM the identity matrix;
and

3. δmes and δaerm are independent random vectors,

we deduce that δm is also a Gaussian random vector with zero mean and covariance
matrix Cδm = Cmes + Caerm = σ2

mCδm, where σ2
m = σ2

mes + σ2
aerm is the data error variance

and Cδm = wmesmCmes + (1− wmesm)IM with wmesm = σ2
mes/σ2

m, a normalized data error
covariance matrix. In this context, the scaled data model reads as

yδ = Fm(x) + δm, (2)

where yδ = Pyδ, Fm(x) = PFm(x), δm = Pδm, and P = C−1/2
δm is a scaling matrix. As Cδm =

E{δmδ
T
m} = σ2

mIM, it is readily seen that δm ∼ N(0, Cδm = σ2
mIM), where the notation

N(xmean, Cx) stands for a normal distribution with mean xmean and covariance matrix
Cx. In a stochastic setting, we assume that x ∼ N(xa, Cx), where xa is the a priori state
vector, the best beforehand estimate of the solution, Cx = σ2

xCx is the a priori covariance
matrix, and σ2

x the a priori state variance. Defining the regularization matrix L and the
regularization parameter α through the relations C−1

x = LTL and α = σ2
m/σ2

x , respectively,
we express the a priori covariance matrix as Cx = σ2

m(αLTL)−1.
The scaled nonlinear Equation (2) is solved by means of a Bayesian approach. The key

quantity in this approach is the a posteriori density p(x | yδ, m), which represents the
conditional probability density of x given the data yδ and the aerosol model m. According to
Bayes’ theorem, the a posteriori density is given by

p(x | yδ, m) =
p(yδ | x, m)p(x | m)

p(yδ | m)
,
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where p(x | m) is the a priori density, i.e., the conditional probability density of x given the
aerosol model m before performing the measurement yδ, p(yδ | x, m) the likelihood density,
i.e., the conditional probability density of yδ given the state x and the aerosol model m, and

p(yδ | m) =
∫

p(x, yδ | m)dx =
∫

p(yδ | x, m)p(x | m)dx, (3)

the marginal likelihood density. Although, in the Bayesian parameter estimation, the
marginal likelihood density p(yδ | m) plays the role of a normalization constant and is
usually ignored, this probability density is of particular importance in the Bayesian model
selection. For x ∼ N(xa, Cx = σ2

m(αLTL)−1) and δm ∼ N(0, Cδm = σ2
mIM), the Bayes’

formula gives

p(x | yδ, m) ∝ exp
[
−1

2
Vα(x | yδ, m)

]
, (4)

where
Vα(x | yδ, m) =

1
σ2

m

[∥∥yδ − Fm(x)
∥∥2

+ α
∥∥L(x− xa)

∥∥2
]

(5)

is the a posteriori potential. Consequently, the maximum a posteriori estimate x̂δ
mα is

computed as
x̂δ

mα = arg min
x

Vα(x | yδ, m). (6)

In a deterministic setting, Fmα(x) = σ2
mVα(x | yδ, m) is the Tikhonov function for the

nonlinear equation yδ = Fm(x) with the penalty term α||L(x− xa)||2 and the regularization
parameter α. Thus, a regularized solution xδ

mα, which minimizes Fmα(x), coincides with
the maximum a posteriori estimate, i.e., xδ

mα = x̂δ
mα. The computation of the regularized

solution xδ
mα in the framework of the method of Tikhonov regularization requires the

knowledge of the optimal value of the regularization parameter α̂. Because in practice, this
is a very challenging task, the nonlinear equation yδ = Fm(x) is solved by means of the
iteratively regularized Gauss–Newton method. This method provides an optimal value of
the regularization parameter α̂ (i.e., the ratio of the data error variance σ2

m and the a priori
state variance σ2

x ) and the corresponding regularized solution xδ
mα̂.

For model comparison, the so-called relative evidence of the mth aerosol model
p(m | yδ) plays an important role. In view of Bayes’ theorem, this conditional probability
density is defined by

p(m | yδ) =
p(yδ | m)p(m)

p(yδ)
=

p(yδ | m)

∑Nm
m=1 p(yδ | m)

, (7)

where the last equality follows from the mean formula p(yδ) = ∑Nm
m=1 p(yδ | m)p(m) and

the assumption that all aerosol models are equally like, i.e., p(m) = 1/Nm. In terms of
p(m | yδ), the mean a posteriori density reads as

pmean(x | yδ) =
Nm

∑
m=1

p(x | yδ, m)p(m | yδ), (8)

while the mean and the maximum solution estimates are defined by

x̂δ
mean =

Nm

∑
m=1

xδ
mα̂ p(m | yδ), (9)

and
x̂δ

max = xδ
m? α̂, m? = arg max

m
p(m | yδ), (10)

respectively. In Equation (9), the Bayesian model averaging technique is used to combine
the individual solutions weighted by their evidences, while in Equation (8), the aerosol
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model with the highest evidence is considered to be the best among all aerosol models
involved. Intuitively, we expect that in practice, a linear combination of the retrieved
parameters corresponding to different candidate models will better reproduce the real
scenario than the retrieved parameters corresponding to an a priori selected model. In a
stochastic setting, the relative evidence p(m | yδ) can be computed via Equation (7) by
using a linearization of the forward model around the solution and under the assumption
that the data error variance σ2

m is known. In [23,24], estimates for σ2
m were obtained in the

framework of the maximum marginal likelihood estimation [37–39] and the generalized
cross-validation method [40,41]. In a deterministic setting, p(m | yδ), regarded as a merit
function characterizing the solution xδ

mα̂, can be defined in terms of the marginal likelihood
function or the generalized cross-validation function. In the latter case, the computational
formula is

p(m | yδ) =
1/υ(m)

∑Nm
m=1 1/υ(m)

. (11)

where

υ(m) =
||rδ

mα̂||
2

[trace(I− Âmα̂)]2
(12)

is the generalized cross-validation function, rδ
mα̂ = yδ − Fm(xδ

mα̂) the nonlinear residual vec-

tor, Âmα̂ = Kmα̂K†
mα̂ the influence matrix, Kmα̂ the Jacobian matrix, and K†

mα̂ the generalized
inverse at the solution xδ

mα̂.

3. Aerosol Models

Two sets of aerosol micro-physical models are used in our numerical analysis. The first
set (Set 1) is taken from the MODIS dark-target algorithm [11] and includes the following
four aerosol models:

1. non-absorbing (NONABS) aerosols, generated from fossil fuel combustion in urban-
industrial areas;

2. moderately absorbing (MODABS) aerosols;
3. absorbing (ABS) aerosols, generated from biomass burning; and
4. desert dust (DUST), originated from desert and transported by wind.

The volume size distribution of each aerosol model is a bimodal log-normal distribu-
tion consisting of a fine and a coarse mode. The parameters of the size distribution (median
radius, standard deviation, and volume of particles) and the complex refractive index,
which depend on the aerosol optical depth, are illustrated in Table 1. The second set (Set 2)
is taken from the OMAERO algorithm and includes the following five major aerosol types:

1. weakly absorbing (WA),
2. biomass burning (BB),
3. desert dust (DD),
4. marine (MA), and
5. volcanic (VO).

Each type is split into several aerosol models depending on their optical properties
and particle size distribution. The parameters of the size distribution (median radius,
standard deviation, and fraction of coarse mode) and the complex refractive index are
shown in Table 2.

In the forward model, the scattering characteristics (e.g., the single scattering albedo,
the phase function, and the asymmetry parameter) can be computed by the Mie theory
in the case of spherical particles, and the null-field method with discrete sources in the
case of spheroidal particles with a size parameter smaller than 50. For spheroidal particles
with large size parameter, we use a precomputed database as given in [42]. In this study,
the aerosol particles are assumed to be spherical for simplicity.
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Table 1. Micro-physical properties of aerosols models of Set 1. Each model is composed of a fine and coarse mode. The
median radius of the volume distribution rv, standard deviation σ, the volume of particles V0, and complex refractive index
m of each mode are listed in the table.

Model Mode rv (µm) σ m = (Re(m), Im(m)) V0 (µm3/µm2))

NONABS fine 0.160 + 0.0434τ 0.364 + 0.1529τ (1.42, 0.004− 0.0015τ) 0.1718τ0.821

coarse 3.325 + 0.1411τ 0.759 + 0.0168τ 0.0934τ0.639

MODABS fine 0.145 + 0.0203τ 0.374 + 0.1365τ (1.43, 0.008− 0.002τ) 0.1642τ0.775

coarse 3.101 + 0.3364τ 0.729 + 0.098τ 0.1482τ0.684

ABS fine 0.134 + 0.0096τ 0.383 + 0.0794τ (1.51, 0.02) 0.1748τ0.891

coarse 3.448 + 0.9489τ 0.743 + 0.0409τ 0.1043τ0.682

DUST fine 0.1416τ−0.052 0.7561τ0.148
(1.48τ−0.021, 0.0018τ−0.08) 0.087τ1.026

coarse 2.2 0.554τ−0.052 0.6786τ1.057

Table 2. Micro-physical properties of aerosols models of Set 2. The median radius of the number size
distribution rmod, stand deviation σ, and complex refractive index m of two modes are listed in the
table. wcoarse is the fraction of coarse mode in number concentration. The two lines of m for MA mod.
abs. and MA abs. aerosol model are the refraction index of fine and coarse modes, respectively.

Type Model
Fine Mode Coarse Mode

m = (Re, Im) wcoarse
rmod eσ rmod eσ

WA

WA1101 0.078 1.499 0.497 2.160 (1.4, 5.0× 10−8) (4.36× 10−4)

WA1102 0.088 1.499 0.509 2.160 (1.4, 5.0× 10−8) (4.04× 10−4)

WA1103 0.137 1.499 0.567 2.160 (1.4, 5.0× 10−8) (8.10× 10−4)

WA1104 0.030 2.030 0.240 2.030 (1.4, 5.0× 10−8) (1.53× 10−2)

WA1201 0.078 1.499 0.497 2.160 (1.4, 4.0× 10−3) (4.36× 10−4)

WA1202 0.088 1.499 0.509 2.160 (1.4, 4.0× 10−3) (4.04× 10−4)

WA1203 0.137 1.499 0.567 2.160 (1.4, 4.0× 10−3) (8.10× 10−4)

WA1301 0.078 1.499 0.497 2.160 (1.4, 1.2× 10−2) (4.36× 10−4)

WA1302 0.088 1.499 0.509 2.160 (1.4, 1.2× 10−2) (4.04× 10−4)

WA1303 0.137 1.499 0.567 2.160 (1.4, 1.2× 10−2) (8.10× 10−4)

BB

BB2101 0.074 1.537 0.511 2.203 (1.5, 1.0× 10−2) (1.70× 10−4)

BB2102 0.087 1.537 0.567 2.203 (1.5, 1.0× 10−2) (2.06× 10−4)

BB2103 0.124 1.537 0.719 2.203 (1.5, 1.0× 10−2) (2.94× 10−4)

BB2201 0.074 1.537 0.511 2.203 (1.5, 2.0× 10−2) (1.70× 10−4)

BB2202 0.087 1.537 0.509 2.203 (1.5, 2.0× 10−2) (2.06× 10−4)
BB2203 0.124 1.537 0.719 2.203 (1.5, 2.0× 10−2) (2.94× 10−4)

BB2102 0.087 1.537 0.509 2.203 (1.5, 3.0× 10−2) (2.06× 10−4)

BB2103 0.124 1.537 0.719 2.203 (1.5, 3.0× 10−2) (2.94× 10−4)

DD

BB2101 0.074 1.537 0.511 2.203 (1.5, 3.0× 10−2) (1.70× 10−4)
DD3101 0.042 1.697 0.670 1.806 (1.53, 4.0× 10−3) (4.35× 10−3)

DD3102 0.052 1.697 0.670 1.806 (1.53, 4.0× 10−3) (4.35× 10−3)

DD3201 0.042 1.697 0.670 1.806 (1.53, 1.0× 10−2) (4.35× 10−3)

DD3202 0.052 1.697 0.670 1.806 (1.53, 1.0× 10−2) (4.35× 10−3)
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Table 2. Cont.

Type Model
Fine Mode Coarse Mode

m = (Re, Im) wcoarse
rmod eσ rmod eσ

MA
MA mod. abs. 0.030 2.030 0.240 2.030 (1.4, 4.0× 10−3)

(1.55× 10−4)
(1.4, 5.0× 10−8)

MA abs. 0.030 2.030 0.240 2.030 (1.4, 1.2× 10−2)
(1.55× 10−4)

(1.4, 5.0× 10−8)

VO VO4101 0.230 0.800 0.240 2.030 (1.45, 7.5× 10−8) 0.5

Both sets of aerosol models have been widely used in satellite remote sensing of
aerosol properties and are representative for characterizing aerosol microphysical proper-
ties. According to the EPIC experiment in [24], Set 2 slightly outperformed in the retrieval
outcome and can be suggested as a proper choice.

4. Tests with Synthetic Data

In this section, we analyze the accuracy of the Bayesian model selection algorithm for
synthetic measurements.

4.1. Test 1

In the first test example, synthetic measurement spectra are simulated for each aerosol
model included in Set 1 (me = NONABS, MODABS, ABS, DUST), and for each measure-
ment, all aerosol models from Set 1 are considered in the retrieval. Thus, the retrieval
algorithm has the possibility of identifying the correct aerosol model. The exact aerosol
optical depths and layer heights to be retrieved are

τe = 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2 (13)

and
he = 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5 km, (14)

respectively. The a priori values, which coincide with the initial guesses, are τa = 2.0 and
ha = 2 km, and a Lambertian surface with an albedo of 0.05 being assumed. The solar
zenith, viewing zenith, and relative azimuth angles are θo = 60◦, θv = 0◦, and ∆φ = 180◦.
For the exact solution xe = [τe, he], the accuracy of the solution estimates is quantified
through the relative errors

ετ
mean(τe, he) =

|τmean − τe|
τe

and εh
mean(τe, he) =

|hmean − he|
he

(15)

corresponding to (cf. Equation (9)) x̂δ
mean = [τmean, hmean] and

ετ
max(τe, he) =

|τmax − τe|
τe

and εh
max(τe, he) =

|hmax − he|
he

(16)

corresponding to (cf. Equation (10)) x̂δ
max = [τmax, hmax].

In Figures 1 and 2, we illustrate the variations of the relative errors with respect
to the exact aerosol layer height he for τe = 0.5 (i.e., ετ,h

mean,max(τe = 0.5, he)), and the
aerosol optical depth τe for he = 3.5 km (i.e., ετ,h

mean,max(τe, he = 3.5 km)), respectively.
The following conclusions can be drawn:

1. The relative errors corresponding to the maximum solution estimate (ετ
max and εh

max)
are considered to be acceptable according to the scientific requirements defined in the
pre-launch characterization tests and significantly smaller than those corresponding
to the mean solution estimate (ετ

mean and εh
mean). Thus, the retrieval algorithm can

recognize correctly the exact aerosol model.
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2. For the maximum solution estimate, the retrieved aerosol optical depth achieves a
higher accuracy than the retrieved aerosol layer height.

3. Different aerosol models could have similar a posteriori densities as the inversion
process is not ideally perfect. An inappropriate aerosol model may occasionally be
identified, which can result in unexpected errors (τe = 1, 1.25).

The relative errors ετ
max(τe, he = 3.5 km) and εh

max(τe, he = 3.5 km) attain their highest
values (of about 0.22 and 0.016, respectively) for me = MODABS and τe = 1, 1.25. To ex-
plain this result, in Figure 3 we plot the a posteriori densities p(x = [τ, h] | yδ, m) for m =
NONABS, MODABS, ABS, DUST, and the mean a posteriori densities pmean(x = [τ, h] | yδ)
in the case me = MODABS, τe = 1.25 and he = 3.5 km. The plots indicate that a posterior
density for m = DUST is of similar height and width to that for m = MODABS; the maxi-
mum solution is achieved at m = MODABS, i.e., the DUST appears to be the model with
the highest evidence.

1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5
ALH (km)

10 5

10 4

10 3

10 2

10 1

h m
ax

1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5
ALH (km)

10 5

10 4

10 3

10 2

10 1

h m
ea

n

Exact model
NONABS
MODABS
ABS
DUST

1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5
ALH (km)

10 5

10 4

10 3

10 2

10 1

m
ax

1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5
ALH (km)

10 5

10 4

10 3

10 2

10 1

m
ea

n

Exact model
NONABS
MODABS
ABS
DUST

Figure 1. Relative errors ετ,h
mean,max(τe = 0.5, he) for the aerosol models from Set 1. ALH represents

the aerosol layer height.
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Figure 2. Relative errors ετ,h
mean,max(τe, he = 3.5 km) for the aerosol models from Set 1. AOD represents

the aerosol optical depth.
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Figure 3. The a posteriori densities p(x = [τ, h] | yδ, m) for m = NONABS, MODABS, ABS, and
DUST, and the mean a posteriori densities pmean(x = [τ, h] | yδ) in the case me = MODABS, τe = 1.25,
and he = 3.5 km. The black curve indicates the mean a posterior density. In each plot, the red vertical
dashed line corresponds to the exact values to be retrieved (τe, he), the blue vertical dashed line to the
maximum solution estimate (τmax, hmax), and the green dashed line to the mean solution estimates
(τmean, hmean).

4.2. Test 2

In the second test example, synthetic measurement spectra are produced for each
aerosol model included in Set 1 (me = NONABS, MODABS, ABS, DUST), and for each
measurement all aerosol models from Set 2 are considered in the retrieval. The mean
solution estimate and the mean a posteriori density are computed for the first 10 aerosol
models with the highest evidence.

The variations of the relative errors with respect to the exact aerosol layer height he for
τe = 0.5 and the aerosol optical depthτe for he = 3.5 km are illustrated in Figures 4 and 5,
respectively. The plots indicate that

1. the relative errors are larger than those in the first test example,
2. the relative errors corresponding to the maximum solution estimate (ετ

max and εh
max)

and the mean solution estimate (ετ
mean and εh

mean) are comparable, and
3. on average, the retrieved aerosol layer height obtains a higher accuracy than the

retrieved aerosol optical depth.

The mean a posteriori densities pmean(x = [τ, h] | yδ) are shown in Figures 6 and 7 for
τe = 0.5, he = 3.5 km, and all exact aerosol models me = NONABS, MODABS, ABS, and
DUST. The following conclusions could be made:

1. hmean and hmax are both not too far from he; thus, for aerosol layer height retrieval,
the maximum solution estimate and the mean solution estimate (ετ

mean and εh
mean)

have similar accuracies;
2. τmean is relatively closer to τe than τmax; thus, for aerosol optical depth retrieval,

the mean solution estimate performs better than the maximum solution estimate;
3. aerosol layer height retrievals have wide a posteriori densities that cover the exact

layer height; and
4. aerosol optical depth retrievals have multi-peaked densities, in which the exact optical

depth does not have the highest probability.
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Figure 4. Relative errors ετ,h
mean,max(τe = 0.5, he) for the aerosol models from Set 2.
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Figure 5. Relative errors ετ,h
mean,max(τe, he = 3.5 km) for the aerosol models from Set 2.
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Figure 6. The mean a posteriori densities pmean(h | yδ) for me = NONABS, MODABS, ABS, DUST,
τe = 0.5, and he = 3.5 km. In each plot, the red vertical dashed line correspond to the exact values
to be retrieved (τe, he), the blue vertical dashed line to the maximum solution estimate (τmax, hmax),
and the green dashed line to the mean solution estimates (τmean, hmean).
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Figure 7. The same as in Figure 6 but for the mean a posteriori densities pmean(τ | yδ).

5. Case Study with TROPOMI Data

To test the performance of the retrieval algorithm on real TROPOMI data, we chose a
wild fire scene in South Africa and considered the measurements recorded on 4–5 July 2019.
As can be seen from the respective VIIRS images, the wild fire smoke on 4 July 2019
(Figure 8a) traveled beyond the coastline and extended over the ocean, so that the smoke
on 5 July 2019 (Figure 8b) was thinner. Regional studies of aerosol optical/microphysical
properties during biomass burning can be found in [43–45].

The aerosol models included in Sets 1 and 2 are used in the retrieval. To decrease the
retrieval uncertainty caused by unrealistic surface properties, the geometry-dependent
effective Lambertian equivalent reflectivity (GE_LER) products [46] are used. The ground
pixels with cloud fraction larger than 0.15 are excluded for this analysis, in which case,
the scene is assumed to be cloud free so that we can retrieve valid aerosol information on
sufficient number of pixels without significant impact by cloud contamination.

Figure 9 shows the aerosol model with the highest evidence from Set 1 as well
as the aerosol type containing the aerosol model with the highest evidence from Set 2.
The most likely models are ABS from Set 1 and BB type from Set 2. The model evidence for
each aerosol model from Set 1 is shown in Figure 10. Note that the differences between the
model evidences for the four aerosol models are not very large, and the model evidence of
ABS was slightly larger than those of the other models. In Set 2, there are 26 aerosol models
and five aerosol types. The sum of the first 10 best aerosol model evidences for each aerosol
type from Set 2 are illustrated in Figure 11. The most probable type is BB. In conclusion,
the most plausible aerosol models identified by the algorithm, that is, ABS from Set 1 and
BB from Set 2, are of the biomass burning aerosol type. This strongly absorbing aerosol
type is consistent with the thick smoke observed in the true-color image.

The predominant models for retrieval on 5 July 2019 are ABS and DUST among Set 1
(Figure 12a), and BB and DD among Set 2 (Figure 12b). Thus, in addition to the aerosol
models identified for 4 July 2019, the dust aerosol model comes into play. The model
evidence for each aerosol model from Set 1 and and each aerosol type from Set 2 are dis-
played in Figures 13 and 14, respectively. In conclusion, compared with that on 4 July 2019,
the dominance of biomass burning aerosol type (ABS and BB) is less obvious. Taking into
account the thinner smoke on 5 July 2019 and the long traveling distance from the origin,
the presence of a less absorbing mixture of different aerosol types (biomass burning and
dust) seems to be plausible. The corresponding maximum and mean solution estimates are
shown in Figures 15–18 (Figures 15 and 17 for Set 1, and Figures 16 and 18 for Set 2).
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Figure 8. True-color VIIRS images recorded on (a) 4 and (b) 5 July 2019.
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Figure 9. (a) The aerosol model with the highest evidence from Set 1, and (b) the aerosol type
containing the aerosol model with the highest evidence from Set 2. The TROPOMI spectra were
recorded on 4 July 2019.
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Figure 10. The model evidence for each aerosol model from Set 1. The TROPOMI spectra were
recorded on 4 July 2019.

To demonstrate the performance under various aerosol loading scenarios, we per-
formed retrievals for another two cases from TROPOMI. The first case focused on a
desert dust aerosol case in Sahara on 6 June 2020 (see Figure S1 for the VIIRS image).
The model evidence for the aerosol models in Set 1 and the aerosol types of Set 2 are given
in Figures S2–S4. The prevailing aerosol model and aerosol type are DUST from Set 1 and
DD from Set 2, given the fact that both models represent desert dust aerosols. The second
case was for a urban aerosol case on 10 February 2020 over eastern China (see Figure S7 for
the VIIRS image) where many industrial cities are located. As shown in Figures S8–S10,
the NONABS model in Set 1 and the WA aerosol type in Set 2 are the most plausible choices,
as both stands for industrial aerosols.
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Figure 11. The sum of the first 10 best aerosol model evidences for each aerosol type from Set 2.
The TROPOMI spectra were recorded on 4 July 2019.

Figures S5 and S6 illustrate the maximum and mean solution estimates for the first
case, respectively. Figures S11 and S12 depict the corresponding solution estimates for the
second case.

The dominant aerosol type or aerosol model for each study can be found from the
above analysis. However, the most likely model varies from pixel to pixel, indicating that
sometimes a “wrong” model may be chosen, which is consistent with the findings using
the synthetic data. Based on the results of the retrieval solutions, we can see that

1. the mean solution estimates show a slightly smoother spatial pattern than the maxi-
mum solution estimates, and

2. despite the differences in the micro-physical properties of the aerosol models from
Sets 1 and 2, the spatial distributions of the mean retrieval results are comparable.

In this study, the state vector was a two-element vector (aerosol optical depth and
layer height) by considering the box profile for simplicity. The degree of freedom was
estimated to be 2 in most cases. From the practical point of view, the retrieval on a Dell
desktop (with 12 processors at 3.2 GHz, 31.2 GB of RAM) took less than 10 min (10–15
iterations in total) by running the program with all the models included in Set 1 and longer
than 60 min (approximately 100 iterations in total) by considering all the models included
in Set 2.
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Figure 12. The same as in Figure 9 but for the data on 5 July 2019.
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Figure 13. The same as in Figure 10 but for the data on 5 July 2019.
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Figure 14. The same as in Figure 11 but for the data on 5 July 2019.
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Figure 15. The maximum solution estimates (hmax, τmax) and the mean solution estimates (hmean,
τmean) for Set 1 and data on 4 July 2019.
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Figure 16. The maximum solution estimates (hmax, τmax) and the mean solution estimates (hmean,
τmean) for Set 2 and data on 4 July 2019.
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Figure 17. The same as in Figure 15 but for the data on 5 July 2019.
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Figure 18. The same as in Figure 16 but for the data on 5 July 2019.

6. Conclusions

In this paper, the results of aerosol retrieval computed by means of a Bayesian al-
gorithm that takes into account the uncertainty in aerosol model selection are presented.
The solution corresponding to a specific aerosol model is characterized by a relative evi-
dence which is used to construct (i) the maximum solution estimate, corresponding to the
aerosol model with the highest evidence, and (ii) the mean solution estimate, representing
a linear combination of solutions weighted by their evidences. The algorithm is applied to
the retrieval of aerosol optical depth and layer height from synthetic and real TROPOMI
data. The real TROPOMI data were taken on 4–5 July 2019 over a wild fire scene in South
Africa. In the retrieval, two sets of aerosol models are taken into account; these correspond
to the MODIS dark-target and OMAERO algorithms. The following conclusions are drawn.

1. When the exact aerosol model, for which synthetic data are generated, is included
in the set of candidate models, the relative errors corresponding to the maximum
solution estimate are relatively small. When this is not the case, it is likely that several
aerosol models are able to fit the data equally well. In such situations, the mean
solution estimate has a smaller bias than the maximum solution estimate.

2. For the real measurements on 4 July 2019, the absorbing aerosol model from Set 1
and the biomass burning aerosol type from Set 2 are found to be the most plausible.
This result is in agreement with the thick smoke observed in the true-color image.
For the thinner smoke scenario on 5 July 2019, the above models together with the
dust aerosol model are found to be the most probable aerosol models. Actually, no
dominant aerosol model, but rather a less absorbing mixture of different aerosol
types, is identified in this case. The mean and maximum solution estimates have a
similar spatial distribution, but the mean solution estimates have a more continuous
spatial pattern.

3. The two TROPOMI cases on 6 June 2020 and 10 February 2020 for desert dust and
urban aerosols, respectively, have demonstrated the promising performance of the
proposed algorithm under various aerosol loading scenarios.

4. A definite choice between Sets 1 and 2 for possible candidate models may not exist
and a suitable one could be problem dependent.

Note that when applying the Bayesian approach, we have to perform a retrieval for
each candidate model. For this reason, the retrieval algorithm is computationally expensive,
especially a set like Set 2 contains a larger number of aerosol models. To enhance its
efficiency, development of a machine learning-based scheme is currently ongoing.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs13132489/s1, Figure S1: True-color VIIRS image recorded on 6 June 2020. Figure S2: (a)
The aerosol model with the highest evidence from Set 1, and (b) the aerosol type containing the
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OMAERO OMI Multi-wavelength
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TROPOMI Tropospheric Monitoring Instrument
ABS Absorbing (Set 1)
DUST Desert dust (Set 1)
MODABS Moderately absorbing (Set 1)
NONABS Non-absorbing (Set 1)
BB Biomass Burning (Set 2)
DD Desert Dust (Set 2)
MA Marine (Set 2)
VO Volcanic (Set 2)
WA Weakly absorbing (Set 2)
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