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Abstract  

Pain protects the body from harm. It is an unpleasant yet vital experience that emerges 

from the integration of sensory and contextual information. However, how the brain 

implements this integration in healthy individuals and how this process is altered in patients 

with chronic pain remains unclear. Given the integrative nature of pain, it appears likely 

that exploring the communication between brain regions, i.e., inter-regional connectivity, 

could yield fundamental insights into the mechanisms of pain perception in health and 

disease. Therefore, this work assessed the relation between pain and measures of brain 

connectivity derived from electroencephalography (EEG), both in healthy individuals and 

patients with chronic pain. 

Expectations are a key contextual influence on pain perception. To assess how 

expectation effects on acute pain are implemented in the brain and to compare this to 

sensory effects on pain, the first project analyzed data from an EEG experiment in healthy 

human individuals. It revealed that sensory information predominantly induced changes of 

local oscillatory brain activity at alpha, beta, and gamma frequencies, while expectations 

exclusively shaped inter-regional brain connectivity at alpha frequencies. Moreover, 

prediction errors, i.e. mismatches between sensory information and expectations, affected 

connectivity in the gamma band. These findings show how fundamentally different brain 

mechanisms underlie sensory and expectation effects on pain. Moreover, these findings 

highlight the relevance of brain connectivity for complex psychological modulations and 

thus probably also for pathological aberrations of the pain experience.  

Building on these insights, a second project investigated the association between 

brain connectivity and chronic pain. Specifically, we assessed the function of selected 

intrinsic brain networks, which likely play a role in the pathology of chronic pain: The 

somatomotor, the frontoparietal, the salience ventral attention, and the default network. 

We related connectivity among these networks to the intensity of pain using uni- and 

multivariate strategies. In line with recent recommendations for open science practices, 

the study was preregistered via the OSF platform (https://osf.io/qa68n). The analyses 

showed that higher levels of pain were associated with increased connectivity at theta 

frequencies and decreased connectivity at alpha frequencies. Moreover, a multivariate 

model based on inter-network connectivity at theta, alpha, and beta frequencies predicted 

pain ratings better than chance. However, neither the results of the univariate nor the 

multivariate analyses could be replicated consistently in independent data sets. These 

findings indicate a need for a harmonization of data acquisition procedures with the goal 

https://osf.io/qa68n


of reducing variability across data sets and, in this way, obtain clearer and more robust 

evidence. 

Altogether, the current results highlight the importance of brain connectivity for the 

understanding of pain perception in healthy individuals. Beyond, associations between 

brain connectivity and the pain experience of individuals with chronic pain likely also exist 

and were for the first time studied across multiple independent data sets. This assessment 

revealed that establishing such associations in a robust manner requires important 

methodological adaptations in future studies. These might include stratifying patients, 

unifying recording protocols and quality standards across recording sites, and employing 

longitudinal designs. 
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1 Introduction 

1.1 Pain 

Pain is an aversive experience that signals threat to the body, reinforcing behaviors that 

protect it from harm. To achieve this, pain integrates both sensory and contextual 

information. Sensory information originates from physical stimuli, while contextual 

information encompasses factors such as attention, expectation, motivation, as well as 

social influences[4]. This understanding of pain aligns with the observation that the 

perceived intensity of a painful stimulus varies over time, even if the objective stimulus 

intensity does not. For instance, if an athlete twists their ankle during a competitive run, 

the pain they feel is likely to be more intense after crossing the finishing line than before. 

In this example, the contextual modulation of the pain experience helps the athlete to 

achieve their goal of finishing the race. However, contextual influences do not only 

attenuate pain but may also exacerbate it both in the short and long term. In this way, pain 

can persist over an extended period and without an imminent threat to the body. Such 

longer-lasting, chronic forms of pain have lost their protective function and become a mere 

burden for the affected individual. 

1.1.1 Acute Pain  

The International Association for the Study of Pain (IASP), defines a noxious stimulus as 

“a stimulus that is damaging or threatens damage to normal tissue”[5]. Before a noxious 

stimulus is rendered into a conscious percept by the brain, it is detected, encoded and 

processed by peripheral and spinal neurons projecting to the brain [6, 7]. This sub- or 

preconscious process is referred to as nociception. Accordingly, the IASP defines 

nociception as “the neural process of encoding noxious stimuli”[5]. 

Nociceptors are sensory neurons that are preferentially activated by noxious stimuli. 

Mediated by their structural properties, different types of nociceptors exhibit distinct 

dynamics of noxious information transmission[8, 9]. Nociceptor fibers terminate in the 

dorsal horn of the spinal cord[10]. The dorsal horn is a first relay station, the output of 

which projects to the brain. Interestingly, besides the afferent input, the dorsal horn also 

integrates information of descending fibers originating from the brainstem. Depending on 

the context, these descending pathways may either facilitate or inhibit the transmission of 

nociceptive information towards the brain [11, 12], thereby enabling top-down modulations 

of pain through factors such as expectation or attention. 
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In the brain, nociceptive information is rendered into a conscious percept which, 

depending on the context, may or may not qualify as painful[4, 13]. Cortical structures that 

have prominently been linked to nociception and pain are the somatosensory, the anterior 

cingulate, the insular, and the prefrontal cortices[14]. The activity of the somatosensory 

cortex is more closely associated with the nociceptive component of pain, whereas the 

other supramodal brain regions are thought to mediate cognitive, emotional, and 

motivational aspects of pain[10].  

Taken together, acute pain arises from the interplay of ascending and descending 

information transmission about threat, leading to behavioral responses that protect the 

body from harm. 

1.1.2 Chronic Pain 

When pain persists for more than three months it is diagnosed as chronic[15, 16] and loses 

its protective function. Chronic pain is a debilitating condition with detrimental 

consequences for the lives and well-being of those affected. In affecting roughly 20% of 

the global population[17, 18] and being responsible for up to 20% of physician visits[19, 

20], chronic pain imposes a substantial burden on healthcare systems[21]. To explain the 

emergence of chronic pain, several models, which are primarily focused on somatic 

aspects have been proposed[10, 22-24]. The biopsychosocial model assumes a broader 

perspective and posits that chronic pain arises from the interplay of biological, 

psychological, and social factors[24, 25]. 

Due to its complexity, chronic pain is often difficult to treat. Current treatment 

approaches include physiotherapy, psychotherapy, and medication[26]. These 

approaches are combined in multimodal therapies which constitute the current state-of-

the-art in chronic pain management[27]. These forms of treatment have been shown to 

not only improve the patients’ quality of life but also significantly reduce their pain[28].  

Despite these efforts, there remains a substantial number of patients who cannot be 

helped adequately, highlighting the crucial need for new means of treating chronic pain. 

To achieve this, the biological mechanisms underlying complex chronic pain conditions 

have to be better understood. In this regard, the brain plays a pivotal role as the organ 

responsible for integrating all factors associated with chronic pain into a conscious 

percept[7, 14]. Therefore, in order to aid individuals burdened by debilitating chronic pain, 

we must study the brain. 
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1.2 The cerebral processing of pain 

Nociceptive processing and pain perception cannot be attributed to a single brain 

system[14, 29, 30]. Instead, a diverse set of brain regions are involved, including the 

thalamus and somatosensory, cingulate, insular, and prefrontal cortices. 

1.2.1 Local brain activity in pain  

Noxious stimuli elicit a complex spatial-spectral-temporal pattern of brain activity. Spatial 

features of this pattern have been investigated using functional magnetic resonance 

imaging (fMRI). It was observed that brain regions involved in the processing of 

nociceptive information include the ventrolateral and medial thalamus, large parts of the 

insular cortex (INS), the secondary somatosensory cortex (S2), the anterior cingulate 

(ACC), and the prefrontal cortex (PFC)[14, 31-33]. The spectral-temporal characteristics 

of the brain’s response to noxious stimuli have been studied using electroencephalography 

(EEG) and magnetoencephalography (MEG). In particular, these modalities have been 

employed to examine how periodic fluctuations in their signals, so-called brain rhythms or 

neural oscillations relate to pain. These brain rhythms are typically assessed in four 

canonical frequency bands which cover frequencies from 4 to 8 Hz (theta), from 8 to <13 

Hz (alpha), from 13 to 30 Hz (beta), and >30 Hz (gamma)[34]. The neural responses to 

both short phasic (in the order of milliseconds) and more prolonged tonic stimuli (in the 

order of seconds to minutes) have been assessed. Such acute noxious stimuli, both phasic 

and tonic, induce a transient suppression of activity at alpha and beta frequencies 

predominantly in the occipital and sensorimotor cortices[35-40]. For phasic stimuli, these 

spectral changes occur within a post stimulus interval ranging from 300 to 1000 ms[36]. 

Additionally, phasic stimuli induce increased activity in the gamma band between 150 and 

350 ms post stimulus, most markedly observed in the sensorimotor cortex[41-43]. Further, 

phasic stimuli induce enhanced activity at theta frequencies. These increases can be 

attributed to three consecutive, large arhythmic deflections of the neural signal which are 

commonly known as pain-related evoked potentials. These deflections attain their extrema 

at around 170, 240, and 390 ms after stimulus application and are believed to be generated 

in the somatosensory cortex, in the parietal operculum (PO) comprising S2 and parts of 

the INS, and in the cingulate and prefrontal cortex[44, 45].   

In addition to the role of local brain activity in experimentally induced acute pain, 

aberrations in local brain activity in chronic pain have also been studied. Converging lines 

of evidence indicate that acute and chronic pain are served by distinct mechanisms in the 

brain. In patients with chronic back pain, it was shown that the intensity of ongoing pain 
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covaries with gamma oscillations in prefrontal areas and not, as in acute pain, with 

oscillations at alpha, beta, or gamma frequencies in somatosensory areas[46]. This idea 

of a shift towards more emotion-related and away from sensory brain regions in chronic 

pain is corroborated by longitudinal and cross-sectional fMRI observations in patients with 

subacute and chronic back pain[47]. In particular, these observations implicated emotion-

related brain regions such as the ACC, the medial PFC, and the amygdala in chronic back 

pain.  

Evidence from 76 studies investigating the association between chronic pain and 

changes in brain activity as measured by M/EEG was compiled in a recent systematic 

review[48]. This review found that the majority of the considered cross-sectional studies 

reported increased theta and beta-band activity in patients with chronic pain compared to 

healthy controls. In contrast, correlational studies examining the association between pain 

intensity and various measures of brain activity did not indicate consistent changes of local 

oscillatory brain activity in chronic pain. The review also pointed out a high risk of bias in 

many studies. This was due to small sample sizes, absence of multiple comparison 

corrections, and insufficient confounder analyses.  

In brief, while acute pain was linked robustly to specific patterns of local brain activity, 

the association between chronic pain and local brain activity appears more diffuse. 

Considering the complexity of chronic pain conditions, assessing brain measures beyond 

local brain activity, such as brain connectivity, may be necessary to unveil robust 

associations which, in the future, could serve as biomarkers for chronic pain.  

1.2.2 Inter-regional brain connectivity in pain and beyond 

Inter-regional connectivity reflects communication between brain regions. One 

distinguishes between functional and effective connectivity. Functional connectivity 

describes “statistical dependencies among remote neurophysiological events”[49]. 

Effective connectivity refers to “the influence one neural system exerts over another”[49]. 

In this work, we are primarily concerned with functional connectivity among focal brain 

regions as well as among extended intrinsic brain networks. To clarify, by intrinsic brain 

networks we mean spatially distributed collections of brain regions sharing common 

functional properties. A prominent example of an intrinsic brain network is the so-called 

default network, which is typically observed in task-free states[50]. 

In M/EEG, connectivity is often quantified in terms of temporal invariance of phase 

differences between signals (phase-based connectivity) or as the correlation between 

signal envelopes (amplitude-based connectivity)[51]. More detailed methodological 
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explanations of different connectivity measures for M/EEG are provided in section 2.1.5. 

In fMRI, connectivity is commonly but not exclusively defined as the mere correlation 

between blood flow-related signals in different brain regions[52]. The aim of this section is 

to illustrate the relevance of inter-regional connectivity for the understanding of the neural 

substrates of pain and other neuropsychiatric disorders. 

As outlined before, pain is a multi-faceted experience shaped by diverse contextual 

influences and involving many brain regions. It therefore appears plausible that the 

analysis of the communication between brain regions, i.e., brain connectivity, may unveil 

fundamental insights into the mechanisms of pain in both health and disease. 

Brain connectivity in acute pain 

The Tonic Pain Signature (ToPS) is a recently introduced connectivity-based model that 

predicts tonic pain intensity in healthy individuals with high sensitivity and specificity[53], 

even when tested in independent data sets. Utilizing measures of dynamic functional 

connectivity from fMRI time series[54] in a whole-brain setup, the ToPS likely captures 

both spatial and temporal features of the dynamic pain connectome[55], a concept 

conceiving pain as being particularly shaped by the dynamics of brain connectivity. 

Intriguingly, the ToPS outperformed other pain signatures that rely on static local brain 

activity[31, 56], explained interindividual variability also in subacute and chronic back pain 

and distinguished patients with chronic back pain from healthy controls with reasonable 

accuracy. An aggregate view on the ToPS feature weights indicates a positive association 

between connectivity of the somatomotor-frontoparietal network pair and prolonged pain. 

The ToPS thus impressively demonstrates how neurobiologically interpretable patterns of 

functional connectivity can predict experimentally induced pain in healthy individuals and 

how these findings can be directly translated to clinical pain states. Similar to the ToPS, 

another recently proposed model called the Resting-state Pain-sensitivity Network (RPN) 

linked resting-state fMRI-based functional connectivity to pain perception in healthy 

individuals[57]. In particular, the RPN successfully predicted individual pain sensitivity, 

underscoring the informative potential of brain connectivity in understanding altered 

nociception, also a key aspect of many clinical pain conditions. 

In addition to fMRI-based efforts, the role of brain connectivity in acute pain processing 

has also been studied using M/EEG. These recording modalities enable the assessment 

of oscillatory brain activity and connectivity at shorter temporal scales than fMRI. Based 

on anatomical considerations[58-60], it has been proposed that oscillatory activity at 

alpha/beta and gamma frequencies reflects inter-regional feedback and feedforward 

signaling, respectively. Here, feedforward describes the flow of information from neural 



 The cerebral processing of pain 6 

systems responsible for the initial processing of sensory input (hierarchically lower) to less 

specialized neural systems with a higher degree of integration (hierarchically higher). 

Feedback refers to the opposite direction of information flow. Within this framework, when 

pain is primarily shaped by bottom-up processes like stimulus intensity, gamma 

oscillations in somatosensory regions were proposed to subserve the signaling of 

nociceptive information toward higher-level brain regions. Conversely, alpha and beta 

oscillations might mediate top-down modulations of the pain experience[58]. 

In tonic pain, the subjective experience of pain dissociates quickly from the objective 

stimulus intensity, implying an increasing influence of top-down modulatory processes[39, 

61]. Using a phase-based connectivity measure, tonic pain was shown to be associated 

with increased communication at alpha frequencies between somatosensory and medial 

prefrontal areas. While this seems in line with the above-described framework, an analysis 

of the direction of information flow indicated that connectivity changes occurred in the 

feedforward direction (i.e., from primary somatosensory to prefrontal cortex) rather than 

the feedback direction. Irrespective of the theoretical framework, these findings affirm the 

relevance of somatosensory-prefrontal connectivity in tonic pain processing. 

In summary, the discussed studies illustrate the utility of functional connectivity 

analyses in decoding the cerebral processes of acute pain. Furthermore, the identified 

relationships between functional connectivity and acute pain can have direct implications 

for the assessment of clinical pain conditions. 

Brain connectivity in chronic pain and beyond 

Several studies have directly examined alterations of brain connectivity in chronic pain[14, 

55]. In their seminal paper, Baliki et al. reported that functional connectivity between the 

medial PFC (mPFC) and the nucleus accumbens (NAc) predicted the transition from 

subacute to chronic back pain[62]. This connection’s implication in top-down pain 

modulation, a relevant aspect also in chronic pain[63-65], was demonstrated in an 

experiment showing that self-regulation impacts pain perception via mPFC-NAc 

connectivity[66]. Further evidence for this connection’s involvement in aberrant pain 

perception stems from rodent studies indicating that the optogenetic activation/silencing 

of NAc-projections of PFC neurons enhanced/reduced pain-related behaviors[67, 68]. 

Moreover, a ROI-based, statistical assessment of the feature weights in the previously 

discussed ToPS revealed that connectivity between the mPFC and the ventral striatum, 

which encompasses the NAc, is a feature highly predictive of both experimental and 

clinical pain states[53]. The mounting evidence implicating mPFC-NAc connectivity in 
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complex modulations of the pain experience thus exemplifies the potential utility of 

functional connectivity analyses in chronic pain research. 

At the intrinsic brain network level, altered network function of the default network (DN) 

has consistently been associated with chronic pain. Increased connectivity between the 

DN and the INS was observed in patients with chronic pain relative to healthy controls and 

correlated with pain intensity on an inter- and intra-individual level[69-71]. Additionally, 

connectivity between the INS and the mPFC, a central hub of the DN, exhibited 

associations with pain intensity across various chronic pain conditions[71]. 

Complementing these fMRI-based findings, an analysis of resting-state MEG recordings 

of patients with fibromyalgia also linked DN-INS connectivity at various frequencies to 

chronic pain[72]. In terms of cross-network functional connectivity, the connection between 

the DN and the salience network (SN) has been linked to chronic pain. One study explicitly 

investigating this association revealed reduced anticorrelated connectivity between the DN 

and the SN[73]. Furthermore, a recent meta-analysis comprising 42 chronic pain-related 

fMRI-studies found reduced connectivity between the SN and the DN in patients with 

chronic pain when compared to healthy controls or patients with anxiety or major 

depressive disorder (MDD)[74]. Notably, this study also reports increased connectivity 

between the SN and the somatomotor network (SMN), although this association is not 

specific to chronic pain. Lastly, connectivity within the DN or, more precisely, between the 

DN as a whole and one of its constituent hubs, the mPFC, was shown to be elevated in 

patients with chronic pain relative to healthy controls[75]. Taken together, these studies 

indicate an involvement of altered intrinsic brain network function and, in particular, of DN 

connectivity in chronic pain. 

Functional connectivity alterations in chronic pain have also been investigated using 

non-invasive neurophysiological recording methods, such as M/EEG. One theory 

suggests that chronic pain arises from an imbalance in brain activity between regions 

processing nociceptive input and those associated with descending pain suppression[76]. 

In fact, connectivity alterations at various frequencies, proposed to underly this imbalance, 

were observed in longitudinal as well as cross-sectional studies[77, 78]. By contrast, a 

recent systematic review including 76 studies found no conclusive evidence for altered 

connectivity in chronic pain at any frequency[48]. Nevertheless, the review noted a trend 

of enhanced theta-band connectivity in chronic pain, with an equal number of studies 

reporting increased and unchanged theta-band connectivity, and more studies showing 

increased rather than reduced theta-band connectivity. Notably, the two largest studies 

included in the review did report an enhanced theta-band connectivity in patients with 

chronic pain[79, 80]. The larger of these two studies additionally identified increased 
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gamma-band connectivity and reduced gamma-band global efficiency, the latter indicating 

changes in whole brain network organization[79, 80]. 

The reviewed studies provide evidence for an association between brain connectivity 

and chronic pain more frequently on the basis of fMRI rather than M/EEG recordings. 

However, the high temporal resolution and, in the case of EEG, the widespread availability, 

render these neuro recording methods a promising instrument for the investigation of the 

brain mechanisms of chronic pain. Moreover, recent studies have demonstrated the utility 

of EEG-based connectivity features for the assessment of other neuropsychiatric 

disorders, such as MDD or posttraumatic stress disorder (PTSD) [81, 82]. Using a measure 

of amplitude-based connectivity, Toll et al. showed that combat veterans suffering from 

PTSD exhibited dysconnectivity at theta frequencies in an extensive network of regions 

spanning the entire brain[81]. Although these results have not been replicated in 

independent data sets, they hint at the utility of amplitude-based connectivity patterns for 

the characterization of neuropsychiatric disorders. Another study by the same group 

identified two distinct PTSD subtypes by clustering amplitude-based connectivity profiles 

of patients with PTSD[82]. These clusters were mainly characterized by connectivity at 

beta frequencies and were replicable not only in PTSD but also in MDD patient cohorts. 

While baseline clinical severity scores were similar for both subtypes, their responses to 

various treatments differed significantly.  

Overall, the reviewed studies indicate a strong link between brain connectivity and 

chronic pain, mainly supported by fMRI research. In particular, altered connectivity of 

intrinsic brain networks appears to play an important role in chronic pain. While evidence 

primarily stems from fMRI research, studies on neuropsychiatric disorders other than 

chronic pain convincingly demonstrate the potential also of M/EEG-based connectivity 

analyses for uncovering brain mechanisms and developing clinically relevant biomarkers 

of chronic pain 
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1.3 Research questions and outline 

This work’s objective is to identify neural mechanisms of pain perception and, in this way, 

inform the development of novel tools for the assessment and treatment of clinical pain 

conditions. We approached this research objective from two angles. First, we assessed 

neural mechanisms underlying sensory and contextual influences on acute pain in healthy 

individuals. Second, we investigated how the brain shapes the pain experience in patients 

with chronic pain. In both approaches, we relied on neurophysiological data as recorded 

by EEG. In particular, we wanted to understand whether and how communication between 

various neural systems, i.e., brain connectivity, is related to acute and chronic pain. 

1.3.1 Project 1: Brain connectivity in acute pain 

In the first project, to better understand and directly compare how the brain serves sensory 

and contextual effects on pain, we reanalyzed data from an EEG experiment in which brief 

painful stimuli were applied to healthy human participants. In this experiment, “sensory 

and contextual information was modulated by varying stimulus intensity and expectations 

about upcoming stimulus intensity, respectively“[83]. In light of findings in earlier 

studies[83-85], we expected that sensory influences on pain would primarily be reflected 

by local brain activity. The influence of expectations on pain is a higher-level psychological 

phenomenon that likely relies on the communication between different brain regions. We, 

therefore, speculated that expectation-related effects on pain are particularly served by 

inter-regional connectivity. These considerations prompted us to “assess and directly 

compare how local oscillatory brain activity and inter-regional connectivity in a core 

network of six brain regions associated with the processing of pain serve the effects of 

stimulus intensity and expectations on pain”[3].  

1.3.2 Project 2: Network dysfunction in chronic pain 

In the second project, we investigated brain network dysfunction in chronic pain. We 

primarily assessed how connectivity among intrinsic brain networks relates to the intensity 

of pain in patients with chronic pain. Intrinsic brain networks are complex-shaped, spatially 

distributed networks of brain regions that are synchronously activated during rest or 

particular tasks[50, 86]. While these networks are typically examined through 

hemodynamic signals obtained from fMRI, we assessed their involvement in chronic pain 

using EEG. Leveraging the high temporal resolution of EEG, we hoped to unravel temporal 

and spectral characteristics of network mechanisms that may elude traditional methods in 

the field, such as fMRI. 
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In this project, we adopted the definition of intrinsic brain networks provided by the Yeo 

atlas[86]. This is the most commonly used definition and divides the brain into seven 

networks. We primarily focused on four of these networks which figure prominently in the 

pathology of neuropsychiatric disorders[74, 87] and chronic pain[55, 74]: the somatomotor 

(a.k.a. pericentral) network, the frontoparietal (a.k.a. lateral frontoparietal/ control/ central 

executive) network, the salience ventral attention (a.k.a. midcingulo-insular/ salience) 

network, and the default (a.k.a. default mode/ medial frontoparietal) network. To analyze 

the function of these networks, we evaluated measures of network activity and inter-

network connectivity from resting-state EEG recordings using a tool which we have 

developed for that purpose. In primary analyses, we related these measures to the 

reported intensity of the pain experience in patients with chronic back pain. In secondary 

analyses, we examined cohorts of patients with diverse pain conditions and assessed the 

specificity of our findings by considering depression severity as an alternative dependent 

variable. Several studies have reported associations between various neural measures 

and age[88-90]. To showcase the sensitivity of our methodology, we therefore also 

considered age as a dependent variable. In exploratory analyses, we employed a more 

data-driven approach to predict pain, depression, and age from measures of brain activity 

and brain connectivity. To test the robustness of findings, we implemented an extensive 

validation strategy involving up to five independent data sets which we acquired from 

various research groups across the globe. 

1.3.3 Publications and code 

Findings from the first project1, concerned with acute experimental pain, have been 

published in the peer-reviewed journal Science Advances[3]. The corresponding analysis 

code comprising both Matlab and R scripts is available at https://osf.io/geanc/. The data, 

which had been acquired in the context of a different project, are available at 

https://osf.io/jw8rv/. The analysis plan for the second project, concerned with chronic pain, 

has been preregistered on the Open Science Framework (OSF) platform 

(https://osf.io/qa68n). This dissertation presents results from the second project which 

have not yet been published. A corresponding manuscript intended for publication is work 

in progress. Upon publication, the code of this project will be made available at 

https://osf.io/qa68n. 

  

 

1 This thesis incorporates previously published text. Direct quotations are marked with quotation marks and 
accompanied by references to the original source. Square brackets indicate deletions. 

https://osf.io/geanc/
https://osf.io/jw8rv/
https://osf.io/qa68n
https://osf.io/qa68n
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2 Methodological basics 

2.1 Electroencephalography 

Electroencephalography (EEG) is a non-invasive technique for measuring electrical brain 

activity[91]. Compared to other functional imaging techniques like functional magnetic 

resonance imaging (fMRI) or positron emission tomography (PET), signals recorded by 

EEG offer a relatively low spatial but very high temporal resolution[92]. These properties 

render the method a useful tool for the assessment of system-level dynamic processes in 

the brain. One of the earliest mentions of EEG dates back to the 1920s and is linked to 

Hans Berger[93, 94] who, in an effort to decipher physiological mechanisms of telepathy, 

recognized oscillatory patterns in recordings of scalp potentials. While the research focus 

diverged from such parapsychological phenomena, EEG has become an indispensable 

tool in contemporary neuroscience and features of EEG signals have been linked to an 

array of cognitive and affective states. 

2.1.1 The physiological origin and significance of EEG 

The human cerebral cortex is estimated to contain up to 16 billion interconnected 

neurons[95]. By current methods, measuring the individual activity of each of these 

neurons is infeasible. However, when larger groups of neurons are both structurally 

aligned and synchronously active, their combined signal can be detected by EEG sensors 

placed on the scalp.  

Cortical pyramidal neurons meet these conditions[96], with their main dendritic 

branches being oriented perpendicularly to the cortical surface. These neurons receive 

excitatory as well as inhibitory synaptic inputs. Specifically, various ion channels 

embedded in the cell’s membrane open or close in response to different neurotransmitters 

being released by presynaptic cells. This results in a net flux of charge across the cell 

membrane which locally alters the electric field potential. These alterations of electric field 

potentials are referred to as excitatory and inhibitory postsynaptic potentials, depending 

on whether they contribute to cell depolarization or hyperpolarization, respectively. When 

these postsynaptic potentials occur in a spatially and temporally coordinated manner, they 

add up and their combined magnitude induces potential differences on the scalp that lie 

within the sensitivity range of EEG systems. Importantly, these postsynaptic potentials are 

distinct from action potentials, which are rapid and large deflections of transmembrane 

potentials. Action potentials travel along axons which exhibit a lower degree of structural 

regularity and thus contribute a lot less to the signals measured by EEG[97]. 
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As previously mentioned, EEG signals display rhythmic fluctuations known as brain 

rhythms or neural oscillations. A comprehensive account of the neuronal circuitry which 

generates these oscillations is beyond the scope of this thesis. More relevant to this work 

is a theory which explains the functional significance rather than the mechanistic cause of 

neuronal oscillations. The communication-through-coherence (CTC)[98, 99] framework 

posits that neuronal oscillations subserve selective communication between different 

neuronal assemblies. Specifically, different phases in the oscillatory cycle are associated 

with varying levels of neuronal excitability. As a result, a neuronal assembly’s readiness 

to fire action potentials (i.e., send information) and its sensitivity with respect to synaptic 

input (i.e., integrate incoming information) both increase with higher levels of excitability. 

Consequently, information transfer preferentially occurs between coherently oscillating 

pre- and postsynaptic neuronal assemblies. Further, neuronal oscillations and coherence 

are not hard-wired in the brain but constitute emergent properties of neuronal circuitry, 

capable of dynamically adapting to situational demands. Thus, according to the CTC 

framework, adaptive and selective communication in the brain crucially relies on 

fluctuations of neuronal excitability which, in turn, are reflected in the oscillatory structure 

of EEG signals.  

In summary, the CTC framework provides a plausible mechanistic basis for analyses 

of local oscillatory activity as well as inter-regional connectivity. It is, however, important 

to note that while the conceptual ideas behind most connectivity measures harmonize with 

the CTC framework, they are not rigorously derived from it. Instead, the CTC framework 

inspires the more abstract notion of communication as statistical relations between time 

series associated with different brain regions. An overview of some of these measures of 

connectivity is provided in section 2.1.5. 

2.1.2 Recording devices 

EEG systems commonly used for scientific investigations record signals from a range of 

32 to 128 sensors, operating at sampling rates of 1000 Hz or higher, with a resolution of 

24 bits in each channel[94]. The signals measured by these devices represent differences 

in electric field potentials. Specifically, they are defined as the potential difference between 

a recording and a designated reference sensor. In general, the placement of the reference 

sensor should be such that it picks up the same electrical artifacts as all other sensors. 

This theoretically ensures that variations of the electric field potential common to the 

reference and all other sensors, as is the case for external electrical artifacts, do not affect 

the measured EEG signal. More formally: 
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While this so-called common mode rejection appears mathematically straightforward, its 

technical implementation is more involved. Achieving robustness against external 

influences, requires the amplification of potential differences, typically in the micro-Volt 

range, using operational amplifiers. These operational amplifiers implement the common 

mode rejection only imperfectly. Their capacity to reduce the influence of common modes 

on the EEG signal can, however, be enhanced by integrating an additional ground sensor 

which is also placed on the scalp[100]. Another source of inaccuracy in EEG 

measurements results from the variability of contact impedances across sensors. The 

most straightforward way to minimize this variability, is to reduce the absolute values of 

contact impedances at all sensors as much as possible by manually applying electrolytic 

gels. Notably, recent advances in electronics and materials science have facilitated novel, 

“dry” sensor types which do not rely on the application of such gels and therefore reduce 

the time and resources needed to conduct EEG[101] experiments. 

2.1.3 Source reconstruction 

The EEG signal recorded by a particular sensor may not provide the most accurate 

representation of brain activity directly beneath it. This can be attributed to two main 

factors. First, the electric field generated by a local source in the brain undergoes distortion 

due to the non-uniform distribution of electrical material properties throughout various 

tissues like the brain, skull, and scalp. Second, the electric field at a certain site constitutes 

a superposition of electric fields generated by different sources in the brain. To obtain a 

better estimate of neural activity at specific sites in the brain, one has to solve the so-called 

bioelectromagnetic inverse problem. In other words, for various locations in the brain, one 

has to determine the neural activity that most likely gave rise to the signals observed at 

the sensors. 

Among the most commonly used methods for solvinf the inverse problem are 

equivalent dipole fitting, minimum norm estimation, and beamforming[102]. These 

methods differ in terms of the assumptions that are introduced in order to make the inverse 

problem solvable. To provide a basic methodological orientation, we present the simplest 

versions of these methods in the following. 

In dipole fitting, one seeks to adjust the location, orientation, and magnitude of a fixed 

and typically small number of dipoles such that the sensor-level data is explained 

best[103]. 
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The objective of minimum norm estimation[104, 105] is to identify a linear 

transformation that maps signals from the sensor-level to the source-level, with sources 

typically being densely distributed across the entire cortical sheet. This linear 

transformation, similarly to equivalent dipole fitting, is found by minimizing the distance 

between the observed and the predicted sensor-level signals. Let the sensor and 

estimated source-level signals be denoted by / ∈ ℝ-!×$ and 23 ∈ ℝ+-"×$, respectively. 

Herein, 4!, 4/, and 5 denote the number of sensors, the number of sources, and the 

number of source dimensions (usually 3), respectively, while ' corresponds to the number 

of data samples. Then, the described strategy can formally be expressed as a quadratic 

optimization problem of the form 

23∗1 = argmin
2

	 ∥ 72∗1 − /∗1 ∥ +8	 ∥ 2∗1 ∥, 

where the subscript ∗ ; indicates the t-th column of the associated matrix and 7 ∈ ℝ3!×43" 

represents the so-called lead field matrix which maps source-level to sensor-level signals. 

The lead field matrix is obtained by simulating the electrical potential at the sensors 

separately for all sources, given the head’s shape and material property distribution. This 

process is known as solving the forward problem. 

The first term of the objective function in the above optimization problem quantifies the 

discrepancy between observations and predictions. The second term acts as a 

regularization term for the inverse problem[102, 106]. Without it, the optimization problem 

would possess infinitely many solutions. Recommendations for appropriate values of the 

scalar regularization parameter 8 can be found elsewhere[107]. The analytical solution to 

the above optimization problem is[108]	

23∗1 = 75(775 	+ 	8<)67/∗1 , 

where < is the identity matrix. We see that the source-level signal is obtained as the product 

of a matrix =MNE = 75(775 	+ 	8<)67 and the sensor-level data /∗1. Interestingly, the matrix 

=MNE does not depend on the data but solely on the lead field matrix 7 and regularization 

parameter 8. The literature encompasses different variants of the minimum norm approach 

that incorporate additional prior knowledge via different weightings of the individual 

components in the distance and regularization terms[109]. 

Throughout this work, we utilized linearly constrained minimum variance (LCMV) 

spatial filters[110] which constitute a special instance of beamforming. As with minimum 

norm estimation, in beamforming we seek to identify a linear transformation that maps 

signals from the sensor-level to the source-level, i.e., 

23∗1 = =LCMV/∗1 . 
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In the context of beamforming, the matrix =LCMV is often referred to as the spatial filter. For 

simplicity, let us assume that the orientation of sources is known, resulting in 5 = 1. Then, 

each source in the brain corresponds to one row of the matrix =LCMV. Unlike minimum 

norm estimation, where all rows of =MNE are estimated jointly, beamforming estimates 

each row of =LCMV independently and based on two criteria. To explain the underlying 

rationale, consider that an ideal spatial filter =IDEAL would satisfy 2∗1 = =IDEAL72∗1, 

implying =IDEAL7 = <. Unfortunately, constructing a robust filter which satisfies this 

condition is infeasible. Instead, LCMV spatial filters provide an approximation by satisfying 

the equality condition =3∗LCMV7∗3 = 1, ∀	A ∈ {1, . . . , 4/}. As before, the subscripts ∗ A and A ∗ 

refer to the k-th column and k-th row of the associated matrices, respectively. As the 

equality condition alone would leave the inverse problem under-determined, LCMV spatial 

filters, in addition, minimize the variance of the reconstructed source-level time series. The 

idea is to suppress any signals, including noise, not originating from the source of interest 

(spatial stop band), while transmitting signals from the source of interest with unit gain 

(spatial pass band). Assuming zero mean for the rows of /, this leads to the constrained 

optimization problem 

=89:; = argmin
<

∥ 23∗ ∥

subject to 23∗ = =3∗/
=3∗7∗3 = 1

 

for all A ∈ {1, . . . , 4/}. The solution to this constrained optimization problem is determined 

independently for each source: 

=3∗89:; = D7∗35 (//5)677∗3E
677∗35 (//5)67 

A generalization to the case in which the direction of sources is unknown is obtained in an 

analogous fashion. In this work we opted for LCMV spatial filters due to their effective 

noise suppression, their ability to reconstruct activity from deeper sources[111], and the 

fact that they do not require prior knowledge about the number or distribution of signal-

generating sources in the brain. 

2.1.4 Representative time series 

One research question addressed in this work is concerned with the association between 

connectivity among intrinsic brain networks and pain intensity. We define as intrinsic brain 

networks the seven Yeo networks [86] which have intricate and intertwined geometries. 

Due to the limited spatial resolution of EEG, the source-reconstructed activity of each 



 Electroencephalography 16 

individual network is contaminated by the activity of all other networks. To disentangle the 

activity of individual networks, the following strategy is proposed.  

Let’s consider networks netA and netB, for which we aim to obtain the representative 

time series F= and F>, respectively. These representative time series should effectively 

capture the ground truth activity of netA and netB. In Figure 2-1a, we denote the ground 

truth activity of netA and netB as G and H, respectively. However, due to the limited spatial 

resolution of EEG, we do not have direct access to this ground truth activity; instead, we 

only have access to a blurred estimate of it, which we denote as the source-reconstructed 

signals I ∈ ℝ3#×$ and J ∈ ℝ3$×$ with A= and A> denoting, respectively, the number of 

parcels belonging to networks netA and netB and ' being the number of samples in the 

considered epoch. In the proposed approach, the representative time series F= and F> 

maximize the explained variance in I and J, respectively, while being orthogonal. By 

enforcing orthogonality between F= and F>, we ensure that there is no shared portion of 

variance between them. Specifically, any variance in, say, F= cannot be explained by F>. 

As F> is constructed to be representative of the activity in netB, this orthogonalization 

reduces the contamination of F= by the activity in netB. Formally, this approach can be 

expressed as the constrained optimization problem 

(F7, F?) = argmax
@%,@&

DK(F7, I) + K(F?, J)E

subject to F" = L"
5 MIJN				∀	) ∈ {1,2}

F"FB5 = P"B 				∀	), Q ∈ {1,2},

 

where P is the Kronecker delta and, given that F has unit length and the mean of the rows 

of 2 equals zero, K(F, 2) is the fraction of the variance of matrix 2 explained by vector F, 

i.e., 

K(F, 2) =
F252F5

;R(252) .
 

For the sake of brevity in notation, the representative time series F= and F> have been 

denoted by F7 and F?, respectively, in the above equation. To solve this optimization 

problem, a standard iterative optimization algorithm, which employs information from both 

the local gradient and Hessian, is employed[112]. Note that, if we were to remove the 

orthogonality constraint F7F?5 = 0, the representative time series would simply correspond 

to the first principal components of the data matrices I and J.  

Expanding on this idea, we can consider a variant of the method where instead of 

obtaining a pair of time series for each pair of networks ("pairwise orthogonalization"), we 

estimate a single time series for each network ("global orthogonalization"). To achieve this, 
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we designate netA as the network of interest and define netB as all regions in the brain 

not contained within netA (cf. Figure 2-1b). Since our focus is on obtaining a single time 

series only for netA, we can describe the activity of netB using multiple orthogonal 

components. The associated optimization problem is 

F7 = argmax
@%,…,@'()%

TK(F7, I) + U K
-(D7

"E?

(F" , J)V

subject to			 F" = L"
5 MIJN				∀	) ∈ {1, . . . , 4) + 1}

F"FB5 = P"B 				∀	), Q ∈ {1, . . . , 4) + 1},

 

where 4) denotes the number of components used to describe the activity of netB and F7 
is the time series representative of netA. To decide which of the above-described variants 

should be used as the default, a simulation experiment was conducted. The results 

(Appendix Figure 0-1) indicate that for the given purpose, the global orthogonalization 

method with  4) = 3 is optimal. Details of this simulation experiment are provided in 

appendix A.1. 

2.1.5 Connectivity measures 

Functional imaging methods yield time series that reflect the activity of different brain 

regions. By quantifying statistical relations between these time series, functional 

connectivity measures aim to capture inter-regional communication in the brain. There is 

not a universally agreed-upon rationale which would dictate a unique definition of 

connectivity. Instead, diverse perspectives on the matter have led to a plethora of different 
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Figure 2-1: Methods for estimating representative time series. (a) Conceptual diagram of signal mixing due 
imperfect source reconstruction (top half) and unmixing procedure (bottom half). (b) Illustration of two variants 
of the proposed method. Variant 1: For each network pair, one corresponding pair of orthogonal representative 
time series is determined. Variant 2: For each individual network, one representative time series is determined 
which is orthogonal to multiple (orthogonal) time series representing activity in all other networks. 
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definitions. A subset of these definitions, which is widely used and relevant to this thesis, 

will be discussed in the following. 

Phase-based connectivity measures 

According to the CTC framework[99], neuronal oscillations originating from assemblies of 

synchronously active neurons are a prerequisite for selective inter-regional 

communication. Specifically, if neuronal oscillations in different brain regions are coherent, 

information transfer between the corresponding neuronal assemblies is facilitated. This 

idea inspired a range of connectivity metrics which quantify the consistency of phase 

differences between oscillatory signals over time. 

The coherence coefficient constitutes the most basic measure of phase consistency 

between oscillatory signals. Before its definition is presented, some fundamental concepts 

need to be introduced. First, the Fourier transform X(Y) of a signal Z(;) is 

X(Y) = [ Z
F

6F
(;)	exp(−)2_Y;)	5;. 

Expressed in polar coordinates, the Fourier transform reads X(Y) = |X(Y)|expD)	a=(Y)E, 

with |X(Y)| and a=(Y) representing the frequency-dependent signal amplitude and phase-

angle, respectively. The inverse Fourier transform is 

Z(;) = [ X
F

6F
(Y)	exp()2_Y;)	5Y = [ |X(Y)|

F

G
	cos(a=(Y) + 2_Y;)	5Y. 

The second equality results from algebraic transformations and demonstrates that the 

signal Z(;) may be expressed as an amplitude-weighted superposition of sinusoidal 

components of different frequencies Y and frequency-dependent phase shifts a(Y). As this 

thesis’ focus will lie on frequency-resolved definitions of connectivity, it is convenient to 

primarily consider the spectral representation of signals and to omit the frequency-

dependency in the notation. Using this notational convention, the spectral representation 

X(Y) at frequency Y of signal Z(;) would simply be referred to as signal X. 

Consider now a second signal, denoted by e. The cross-spectrum of signals X and e is 

f=> = Xe∗, 

where e∗ denotes the complex conjugate of e. Note that the phase angle of the cross 

spectrum f=> equals the phase angle difference or relative phase of signals X and e. The 

coherence coefficient, like many other connectivity metrics, quantifies the consistency of 

relative phase across multiple realizations of signals X and e. It is therefore convenient to 
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consider X and e as complex-valued random variables. Then, by use of the expectation 

operator g[⋅], the complex-valued coherency can be defined as 

k=> =
g[f=>]

lg[X?]	g[e?]
, 

where X? and e? denote the squared signal amplitudes of X and e, respectively. The 

absolute value or modulus of the coherency constitutes the coherence coefficient: 

k=>coh = |k=>|. 

For fixed signal amplitudes |X| and |e|, the above expression is maximized if the variance 

of the relative phase of signals X and e is zero. Conversely, the larger the variability of 

phase angle differences of signals X and e, the smaller the value of the coherence 

coefficient. 

One limitation of the coherence metric is its susceptibility to non-physiological 

contributions. These arise, e.g., from field spread which leads to the presence of common 

components in signals measured at different locations in the brain. Since identical signals 

are always perfectly coherent, the presence of common components artificially inflates the 

estimate of physiological connectivity. To mitigate this, alternative connectivity metrics 

have been proposed. One such metric is the imaginary part of coherency[113] (ImC): 

k=>ImC = Im(k=>) = sinD∢(k=>)Epqqqrqqqs
"I($%&1J"

k=>coh, 

where ∢(k=>) represents the phase angle of the coherency k=>. The rationale behind the 

ImC is based on the insight that coherency resulting from field spread alone would exhibit 

a zero phase-angle. The imaginary part of coherency k=>ImC can be seen as a version of 

coherence k=>coh that penalizes small coherency phase angles as these are likely to result 

from field spread. This is illustrated by the second equality of the previous equation. 

By construction, the ImC is rather insensitive to physiological connectivity occurring at 

small phase shifts between signals. Moreover, like the coherence coefficient, the ImC is 

reciprocally linked to the power of the constituent signals. Additional uncorrelated noise in 

these signals, therefore, reduces the value of the ImC. These properties render the ImC a 

rather conservative estimate of physiological connectivity. A metric that promises to be 

more sensitive while being even less susceptible to volume conduction is the phase lag 

index[114] (PLI). The PLI defines connectivity as the expected sign of the imaginary part 

of the cross-spectrum: 

k=>PLI = g Msgn tImDf=>" EuN . 
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The sign of the imaginary part of f=>, which is a binary indicator of the relative phase of 

signals X" and e", is the only information about signals X and e that enters the definition 

of the PLI. It follows that, as compared to the ImC, the influence of the phase difference 

magnitude is reduced, albeit not eliminated. Moreover, since noise affects the PLI only if 

it leads to a sign change in the imaginary part of the cross spectrum, the PLI was shown 

to be less sensitive to noise. A further reduction in noise sensitivity is achieved by a related 

metric called the weighted PLI[115] (wPLI): 

k=>wPLI =
|g[	Im(f=>)	]|
g[	|Im(f=>)|	]

. 

All metrics presented thus far have been defined in terms of expectations of random 

variables. A common problem among these metrics is that their estimates which are based 

on limited numbers of realizations, that is trials or epochs, are biased. In practical terms, 

differences in connectivity between two conditions may thus be due to systematic 

differences in trial numbers and not due to actual differences in physiological connectivity. 

For the squared wPLI an estimator has been proposed which reduces this sample size 

bias. This estimator is simply referred to as the debiased wPLI[115] (dwPLI) and is given 

by 

kv=>wPLI =
∑ ∑ Im-

BK"
-
"D7 Df=>" EImDf=>

B E
∑ ∑ xImDf=>" EImDf=>

B Ex-
BK"

-
"D7

, 

where superscripts ) and Q refer to different signal realizations (e.g., trials or epochs), 4 

denotes the number of realizations, and the hat (⋅̂) in kv=>wPLI serves to distinguish the 

estimator from its population value. Importantly, this estimator is not completely unbiased. 

It can be shown that the dwPLI may have a slight positive or negative bias.  

Amplitude-based connectivity measures 

The amplitude-based connectivity metric presented in this section was first introduced to 

study brain-wide correlation structures of oscillatory activity akin to the intrinsic resting 

state networks observed in fMRI[116]. As the name suggests, amplitude-based 

connectivity metrics assess the relation between time-varying amplitudes of oscillatory 

signals. As such, they are not immune to spurious contributions due to field spread. The 

amplitude envelope correlation[116, 117] (AEC) metric mitigates effects of field spread by 

computing envelope correlations between asymmetrically orthogonalized signals. 

The first step in computing the AEC between signals is the transformation of these signals 

into complex-valued time-frequency representations (cTFRs). For a given frequency and 
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at a given time, the modulus and phase angle of a signal’s cTFR correspond to its 

instantaneous amplitude and instantaneous phase, respectively. There are multiple ways 

in which to compute cTFRs, but not all are appropriate in every situation. To select the 

correct approach, the effects of amplitude modulation on the spectral representation of a 

signal must be understood. To this end, consider the straightforward example depicted in 

Figure 2-2: Let there be a sinusoidal carrier signal which is represented in the frequency 

domain by a Dirac impulse (i.e., an infinitely narrow peak) located at some frequency Y). 
Multiplying the carrier signal with a Gaussian modulation signal results in an amplitude-

modulated signal, the spectral representation of which takes the form of a Gaussian2  (i.e. 

a peak of finite width) centered at frequency Y). This illustrates that modulating the 

amplitude of a band-limited signal leads to a widening of its frequency spectrum. 

Conversely, amplitude variations of signals within a given frequency band are (at least 

partially) driven by contributions from outside of that frequency band. Also, the narrower a 

frequency band of interest, the larger the relative influence of contributions from outside of 

that frequency band on the amplitude variations of signals within that frequency band.  

This implies that, for narrow frequency bands of interest, the broad band signal should 

not be band-pass filtered prior to the computation of cTFRs. Instead, the cTFR of signal 

Z(;) for a narrow frequency band centered at frequency Y) may, e.g., be obtained by 

convolving the broad-band signal Z(;) with a complex-valued and frequency-dependent 

Morlet-wavelet[118] z,((;), i.e. 

G,(
morlet(;) = Z(;) ∗ z,((;). 

 

2 A multiplication in the time domain corresponds to a convolution in the frequency domain. Note that the 
frequency representation of a Gaussian signal is also a Gaussian and the convolution of a Gaussian with a 
Dirac impulse yields another Gaussian. 
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Figure 2-2: Effects of amplitude modulation on spectral representations. Multiplying a sinusoidal carrier signal 
(blue) with a gaussian modulation signal (red) results in the modulated signal (green). The power spectral 
density of the modulated signal is wider than that of the carrier signal. 
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If, by contrast, the frequency band of interest is relatively wide, band-pass filtering is not 

expected to alter amplitude time courses much and the cTFR of a signal Z(;) may be 

obtained via band-pass filtering and Hilbert transformation, i.e. 

G,(
hilbert(;) = Z,((;) + )	Z{,((;), 

where Z,((;) and Z{,((;) denote the band-pass filtered signal and its Hilbert transform, 

respectively. For notational convenience, the explicit distinction between cTRFs obtained 

using Morlet wavelets or Hilbert transforms will be omitted from now on. 

As noted above, the AEC mitigates effects of volume conduction by means of 

orthogonalization. Specifically, it is the instantaneous phase angles of signals that are 

orthogonalized in this approach. Note that field spread leads to the presence of common 

components in signals measured at different locations in the brain. The phase angle 

difference among such common components is exactly zero. Conversely, signal pairs 

exhibiting a phase difference of close to 90 degrees (i.e. orthogonal signals) are thought 

to be relatively unaffected by field spread3. One may conclude that retaining only signal 

components that exhibit phase differences of exactly 90 degrees, i.e., orthogonal signal 

components, might mitigate effects of field spread. This orthogonalization can be achieved 

as follows: For a certain frequency and at a given time, let G and H be the values of two 

cTFRs. Then, GLM, the modified version of G that is orthogonal to H, results from solving 

the optimization problem 

GLM = argmin
NO

∥ G′ − G ∥?

subject to		 Re(G′H∗) = 0
 

The constraint enforces orthogonality and the objective function ensures that the modified 

signal GLM is as similar as possible to the original signal G. Using the Lagrange multiplier 

method, one obtains the solution 

GLM = G −
Re(GH∗)
|H|? 	H. 

Analogously, one may obtain HLN, the modified version of H that is orthogonal to G. This 

orthogonalization procedure is conducted independently for each point in time and it 

results in two variants of orthogonalized signal pairs. The AEC is defined as the average 

 

3 This statement relies on the assumption that instantaneous phase differences between physiological signals 
are bounded to a range between 0 and 90 degrees. 
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of the power envelope correlations of both signal pairs. When regarding G and H as 

complex-valued random variables, the AEC can formally be defined as4 

k=>AEC =
1
2 t}DxG

LMx, |H|E + }(|HLN|, |G|)u , 

where }(⋅,⋅) represents the Pearson correlation. Although the formal derivations of the 

working principle of AEC and phase-orthogonalization may appear somewhat ad hoc, 

experimental evidence demonstrates that the AEC provides meaningful insights into the 

network-level correlation patterns of oscillatory brain activity. Notably, the AEC could 

capture established phenomena, such as the inter-hemispheric coupling of spontaneous 

activity in corresponding sensory areas[116]. 

Measures of directed connectivity 

The preceding paragraphs focused on connectivity metrics that quantify undirected 

relationships between signals. Next, connectivity metrics that discern the direction of 

information flow will be discussed. A typical starting point in the derivation of such metrics 

is the description of autoregressive models (ARMs). Let ~(;) ∈ ℝ$ denote the value of an 

'-dimensional time series at time ;. The ARM assumes that the current value of a time 

series can be predicted by past values of that same time series, i.e., 

~(;) =U�
F

PE7

(Ä)~(; − Ä) + Å(;) 

where �(Ä) ∈ ℝ$×$ is a matrix of coefficients evaluated at time lag Ä and Å(;) is an n-

dimensional zero-mean random vector with time-invariant covariance matrix Ç. As it 

simplifies the derivations of directed connectivity metrics, it will henceforth be assumed 

that the covariance matrix Ç has a diagonal shape which corresponds to the absence of 

any (non-causal) instantaneous interactions between signals. The first measure of directed 

connectivity to be derived on the basis of the ARM, is the time domain definition of Granger 

causality[119] (tGC). For a pair of time series (' = 2), the tGC metric compares the 

residuals (or prediction errors) from two model configurations. The first configuration does 

not allow for interactions between components of x (only diagonal entries of � may deviate 

from zero), whereas the second configuration does allow for such interactions (all entries 

of � may deviate from zero). Fitting the model based on both the diagonal and full 

 

4 Originally, the AEC has been defined not in terms of amplitude correlations but in terms of correlations 
between the logarithms of squared amplitudes. 
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coefficient matrices results in the variance estimates ÉZR[+"]|diag and ÉZR[+"]|full, 

respectively. Signal ÑB is then said to Granger cause Ñ" if the quantity 

kB→"tGC = lnÜ
ÉZR[+"]|full
ÉZR[+"]|diag

á 

is substantially larger than 0. Note that values below 0 are theoretically infeasible as the 

model without interaction terms is a special instance of the model including interaction 

terms. Consequently, the latter will fit the data at least as well as the former. 

To derive various spectral definitions of directed connectivity, the autoregressive 

model is first transformed to the frequency domain: 

I(Y)2(Y) = à(Y) 		⇔ 		2(Y) = ä(Y)à(Y), 

where I(Y), 2(Y), and à(Y) are the spectral representations of �(;), ~(;), and Å(;), 

respectively. ä(Y) = I(Y)67 denotes the so-called spectral transfer matrix of the system. 

This result is obtained by rearrangement and subsequent Z-transformation of the ARM. 

Again, for the sake of notational simplicity, the explicit mention of the frequency 

dependence will be omitted from now on. Multiplying both sides of the spectral 

representation of the ARM with their respective Hermitian transposes yields the important 

decomposition of the cross-spectral matrix: 

/ = äÇäR , 

The diagonal entries of the cross-spectral matrix / represent the squared amplitude (i.e., 

power) of individual signals; the off-diagonal entries correspond to the cross-spectra 

previously introduced in the context of phase-based connectivity metrics5. Note that the 

above decomposition was derived here on the basis of an ARM. Alternatively, this 

decomposition can be obtained directly from the cross-spectral matrix / via a technique 

called spectral matrix factorization[120]. While fitting an ARM requires explicit assumptions 

regarding the model order, spectral matrix factorization is completely non-parametric. In 

the present work, only the non-parametric strategy was employed. Expanding the above 

decomposition, while still assuming that Ç is diagonal and ' = 2, results in 

f"" = ã"7å77ã"7∗ +ã"?å??ã"?∗  

It follows that the power of, say, signal Ñ7 has an intrinsic contribution (ã77å77ã77∗ ) and a 

causal contribution (ã7?å??ã7?∗ ) attributable to the influence of signal Ñ?. Therefore, signal 

 

5 The relation !!* = # follows from, e.g., Parseval’s theorem 
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ÑB is said to Granger cause Ñ" at a given frequency if the total power of signal Ñ" at that 

frequency is substantially larger than its intrinsic contribution, that is, if the quantity 

kB→"fGC = lnÜ
f""

ã77å77ã77∗
á 

is substantially larger than zero. The quantity kB→"fGC corresponds to the frequency domain 

definition of Granger causality[121] (fGC). The tGC and fGC metrics infer directed 

information flow independently for each connection in a network. In contrast, multivariate 

measures of connectivity estimate directed information flow within a network by 

considering all connections jointly. One such metric is directed coherence[122] (DC), 

which is derived by rewriting the definition of coherence using the decomposition of the 

cross-spectral matrix provided above. Specifically, the coherence between signals Ñ" and 

ÑB can be written as 

k"Bcoh =
∑ ã"3$
3E7 å33ãB3∗

lf""fBB
 

The auto-coherence k""coh of signal Ñ" is always one and, hence, the power of signal Ñ" can 

be expressed as 

f"" = f""k""coh = f""U
xã"Bx

?åBB
f""pqrqs
S	G

$

BE7

. 

The component of the transfer matrix ä that corresponds to signal ÑB ’s influence on Ñ" is 

ã"3. Therefore, the relative contribution of signal ÑB to the power of Ñ" is linked to the term 

kB→"DC =
ã"BlåBB
lf""

=
ã"BlåBB

l∑ ã"3$
3E7 å33ã"3∗

, 

which constitutes the DC metric. A disadvantage of DC is its limitation to cases where the 

noise covariance matrix Ç is diagonal. This shortcoming gets addressed by the directed 

transfer function[123] (DTF) metric which is defined solely in terms of the transfer matrix 

ä: 

kB→"DTF =
ã"B

l∑ ã"3$
3E7 ã"3∗

. 

This metric quantifies the influence of signal ÑB on signal Ñ" as the normalized )Q-th entry 

of the spectral transfer matrix ä. The normalization factor (∑ ã"3$
3E7 ã"3∗ )

6%& reflects the 

combined influence of all signals on signal Ñ". Hence, in simpler terms, the DTF quantifies 
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the information transmitted from ÑB to Ñ" relative to all information received by Ñ". The DTF 

metric results from the DC metric by setting å33 = 1, ∀A = 1,… , '. 

By following analogous steps as in the derivation of the DTF metric, but using partial 

coherence instead of ordinary coherence as a starting point, one arrives at the partial 

directed coherence[124] (PDC) metric. In a setting with ' > 2 the partial coherence 

between signals Ñ" and ÑB is defined as the ordinary coherence between the residuals of 

two models predicting Ñ" and ÑB on the basis of all signals other than Ñ" and ÑB. 

Consequently, in the absence of any other signals, i.e., for ' = 2, partial and ordinary 

coherence are identical. The PDC metric is given by 

kB→"PDC =
P"B − X"B

è∑ DP3B − X3BE$
3E7 DP3B − X3B∗ E

, 

where P"B denotes the Kronecker delta. In simpler terms and as opposed to DTF, PDC can 

be thought of as quantifying the information transmitted from ÑB to Ñ" relative to all 

information sent by ÑB. From the above-mentioned relation between partial and ordinary 

coherence, it follows also that kB→"PDC = kB→"DTF for ' = 2. For ' > 2, it was shown by means 

of simulations that the PDC more accurately represents ground truth connectivity than the 

DTF. 
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2.2 Statistics  

The presence of specific data patterns has traditionally been established using p-values 

derived from frequentist statistical tests. The degree to which a specific pattern is present 

in the data is measured by the so-called test statistic. The p-value represents the 

probability of obtaining a value for the test statistic that is at least as extreme as the actually 

observed value, under the assumption that the pattern, which is quantified by the t-statistic, 

is absent in the data. This assumption is commonly referred to as the null hypothesis. 

While small p-values indicate evidence against the null hypothesis, large p-values must 

not be interpreted as evidence in favor of it. To see why, note that if the null hypothesis is 

valid, the distribution of p-values is, by construction, uniform on the interval [0,1]. 

Therefore, if the null hypothesis holds, any p-value is as likely to occur as any other. It is 

only when the null hypothesis is false that the distribution of p-values shifts more towards 

smaller values. In many research applications it would be of great value to be able to 

quantify evidence in favor of the null hypothesis. Bayesian statistics offers this possibility. 

In the following paragraphs, a brief introduction to Bayesian inference and hypothesis 

testing is provided. 

2.2.1 Bayes factors and model comparisons 

Let X and e be two random variables with joint probability distribution ê(X, e). The 

conditional probability distributions of X conditioned on e and of e conditioned on X are 

given by ê(X|e) = ê(X, e)/ê(e) and ê(e|X) = ê(X, e)/ê(X), respectively. It follows that 

ê(X|e)ê(e) = ê(e|X)ê(X) or equivalently 

ê(X|e) =
ê(e|X)ê(X)

ê(e)
 

This relation is known as Bayes’ rule and constitutes the core of Bayesian statistics. In the 

context of hypothesis testing, the variables X and e can be identified with the data í =
(ì, î) and hypothesis parameters ï (e.g., effect size parameter), respectively. All 

probability distributions occurring in the formal statement of Bayes’ rule are implicitly 

dependent on a hypothetical model structure ℳ. The term model structure is used here to 

emphasize that ℳ accommodates a range of models, each of which corresponds to a 

particular value of the parameter ï. By making the dependence on ℳ explicit, one may 

rewrite the expression to the right of the equality sign of Bayes’ rule as ê(ï|î, ì,ℳ). This 

conditional probability distribution is known as the posterior and quantifies the relative 

likelihood of different parameter values ï having given rise to the observed data (î, ì), 

given the model structure ℳ. The numerator of the fraction to the right of the equality sign 
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of Bayes’ rule corresponds to the product of the so-called likelihood and prior distribution. 

The likelihood ê(î, ì|ï,ℳ) is simply the likelihood of the observed data (î, ì) under a 

given model structure ℳ and for a specific parameter value ï. The prior ê(ï|ℳ) reflects 

any a priori knowledge that one might have about the model parameters ï. The 

denominator ê(í|ℳ) is referred to as the model evidence and describes the likelihood of 

the data given the model structure ℳ. It can be expressed as the expected value of the 

likelihood ê(î, ì|ï,ℳ) with respect to the prior distribution ê(ï|ℳ), i.e. 

ê(í|ℳ) = gI(V|ℳ)[ê(í|ï,ℳ)] = ∫ ê(í|ï,ℳ)	ê(ï|ℳ)	5ï. 

On the basis of the model evidence and by employing Bayes’ rule again, the posterior 

likelihood of the model structure given the data becomes 

ê(ℳ|í) =
ê(í|ℳ)ê(ℳ)

ê(í) . 

The ratio of the posterior likelihoods of two competing model structures ℳ7 and ℳG with 

prior odds ê(ℳ7)/ê(ℳ?) is 

eò7G =
ê(ℳ7|í)
ê(ℳ?|í)

=
ê(í|ℳ7)ê(ℳ7)
ê(í|ℳ?)ê(ℳ?)

. 

Ratios of this kind are known as Bayes factors (BFs). BFs compare the capacity of two 

models to describe the data at hand. BFs remain informative even if the model structures 

to be compared have different complexities. This is remarkable as a more complex model 

usually describes the data at least as well as a less complex model. BFs mitigate this trivial 

advantage of more complex models by performing the comparison across a range of 

plausible parameter values and not just for a single optimal parameter value. A complex 

yet inadequate model typically exhibits a high likelihood only for a small set of parameters 

values. By contrast, a simpler but more adequate model might exhibit a fairly high 

likelihood for a large set of parameter values. This simpler model’s evidence will, therefore, 

surpass that of the complex model, despite its maximum likelihood potentially being 

smaller than that of the complex model. 

The concept of Bayes’ rule and Bayes factors can be translated into various statistical 

tests. Therein, BF > 3 and BF > 10 are considered moderate and strong evidence in favor 

of an effect of interest, whereas BF < 1/3 and BF < 0.1 indicate moderate and strong 

evidence against an effect of interest, respectively [125]. A selection of Bayesian 

hypothesis tests, which is relevant for this thesis, is briefly described in the following. First, 

the derivation of a Bayesian two-sample t-test is roughly outlined. Then some aspects of 

Bayesian linear (mixed) models and ANOVAs are discussed. The introduction to Bayesian 
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two-sample t-tests and ANOVAs provides the context for proposing a strategy for 

comparing sets of logistic regression models. 

2.2.2 Specific Bayesian statistical tests 

Bayesian t-test 

Assessing the mean difference between two samples is probably the most frequently 

encountered statistical task in science. Therefore, this task is used here to exemplify how 

a statistical question can be translated into a formal test in the Bayesian framework. Let 

the data í consist of data points î" with ) = 1,… ,4Z and ìB with Q = 1,… ,4[. This data may 

be described using two normal distributions (model structure ℳ) with means ôZ and ô[ 

and common standard deviation ö (model parameters ï = (ôZ , ô[, ö)). The likelihood of 

the data given the model structure and parameters is 

ê(í|ï,ℳ) =õú
-+

"E7

(î"; ôZ , ö)õú
-,

BE7

DìB; ô[, öE. 

Since the absolute values of ôZ and ô[ are not of interest, the likelihood can be 

reformulated in terms of ï′ = (P, ô, ö) with effect size P = (ô[ − ôZ)/ö and grand mean ô =
(ôZ + ô[)/2 [126].The re-parametrized likelihood is denoted by ê′(í|ï′,ℳ). To compute 

the model evidence, a prior distribution ê(ï′) = ê(P, ô, ö) over the new model parameters 

needs to be defined. In ref. [127], the following decomposition of the prior is proposed 

ê(P, ô, ö|ℳ) = ê(P|ℳ)ê(ô)ê(ö), 

where ê(P|ℳ) is a generic probability distribution that can be defined flexibly to reflect 

prior beliefs about the effect size parameter P. The distributions ê(ô) ∝ 1 and ê(ö) ∝ 1/ö 

are improper6 Jeffreys priors for the location parameter ô and scale parameter ö, 

respectively. Jeffreys priors reflect minimal a priori knowledge. They are constructed to be 

invariant under reparametrizations of the likelihood. In the present case, this implies that 

rescaling the data will not affect the resulting Bayes factors. The basic principle of a 

parametric Bayesian t-test is to compare the evidence of model structures ℳG and ℳ7 

reflecting the null and the alternative hypotheses, respectively. Practically, these two 

model structures only differ with respect to the feasible range of the effect size parameter 

 

6 These priors are described as "improper" as they do not have a finite integral. They can still be employed as 
long as the resulting posterior does have a finite integral. 
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P. Therefore, the expression for the evidence of both model structures is identical except 

for the effect size prior ê(P|ℳ). It can be written as 

ê(í|ℳ") =∭ê′(í|P, ô, ö,ℳ\)	ê(ô)ê(ö)	5ô5ö	ê(P|ℳ\)	5P
= ∫ †+D;;l4effPE	ê(P|ℳ\)	5P,

 

with ° ∈ {0,1} and ; being the t-statistic of the data í. In other words, marginalizing the 

likelihood with respect to parameters ô and ö yields an easy-to-evaluate expectation 

integral of a t-distribution with 5 = 4Z +4[ − 2 degrees of freedom and effective sample 

size 4eff = (1/4Z + 1/4[)67. The null hypothesis postulates the absence of an effect which 

corresponds to P = 0. The associated prior ê(P|ℳG) is thus a Dirac impulse (infinitely 

narrow peak) at location P = 0. The alternative hypothesis assumes the presence of an 

effect which corresponds to P ≠ 0. Further, the alternative hypothesis should reflect the 

belief that larger absolute effect sizes are less likely than smaller ones. Therefore, a 

common choice for the prior ê(P|ℳ7) of the alternative hypothesis is the centered Cauchy 

distribution. Finally, with these prior specifications, the Bayes factor eò7G describing the 

relative evidence for the alternative over the null hypothesis can be written as 

eò7G =
∫ †+D;; l4effPE	_(P; £)	5P

†+(;; 0)
, 

where _(P; £) is the centered Cauchy distribution with scale parameter £. Note that, 

irrespective of the data, as £ → 0, the Bayes factor eò7G always approaches 1. The default 

prior used throughout this work is obtained by setting £ = 1/√2. This choice is said to be 

representative of effect sizes usually observed in the social sciences[125, 128]. 

Bayesian ANOVA and linear models 

Bayesian ANOVAs are best understood from the perspective of linear models. Therefore, 

linear models and their Bayes factors are briefly outlined in the following. Consider the 

following representation of a linear model which describes the association between a 

dependent variable ¶ and a set of predictor variables {~7, … , ~]} 

¶ = ô +U~3
]

3E7

ß3 + ®				with			® ∼ ú(0, ö?), 

where ô is a bias parameter, ß7, … , ß] denote coefficient vectors, and ö? represents the 

error variance. If the A-th predictor is continous, then ~3 ∈ ℝ and ß3 ∈ ℝ are scalar 

quantities. If, by contrast, the ™-th predictor is categorical and has 4& levels, then ~& ∈
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[0,1]-- is a vector quantity representing the binary encoding of the different levels7. 

Accordingly, ß& ∈ ℝ-- is also vector-valued. Many different statistical tests can be derived 

as special instances of the described linear model. For example, consider the case of only 

one categorical predictor ~7 with associated coefficient vector ß7. In a frequentist setting, 

to assess whether the predictor is associated with the dependent variable, one tests the 

null hypothesis ß7 = ´. To this end, an estimate of the covariance matrix of ß7 is required. 

Depending on how this covariance matrix is estimated, one may compute p-values by 

comparing a Wald statistic to a ¨?-distribution or an F-statistic to an F-distribution. The 

latter corresponds to performing a conventional one-way ANOVA. 

In a Bayesian setting, the relevance of a predictor is established using a different line 

of argumentation[129]. Rather than computing a p-value associated with a certain 

predictor, one compares the evidence of models which include that predictor to the 

evidence of models which do not include it. To make this more concrete, consider the 

example of an experimental design involving the factors ò7 and ò?. Some outcome variable 

¶ occurring in this experiment may be described by the model 

¶ = ô + ~7ß7 + ~?ß? + ~7×?ß7×? + ®				with		® ∼ ú(0, ö?), 

where ~3 and ß3 denote the binary encodings and the parameter vector associated with 

factor ò3 with A ∈ {1,2}, respectively. The vectors ~7×? and ß7×? capture the association 

between ¶ and the interaction of the two factors. More abstractly, this model can be written 

as 

¶ ∼ 1 + ò7 + ò? + ò7 × ò? 

A Bayes factor which quantifies, e.g., the interaction effect of ò7 and ò? on ¶ can then be 

defined as 

eò̂ %× &̂ =
ℰ(¶ ∼ 1 + ò7 + ò? + ò7 × ò?)

ℰ(¶ ∼ 1 + ò7 + ò?)
, 

where ℰ(⋅) denotes the evidence of the model inside the parentheses. To quantify the main 

effect of, say, factor 1, one could compute a Bayes factor as the ratio of the averaged 

evidence of models including factor 1 and the averaged evidence of models not including 

factor 1, i.e., 

 

7 This type of encoding leads to a linear dependence among the columns of the design matrix. As a 
consequence, the model parameters are not uniquely identifiable. To solve this problem, additional constraints 
have to be introduced. For fixed effects, a commonly used constraint ensures that the sum of coefficient vector 
entries for each predictor equals zero. 
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eò̂ % =
1
2 [ℰ(¶ ∼ 1 + ò7 + ò?) + ℰ(¶ ∼ 1 + ò7)]

1
2 [ℰ(¶ ∼ 1) + ℰ(¶ ∼ 1 + ò?)]

. 

Note that this definition of the Bayes factors is not unique. For example, it could be argued 

that the average in the numerator of eò̂ % should additionally include the evidence of the 

full model, i.e., of the model which also includes the interaction term. In the present work, 

the above-presented Bayes factor definitions are employed as they are said to yield more 

conservative estimates of the effects of interest[125]. 

As mentioned previously, to compute a model evidence, prior distributions over the 

model parameters have to be defined. For hypothesis testing, these prior distributions 

should introduce as few a priori assumptions as possible[129, 130]. Therefore, one 

requirement for such a prior is that any inference remains invariant under linear 

transformations of the continuous data. In an ANOVA setting this means that changing the 

measurement unit of the dependent variable must not change the resulting Bayes factors. 

As with the Bayesian t-test, this is achieved by placing Jeffreys priors on the location and 

scale parameters, i.e., (ô, ö) ∼ 7
_
. Further, for categorical predictors, a Gaussian prior with 

diagonal covariance matrix = is placed on the standardized coefficients Ø3 = ß3/ö rather 

than on the coefficients ß3 directly. The diagonal of elements of = are not fixed but follow 

inverse ¨? distributions. Thus, the marginal prior on Ø3 effectively follows a centered 

Cauchy distribution. The exact composition of the diagonal of = depends on whether 

predictors are treated as random or fixed. For continuous predictors, the standardized 

coefficient vectors are assigned default regression priors which equally ensure invariance 

of Bayes factors with respect to linear transformations of the input. 

Comparing logistic regression models 

A research question that arose in the context of this work concerned the comparison of 

the influence of two types of continuous variables on one binary dependent variable. 

Specifically, it should be assessed whether local brain activity or inter-regional brain 

connectivity more appropriately described different levels of stimulus intensity, 

expectations, and prediction errors. To this end, the evidence of models which predict 

different levels of a categorical dependent variable as a function of a continuous 

independent variable is computed and compared for different choices of the independent 

variable. Consider the case in which the dependent variable has two levels. A logistic 

regression model can be used to describe the probability of observing a certain value of 

the dependent variable ì ∈ {0,1} given the value of the continuous independent variable 

î ∈ ℝ [131], i.e., 
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ê(ì|î; ß) =
1

1 + expD(2ì − 1)(H7 + H?î)E
. 

Of particular interest here is the case in which the data originate from an experiment with 

repeated measures design comprising 4 individuals. Then, for each individual, both levels 

of the dependent variable are observed and the associated independent variables can be 

centered at 0. This implies that for each participant ), there are two data points (î"7, ì"7) 

and (î"?, ì"?) with î"? = −î"7 and ì"7 = 1 − ì"?. The fact that two data points of the same 

individual are not statistically independent has to be accounted for when constructing the 

likelihood function. Using a conditional logistic regression approach[132], the joint 

probability of the dependent variables ì"7 and ì"? given î"7 and î"? and conditioned on 

ì"7 + ì"? = 1 can be written as 

ê(ì"7, ì"?|î"7, î"?, ì"7 + ì"? = 1; ß)	

=
ê(ì"7|î"7; ß)ê(ì"?|î"?; ß)

ê(ì"7 = 1|î"7; ß)ê(ì"? = 0|î"?; ß) + ê(ì"7 = 0|î"7; ß)ê(ì"? = 1|î"?; ß)
	

=
exp(H?î"7ì"7)exp(H?î"?ì"?)
exp(H?î"7) + exp(H?î"?)

, 

which is independent of H7. The likelihood of the data given H? then reads 

ê(í|H?) =õê
-

"E7

(ì"7, ì"?|î"7, î"?, ì"7 + ì"? = 1; H?) 

To compute the model evidence associated with this likelihood, a prior for H? has to be 

specified. The selection of a suitable prior is guided by the following considerations. First, 

note that the likelihood asymptotically approaches a value > 0 as H? tends to infinity. This 

prohibits the use of any improper priors. Note further that, as H? approaches 0, the 

likelihood becomes independent of the predictor î. Consequently, for H? = 0, the Bayes 

factor arising from the comparison of two distinct predictors always equals one. Therefore, 

a prior concentrating too much probability mass in the vicinity of H? = 0 obstructs the view 

on the effect of interest -akin to a Bayesian t-test in which the BF approaches one as the 

prior on the effect size P becomes narrower around P = 0. Lastly, it would be convenient 

if the prior were such that the model evidence is invariant w.r.t. linear transformations of 

the independent variable î. This latter property is, however, not essential as any data, 

prior to computing the model evidence, can be normalized to have a mean of zero and a 

standard deviation of one. In fact, this normalization is assumed from now on. The 

described theoretical considerations render, e.g., a zero-mean Gaussian with sufficiently 
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large standard deviation a suitable candidate for a prior on H?. The evidence of model ℳZ 

based on predictor î then reads 

ℰ(ℳZ) = ∫ ê(í|H?)	ú(H?; 0, ö)	5H? 

with ö ≫ 1 being the standard deviation of the Gaussian prior. This model evidence can 

be computed for a range of different predictors. Let X and e denote two distinct sets of 

predictors. To assess which set of predictors more appropriately describes the data, the 

following evidence ratio is computed 

eò=/> =

1
|X| ∑ ℰ(ℳ%)	

%∈=

1
|e|∑ ℰ(ℳb)	

b∈>

 

where |⋅| denotes the number of elements contained in a set. 
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3 Project 1: Acute pain 

3.1 Project-specific methods 

3.1.1 Participants 

“The study was performed in healthy human participants at the university hospital of the 

Technical University of Munich (TUM). Written informed consent was obtained from all 

participants prior to the experiment. The Ethics Committee of the Medical Faculty of the 

TUM approved the study protocol. The study was preregistered at ClinicalTrials.gov 

(NCT04296968) and conducted in accordance with the latest version of the Declaration of 

Helsinki. It followed recent guidelines for the analysis and sharing of EEG data [34]. 

Inclusion criteria were right-handedness and age >18 years. Exclusion criteria were 

pregnancy, neurological or psychiatric diseases, and regular intake of medication (aside 

from contraception and thyroidal medication). Severe internal diseases (e.g. diabetes) and 

skin diseases (e.g. psoriasis, vitiligo), previous surgeries at the head or spine, current or 

recurrent pain, metal or electronic implants, and any previous side effects associated with 

thermal stimulation constituted additional exclusion criteria.”[3]  

Using the G*Power toolbox [133], we established that for the current rmANOVA design 

involving four measurements per individual, a power of 0.95 with an alpha of 0.05, and 

medium effect sizes of f = 0.25 (corresponding to an η2 of 0.06 [134]) corresponded to 

n=36 participants. “The original study recruited 58 healthy human participants (29 females, 

age: 24.0 ± 4.3 y [mean ± SD]). Ten participants were excluded due to either the absence 

of Pain or low pain ratings [<10 on a numerical rating scale from 0 (no pain) to 100 

(maximum tolerable pain)] during the familiarization run (n = 8), excessive startle 

responses in response to painful stimulation during the training run (n = 1), or technical 

issues with the response box used during catch trials (n = 1). To ensure robust estimates 

of connectivity values, we here additionally excluded participants with less than 10 trials 

remaining after the raw data cleaning procedure described below (n = 8). The final data 

set used here thus comprised 40 participants (all right-handed, 21 females, age: 23.4 ± 

2.9 y). Average anxiety and depression scores were below clinically relevant cutoff scores 

of 8/21 [135] on the Hospital Anxiety and Depression Scale [136] (anxiety: 3.2 ± 2.2; 

depression: 0.9 ± 1.2).”[3] 

3.1.2 Paradigm 

“The objective of this analysis was to assess how sensory and contextual modulations are 

served by local brain activity and inter-regional brain connectivity. The experiment involved 
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two levels of noxious stimulus intensities (hi and li) and two types of visual cues (HE and 

LE) resulting in four experimental conditions. The visual cues probabilistically predicted 

the intensity of the subsequent noxious stimulus. The high expectation (HE) cue was 

followed by a hi stimulus in 75% of the trials and by a li stimulus in 25% of the trials. Vice 

versa, the low expectation (LE) cue was followed by a hi stimulus in 25% of the trials and 

by a li stimulus in 75% of the trials (Figure 3-1a). Figure 3-1b depicts the sequence of 

events for each trial. After a variable fixation period ranging from 1.5 to 3 s, a visual cue 

(either blue dot or yellow square) was displayed for 1 s. A brief painful heat stimulus was 

applied 1.5 s after cue offset. 3 s after the painful stimulus, participants were visually 

prompted to provide a verbal rating of the perceived pain intensity on a numerical rating 

scale ranging from 0 (no pain) to 100 (maximum tolerable Pain in the context of the 

experiment).” To check that participants continuously paid attention to the visual cues, in 

10% of the trials (catch trials) they were visually prompted to indicate by a button press 

whether a HE or a LE cue had been presented last. “An average accuracy of 95.6 ± 0.1% 

indicated that participants successfully focused on the task during the entire experiment. 

Trials were separated by a 3 s period during which a white fixation cross was presented. 

The experiment consisted of four runs with 40 trials each (hiHE [n = 15], hiLE [n = 5], liLE 

[n = 15], liHE [n = 5]), resulting in total trial numbers of hiHE [n = 60], hiLE [n = 20], liLE [n 

= 60], liHE [n = 20]. Runs were separated by short breaks of ∼3 min. Pairings of visual 

cues with stimulus intensities were balanced across participants. Prior to the experiment, 

the participants were familiarized with the stimulation and the intensity rating procedure by 

applying a sequence of 10 heat stimuli. Next, participants were informed about the pairing 

between cues and stimulus intensities and a training run comprising 16 trials was 

conducted. This was to ascertain that all participants were aware of the pairing and to 

minimize learning during the main experiment. During the experiment, participants sat in 

a comfortable chair. They wore protective goggles and listened to white noise on 

headphones to eliminate effects of ambient sounds. Please see [83] for additional 

details.”[3] 

Stimulation 

“A laser pulse with a wavelength of 1,340 nm, a duration of 4 ms and spot diameter of 

approximately 7 mm was used to apply painful stimuli to the left hand [137]. For li and hi 

stimuli, the stimulus intensity was set to 3 and 3.5 J, respectively. These stimulus 

intensities are known to consistently elicit painful sensations of discriminable intensity 

[137]. The stimulation site was slightly changed after each stimulus to avoid tissue damage 

and habituation or sensitization.”[3] 
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3.1.3 Recordings and preprocessing 

“Brain activity was recorded using actiCAP snap/ slim with 64 active sensors (Easycap) 

placed according to the extended 10-20 system and BrainAmp MR plus amplifiers (Brain 

Products, Munich, Germany). During the recording, sensors were referenced to FCz and 

grounded at Fpz. The signals were sampled at 1,000 Hz (0.1-μV resolution) and band-

pass filtered between 0.016 and 250 Hz while impedances were kept below 20 kΩ. [] The 

BrainVision Analyzer software (version 2.1.1.327, Brain Products, Munich, Germany) was 

used for preprocessing. First, raw signals were low-pass filtered with a cutoff frequency of 

225 Hz. After down-sampling to a rate of 500 Hz, a 1 Hz high-pass filter (fourth-order 

Butterworth) and a band-stop filter between 49 and 51 Hz filter removing line noise were 

applied. An independent component (IC) analysis based on the extended infomax 

algorithm was then conducted based on the -4.2 to 3.2 s peri-stimulus time windows of the 

EEG data. Subsequently, ICs representing artifacts originating from eye movements or 

muscles were removed from the unfiltered EEG data [138] using visual inspection. 

Moreover, data segments of 400 ms centered around data samples with amplitudes 

exceeding ±100 μV and data jumps exceeding 30 μV were automatically marked for 

rejection. Finally, the data were inspected visually and remaining artifacts were manually 

marked for rejection. All signals were re-referenced to the average reference. The cleaned 

data were exported to Matlab (version R2019b, Mathworks, Natick, MA) and further 

analyses were performed using FieldTrip [version 20210411 [102]]. Data were segmented 

into epochs ranging from -4 to 3 s in peri-stimulus time and all trials with marked artifacts 

or pain ratings of zero were excluded. This resulted in 49.5 ±	8.5, 16.8 ±	2.8, 18.0 ±	1.6, 

and 52.9 ±	 4.2 trials per participant in the liLE, liHE, hiLE, and hiHE conditions, 

respectively. To assure that all analyses for the different trial types were eventually 

performed on the same number of trials, we matched the numbers of trials.”[3] 

3.1.4 Evaluating brain measures 

Source model 

“To project sensor-level time series to source level, we employed Linearly Constrained 

Minimum Variance (LCMV) beamformers [139] implemented in FieldTrip [102]. Frequency-

specific array-gain LCMV spatial filters for alpha, beta and gamma frequencies were 

constructed based on a lead field and a frequency-specific covariance matrix. A boundary 

element approximation of a realistically shaped, three-shell head model was used as the 

lead field. For each individual and frequency band, the covariance matrix was computed 

from the band-pass filtered, -1 s to 1 s (peri-stimulus time) concatenated data segments 

of all (non-rejected) trials. To ensure a robust computation of the inverse of the covariance 
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matrix we employed Tikhonov regularization as implemented in FieldTrip with a 

regularization parameter value of 5% of the average sensor power. The fixed orientation 

of the lead field for every source location was chosen to maximize the spatial filter output. 

Source-level signals were then obtained by applying the frequency-specific LCMV 

operator to the corresponding band-pass filtered sensor-level time series.” [3] 

Assessment of source-level evoked responses 

To evaluate source-level evoked responses, we first band-pass filtered the sensor-level 

signals in the 1 to 30 Hz frequency range. We then computed a corresponding frequency-

specific spatial filter and projected the sensor level signals to the six source locations of 

interest. To maximize the signal-to-noise ratio for visualization, the results presented in 

Figure 3-3a represent the grand average of source-projected signals across all participants 

and hi trials. 

Assessment of source-level time-frequency representations 

“Source-level time-frequency representations were obtained using the following 

procedure: First, we projected the band-pass filtered sensor-level signals to source space 

using five frequency-specific LCMV spatial filters (i.e., for frequencies <8 Hz, 8-12 Hz, 13-

30 Hz, 30-60 Hz, and 60-100 Hz). For each ROI, we generated TFRs as well as time-

courses of alpha, beta, and gamma brain activity. The TFRs are based on Hanning-

tapered data. Time courses of brain activity were computed based on moving time 

windows and using a Slepian multi-taper approach (see below). TFRs and time-courses 

of brain activity were computed from data segments with widths of 500 ms and 250 ms for 

frequencies below and above 30 Hz, respectively. Both TFRs and time-courses of brain 

activity are displayed as percentage change relative to a baseline period ranging from 0.75 

to 0.25 s before the stimulus.”[3] To maximize the signal-to-noise ratio for visualization, 

the results presented in Figure 3-3 represent the grand average of source-TFRs across all 

participants and hi trials. 

Analysis of local brain activity 

“Local oscillatory brain activity was assessed as frequency-specific source power of the 6 

ROIs. First, source level timeseries band-pass filtered to the frequency band of interest 

were obtained using the beamformer described above. For these signals, we computed 

the power of the frequency in the middle of the frequency band of interest using a Slepian 

multi-taper approach [140]. The spectral smoothing width was set to one half of the width 

of the frequency band of interest. In this way, the power value incorporates information of 

the entire frequency band of interest. We computed source power in the alpha (8-12 Hz), 

beta (14-30 Hz) and gamma (60-100 Hz) frequency bands for each trial. We then averaged 
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power values across trials for each condition and subject. To allow for the comparison of 

the effects on local brain activity to those on brain connectivity, the analysis was primarily 

performed on a 1 s post-stimulus interval. However, sensor-level findings indicate that the 

effects of painful stimuli on oscillatory brain activity are usually confined to shorter time 

windows.”[3] Control analyses based on these shorter time windows are provided in the 

supplement of the original publication [3]. 

Control analysis of source-level evoked potential amplitudes 

Source-level evoked potential amplitudes were computed based on the above-described 

band-pass filtered (1 – 30 Hz) source-level signals. For each individual and ROI, we 

computed the signal amplitude by averaging the source-projected signal in a ROI-specific 

time window. We defined the center of each ROI-specific time window as the mean peak 

latency of intracranial signals measured at that ROI in a different study[2]. The standard 

deviation of peak latencies reported in that study ranged from 19 to 39 ms. We therefore 

set the width of the averaging window for all ROIs to 40 ms. 

Analysis of inter-regional brain connectivity 

“Connectivity analyses were performed on the 1 s post-stimulus intervals of the source 

level timeseries of the 6 ROIs. First, we computed the source level cross-spectral density 

of each participant using a multi-taper approach analogous to the one used for the 

computation of source power. To assess functional connectivity, we calculated the 

debiased weighted Phase Lag Index (dwPLI, [115]) based on all trials of each condition 

and for every subject. We selected the dwPLI measure due to its insensitivity to volume 

conduction effects. For the assessment of the direction of connectivity, we used an 

asymmetry score based on bivariate partial directed coherence (PDC, [124]). Specifically, 

for two ROIs A and B, the bivariate PDC analysis yields two values, PDCAàB and PDCBàA, 

representing the directed connectivity strength from A to B and from B to A, respectively. 

We cast these two values into a single asymmetry score, (PDCAàB - PDCBàA)/(PDCAàB + 

PDCBàA), ranging from -1 to 1. A large absolute value of the asymmetry score indicates a 

strong asymmetry of directed connectivity. The sign of the asymmetry score reveals the 

predominant direction of information flow. Direction of connectivity was calculated for 

connections that had shown intensity, expectation, and/or PE effects in previous analyses. 

For connections with evidence for an intensity or expectation effect in the Bayesian 

ANOVA, we included all trial types in the computation of the asymmetry score. For 

connections with evidence for an interaction effect, we included trials with a mismatch 

between cue and intensity only.”[3] 
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3.1.5 Statistical analysis 

“For each of the four trial types (liLE, hiLE, liHE, hiHE), behavioral and EEG measures 

were computed based on an identical number of trials. This number was determined as 

the minimum number of available trials across the four trial types. […] Building upon 

previous investigations [141, 142], we made specific predictions about how EEG 

responses signaling stimulus intensity, expectations, PEs, or combinations thereof are 

modulated across the four trial types. To formally test these predictions, we performed 

repeated measures ANOVAs (rmANOVAs) with the independent variables stimulus 

intensity and expectation. In these rmANOVAs, responses signaling stimulus intensity and 

expectations would manifest as main effects, whereas responses signaling PEs would 

manifest as interactions. This applies to definitions of PEs as absolute (unsigned) PE as 

well as to aversive PE. i.e. a PE occurs only if the stimulus is more painful than expected. 

To quantify effects and to facilitate interpretation of negative findings, we performed 

Bayesian rmANOVAs [125].”[3] More detailed explanations of Bayesian rmANOVAs  and 

associated Bayes factors (BFs) can be found in section 2.2. “We considered a neural 

measure or pain rating as corresponding to the intensity or expectation pattern if there was 

at least moderate [(i.e., BF > 3)] evidence for the corresponding main effect. Accordingly, 

we considered a neural measure or pain rating as corresponding to the prediction error 

pattern if the evidence for an interaction effect of intensity and expectation was at least 

moderate.”[3] To assess the asymmetry of information flow, we tested PDC-asymmetry 

scores against 0 using a nonparametric Bayesian t-test.  

To directly link neural measures to pain scores, we analyzed difference scores of 

neural measures and pain ratings. These difference scores were computed for each 

experimental contrast, i.e., for li vs. hi, LE vs. HE, and lPE vs. hPE. In the case of, e.g., 

the stimulus intensity contrast, we computed the difference between averaged pain ratings 

in li (i.e., liLE and liHE) and hi conditions (i.e., hiLE and hiHE) for all individuals. Difference 

scores for the neural measures were computed analogously. We then computed Bayes 

factors for the correlations between neural measure difference scores and pain rating 

difference scores, thereby testing whether neural measures and pain ratings are linked on 

an inter-individual level. To assess whether there is a consistent association on an intra-

individual level, we statistically compared the products of neural measure difference 

scores and pain rating difference scores against zero using a Bayesian one-sample t-test. 

The rationale for this approach is as follows: If, e.g., an increase in pain for a certain 

experimental contrast consistently elicits an increase of the neural measure, the product 

of the two difference scores will always have a positive sign (Figure 3-8). Therefore, the 

mean of difference score products across individuals will be significantly greater than zero. 
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Conversely, if the association between difference scores is inconsistent, meaning that an 

increase in pain entails both increases and decreases of the neural measure, then the 

mean of difference score products across individuals will not clearly deviate from zero. In 

essence, we consider there to be an association between pain ratings and a neural 

measure, if the distribution of the corresponding difference score products significantly 

deviates from zero. 

Lastly, “all parametric Bayesian analyses were conducted using the BayesFactor 

package in R [130]; for non-parametric Bayesian t-tests we used freely available R code 

[143].” [3]  

3.1.6 Model comparisons 

“We intended to statistically assess whether an experimental contrast (intensity, 

expectation, or PE) is associated more strongly with local activity or inter-regional 

connectivity. To this end, we conducted a Bayesian comparison of power-based and 

connectivity-based models predicting the levels of intensity, expectation and PE.”[3] 

Specifically, we computed the Bayesian evidence of conditional logistic models mapping 

individual power and connectivity values to the probability of observing a certain level of 

intensity, expectation, or PE. “In the analysis, we consider Npow = 6 power values and Nconn 

= 15 connectivity values in each of the Nfreq = 3 frequency bands. For each of the three 

types of experimental contrasts, this resulted in Nfreq*Npow = 18 model evidence values for 

the power-based models and Nfreq*Nconn = 45 model evidence values for the connectivity-

based models. The Bayes factor for, e.g., the intensity manipulation reported in the 

manuscript is the average of the 18 power-based model evidence values divided by the 

average of the 45 connectivity-based model evidence values. For the factor expectation 

and the interaction between expectation and intensity, i.e., PE, we proceeded 

analogously”[3] For methodological details of this model comparison, please refer to 

section 2.2.2.  

We complemented the above-described Bayesian rmANOVA with a Bayesian model 

competition approach. Therein, we compared various linear mixed models with regard to 

their adequacy to describe the data. The considered models differed in terms of the 

categorical predictor variables they employed. The predictor variables were intensity, 

expectation, absolute PE, and aversive PE. The participant ID was included as a random 

effect in all models. For each of these models, we computed a BF by comparing its 

evidence to that of a null model (random intercept only). The model with the largest BF 

(i.e., largest absolute model evidence) is considered the winning model. In addition, to 
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quantify how much better the winning model was in comparison to the other models, we 

reported the evidence ratio between the winning and the second-best model.   
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3.2 Results 

To investigate how the brain serves sensory and contextual influences on pain, we 

analyzed data from an experiment which employed a probabilistic cueing paradigm[83]. 

Therein, brief painful heat stimuli were applied to the left hand while stimulus intensity and 

expectations were modulated independently in a 2 × 2 factorial design. To modulate 

stimulus intensity, painful stimuli of two different levels (high intensity [hi] and low intensity 

[li]) were applied. “To modulate expectations, the painful stimuli were preceded by one out 

of two visual cues, probabilistically indicating the intensity of the subsequent stimulus. The 

high expectation (HE) cue was followed by a hi stimulus in 75% of the trials and by a li 

stimulus in 25% of the trials. Conversely, the low expectation (LE) cue was followed by a 

hi stimulus in 25% of the trials and by a li stimulus in 75% of the trials. The experiment 

thus comprised four trial types (Figure 3-1a): high intensity, high expectation (hiHE); high 

intensity, low expectation (hiLE); low intensity, high expectation (liHE); low intensity, low 

expectation, (liLE). In each trial, after the painful stimulus, the participants were asked to 

provide a rating of the perceived pain intensity on a numerical rating scale ranging from 0 

(no pain) to 100 (maximum tolerable pain). Figure 3-1b shows the sequence of a single 

trial. The experiment included 160 trials per participant. “[3] 

We analyzed local evoked responses, local oscillatory activity, and inter-regional 

functional connectivity in a network of six brain regions known to play key roles in the 

cerebral processing of pain [2]. “The brain regions were the contralateral primary 

somatosensory cortex (S1), the contra- and ipsilateral parietal operculum (cPO, iPO; 

including the secondary somatosensory cortex and parts of the insular cortex), the anterior 

cingulate cortex (ACC), and the contra- and ipsilateral prefrontal cortex (cPFC, iPFC). 

Some of these brain regions are particularly associated with processing of sensory 

information (S1, cPO, iPO) whereas others are more associated with supramodal cognitive 

and emotional processes (ACC, cPFC, iPFC) [7, 144]. Coordinates for these six regions 

of interest (ROIs) were taken from human intracranial recordings which represent the gold 

standard for electrophysiological brain responses to pain stimuli [2].” [3]. To assess local 

oscillatory activity and evoked responses, we calculated frequency-specific power and 

signal peak amplitudes in source space, respectively. “To assess functional connectivity 

between brain regions, we calculated the debiased weighted phase lag index (dwPLI) 

[115]. Both local [oscillatory] activity and inter-regional connectivity were assessed in the 
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alpha (8-12 Hz), beta (14-30 Hz), and gamma (60-100 Hz) frequency bands. These 

frequency bands are known to exhibit changes in oscillatory power in response to brief 

painful stimuli [35, 38, 41, 43] and play key roles in inter-regional communication in the 

brain [99]. In addition, to assess the dominant direction of information flow in selected 

connections and frequency bands, we computed an asymmetry index based on the partial 

directed coherence measure [124] of directed functional connectivity.” [3] 

“To relate neural measures to sensory and expectation effects on pain, we defined 

different patterns describing the relation between response variables and experimental 

manipulations [141, 142]. In particular, these patterns characterize how neural phenomena 

and pain ratings are linked to intensity, expectations, or discrepancies thereof (prediction 

errors, PEs) across the four trial types (Figure 3-1c). To formally link the data to these 

patterns, we performed repeated measures analyses of variance (rmANOVAs) [125] with 

the independent variables intensity and expectation. In these rmANOVAs, features 

signaling stimulus intensity and expectations would manifest as main effects, whereas 

features signaling PEs would manifest as interactions without distinguishing between 

absolute and aversive definitions of PEs. To allow for the interpretation of negative 

findings, we specifically performed Bayesian rmANOVAs [125].” [3] 
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Figure 3-1: Experimental design and possible response patterns. “(a) Probabilities of different pain stimulus 
intensities [low intensity (li) and high intensity (hi)] for different levels of expectation [low expectation (LE) and 
high expectation (HE)]. (b) In each trial, a cue was presented that probabilistically predicted the intensity of a 
subsequent painful stimulus. Three seconds after the stimulus, a verbal pain rating was obtained from the 
participants. In 10% of the trials (catch trials), participants were visually prompted to indicate by a button press 
whether a HE or a LE cue had been presented to ensure that participants continuously paid attention to the 
visual cues. More details on the experimental design can be found in [3].”[4] (c) “Possible response patterns 
indicating effects of stimulus intensity, expectations, and (absolute) PEs. Effects of stimulus intensity (low 
intensity, li; high intensity, hi), expectations (low expectation, LE; high expectation, HE), and prediction errors 
were tested by means of rmANOVAs. An experimental modulation can lead to either a relative increase (first 
row) or relative decrease (second row) of oscillatory activity or connectivity.” [4] This figure was adapted by 
permission from the American Association for the Advancement of Science: Science Advances, [4] (Local 
brain oscillations and interregional connectivity differentially serve sensory and expectation effects on pain, 
Bott et al.), © 2023 
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3.2.1 Behavioral Findings 

We first assessed how experimental manipulations of noxious stimulus intensity and 

expectations affected pain perception. Figure 3-2 depicts trial-averaged pain ratings for all 

participants in the four experimental conditions. A Bayesian repeated measures ANOVA 

“provided decisive evidence for main effects of intensity (BF = 1.1*1021) and expectation 

(BF = 5.5*102) on pain ratings. Specifically, as expected, hi stimuli yielded higher pain 

ratings than li stimuli, and HE cues yielded higher pain ratings than LE cues. Moreover, 

there was moderate evidence against an interaction effect of intensity and expectation (BF 

= 0.27). Thus, the results confirmed that stimulus intensity and expectations shaped pain 

ratings.” [3] 

3.2.2 Source-level evoked potentials and local oscillatory brain activity 

To examine the neural responses elicited by brief noxious stimuli, we considered source-

level evoked potentials as well as local oscillatory brain activity in the six ROIs. Figure 3-3a 

shows source-projected time-domain signals in each ROI. The aperiodic deflections of 

these signals reflect source-level evoked potentials. The peak latencies of the signals 

observed here align with those observed in intracranial recordings [2]. In particular, the 

signal in S1 has the shortest peak latency, and the signal peaks in cPO precede those in 

iPO. Moreover, it is consistent with expectations that the largest peak amplitude occurs in 

S1. “Time-frequency representations (TFRs, Figure 3-3b) indicated that noxious stimuli 

suppressed alpha and beta activity in all ROIs and increased gamma activity 
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Figure 3-2: Pain ratings for different levels of stimulus intensity and expectations. “Rain cloud plot [1] of pain 
ratings for two levels of stimulus intensity (low intensity, li; high intensity, hi) and expectation (low expectation, 
LE; high expectation, HE). A Bayesian rmANOVA yielded decisive evidence for main effects of stimulus 
intensity and expectation (BF = 1.1*1021 and BF = 5.5*102, respectively). Moreover, there was moderate 
evidence against an interaction (BF = 0.27).” [3] This figure was adapted by permission from the American 
Association for the Advancement of Science: Science Advances, [3] (Local brain oscillations and interregional 
connectivity differentially serve sensory and expectation effects on pain, Bott et al.),  © 2023 
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Figure 3-3: Noxious stimulus-related brain responses. (a) Source-reconstructed signals in the six ROIs. For 
better visual clarity, source signals are displayed in two separate diagrams. Vertical lines indicate peak 
latencies derived from intracranial recordings in a different study[2]. (b) “Time-frequency representations based 
on hi trials of local oscillatory brain activity in the six ROIs. The first and third columns show concatenated band 
specific TFRs for all six ROIs. The sharp transitions in the TFRs are due to the employment of frequency band-
specific spatial filters. The second and fourth columns show time-courses of brain activity in the alpha, beta 
and gamma band. Vertical, dark-gray bars in the TFR plots indicate the frequency intervals based on which 
the time courses of brain activity were computed.” [3] Panel (b) was adapted by permission from the American 
Association for the Advancement of Science: Science Advances, [3] (Local brain oscillations and interregional 
connectivity differentially serve sensory and expectation effects on pain, Bott et al.),  © 2023 
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predominantly in S1.” [3] Increases in signal power at frequencies below 8 Hz can be 

attributed to above-described evoked potentials. Taken together, the observed patterns of 

evoked and induced responses to brief noxious stimuli are in good accordance with the 

literature[2, 35, 36, 145] and, thus, support the validity of the employed source model. 

Next, we assessed how local oscillatory activity in the six ROIs was shaped by 

stimulus intensity and expectations. “We therefore determined the power of brain activity 

in the six ROIs at alpha, beta, and gamma frequencies averaged across the 1 s post-

stimulus interval.” [3] The results of Bayesian rmANOVAs with the factors intensity and 

expectation are shown in the first three panel columns of Figure 3-4. […] “We found that 

stimulus intensity modulated local brain activity at all frequency bands and in all ROIs. 

Strongest stimulus intensity effects were observed at alpha frequencies where we found 

moderate to decisive evidence for effects on oscillatory brain activity for all ROIs. In all 

ROIs, stronger stimuli yielded stronger suppressions of alpha activity […]. Weaker effects 

were observed at beta frequencies where we found moderate evidence for an intensity 

effect on brain activity in S1, iPO, and cPFC. In these ROIs, stronger stimuli yielded 

stronger suppressions of beta activity. In the gamma frequency band, we observed 

moderate evidence for an intensity effect on S1 brain activity with stronger stimuli inducing 

higher amplitudes of gamma activity. In contrast, we found weak to moderate evidence 

against the effects of expectations or PEs on local brain activity at all frequency bands. 

[…] In summary, we found that stimulus intensity but not expectations or PEs influenced 

local oscillatory brain activity in response to brief painful stimuli.”[3] 

Similar to measures of local signal power, source-level evoked potentials can be 

understood as reflecting local brain activity. We therefore performed a control analysis with 

source-level evoked potential amplitudes instead of local oscillatory activity as dependent 

variables. To this end, we first computed the peak amplitude at each ROI by averaging the 

source-projected signal over a time window that was 40 ms wide and centered at the peak 

latencies reported in [2]. We assessed the effects of stimulus intensity and expectations 

on peak amplitudes by means of a Bayesian rmANOVA. The pattern of effects mirrored 

the pattern observed with local oscillatory activity, in that peak amplitudes were exclusively 

affected by stimulus intensity and not by expectations or PEs (Figure 3-4, last column).  
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Figure 3-4: Effects of stimulus intensity, expectations, and prediction errors on local oscillatory brain activity 
and source-level evoked potentials. “Effects were assessed by Bayesian rmANOVAs with the factors intensity 
and expectation. The color of the tiles representing ROIs scales with the log of the Bayes factor. It ranges from 
blue (BF < 1/3, at least moderate evidence against an effect) to yellow (BF > 3, at least moderate evidence for 
an effect). Brain images display ROIs in yellow which exhibit at least moderate evidence for an effect (BF > 
3).” [3]. (a) Local oscillatory brain activity. (b) source-level evoked potentials. This figure was adapted by 
permission from the American Association for the Advancement of Science: Science Advances, [3] (Local 
brain oscillations and interregional connectivity differentially serve sensory and expectation effects on pain, 
Bott et al.),  © 2023 
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3.2.3 Inter-regional connectivity 

Undirected functional connectivity 

“We next investigated how stimulus intensity and expectations influenced communication 

in our core network associated with pain processing. We therefore determined pairwise 

inter-regional connectivity in a network of six ROIs resulting in 15 connectivity values. 

These analyses were performed separately for the alpha, beta, and gamma frequency 

bands in the 1 s post-stimulus interval. Figure 3-5 shows the results of Bayesian 

rmANOVAs. […] We found moderate evidence for a stimulus intensity effect on the cPO – 

ACC connection in the alpha band. Here, connectivity was higher in the hi than the li 

condition. For most other connections and frequency bands, we found weak to moderate 

evidence against stimulus intensity effects. Effects of expectation were found in the alpha 

band exclusively. We specifically observed moderate evidence for an expectation effect 

on the cPFC – S1 and iPO – cPO connections. In these connections, connectivity was 

lower in the HE than the LE conditions. For most other connections and frequency bands, 

we found weak to moderate evidence against expectation effects. PE effects were 

observed in the gamma band exclusively. We found moderate to strong evidence for a PE 

effect on the cPFC – ACC and iPFC – PO connections. Specifically, the mean connectivity 

values of mismatch conditions (hiLE, liHE) were lower than those of non-mismatch 

conditions (liLE, hiHE). In other words, conditions involving a PE exhibited lower 

connectivity than those without a PE. For most other connections and frequencies, we 

observed weak to moderate evidence against a PE effect. Taken together, we found that 

stimulus intensity and expectation influenced connectivity at alpha frequencies whereas 

PE effects were found at gamma frequencies.” [3] 
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Figure 3-5: Effects of stimulus intensity, expectations, and prediction errors on inter-regional connectivity. 
“Effects were assessed by Bayesian rmANOVA with the factors intensity and expectation. The color of the 
heat map tiles scales with the log of the Bayes factor. It ranges from blue (BF < 1/3, at least moderate evidence 
against an effect) to yellow (BF > 3, at least moderate evidence for an effect). Brain images display connections 
in yellow which exhibit at least moderate evidence for an effect (BF > 3).” [3] This figure was adapted by 
permission from the American Association for the Advancement of Science: Science Advances, [3] (Local 
brain oscillations and interregional connectivity differentially serve sensory and expectation effects on pain, 
Bott et al.),  © 2023 
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Directed functional connectivity 

“The previous analyses showed that stimulus intensity, expectations and PEs modulated 

functional connectivity at alpha and gamma frequencies in a core network associated with 

pain processing. We were next interested to assess the direction of information flow for 

connections in which we found at least moderate evidence for intensity, expectation, 

and/or PE effects. To this end, we calculated an asymmetry score of directed connectivity 

between pairs of brain regions. The score was based on the bivariate partial directed 

coherence (PDC, [124]) measure and ranged from -1 to 1. The absolute value and the 

sign of the score indicate the strength and the direction of asymmetry, respectively. For 

the cPO-ACC connection, for which intensity effects were observed in the alpha band, we 

found strong evidence (BF = 13.4) that information flowed from cPO to ACC. For the cPFC-

S1 connection, for which expectation effects were observed in the alpha band, we found 

strong evidence (BF = 13.1) that information flowed from cPFC to S1. For the other 

connections and frequency bands, we did not find evidence for an asymmetry of 

information flow. Thus, as summarized in Figure 3-6, for connections showing intensity 

effects, we found information flow predominantly from sensory to higher-order brain areas. 

Conversely, for connections displaying expectation effects, we found information flow 

predominantly from higher-order to sensory brain areas.”[3] 

 
Figure 3-6: Direction of information flow in selected network connections. “Using an asymmetry score based 
on the PDC connectivity metric, we assessed the direction of information flow in connections which exhibited 
evidence for an effect in the previous connectivity analysis. Brain images depict connections with strong 
evidence for asymmetric information flow. The arrows indicate the dominant direction of information flow.” [3] 
This figure was adapted by permission from the American Association for the Advancement of Science: 
Science Advances, [3] (Local brain oscillations and interregional connectivity differentially serve sensory and 
expectation effects on pain, Bott et al.),  © 2023 

Frequency Connection BF Direction

alpha

cPFC – S1 13.1 à

ACC – cPO 13.4 ß

iPO – cPO 0.19 -

gamma
iPFC – cPO 0.33 -

cPFC – ACC 0.16 -
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3.2.4 Model comparisons 

Comparison of connectivity and activity models explaining the levels of stimulus intensity, 

expectation and PE. 

“The previous analyses indicated that local brain activity and inter-regional connectivity 

differentially serve sensory and expectation effects on Pain. We specifically observed that 

stimulus intensity shaped local brain activity more than inter-regional connectivity, while 

expectations and PEs shaped inter-regional connectivity more than local activity. To 

address this statistically, we conducted a Bayesian comparison of two types of models 

predicting the levels of stimulus intensity, expectation and PE. The two types of models 

differed with respect to the variables they incorporate for their predictions. One type of 

model incorporated activity variables, the other connectivity variables.”[3] We found 

decisive evidence that activity-type models predicted stimulus intensity better than 

connectivity-type models (BFpow/conn > 100). Conversely, there was moderate evidence that 

connectivity models predicted expectations (BFconn/pow > 3) and PEs (BFconn/pow > 3) better 

than activity models8.  

Model competition and type of PE 

As reported above, our data showed that expectations and PEs are linked to connectivity 

at alpha and gamma frequencies, respectively. To test the robustness of these findings 

with respect to the choice of statistical method, we complemented the Bayesian rmANOVA 

of inter-regional connectivity with a Bayesian model competition approach. Moreover, this 

alternative approach allowed us to determine which type of PE (i.e., aversive or absolute) 

drove the effects in the gamma band.  

The models participating in the Bayesian model competition differed in terms of the 

categorical predictor variables they employed. Overall, we considered five types of 

models: intensity, expectation, intensity + expectation, absolute PE, and aversive PE 

models. To clarify, an aversive PE occurs when a hi stimulus is applied following a LE cue. 

Absolute PEs arise when there is any mismatch between cue and stimulus intensity (i.e., 

for cases liHE and hiLE). Figure 3-7 visualizes the outcomes of the model competition. For 

 

8 Bayes factors stated here differ from those reported in the original manuscript. The new Bayes factors have 
been computed using conditional logistic regression models instead of standard logistic regression models to 
construct likelihood functions. The reason for this update is that the data are paired, i.e., there are two data 
points per participant (corresponding to the low and high levels of stimulus intensity, expectations, or prediction 
errors). Therefore, these data points are statistically independent across but not within participants. This 
dependency has now been taken into account by using conditional logistic regression models. While the 
revised models lead to quantitative changes in Bayes factors, the qualitative implications remain unchanged. 
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the S1-cPFC and the iPO-cPO connections in the alpha band, the expectation model most 

adequately described the data. For the ACC-cPO connection the aversive PE model was 

the best, albeit only marginally better than the expectation model. PE-based models were 

the best choice to describe connectivity in the gamma band. In particular, the aversive PE 

model best described connectivity in the cPO-iPFC and ACC-iPFC connections, while the 

absolute PE model was most adequate to describe connectivity in the ACC-cPFC 

connection. Taken together, these results are consistent with findings from Bayesian 

rmANOVAs and offer additional insights into the specific types of PEs that drive the 

observed PE. 

3.2.5 Direct association between neural measures and pain 

So far, the effects of experimental contrasts on pain scores and neural measures have 

been investigated independently. To directly link local oscillatory activity and inter-regional 

connectivity to pain scores, we employed two approaches.  

First, we assessed whether individuals showing larger changes in neural measures 

also exhibited larger changes in pain ratings. To quantify this association for, e.g., the 

stimulus intensity contrast, we computed the difference between averaged values in li (i.e., 

liLE and liHE) and hi conditions (i.e., hiLE and hiHE) for pain ratings and neural measures. 

Subsequently, we computed Bayes factors for the correlations between these difference 

scores. We restricted these analyses to experimental contrasts and neural measures that 

had previously yielded evidence for an effect. The results of these analyses are 

summarized in Figure 3-8. For the intensity contrast, there was no evidence for a 

relationship between difference scores of neural measures and pain ratings. Likewise, 

neither expectation nor PE contrasts showed evidence for such relationships in any of the 
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Figure 3-7: Competition of models predicting connectivity. The color of the heatmap tiles indicates the model 
with the largest model evidence, i.e., the winning model. The top number in each tile represents the Bayes 
factor comparing the winning model to the null model (individual-specific intercept only). The bottom number 
represents the Bayes factor comparing the winning to the second-best model. 
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considered ROIs and connections. These results do not imply that pain and the considered 

neural measures are not directly associated. Rather, the variance of pain rating difference 

scores across individuals might have been too small to detect such an association. Figure 

3-8a illustrates this scenario.  

Based on these considerations, we devised a second test to evaluate the relationship 

between neural measures and pain ratings. Instead of examining the correlation between 

difference scores, we now tested whether the product of these scores significantly 

deviated from zero. The rationale behind this approach is illustrated in Figure 3-8 and 

described in more detail in the methods section. In essence, we consider there to be an 

association between pain ratings and a neural measure, if the distribution of the 

corresponding difference score products significantly deviates from zero.  

Figure 3-8b and Figure 3-8c depict the results of this analysis. We observed that 

variations in local oscillatory brain activity and pain ratings, induced by changes in stimulus 

intensity, are directly linked in most considered ROIs and frequency bands. Moreover, 
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Figure 3-8: Direct association between pain and neural measures. (a) Schematic illustration of the putative 
data pattern. Blue and orange dots represent data points obtained under two experimental conditions (e.g., li 
and hi). Gray arrows connect data points of the same individual. Within individuals, an experimental contrast 
is associated with consistent changes in both pain and neural measures (left graph). At the same time, changes 
in pain are not associated with changes in the neural measure on the inter-individual level (middle graph). The 
consistency of the intra-individual association is assessed statistically by testing whether the product of 
difference scores of neural measures and pain deviates from zero (right graph). (b) Associations between local 
brain activity and pain. (c) Associations between inter-regional connectivity and pain. 
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variations of inter-regional connectivity and pain ratings, driven by changes in 

expectations, are directly linked in all considered connections at alpha frequencies. For 

the PE contrast, evidence was found for an association between variations of gamma-

band connectivity in the ACC-cPFC connection and pain ratings. For the remaining 

contrasts and connections/ROIs, a direct association between variations of connectivity 

and pain was not observed. Overall, these results directly show the differential involvement 

of distinct neural measures in diverse modulations of the pain experience on a within-

subject level. 

3.2.6 Summary 

The main findings are summarized in Figure 3-9. “On the behavioral level, both stimulus 

intensity and expectation modulated the perception of pain. As expected, both higher 

stimulus intensities and expectations of stronger stimuli evoked higher pain ratings. In the 

brain, stimulus intensity effects were predominantly associated with changes of local brain 

activity. Stronger stimuli yielded stronger responses to brief painful stimuli in alpha, beta, 

and gamma frequency bands. In contrast, expectation effects on pain were associated 

with changes of inter-regional functional connectivity but not with changes of local brain 

activity. We particularly found that expectation effects were associated with top-down 

connectivity at alpha frequencies from cPFC to S1 and with connectivity between cPO and 

iPO. PEs were associated with changes of gamma-band connectivity exclusively. 

Bayesian model comparisons confirmed the differential involvement of local activity and 

inter-regional connectivity in sensory and expectation effects on pain. Specifically, stimulus 

intensity has a stronger influence on local brain activity than on inter-regional connectivity. 

Vice versa, expectations and PEs shape inter-regional connectivity more than local brain 

activity.” [3]. Frequentist analogs of selected Bayesian statistical tests discussed in this 

section have also been performed. The results of these frequentist tests are qualitatively 

similar to those of the Bayesian tests and can be found in the supplement of the original 

publication[3]. 
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Figure 3-9: Synopsis of project 1. “Increases of stimulus intensity led to increases of pain ratings and local 
brain activity at gamma frequencies as well as to decreases of brain activity at alpha and beta frequencies. 
Expectations of stronger pain yielded increases of pain ratings and reduced connectivity between cPO and 
iPO and from cPFC to S1 at alpha frequencies. In contrast, expectations did not modulate local brain activity 
at any ROI and any frequency band. PEs did not change pain ratings or local brain activity but iPFC-cPO and 
cPFC-ACC connectivity at gamma frequencies. The last column shows the results of a Bayesian comparison 
of local brain activity and connectivity models predicting intensity, expectation and prediction errors.” [3] This 
figure was adapted by permission from the American Association for the Advancement of Science: Science 
Advances, [3] (Local brain oscillations and interregional connectivity differentially serve sensory and 
expectation effects on pain, Bott et al.),  © 2023 
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4 Project 2: Chronic pain 

4.1 Project-specific methods 

Using fMRI, it was discovered that the brain activity of individuals who are not engaged in 

a particular task, i.e., resting-state brain activity, does not fluctuate arbitrarily, but rather 

exhibits distinct spatial patterns. In particular, connectivity profiles of individual brain 

regions were found to be similar within and distinct between well-defined spatial brain 

structures. These brain structures are referred to as intrinsic brain networks[50, 86]. In 

primary analyses, we set out to assess the association between intrinsic brain networks 

and chronic pain. In secondary and exploratory analyses, we broadened the focus and 

assessed how connectivity in general relates to chronic pain, depression, and age. 

4.1.1 Data sets 

We based our analyses on resting-state EEG recordings in patients with chronic pain. To 

this end, we used EEG recordings from our research group and identified and acquired 

external EEG data sets. We used the external data sets primarily to test the robustness of 

our findings. While some of the data sets at our disposal offer resting-state recordings 

under both eyes closed and eyes open conditions, we restrict our analyses to eyes closed 

data as these were shown to give rise to more robust results[146]. Given the array of 

available data, it is convenient to assign unique identifiers to individual data sets. These 

identifiers are printed in italic font and carry the prefix “Set_”. First, we introduce two data 

sets that were generated in our research group: Set_PainlabDiscovery and 

Set_Zebhauser2023. Then, five data sets from external research groups are presented 

together with the strategy we pursued to obtain them: Set_Day2020, Set_Adhia2022, 

Set_Wager2022, Set_Jarnitsky2022, and Set_Jensen2020. A summary of all available 

data sets is provided in Table 4-1. 

To counteract any sample size biases, in our analyses, we base computations of 

neural features in all individuals on a fixed number of two-second-long EEG signal epochs. 

In our data, to ensure the inclusion of at least 80% of all recordings, this fixed number must 

not exceed 192. This means that for 20% of individuals there are fewer than 192 epochs 

available. These individuals are excluded from the analysis.  

Internal data sets 

Set_PainlabDiscovery is composed of five data sets that have previously been recorded 

in our research group to investigate brain dysfunction in patients with chronic pain. These 

data sets are Set_Tiemann2012[147], Set_May2019[46], Set_TaDinh2019[80], and 
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Set_Heitmann2022[28]. The first three data sets have been used in combination to 

compare measures of brain activity, brain connectivity[80], and brain dynamics[148](i.e., 

microstate analyses[149]) cross-sectionally between patients with chronic pain and 

healthy controls. Set_Heitmann2022 has been used to assess measures of brain activity 

and brain connectivity longitudinally in a cohort of patients with chronic pain[28]. 

In all studies of Set_PainlabDiscovery, inclusion criteria for patients consisted in a 

clinical diagnosis of chronic pain, with pain persisting for at least six months and with an 

average pain intensity during the four weeks prior to assessment of at least four (two in 

the case of Set_Heitmann2022) on an 11-point numerical rating scale (NRS) ranging from 

zero (no pain) to ten (worst imaginable pain). Patients with severe diseases other than 

chronic pain or those on regular benzodiazepine medication were excluded. In total, 

Set_PainlabDiscovery comprises data from 148 patients. Nine patients had to be excluded 

due to not meeting the minimum epoch number requirement. The analyzed cohort consists 

of 74 patients with chronic back pain (CBP), 33 patients with chronic widespread pain 

(CWP), 13 patients with primarily neuropathic pain (NP), and 19 patients with pain of other 

etiologies (OTHER). All data sets were recorded using a passive electrode EEG system 

with 64 channels (Easycap, Herrsching, Germany) and BrainAmp MR plus amplifier (Brain 

Products, Munich, Germany). Previous analyses of components of Set_PainlabDiscovery 

did not yield any evidence which could have informed or biased the analyses of the present 

study. 

Set_Zebhauser2023 has not yet been published or analyzed, as data acquisition is 

currently in progress. The primary goal of this project is to assess pain medication effects 

on EEG-based measures of brain activity and brain connectivity. Inclusion and exclusion 

criteria are similar to those described for Set_PainlabDiscovery. At the time of writing this 

thesis, Set_Zebhauser2023 comprised 88 patients, 38 of which were excluded due to 

insufficient epoch numbers after preprocessing. Among the remaining patients, 21 

suffered from CBP, two suffered from CWP, 9 exhibited NP, and 18 could be assigned to 

the OTHER category. To record EEG, a novel 32-channel system with active dry 

electrodes (CGX-Quick32r, CGX-systems, San Diego, US) is being used. 

External data sets 

As detailed in the study preregistration (https://osf.io/4qmyw/), we contacted research 

groups across the globe in a structured data acquisition campaign to inquire about resting-

state EEG recordings in patients with chronic pain. To this end, we first created a list of 79 

studies which involved resting state EEG recordings. This list was mostly based on a 

systematic review on EEG and MEG biomarkers of chronic pain[150]. Moreover, the list 

https://osf.io/4qmyw/
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comprised studies which had been published in the year 2022. To decide which external 

research groups to contact, we condensed this list using three criteria: 

1. Number of EEG-sensors ≥ 32 

2. Publication date ≥ 2013 

3. Number of patients ≥ 20 

Applying these criteria shortened the list to 18 studies, some of which shared a single data 

set. We then contacted the corresponding authors of the respective studies to inquire 

whether they would be willing to share their data. To those who did not reply within a few 

weeks, we sent a standardized reminder email. To date, we received positive replies from 

four groups and three of them have already sent us their data; one is work in progress. 

We additionally included an external data set which comprised less than 32 channels 

(Set_Wager2022). We included this data set because it was sent to us before we engaged 

in our systematic inquiries. Further, this data set could be used to test the replicability of 

findings in EEG setups with fewer channels.  

Set_Day2020 had been analyzed with respect to local and global sensor-level power 

changes associated with several non-pharmacological, 8-week interventions in 69 patients 

with CBP. To be eligible for the study, patients had to exhibit pain in the lower back area 

for more than three months and they had to rate their average pain in the four-week period 

prior to assessment with at least a four on an 11-point NRS. Participants with severe 

comorbidities were excluded from the study. After preprocessing, data from 60 patients 

recorded prior to interventions could be included in the present study. EEG recordings 

were obtained using an ANT Neuro EEGO sports system (Medical Imaging Solutions 

GmbH, Berlin, Germany) with 64 active scalp electrodes (Waveguard cap). In the original 

study, an analysis of variance revealed that the interventions were linked to both 

reductions in pain severity scores and reductions in relative power at theta, alpha, and 

beta frequencies[151]. 

Set_Adhia2022 was recorded in the context of a study which investigated the efficacy 

of infra-slow neurofeedback training as a treatment for chronic low back pain in 60 

patients[152]. Eligibility criteria were analogous to those stated for Set_Day2020. Here, 

we incorporate baseline data from 57 patients. EEG recordings were obtained using a 64-

electrode system with SynAmps-RT amplifier (Compumeics-Neuroscan). In the original 

study, no analyses relevant to this project were reported. 

Set_Wager2022 is a data set for which, to date, no analyses have been published. It 

was recorded in the context of a larger study on the efficacy of the pain reprocessing 

therapy for the treatment of chronic back pain[153]. Eligibility criteria were very similar to 
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those described in the two previously presented data sets. Set_Wager2022 comprises 19-

channel EEG recordings (Evoke system) from 69 patients with CBP. Only one patient had 

to be excluded due to not meeting the minimum epoch number requirement. 

Set_Yarnitsky2022 comprises recordings from 133 patients with painful and 47 

patients with non-painful diabetic polyneuropathy. In the original study, these data were 

used to train a machine learning model to distinguish patients with painful diabetic 

polyneuropathy from those with non-painful diabetic polyneuropathy[154]. This study was 

part of the larger DOLORisk[155] initiative aiming at identifying risk factors for the 

development and maintenance of neuropathic pain. Inclusion criteria defined by this 

initiative were, e.g., a diagnosis of Type 1 or Type 2 diabetes and a clinical diagnosis of 

peripheral neuropathy or symptoms highly suggestive thereof. For EEG recordings, a 64-

channel system with active electrodes was used (ActiCHamp, Brain Products, Munich, 

Germany). While the trained machine learning model was reported to yield high levels of 

accuracy, several methodological aspects regarding its validation remained intransparent. 

In the present study, we included data from 47 patients with painful diabetic 

polyneuropathy. 

Set_Jensen2021[156] is a potentially very informative data set for two reasons. First, 

it comprises data from as many as 147 patients with different forms of chronic pain. 

Second, having been recorded with a 128 channel EEG system (GES high-density EEG 

acquisition system (EGI, Eugene OR), these data promise to have an excellent spatial 

resolution. However, as the data transfer is still ongoing, Set_Jensen2021 could not be 

incorporated in the analyses discussed in this thesis. 

Data curation 

In summary, we currently have two internal and five external resting-state EEG data sets 

at our disposal. The most important properties of these data sets are summarized in Table 

4-1. In addition to EEG recordings, the complete data also comprise meta data tables 

containing demographic and behavioral information about patients. The meta data 

variables we used in the present work were 

• participantID: Unique participant identifier 

• age: Age of the participant at the time of the recording 

• diagnosis: Identifier for category of pain diagnosis: Chronic back pain (CBP), 

chronic widespread pain (CWP), neuropathic pain (NP), postherpetic neuralgia 

(PHN), polyneuropathy (PNP), Other (OTHER) 

• avgPain: Average pain over a period of one day to four weeks prior to 

assessment, rated on an 11-point numerical rating scale ranging from no pain (0) 
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to worst imaginable pain (10). The time periods to which the ratings refer in the 

individual studies can be inferred from Appendix Figure 0-2.   

• deprScore: Depression score. The quantification of depression severity was 

particularly heterogeneous across studies. Employed metrics included, among 

others, Beck Depression Inventory and PROMIS questionnaires. Which 

instrument was used by which study is indicated in Appendix Figure 0-2.  

Other meta data variables which were extracted from the studies but not used in the 

present work are gender (male, female, other), currPain (current pain at time of recording), 

and neuropathicPain (questionnaire score reflecting the neuropathic pain component). As 

the data originate from diverse research groups, they are heterogeneous and measures 

had to be taken to counteract any biases due to systematic differences in questionnaires 

and/or EEG recording systems. To this end, we computed z-scores within studies for all 

continuous meta data variables that were extracted, i.e., for age, avgPain and deprScore. 

Likewise, we computed z-scores within studies for all evaluated brain measures. 

Moreover, as several brain measures have been linked to age[88-90], we regress out age 

from both independent and dependent variables in all analyses except those considering 

age as the dependent variable. As explained in more detail in section 4.1.4, in multivariate 

analyses, z-scoring and confounder removal were done in a manner to prevent leakage of 

information from test or validation to training sets in the employed cross-validation 

procedures. 

participants
(participants with ≥ 192 epochs)

data set identifier CBP diverse pain number of 
sensors

Set_PainlabDiscovery

Set_Tiemann2012* 0 20 (20)

64
internal

Set_May2019 34 (30) 34 (30)

Set_TaDinh2019 13 (12) 46 (42)

Set_Heitmann2022 33 (32) 48 (47)

replication sets

Set_Zebhauser2023 30 (21) 88 (61) 32

Set_Day2020 69 (60) 69 (60) 64

external

Set_Adhia2022 60 (57) 60 (57) 64

Set_Wager2022 69 (68) 69 (68) 19

Set_Yarnitsky2022 0 (0) 133 (52) 64

Set_Jensen2021 ? 147 128

308 (>280) 714 (>437)

* For this data set depression scores and age but not average pain ratings are available.

Table 4-1: Overview of data sets employed in project 2. We conducted analyses separately for patients with 
chronic pain and patients with diverse pain conditions. For each data set, the “CPB” and “diverse pain” columns 
contain the patient numbers in chronic pain and diverse pain cohorts, respectively. In parentheses is the 
number of individuals remaining after requiring that at least 192 epochs be available per individual. 
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4.1.2 Automatic preprocessing 

The data we received from external research groups was raw data, i.e., it had not been 

preprocessed in any way. This was important as we wanted to ensure that preprocessing 

was done in a unified manner across all internal and external data sets. To preprocess 

data, we employed an automatic preprocessing pipeline which has initially been proposed 

by [157] and was adapted in [90] for the use with resting state recordings. This pipeline 

represents a concatenation of several established functions from the Matlab-based 

EEGLAB toolbox. It comprises the following steps: The data, which has to be in BIDS 

format[158], is imported to Matlab and down-sampled to 250 Hz. Then, an algorithm which 

estimates and subtracts sinusoidal components akin to power line artifacts is applied. 

Based on a set of exclusion criteria, individual channels are removed from the data prior 

to re-referencing all channels to the average reference. To further reduce the influence of 

components not related to actual brain activity, the data are decomposed using 

independent component analysis (ICA). Independent components (ICs) which have been 

identified by a machine learning based classifier[159] as corresponding to muscle or eye 

activity are removed from the data. Compared to its manual counterpart, this procedure 

generally preserves more components and is, therefore, less invasive. After the removal 

of artifactual ICs, the previously rejected channels are interpolated. Subsequently, using 

the artifact subspace reconstruction[160, 161] (ASR) method, time segments which are 

contaminated by large amplitude artifacts are identified. ASR first decomposes the data of 

different time segments into to their principal components. Time segments are then 

marked as artifactual if the variance of a principal component exceeds a certain threshold. 

This threshold, in turn, is defined based on reference data segments which are also 

automatically identified. Finally, the data are segmented into 2 s epochs with 1 s overlaps. 

Epochs comprising time segments marked as artifactual are rejected. 

4.1.3 Evaluating brain measures 

In primary analyses, we assess connectivity between and activity within four of the seven 

Yeo networks (Figure 4-1). Specifically, we include the somatomotor (SMN), the 

frontoparietal (FPN), the salience ventral attention (SN) and the default network (DN). In 

exploratory analyses, we explore brain activity and connectivity for spatial configurations 

other than the four Yeo networks. In all analyses, brain connectivity and brain activity are 

assessed in theta (4 – 8 Hz), alpha (8 – <13 Hz), and beta (13 – 30 Hz) frequency bands. 

In the following, the methods for evaluating measures of connectivity and activity in 

intrinsic brain networks using EEG are briefly described. More detailed explanations of the 
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methodological aspects of the evaluation of intrinsic brain network connectivity are 

provided in sections 2.1.3 and 2.1.4. 

Source reconstruction 

We project the preprocessed sensor-level data to source space using frequency-band 

specific linearly constrained minimum variance (LCMV) spatial filters[110]. These spatial 

filters are constructed as described for project 1 in section 3.1.4, except that sensor-level 

data covariance matrices are now computed based on epochs derived from continuous 

recordings rather than from different trials. In primary and secondary analyses, spatial 

filters were computed for source locations corresponding to the centroids of 400 brain 

parcels defined by the Schaefer atlas. Exploratory analyses additionally make use of a 

variant of the Schaefer atlas comprising 100 parcels. Subsequent steps are based on the 

source-level time series. 

Representative time series 

Computing connectivity between intrinsic brain networks using EEG is challenging due 

to the complex and intertwined geometries of the individual networks. A widely used 

method for quantifying connectivity between two smaller and simply-shaped geometric 

entities in the brain, such as parcels or regions, is to calculate the mean of the 

corresponding entries of a high-resolution connectivity matrix[81, 82]. However, when 

applied to entire intrinsic brain networks, this approach yields connectivity values that are 

highly correlated across individuals (pilot assessments yielded average r-values > 0.97). 

Such spatially indifferent connectivity values are unlikely to adequately capture the actual 

SMN SN FPN DN LN DAN VN

intrinsic brain networks (Yeo)

Figure 4-1: Visualization of the seven Yeo networks. Axial, coronal, and sagittal views of the somatormotor 
(SMN), the salience ventral attention (SN), the frontoparietal (FPN), the default (DN), the limbic (LN), the dorsal 
attention (DAN), and the visual network (VN). In primary and secondary analyses, we focus on only four out 
of these seven networks (indicated by underlined network abbreviation). 
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underlying network characteristics. The reason for this lack of spatial specificity likely lies 

in the limited spatial resolution of EEG. At this limited spatial resolution, reconstructed 

signals at sources in more slender regions of a network are heavily contaminated by 

contributions originating from surrounding sources, including those belonging to other 

networks. In other words, many signals associated with a particular network do not 

appropriately represent that network’s activity. Therefore, an alternative way to compute 

inter-network connectivity is to first identify time series that are believed to be sufficiently 

representative of the respective networks. The connectivity between networks is then 

determined by evaluating the connectivity between their representative time series[162].  

For simpler geometric entities such as brain regions or parcels, a common approach 

is to use the first principal component (PC) of the associated source-level signals as the 

representative time series. This implies the assumption that the contamination from other 

networks is less reflected in the first than in subsequent PCs. However, for intrinsic brain 

networks, which have more complex geometries, the first PCs are likely still significantly 

affected by contributions from outside the respective networks of interest. In this work, we 

therefore developed a technique that does not remove but aims to mitigate the issue of 

low spatial resolution. Therein, a network’s representative time series is similar to its first 

PC but additionally satisfies the constraint of being orthogonal to representative time series 

of other networks. Orthogonality constraints are common in the computation of many 

connectivity metrics[163]. Two versions of our method exist:  

• Pairwise orthogonalization: For a given network pair, an associated pair of 

orthogonal representative time series is estimated.  

• Global orthogonalization: For a given single network, one representative time 

series is estimated that is orthogonal to a set of time series representing the activity 

outside of that network. The number Nc of time series used to represent the activity 

outside of the network of interest is a parameter of that method. 

Through simulation studies (appendix A.1) we found that of the considered methods, the 

optimal choice is global orthogonalization with Nc = 3. Compared to the first PCs, the 

resulting representative time series led to a relative increase of explained variance in 

ground truth signals of up to 40%. We will, therefore, use this variant for all primary 

analyses. For exploratory analyses, which explore larger model spaces, both pairwise and 

global orthogonalization are used. 

Intrinsic network connectivity and activity 

As connectivity between two networks, we defined the amplitude envelope correlation 

between their corresponding representative time series. We opted for an amplitude-based 
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measure as this is the option that is conceptually most compatible with the fMRI-based 

approaches that have originally been employed to study intrinsic brain networks[164]. 

Assessments of network activity will be performed as control analyses. As activity of a 

network, we define the absolute variance of signals of that network which can be explained 

by its representative time series. In essence, the activity of a network simply corresponds 

to the power of its representative time series. Since the distribution of activity values is 

highly skewed, we consider logarithmically transformed activity values in all statistical and 

machine learning analyses.  

4.1.4 Statistical analysis and machine learning 

This project’s overarching objective is to examine the relationship between intrinsic brain 

networks and chronic pain. The multitude of data sets at our disposal provides us with the 

freedom to approach this research question from different angles. In univariate analyses, 

we investigated the involvement of individual inter-network connections in chronic pain. 

Multivariate machine learning analyses aimed to establish a link between patterns of inter-

network connectivity and the experience of chronic pain. Further, in secondary and 

exploratory analyses, we assessed other cohorts as well as different outcome and 

predictor variables. To be able to quantify evidence against effects, whenever feasible, we 

employed Bayesian statistics and reported Bayes factors (BFs) along with posterior 

estimates of correlation coefficients (denoted by “post. r”).  

We integrated information from diverse data sets primarily using a discovery + 

replication approach. In the discovery + replication approach, one data set is designated 

as the discovery data set, while the remaining data sets serve as replication sets. This 

framework is sensitive to strong effects that are consistent across data sets. Throughout 

all analyses presented here, Set_PainlabDiscovery is defined as the discovery data set. 

We complemented the discovery + replication approach with a mega analysis in which 

Table 4-2: Summary of analysis strategies. In this study we employ univariate and multivariate analyses and 
integrate data from different sources using a discovery + replication approach. In the discovery + replication 
approach, one data set is the designated discovery set, while the remaining data sets are exclusively used for 
replication purposes. We complement the discovery + replication approach with a mega analysis in which all 
data is analyzed jointly. 

 Discovery + Replication Mega analysis

Univariate
• In discovery set, one corr. BF for each 

independent variable

• No. of replication sets with corr. BF > 3

In combined set, one corr. BF for 
each independent variable

Multivariate

• ”In-sample” validation: One permutation-based 
p-value for discovery set

• ”Out-of-sample” validation: No. of replication 
sets with prediction-outcome corr. BF > 3

“leave-one-out” cross-validation: 
Prediction-outcome observation for 
pooled data and for study sub-sets.
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data from all sources are analyzed jointly. The motivation behind this is twofold: First, as 

more data are incorporated at the same time, more subtle effects, which are present 

across data sets, may be detected. Second, the hierarchy between discovery and 

replication sets, which is arbitrary to some degree, is resolved. An overview of the different 

analysis strategies is provided in Table 4-2.  

Univariate analyses 

Within the discovery + replication framework, univariate analyses were conducted as 

follows. For each network pair, we computed the BF of linear correlation across individuals 

between connectivity values and outcome measures (e.g., avgPain). This was done 

independently for all data sets. We then visualized the BFs of linear correlation for the 

discovery data set. For those connections which showed evidence for an effect in the 

discovery set, we counted the number of replication sets which also yielded at least 

moderate evidence for an effect (BF > 3). Naturally, effects were only counted, if they 

pointed in the same direction as in the discovery data set. We defined, a priori 

(preregistration https://osf.io/4qmyw/), that if at least half of the replication sets yielded at 

least moderate evidence for an effect, we would consider this effect “consistent across 

data sets”.  

In univariate mega analyses, all data sets were considered jointly. Accordingly, for 

each network pair, the analysis yielded one BF of linear correlation. For BFs > 3, we would 

consider the corresponding effect as “present in the joint data set”. 

Multivariate analyses 

The discovery + replication framework is particularly appropriate in the context of machine 

learning models as these have several degrees of freedom which can be tuned based on 

the discovery set in the initial discovery stage. The procedure of identifying, fitting and 

testing the best model, which is inspired by the approaches in [57] and [53], is described 

in the following and visualized in Figure 4-2.  

First, we defined several candidate models with distinct attributes. These models 

differed in their structure (i.e., type of machine learning algorithm) and the number of 

components they encompassed. Specifically, we explored two model structures: principal 

component regression and partial least squares regression. These algorithms were 

selected for their aptitude to deal with highly correlated input, as seen in EEG-based inter-

network connectivity values. In both algorithms, the number of included components has 

to be specified. This number constitutes the second model attribute. In the model discovery 

stage, we considered component numbers ranging from one to twelve. We opted for a 

maximum number of twelve as the analysis involves four networks and three frequency 

https://osf.io/4qmyw/
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bands. Thus, in primary analyses, our setup involved a total of 24 distinct candidate model 

structures. In primary and secondary analyses, when average pain and depression scores 

were defined as dependent variables, the candidate models comprised 18 predictors (6 

connectivity values in three frequency bands). For age as the dependent variable, all 

seven networks were included, resulting in 63 predictors. 

Based on the discovery data set, for each candidate model (Figure 4-2a, model 

selection loop), we computed a cross-validated prediction accuracy as follows (Figure 

4-2a, inner-CV-loop).  

• 1 Data splitting: Split the discovery set into a training and a validation sub set in 

a 9:1 ratio. 

• 2 Standardization and confounder removal: Standardize all independent and 

dependent variables in both training and validation datasets using mean and 

standard deviation estimates from the training set. Similarly, fit regression models 

relating all independent and dependent variables to confounding variables using 

the training set. Then, apply the regression models to remove confounder-related 

variability in all independent and dependent variables. This rigorous 

standardization and confounder removal procedure ensures that there is no 

information leakage from validation to training sets. 

• 3 Model fitting and prediction: Fit the model using the training set and predict 

the observations in the validation set. 

• 4 Prediction accuracy in current CV-fold: Compute the correlation coefficient 

between predictions and observations in the validation set 

• Repeat steps one through four k = 300 times (more precisely, repeat steps one 

through four for the remaining 9 data partitions, then reshuffle and repeat the 

entire procedure 30 times).  

• Compute the prediction accuracy of the model as the average of prediction-

observation correlations across all k = 300 validation sets. 

For further analyses, the model attributes yielding the highest prediction accuracy were 

employed. The model possessing these optimal attributes is referred to as the winning 

model.  
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Figure 4-2: Visualization of the machine learning pipeline. (a) At the discovery stage, different model structures 
(i.e. machine learning algorithm/ number of included components) are assessed in a “model selection loop” by 
computing their cross-validated prediction accuracy in the “inner-CV-loop”. (b) The prediction accuracy of 
models resulting from the developed pipeline is estimated using a leave-one-out cross-validation (CV) 
procedure. (c) To assess whether a specific model performs better than chance, we employ a permutation-
based test. 
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To assess model performance within the discovery data sets, we performed an “in-

sample” validation. First, to estimate the prediction accuracies of models generated by our 

pipeline, we performed a leave-one-out cross-validation procedure (LOO-CV, Figure 

4-2b). This involved selecting and then fitting a winning model structure based on all data 

points in the discovery set except one. The selected and fitted model was then used to 

predict the target value of the omitted (test) data point. This process was iterated, leaving 

out a different data point in each cycle, until all data points were used as test data exactly 

once. Note that, with this approach, the identified model structure may vary across 

iterations. Based on the resulting set of prediction-outcome value pairs, we estimated the 

prediction accuracy by computing spearman’s rho and corresponding p-value. Importantly, 

in the LOO-CV loop, as in the inner-CV-loop described above, data standardization and 

confounder removal were performed in a manner to ensure that no information leaks from 

test to training sets. Next, to statistically evaluate the predictive performance of the winning 

model which had been identified using the complete discovery data set, we conducted a 

non-parametric permutation test (Figure 4-2a and c). This involved repeatedly shuffling the 

response variable and re-calculating the prediction accuracy a large number of times 

(usually 29 times). Subsequently, a p-value was derived by comparing the prediction 

accuracy observed in the unshuffled data to the distribution of prediction accuracies of the 

shuffled data. 

If the permutation-based in-sample validation indicated that the winning model 

predicted outcomes better than chance, signified by a p-value of less than 0.05, we 

proceeded to fit this model to the complete discovery dataset. With this refitted winning 

model, we predicted the observed outcomes in all replication data sets and computed BFs 

of linear correlation between predictions and observations. We defined, a priori 

(preregistration https://osf.io/4qmyw/), that if the correlation BFs in at least half of the 

replication sets indicated at least moderate evidence for an effect, we would consider the 

model to be “generalizing across data sets”.  

In multivariate mega-analyses, we essentially performed a LOO-CV procedure (Figure 

4-2b) on a large data set merging data from all individual studies. We evaluated cross-

validated prediction-outcome correlations for the complete set of prediction-outcome value 

pairs and, in the primary analysis, also for subsets corresponding to each individual study. 

Specifically, we computed correlation BFs and associated posterior estimates of 

correlation coefficients. In exploratory analyses, certain model candidates featured a 

substantially higher number of predictors as compared to primary and secondary analyses. 

Due to the increased computational demands associated with these larger models and 

considering our computational resource constraints, all exploratory mega analyses 
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employed a 10-fold Cross-Validation (10-fold-CV) procedure instead of the 

computationally more demanding LOO-CV. 

Exploratory analyses 

The exploratory analyses were variants of the above-described multivariate discovery + 

replication and mega analysis strategies. They extended these approaches by augmenting 

the space of candidate models. In addition to different model structures and numbers of 

components, the new model space also encompassed several spatial configurations, 

varied techniques for generating representative time series, and different definitions of 

amplitude-based connectivity.  

Spatial configurations describe the spatial entities between which connectivity is 

computed. The primary analysis considered only a single spatial configuration -it 

corresponded to four out of the seven Yeo networks. By contrasts, exploratory analyses 

involve three different spatial configurations. The first configuration, labeled YEO7, 

corresponds to the complete collection of seven Yeo networks (Figure 4-3). With this 

configuration the predictive model comprises 63 predictors (21 connectivity values among 

7 networks in three frequency bands). The second configuration, labeled ANAT25, 

involves 25 anatomical brain regions which are defined by grouping the Schaefer parcels 

according to their anatomical labels rather than according to their network affiliation. 

Consequently, the predictive model comprises 900 predictors in this configuration. The 

third configuration, termed SCHAEFER100, defines each individual parcel of the 100-

parcel Schaefer atlas as a distinct spatial entity, resulting in 14,850 predictors. 

ANAT25 SCHAEFER100

SMN (2) SN (5) FPN (4 ) DN (7) LN (3) DAN (2) VN (2)

Figure 4-3: Visualization of alternative spatial configurations. First seven columns: axial, coronal, and sagittal 
views of the 25 regions of the ANAT25 spatial configuration. For visualization purposes, the ANAT25-regions 
are grouped by their Yeo network affiliation; that is, each ANAT25-region belongs to exactly one Yeo network. 
For example, two out of 25 regions correspond to the left and right halves of the SMN, another five out of 25 
regions correspond to five subdomains of the SN, and so on. Different colors are used to distinguish the 
ANAT25-regions within each Yeo network (due to a limited palette, colors do not distinguish regions across 
different Yeo networks). Last column: axial, coronal, and sagittal view of the 100 parcel centroids of the 
SCHAEFER100 spatial configuration. 
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Visualizations of the ANAT25 and SCHAEFER100 spatial configurations are provided in 

Figure 4-3.  

Moreover, we explored three techniques to compute representative time series. With 

reference to earlier explanations, these techniques are standard PCA, “pairwise 

orthogonalization”, and “global orthogonalization” with Nc = 3. Due to computational 

resource constraints, “pairwise orthogonalization” was not performed for the spatial 

configuration SCHAEFER100. We further explored two variants of AEC definitions. The 

first variant, which is the one originally proposed in[116] and which is also employed in the 

primary analysis, involves computing correlations between logarithmically transformed 

squared amplitude envelopes. The second, computes correlations between 

untransformed amplitude envelopes. In the primary analysis, the maximum number of 

components explored during model selection was motivated based on the number of Yeo 

networks and the number of frequency bands included in the analysis. While the number 

of frequency bands included in the exploratory analysis is still three, the spatial 

configurations now cover the entire brain, i.e., they comprise all seven Yeo networks. 

Therefore, the new maximum number of components is set to 21. 
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4.2 Results 

In this study, we investigated the role of brain network function in chronic pain. The 

structure of the results aligns with the description provided in the preregistration 

(https://osf.io/4qmyw/). In primary analyses, we examine the relation between four 

selected intrinsic brain networks and pain intensity in cohorts of patients with chronic back 

pain. These analyses comprise both univariate and multivariate methodologies. To test 

the functional specificity of the primary results, we conduct control analyses in which we 

use measures of intrinsic network activity as predictors instead of intrinsic network 

connectivity. 

Uni- and multivariate secondary analyses expand the focus to cohorts of patients 

experiencing diverse forms of chronic pain. Besides average pain, secondary analyses 

define depression scores and age as alternative dependent variables. Moreover, in 

exploratory analyses, we pursue a more data driven strategy to predict average pain, 

depression, and age. Specifically, we enlarge the set of candidate models by including, 

e.g., different spatial configurations and different methods for computing representative 

time series and amplitude-based connectivity. An overview of all analyses is provided in 

Table 4-3. 

Table 4-3: Overview of various analysis variants. 

 

YEO4 connectivity à avg. pain

Cohort: CBP

Analysis variants:
• Univariate, disc. + repl.
• Univariate, mega
• Multivariate, disc. + repl.
• Multivariate, mega

Primary analysis

YEO4 activity à avg. pain

Cohort: CBP

Analysis variants:
• Univariate, disc. + repl.
• Univariate, mega
• Multivariate, disc. + repl.
• Multivariate, mega

Control analysis

YEO4 connectivity à avg. pain

Cohort: ALL

Analysis variants:
• Univariate, disc. + repl.
• Multivariate, disc. + repl.
• Multivariate, mega

Secondary analyses
Exploratory analyses

(extended model space)

YEO4 connectivity à depres.

Cohort: ALL

Analysis variants:
• Univariate, disc. + repl.
• Multivariate, disc. + repl.
• Multivariate, mega

YEO4 connectivity à age

Cohort: ALL

Analysis variants:
• Univariate, disc. + repl.
• Multivariate, disc. + repl.
• Multivariate, mega

conn./ act.à avg. pain

Cohort: CBP/ALL

Analysis variants:
• Multivariate, disc. + repl.
• Multivariate, mega

conn./ act.à depression

Cohort: CBP/ALL

Analysis variants:
• Multivariate, disc. + repl.
• Multivariate, mega

conn./ act.à age

Cohort: CBP/ALL

Analysis variants:
• Multivariate, disc. + repl.
• Multivariate, mega
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4.2.1 Primary analyses: Intrinsic brain network function in chronic back pain 

The first set of analyses addressed the question whether inter-network connectivity as 

measured by EEG relates to pain intensity in cohorts of patients with chronic back pain. 

Leveraging the high temporal resolution of EEG, we hoped to unravel temporal and 

spectral characteristics of network mechanisms that may elude traditional methods in the 

field, such as fMRI. We assessed connectivity among four intrinsic brain networks in the 

theta, alpha, and beta frequency bands. In particular, we opted to evaluate connectivity 

among the frontoparietal (FPN), the salience ventral attention (SN), the default (DN), and 

the somatomotor network (SMN) as these networks have previously been linked to several 

neuropsychiatric disorders including chronic pain[74, 87]. For each network pair, we 

computed connectivity based on an associated pair of representative time series, a 

procedure which is explained in more detail in the project-related as well as the general 

methods sections of this manuscript. 

Univariate analyses 

To begin with, we investigated to which degree inter-network connectivity of individual 

network pairs could explain the inter-individual variability of pain intensity scores. Figure 

4-4a illustrates the results of univariate Bayesian correlation analyses. In the discovery 

data Set_PainlabDiscovery, we found moderate evidence for a correlation between inter-

network connectivity and pain intensity for two network pairs in the theta (DN-SN: BF = 

6.2, post. r = 0.28; DN-FPN: BF = 4.9, post. r = 0.27) and for one network pair in the alpha 

band (FPN-SN: BF = 3.7, post. r = -0.24). Interestingly, pain intensity was associated with 

hyper and hypo-connectivity in the theta and alpha frequency bands, respectively. These 

results could not be replicated in the independent data sets comprising patients with 

chronic back pain. In fact, evidence for an effect was found in only one replication data 

set. Similar to observations in the discovery data, this effect occurred in the alpha band 

and involved the SN. Analyzing data from all studies jointly in a mega analysis did not yield 

any effects either (Figure 4-4b).  

To test the functional specificity of the presence and absence of effects, we repeated 

the analysis with measures of intrinsic network activity as independent variables (Appendix 

section A.3). No evidence for an association between intrinsic network activity and pain 

intensity was found -neither in the discovery nor in any of the replication sets. The activity-

based mega analysis yielded a similar picture.  

In summary, we found evidence of an association between inter-network connectivity 

and pain intensity in the discovery data set. In contrast, we found mostly evidence against 

an association between pain intensity and the activity of individual networks. While the 
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connectivity-based effects in the discovery data set could not be replicated in the 

independent data sets, the absence of activity-based effects was consistent across data 

sets. 

Multivariate analyses 

Next, we assessed whether pain intensity related to patterns of intrinsic brain network 

connectivity using a multivariate machine learning approach. As predictors, we used 

connectivity values among the four preselected intrinsic brain networks in all three 

frequency bands. We trained several multivariate candidate models on the discovery data 

Set_PainlabDiscovery. Candidate models differed in their structure (i.e., type of machine 

learning algorithm) and the number of included components. Using the cross-validated 

prediction-outcome correlation in the discovery set as a criterion, we nominated a winning 
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Figure 4-4: Relation between pain intensity and connectivity in individual pairs of intrinsic brain networks in 
patients with chronic back pain. Correlations were assessed using a Bayesian approach. (a) Top panel row: 
The color of heat map tiles scales with the logarithm of the correlation BFs calculated based on the discovery 
data set. It ranges from blue (BF < 1/3, at least moderate evidence against an effect) to yellow (BF > 3, at least 
moderate evidence for an effect). Bottom panel row: Visualization of number of replication sets for which the 
correlation BF was > 3 and the sign of the estimated correlation coefficient was the same as in the discovery 
data set. (b) Results from the mega analysis. The color coding is the same as in the top panel row of subfigure 
(a). SN denotes salience ventral attention, FPN frontoparietal, DN default, and SM somatomotor network.  
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model and used it to predict pain intensity scores in all replication data sets involving 

patients with chronic back pain. Figure 4-5 shows the results of this analysis.  

The winning model for the prediction of pain intensity employed principal component 

regression (PCR) with six components. Its cross-validated prediction-outcome correlation 

stood at 0.33. To determine whether the winning model predicted pain scores better than 

chance, we compared it to a null-distribution of prediction-outcome correlations. This null-

distribution was generated by repeatedly fitting a model with the same attributes to the 

discovery data-set, reshuffling the response variable each time. We call this procedure the 

-1 -0.5 0 0.5 1
r-values

0

20

40

60

80

100

120

140

#p
er
m
ut
at
ion

s

permutation based p-val = 0.010

discovery + replication mega (LOO-CV)

post. r BF post. r BF
Set_Zebhauser2023 -0.24 1.09 0.15 0.62

Set_Day2020 -0.06 0.33 -0.20 1.16

Set_Adhia2022 -0.07 0.34 0.05 0.33

Set_Wager2022 0.10 0.40 0.26 4.00
Set_Yarnitsky2022 - - - -

Set_Jensen2021 ? ? ? ?

Set_PainlabDiscovery n/a n/a 0.09 0.38

Pooled data n/a n/a 0.08 0.33

model attributes

algorithm:
#components:

PCR

6

10-1
r-values

model selection / in-sample validation

model validation

a

b

Average pain, CBP, connectivity NEW!

-2 -1 0 1
observations

-3

-2

-1

0

1

2

3

pr
ed
ic
tio
ns

in-sample
permutation-test

p-value: <0.001

r: 0.33

LOO-CV

p-value: 0.03

r: 0.26

predictions

ob
se

rv
at

io
ns

Figure 4-5: Relation between pain intensity and patterns of inter-network connectivity in patients with chronic 
back pain. Panel (a) on the left indicates the attributes of the winning model as well as the results of its 
permutation-based statistical assessment. The blue histogram and red line in the plot below visualize the 
prediction-outcome correlations for the permuted and non-permuted data, respectively. Panel (a) on the right 
shows the results of a LOO-CV assessment of the machine learning pipeline within the discovery data set, 
that is, the scatter plot of cross-validated prediction-observation pairs as well as the corresponding correlation 
coefficient and p-value. (b) The left section of the table (“discovery + replication”) shows the prediction-outcome 
correlations achieved by the winning model in the individual replication data sets. The right section (“mega”) 
shows the prediction-outcome correlations resulting from a LOO-CV procedure in the combined data set. The 
LOO-CV procedure results in prediction-observation pairs that can be assessed across studies (“pooled data”) 
or separately for each individual study. 
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permutation-based in-sample validation. The resulting p-value (<0.001) indicated that the 

identified multivariate model predicts pain intensity better than chance (Figure 4-5a, left 

part), suggesting that pain intensity-related patterns of intrinsic brain-network connectivity 

do exist in the discovery data set. Additionally, to assess the overall performance of our 

machine learning pipeline, a leave-one-out cross-validation (LOO-CV) procedure was 

conducted (Figure 4-5a, left part). This analysis also demonstrated a significant 

association between predictions and observations of pain ratings (cross-validated r = 0.26, 

p < 0.05).  

After in-sample validation, the winning model was trained using the complete 

discovery data set, and used to predict pain intensity ratings in the four replication data 

sets comprising patients with chronic back pain (Figure 4-5b). In each of these data sets, 

we determined BFs for prediction-outcome correlations. None of these BFs indicated 

evidence for an association between predicted and observed pain scores. Furthermore, 

the posterior estimates of correlation coefficients were not consistently greater than zero.  

In addition, to test whether a more subtle patterns that are consistent across data sets 

could be identified with our machine learning pipeline, we performed LOO-CV procedure 

on the combined data set. In analogy to the univariate case, we refer to this approach as 

mega analysis. As with the discovery + replication approach, the mega analysis did not 

yield evidence for the existence of consistent pain intensity-related patterns of intrinsic 

network connectivity. Only when the subset of cross-validated predictions corresponding 

to Set_Wager2022 was considered, was there moderate evidence for a positive correlation 

with observed pain ratings. 

As before, we repeated the above-described analysis steps using measures of 

intrinsic brain network activity in the three frequency bands as predictors (Appendix section 

A.3). The in-sample validation procedure yielded a permutation-based p-value of 0.25. 

This suggested that that the winning model utilizing intrinsic brain network activity values 

as predictors did not significantly outperform chance in predicting pain intensity ratings in 

the discovery data set. Therefore, testing the model in the replication data sets was not 

indicated.  
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4.2.2 Secondary analyses: Intrinsic brain network function in chronic pain, 
depression, and age  

Different cohort: diverse chronic pain etiologies 

In previous analyses, we focused on patients with chronic back pain in order to minimize 

variability attributable to differences in pain etiology. Implicit to this approach was the 

assumption that cerebral pathomechanisms contributing to chronic pain differ substantially 

across different types of chronic pain. An alternative view suggests that different forms of 

chronic pain are primarily determined by one shared cerebral pathomechanism. In this 

scenario, using data from all patients would enhance statistical power and facilitate the 

detection of these mechanisms. Therefore, in a secondary analysis, we conducted uni- 

Figure 4-6: Relation between pain intensity and intrinsic brain network connectivity in patients with diverse 
pain conditions. (a) Results from univariate analyses. For detailed explanations of the plots, refer to Figure 
4-4a. (b) Results from the multivariate analysis. For explanations of the tables, refer to Figure 4-5. 
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and multivariate discovery + replication analyses including all patients rather than just 

those with chronic back pain. 

Figure 4-6a depicts the results of univariate analyses. In the discovery data set, we 

found evidence for an association between inter-network connectivity and pain intensity in 

four network pairs in the theta and alpha bands. Among these, three network pairs (theta, 

DN-SN, post. r = 0. 26; theta, DN-FPN, post. r = 0.25; alpha, FPN-SN, post. r = -0.32) had 

also indicated evidence for an effect in the primary analysis involving patients with CBP 

only. Notably, the strength of evidence in these three network pairs is increased compared 

to the primary analysis (BF > 10 in all three).  In terms of the direction of effects, as before, 

we observed that pain intensity increased with theta connectivity and decreased with alpha 

connectivity. In replication data sets, we also found effects in the theta and alpha frequency 

bands. However, none of these effects spatially coincided with those observed in the 

discovery data. A multivariate model trained on the diverse pain cohort achieved a 

significant prediction accuracy in the discovery data set (permutation test: r = 0.37, 

p<0.001; LOO-CV r = 0.35, p < 10-5). However, this model could not predict pain scores in 

any of the replication data sets (Figure 4-6b). Similarly, a mega analysis, which involved 

model-training on the combined data set, did not yield evidence for multivariate pain-

related patterns of intrinsic brain network connectivity. 

Intrinsic brain network connectivity and depression scores in patients with chronic pain 

Chronic pain commonly co-occurs with a range of neuropsychiatric comorbidities, most 

notably depression. This prompted us to investigate, in an additional secondary analysis, 

whether an association exists between intrinsic brain network connectivity and depression 

severity scores in patients with chronic pain. Furthermore, this analysis would allow us to 

assess whether the effects found when pain was considered as the dependent variable 

were specific to pain or overlap with effects seen in depression. 

Univariate analyses (Figure 4-7a) in the discovery data set indicated that connectivity 

between the DN and the FPN in the theta band could explain some of the variability of 

depression scores (BF > 30, post. r = 0.26). This finding could not be confirmed in the 

replication data sets. Furthermore, based on the discovery data set, we found evidence 

against a relation between inter-network connectivity and pain intensity for all network 
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pairs in the alpha and beta bands. A multivariate model (Figure 4-7b), which just barely 

reached significance within the discovery data set (permutation test: r = 0.19, p = 0.04; 

LOO-CV r = 0.15, p = 0.07), did not generalize to any of the replication data sets. Moreover, 

there was evidence against an association between observed depression scores and the 

predictions of a model that was trained on the combined data set in the multivariate mega 

analysis. 

Figure 4-7: Relation between depression severity and intrinsic brain network connectivity in patients with 
diverse pain conditions. (a) Results from univariate analyses. For detailed explanations of the plots, refer to 
Figure 4-4a. (b) Results from the multivariate analysis. For explanations of the tables, refer to Figure 4-5. 
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Intrinsic brain network connectivity and age in patients with chronic pain 

Chronic pain and depression are highly complex phenomena with strong subjective 

components. To translate these phenomena into measurable quantities and, 

subsequently, to identify a link between these quantities and neural measures such as 

intrinsic brain network connectivity, is presumably extremely challenging. In contrast, 

demographic features such as an individual’s age are straightforward concepts and their 

sensitivity with respect to age has been demonstrated in several imaging studies[88-90]. 

To showcase the effectiveness of our methodology, we opted to apply it to age prediction 

in a third secondary analysis. Since previous analyses were concerned with predictions of 

Figure 4-8: Relation between age and intrinsic brain network connectivity in patients with diverse pain 
conditions.  (a) Results from univariate analyses. For detailed explanations of the plots, refer to Figure 4-4a. 
(b) Results from the multivariate analysis. For explanations of the tables, refer to Figure 4-5. 
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neuropsychiatric symptom severity scores, they restricted the focus to only four out of 

seven Yeo networks. Age is not a measure of neuropsychiatric dysfunction and, therefore, 

its link with intrinsic brain network connectivity is investigated here in all seven Yeo 

networks. 

Univariate analyses (Figure 4-8a) yielded clear evidence for a relation between 

connectivity and age. The pattern of effects exhibited both spectral and spatial structure 

as effects primarily occurred in the theta band and not in network pairs involving the visual 

network. For all network pairs in the theta band, connectivity values decreased with age. 

Moreover, Bayesian correlation analyses yielded BFs > 10 in twelve and BFs > 100 in four 

network pairs (-0.37 < post. r < -0.21) in the theta band. The effect observed in the limbic-

default network pair was successfully replicated in two independent data sets 

(Set_Wager2022 and Set_Day2020). Effects seen for an additional nine network pairs 

could be replicated in one independent data set. Since there is a total of five replication 

data sets, we cannot quite claim to have found effects that are “consistent across data 

sets”, as specified in the preregistration. However, in view of the magnitude of BFs and 

also the spectral and spatial specificity of the results, a relation between theta band 

connectivity and age seems very likely. 

To test the functional specificity of these findings, we repeated the analysis in the 

discovery data set using intrinsic network activity as predictors. For none of the networks 

did we find evidence of an association between network activity and age. Out of five 

replication sets, only Set_Wager2022 yielded evidence for a negative association between 

age and activity in all intrinsic brain networks at theta and gamma frequencies. 

The multivariate model trained on the discovery data set clearly indicated the 

existence of an age-related multivariate pattern of intrinsic brain network connectivity 

(permutation test: r = 0.33, p < 0.001; LOO-CV r = 0.20, p = 0.02). This model achieved 

positive prediction-outcome correlations in all replication data sets. In none of the 

replication sets did we see evidence against an association between predicted and actual 

age. In one replication set, evidence for such an association was even moderate (BF > 3, 

Set_Day2020). Moreover, there was strong evidence (BF > 10) for an association between 

actual age and predictions of a model trained on the combined data set in the multivariate 

mega analysis.  
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4.2.3 Exploratory analyses 

In exploratory analyses we sought to enhance the predictive accuracy of multivariate 

models by considering a larger model space. At the model identification stage, we 

incorporate three spatial configurations, component numbers one through 21, up to three 

different methods for computing representative time series (for one spatial configuration 

only two variants are computationally feasible), and two definitions of amplitude-based 

connectivity. A relation between these different feature candidates and observations is 

established using two distinct machine learning algorithms. This corresponds to a total of 

672 candidate models. Conceptually, the use of an enlarged model space represents a 

shift towards a more data-driven strategy. The structure of exploratory analyses mirrors 

the one of secondary analyses in that multivariate models are identified which predict 

average pain, depression scores, and age. Four variants of this analysis were performed: 

Using either connectivity or activity values as predictors, and including either all patients 

or only those with CBP. 

Predicting average pain 

The results of exploratory analyses with pain intensity as dependent variable are 

summarized in Table 4-4. Connectivity-based models of pain intensity showed a higher in-

sample prediction performance than activity-based models. The largest in-sample 

prediction accuracy (r = 0.46) was attained in the diverse pain cohort by a model employing 

inter-network connectivity of the seven Yeo networks. This model exhibited positive, albeit 

very small prediction-outcome correlations in all five replication sets. The second-largest 

prediction accuracy (r = 0.38) was observed for a model which was trained and tested in 

the CBP cohort and incorporated connectivity among 25 anatomical regions. This model 

showed positive prediction-outcome correlations in three out of four replication data sets, 

with moderate evidence for an effect, i.e., BF > 3, in Set_Wager2022. The activity-based 

model trained on the diverse pain cohort, showed a relatively decent in-sample prediction 

accuracy and exhibited positive prediction-outcome correlations in four out of five 

replication sets. A BF > 3 signifying moderate evidence for a positive prediction-outcome 

correlation was observed in Set_Wager2022. For the CBP cohort, the activity-based model 

failed to predict pain ratings better than chance in the discovery data set. 

Since none of the models identified on the basis of the discovery data set generalized 

consistently to the replication data sets, we additionally performed a multivariate mega 

analysis. This meant selecting and fitting models based on the combined data set and 

assessing model performance using a 10-fold cross-validation scheme. The resulting 

cross-validated prediction-outcome correlations did not indicate improved predictions by 
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employing the combined data set for model training. Evidence for a correlation between 

predictions and observations of pain ratings was seen only for an activity-based model. 

However, considering the incapacity of activity features to predict pain ratings within the 

discovery data set, the robustness of this finding is questionable.  

Predicting depression scores 

The results of exploratory analyses with depression as dependent variable are 

summarized in Table 4-5. In both patient cohorts, the in-sample performance of activity-

based models predicting depression scores was better than that of connectivity-based 

models. The highest in-sample prediction-outcome correlation was observed for the 

activity-based model in the CBP cohort (r = 0.48). As predictors, this model utilized activity 

values of 25 anatomical regions associated with representative time series derived using 

the global orthogonalization method. This model could, however, not predict depression 

Table 4-4: Predicting pain intensity using an extended set of candidate models. Model training and testing 
was performed separately in cohorts of patients with chronic back pain and in cohorts of patients with diverse 
pain conditions. Models used either measures of brain activity (within brain regions or networks) or brain 
connectivity (between brain regions or networks) as predictors. 
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scores in any of the replication data sets. Mega analyses, employing the combined data 

set for model training, did not improve predictions in any of the considered analysis 

variants.  

Predicting age 

Lastly, we applied the exploratory multivariate methodology to the prediction of age (Table 

4-6). The selected models for all cohorts and predictor types employed the high-resolution 

SCHAEFER100 spatial configuration comprising 100 brain parcels. Except for the activity-

based model in the CBP cohort, all models employed the global orthogonalization method 

for the determination of representative time series. In-sample prediction-outcome 

correlations ranged between 0.46 and 0.70. Posterior estimates of prediction-outcome 

correlations had a positive sign in all replication sets and analysis variants. Interestingly, 

Set_Wager2022 exhibited strong evidence for an association between predicted and 

actual age across all analysis variants. The largest in-sample prediction-outcome 

Table 4-5: Predicting depression severity using an extended set of candidate models. Model training and 
testing was performed separately in cohorts of patients with chronic back pain and in cohorts of patients with 
diverse pain conditions. Models used either measures of brain activity (within brain regions or networks) or 
brain connectivity (between brain regions or networks) as predictors. 
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correlation (r = 0.70) was observed for the activity-based model in the CBP cohort. With a 

value of 0.27, this model also yielded the highest average prediction-outcome correlation 

across the replication data sets. Mega analyses, using the combined data set for model 

selection and fitting, further corroborated the existence of pain-related connectivity and 

activity patterns. While evidence for an association between predicted and actual age was 

decisive in all analysis variants, higher prediction-outcome correlations were observed for 

activity-based compared to connectivity-based models. The relatively superior 

performance of activity-based models is in contrast to what was found in the previous 

secondary analysis. Notably, the difference between the models identified here and that 

from the secondary analysis lies in the use of the fine-grained SCHAEFER100 atlas 

instead of the coarser YEO7 atlas, hinting at a spatially specific age-related pattern of brain 

activity that is not captured by the considered intrinsic brain networks.  

  

Table 4-6: Predicting age using an extended set of candidate models. Model training and testing was 
performed separately in cohorts of patients with chronic back pain and in cohorts of patients with diverse pain 
conditions. Models used either measures of brain activity (within brain regions or networks) or brain 
connectivity (between brain regions or networks) as predictors. 
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5 Discussion 

5.1 Project 1 

In the first project, we investigated how the brain serves sensory and contextual effects on 

pain. To this end, we analyzed data from an experiment in which noxious stimuli were 

applied to healthy human participants while independently modulating the levels of 

stimulus intensity and expectations. “Pain ratings confirmed that stimulus intensity and 

expectation both influenced pain perception. Analyses of EEG recordings revealed that 

sensory and expectation effects on pain were served by fundamentally different brain 

mechanisms. In a core network associated with the processing of pain, sensory 

information shaped local oscillatory brain activity rather than inter-regional functional 

connectivity. In contrast, expectation and prediction errors influenced inter-regional 

functional connectivity but not local oscillatory brain activity”[3].  

Sensory and expectation effects on local brain activity and inter-regional brain connectivity  

„We observed that sensory information shapes local oscillatory brain activity more than 

inter-regional connectivity. The effects of stimulus intensity on local oscillatory activity in 

various frequency bands are in accordance with previous EEG and MEG studies [35, 36, 

84, 145]. […] We further observed that expectations influenced inter-regional functional 

connectivity but not local oscillatory brain activity. To the best of our knowledge, 

expectation effects on functional connectivity have not yet been investigated by 

neurophysiological recordings”[3]. Some studies have investigated expectation effects on 

local brain activity with heterogeneous results[84, 85, 165, 166]. “The present findings do 

not rule out any expectation effects on local brain activity. However, the crucial finding here 

is not the lack of expectation effects on local oscillatory activity, but that expectation effects 

on connectivity are stronger than on local oscillatory activity“[3]. Remarkably, the observed 

spatial-spectral pattern of expectation effects was sparse, indicating their functional, 

spectral, and spatial specificity. Moreover, aggregate model comparisons which integrated 

all connections at all frequencies provided direct evidence for expectations being more 

related to inter-regional connectivity than to local activity.  

Results in the context of the predictive coding framework 

“We found that expectation and prediction errors influenced connectivity at alpha/beta and 

gamma frequencies, respectively. This observation can be interpreted with reference to 

predictive coding (PC) frameworks of brain function. PC is a general theory used to explain 

how perception arises from the integration of sensory information and expectations [167]. 

The framework proposes that the brain maintains an internal model of the environment 
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which continuously generates predictions about sensory input. Discrepancies between 

these predictions and the actual sensory evidence, i.e. PEs, serve to adjust the internal 

model. In this way, the brain allocates its limited resources to events that are behaviorally 

relevant and useful for updating predictions, i.e., learning. It has been suggested that alpha 

and beta oscillations serve the signaling of predictions, whereas gamma oscillations have 

been proposed to signal PEs [59, 141, 168, 169]. The present findings are in good 

accordance with this framework. They specify that expectation effects on pain might be 

particularly related to connectivity at alpha frequencies from the prefrontal to the 

somatosensory cortex. Specifically, expecting less pain was associated with relatively 

stronger connectivity. This implies that alpha-band connectivity might be mechanistically 

involved in an active down-regulation of nociceptive input. Prediction errors on the other 

hand were reflected in reduced gamma connectivity indicating that they are signaled in the 

brain in terms of a disruption of inter-regional communication which is in line with a recent 

study on PE signaling in the processing of pain [84] […]”[3].  

In the preceding discussion, PEs are understood as the discrepancies between the 

intensity of noxious stimuli and the consciously held expectations about that stimulus’ 

intensity. These consciously held expectations can be conceptualized as high-level 

predictions. Expanding beyond such high levels of predictions, the PC framework can also 

be employed to discuss findings on a more basal level. At lower hierarchical levels, any 

salient stimulus, and in particular any noxious stimulus, represents a deviation from the 

current perceptual experience and may thus induce a PE. Since it is thought that the 

feedforward communication of PEs is enabled by neuronal oscillations at gamma 

frequencies[59, 141, 168, 169], the well-known pattern of enhanced gamma oscillations 

within the first 350 ms after noxious stimulus application (Figure 3-3, [41-43]) could be 

interpreted as signaling such lower-level PEs. From this perspective, pain could be 

understood as reflecting particularly large PEs, a notion which can be extrapolated to 

clinical pain states. Chronic pain, for instance, could be partially explained by large PEs 

that occur when the internal model indicates a harmful event but the objective sensory 

information does not. 

Sensory and expectation effects on pain are served by distinct mechanisms 

“The key finding of our study is that sensory and expectation effects on pain are served by 

distinct brain mechanisms. Previous fMRI studies have already revealed that sensory and 

contextual effects on pain are associated with different spatial patterns of brain activity[56, 

66, 141, 170]. […] Our results extend these findings by showing that not only the spatial 

brain activity patterns serving sensory and contextual effects on pain differ but that these 

effects are served by fundamentally different neurophysiological mechanisms. […] These 
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findings might have implications for the understanding, assessment, and treatment of 

clinical pain conditions. In acute pain, which is predominantly shaped by sensory 

information, assessing and modulating local oscillatory brain activity might be appropriate. 

In contrast, in chronic pain, which is often largely detached from sensory information, inter-

regional connectivity might be more informative than local activity”[3].  

Limitations 

“When interpreting our findings, certain limitations should be considered. First, in our 

paradigm, the effects of expectations on pain perception were weaker than the effects of 

stimulus intensity. The lack of expectation effects on local brain activity might therefore 

reflect the weak expectation effects on pain perception, and other paradigms with stronger 

expectation effects on perception might well modulate local brain activity. However, the 

central finding of the present study is not the absolute strength of sensory and expectation 

effects but that the patterns of sensory and expectation effects on local brain oscillations 

and brain connectivity fundamentally differ. The strength of perceptual effects might well 

determine the strength of neurophysiological effects but is unlikely to fundamentally 

change the difference in the patterns of sensory and expectation effects on brain activity 

and connectivity. […] Second, to modulate pain, we manipulated participants’ 

expectations”[3]. It is unclear whether our observations generalize to contextual influences 

on pain other than expectations. “Third, we applied brief experimental pain stimuli to 

healthy human participants. It is unclear whether these findings can be translated to other 

experimental and clinical types of pain”[3]. 

5.2 Project 2 

In this study, we used EEG to investigate intrinsic brain network function in chronic pain. 

In particular, we aimed to explain inter-individual variability of pain intensity using 

measures of functional connectivity among four a priori selected intrinsic brain networks 

which likely play important roles in chronic pain. This hypothesis-driven approach bears 

the potential to offer new insights into the cerebral pathomechanisms of chronic pain. We 

based our analyses on resting state EEG data from large cohorts of patients with chronic 

pain and assessed the robustness of our findings in multiple heterogeneous replication 

data sets. To the best of our knowledge, our study is the first to test the replicability of 

associations between EEG-features and chronic pain across multiple replication data sets. 

Intrinsic brain network connectivity and pain intensity in patients with chronic pain 

In the discovery data set, we found associations between the intensity of pain in patients 

with chronic back pain and connectivity among intrinsic brain networks at theta and alpha 
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frequencies. Specifically, pain intensity was positively associated with connectivity at theta 

frequencies in the DN-SN and DN-FPN connections and inversely related to connectivity 

at alpha frequencies in the FPN-SN connection. An analogous secondary analysis 

including all patients from the discovery data set, i.e. those with diverse pain conditions, 

yielded a similar pattern of effects. Although the effects observed in the discovery data set 

were not replicable in any of the replication data sets, they aligned with existing literature 

in two aspects: First, a recent systematic review reported a trend towards increased 

connectivity at theta frequencies in patients with chronic pain compared to healthy 

controls[48]. It should be noted that the data from one of the studies discussed in the 

systematic review partially overlapped with our own discovery data set, which could raise 

concerns about circular reasoning. However, as the conclusions drawn in the systematic 

review referred to differences between patient and control cohorts and not to pain 

variability within patient cohorts, we deem the presented line of argumentation admissible. 

The second aspect in which our findings align with previous observations are alterations 

of DN connectivity in general[69-72, 75] and of connectivity between the DN and the SN 

in particular[73, 74]. A recent meta-analysis found fMRI-based DN-SN connectivity to be 

reduced in patients with chronic pain compared to healthy controls and patients with other 

neuropsychiatric disorders[74].  

We also assessed whether patterns of intrinsic brain network connectivity could be 

linked to the severity of chronic pain. Using inter-network connectivity values among all 

four intrinsic brain networks and at all three frequencies collectively, we constructed 

multivariate models that could account for some variability of pain ratings in both the cohort 

of patients with CBP and the cohort of patients with diverse pain conditions. However, 

these models did not generalize to any of the replication data sets for either cohort. 

Intrinsic brain network connectivity and depression in patients with chronic pain 

Since chronic pain and depression have a high comorbidity and the specificity of findings 

to chronic pain is often discussed[7, 74, 171], we also investigated the relationship 

between intrinsic brain network connectivity and depression severity scores using the 

entire discovery data set. All analyses were analogous to those of pain intensity in the 

larger cohort. Univariate analyses yielded strong evidence for a positive association 

between depression scores and DN-FPN theta-band connectivity. While this association 

was not observed in any of the replication data sets, a recent meta-analysis did report 

increased fMRI-based DN-FPN connectivity in MDD compared to healthy controls[74]. In 

our study, DN-FPN connectivity was positively associated with both depression and 

chronic pain severity, potentially suggesting an involvement of DN-FPN connectivity in a 
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broader transdiagnostic mechanism. In contrast, the above-mentioned meta-analysis 

described alterations in fMRI-based DN-FPN connectivity as specific to depression[74]. 

Intrinsic brain network connectivity and age in patients with chronic pain 

Many studies have reported a strong dependence of EEG measures on age[88-90], 

suggesting that age might be predicted more readily from EEG than severity scores of 

neuropsychiatric disorders. Therefore, to calibrate the trust both in our methodology and 

in the quality of the data at hand, we assessed how well age could be predicted across 

data sets. Univariate analyses yielded evidence for an inverse association between inter-

network theta-band connectivity and age in the discovery and up to two replication data 

sets. In line with a recent study in healthy individuals[90], effects were found predominantly 

in the theta-band and exclusively in connections not involving the visual network. A 

multivariate model predicted age in the discovery data set better than chance and 

descriptively exhibited positive prediction-outcome correlations in all replication data sets. 

Statistically, a Bayesian analysis indicated moderate evidence for an effect in one and 

inconclusive evidence in the remaining four replication data sets. A model that was 

selected and fitted on the combined data, i.e., comprising data from all studies, exhibited 

strong evidence for an association between predicted and observed age. In conclusion, 

the partial replicability of effects for age as a dependent variable inspires some trust in 

both the sensitivity of the methodology and the quality of (at least some) data sets. We 

chose not to employ the irreproducibility of effects as a criterion for the exclusion of 

individual data sets as none of the effects observed can be considered established. 

Exploratory analyses 

In exploratory analyses, we sought to enhance prediction accuracy and replicability using 

a more data-driven approach. We constructed multivariate models for pain, depression, 

and age incorporating an extended set of candidate features. When it came to pain and 

depression, these models did not notably outperform those developed in the primary and 

secondary analyses. Anecdotally, in the diverse pain cohort, the descriptive average 

prediction-outcome correlation in the replication data sets increased from r = 0.002 in the 

initial to at least r = 0.062 in the exploratory analysis. Only when age was considered as 

the dependent variable, the approach employed in the exploratory analysis did lead to 

slightly more noticeable improvements in prediction accuracy. In the diverse pain cohort, 

the average prediction-outcome correlation increased by at least 20% and at least 

moderate evidence for an effect was observed in two out of five replication data sets, 

instead of just one in the initial analysis. Moreover, all models identified in mega analyses 

combining data from all studies yielded decisive evidence for an association between 
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predicted and observed age. These results indicate that, although predictions of pain 

intensity and depression scores could not be improved, the exploratory methodology does, 

potentially, possess a higher sensitivity. 

Irreproducibility of effects 

In our analyses, we repeatedly observed associations between pain intensity and intrinsic 

brain network function in the discovery but not in replication data sets. This lack of 

replicability can be explained by one or even a combination of the following scenarios: 

Scenario 1: Connectivity among intrinsic brain networks, defined by the Yeo[86] atlas, 

does not shape pain intensity. The body of literature indicating an association between 

intrinsic brain network function and neuropsychiatric disorders[55, 74, 87], however, lets it 

appear more likely that an association between pain intensity and intrinsic brain network 

connectivity does exist. Maybe this association becomes detectable if intrinsic brain 

network definitions other than those provided by the Yeo atlas are considered. 

Scenario 2: Connectivity among intrinsic brain networks does shape pain intensity, but 

this relationship is not observable using EEG. The relevance of intrinsic brain network 

function for neuropsychiatric disorders and pain has been primarily established on the 

basis of fMRI signals[55, 74, 87]. While the transferability of this association to 

neurophysiological signals as measured by EEG seems plausible[164], it is not 

guaranteed. For example, the limited spatial resolution inherent to EEG might simply be 

insufficient to capture the relevant aspects of intrinsic brain network function. 

Investigations using multimodal approaches that combine the high spatial resolution of 

fMRI with the high temporal resolution of EEG could assist in guiding the selection of 

appropriate methodology in the future.  

Scenario 3: Connectivity among intrinsic brain networks does shape pain intensity and 

this relation can, in principle, be observed using EEG. However, the specific analytical 

choices here are inadequate. For example, we specifically opted for an amplitude-based 

instead of a phase-based connectivity metric due to its conceptual compatibility with 

fMRI[164]. Maybe a phase-based connectivity metric is, nevertheless, more suitable. 

Likewise, we chose to aggregate information on the level of networks using representative 

time-series because, in this way, a higher spatial specificity is attained compared to an 

approach that operates on a high-fidelity connectivity matrix. Possibly, a different approach 

for aggregating information on the level of intrinsic brain networks is more appropriate. 

Adjusting elementary analysis parameters, such as frequency band boundaries, epoch 

length, or the choice the of machine learning algorithm in multivariate analyses, might also 

enhance the methodology’s sensitivity. 
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Scenario 4: Connectivity among intrinsic brain networks does shape pain intensity and 

this relation is, in principle, reflected in the considered connectivity features. However, high 

levels of noise in EEG recordings and/or meta data render a detection of this relationship 

infeasible. Here, by noise we mean both common measurement noise and variability 

stemming from unknown confounding factors. In the present scenario, we face two 

possibilities: First, effects observed in the discovery data set reflect real, pain-related 

alterations of intrinsic brain network connectivity. In this case, the irreproducibility of effects 

in replication data sets could be explained by heterogeneous data acquisition procedures 

and/or simply by the relatively smaller number of patients (i.e., data points). Therefore, to 

enhance the likelihood of replicating effects, future multi-center studies should adopt 

standardized protocols and quality standards both for the acquisition of EEG data and for 

the clinical assessment of patients. The second possibility to consider in the present 

scenario is that effects observed in the discovery data set do not reflect real pain-related 

alterations of intrinsic network connectivity. In this case, noise levels should be reduced 

further by, e.g., including diverse covariates and/or applying a more refined patient 

stratification. Given the relevance of circadian rhythms for pain perception[172], 

incorporating the phase of the circadian cycle is a noteworthy option. Moreover, in light of 

a recent study which identified clinically relevant neuropsychiatric disorder subtypes via 

patterns of brain connectivity[82], stratifying patients based on such neural patterns might 

reveal subtype-specific effects. Inter-individual differences in head shape, brain 

morphology and even brain organization may also contribute to noise. To mitigate the 

influence of these inter-individual differences, individual-specific head models and/or data 

from longitudinal rather than cross-sectional study designs could be employed. Lastly, 

future studies should further increase the number of participants in both discovery and 

replication cohorts to enhance the likelihood of discovering consistent associations despite 

high levels of noise. 

Synopsis 

All in all, our results offer some evidence for a potential link between chronic pain and 

intrinsic brain network connectivity. Univariate analyses in the discovery data set, but not 

in any of the replication data sets, indicated that inter-network connectivity in the theta-

band, particularly involving the default network, might be linked to chronic pain severity. 

Multivariate models could explain some variability in pain intensity within the discovery but 

not within the replication data sets. An analysis of the potential reasons for the lack of 

replicability of effects suggests that future research should prioritize minimizing the impact 

of diverse confounding factors while maximizing both sample sizes and uniformity of data 

acquisition procedures across research centers.  
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5.3 Conclusion and outlook 

The analysis of brain connectivity has proven instrumental in uncovering fundamental 

mechanisms of brain function and advancing the development of clinical tools to address 

neuropsychiatric disorders. Leveraging the potential of brain connectivity analyses, this 

thesis assessed the brain mechanisms of sensory and contextual influences on acute pain 

and investigated aberrant intrinsic brain network function in chronic pain. 

In a first project, the thesis assessed and compared the neural mechanisms of sensory 

and expectation effects on pain in an experimental setting. Evidence from this project 

indicates that distinct mechanisms serve sensory and contextual influences on pain. In 

particular, we found that sensory influences on pain primarily shaped local brain activity. 

By contrast, expectation effects on pain were more closely associated with inter-regional 

brain connectivity than local brain activity. These findings provide basic science insights 

into the brain mechanisms of contextual modulations of pain. Moreover, they offer 

pathways for the development of novel tools for the assessment and treatment of clinical 

pain conditions. 

Considering the importance of expectations in chronic pain, the findings from the first 

project suggest that brain dysfunction in chronic pain might be particularly reflected in 

altered brain connectivity. Therefore, in a second project, the thesis explored the 

relationship between brain connectivity and pain intensity in patients with chronic pain. 

Specifically, we investigated connectivity among four intrinsic brain networks that were 

shown to be implicated in the pathology of various neuropsychiatric disorders. To assess 

the robustness of findings, we set up a validation strategy involving up to five replication 

data sets. In the discovery data set, both uni- and multivariate analyses unveiled 

associations between intrinsic brain network connectivity and pain. However, these 

findings did not consistently replicate in independent data sets. We outlined several 

scenarios that could explain the replication failures, leading to the conclusion that future 

multi-center research initiatives should adhere to unified standards for the acquisition of 

neural as well as behavioral data. Moreover, variability arising from confounding factors 

should be mitigated by stratifying patients during study planning and incorporating diverse 

covariates during data analysis. In terms of general scientific principles, the replication 

failures underscore the critical importance of employing replication strategies using 

independent data sets, as was done in our study. Following these steps could improve the 

chances of identifying consistent effects across data sets, potentially leading to valuable 

mechanistic insights that could advance the fundamental understanding, the clinical 

assessment and ultimately the treatment of chronic pain.   
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A Appendix 

A.1 Simulative assessment of representative time series methods 

In the methods section of the main text, several variants of the method for computing 

representative time series have been proposed. To determine the optimal strategy, a 

simulation experiment was conducted. In this experiment, I simulated ground truth signals 

at 400 locations in the brain, denoted as = ∈ ℝcGG×$. Simulated ground truth signals 

differed between all 400 sources. However, signals associated with sources belonging to 

the same network, possessed a common component, i.e., 

== = ≤mix==,common + (1 − ≤mix)==,indi, 

where == refers to those lines in = that correspond to netA. The rows of ==,common are 

identical, while the rows of ==,indi differ. The parameter ≤mix controls the degree to which 

activity in a network is determined by the common component. To obtain the simulated 

source-reconstructed signals / ∈ ℝcGG×$, I applied a spatial blurring filter to the ground 

truth signals. Specifically, to blur the ground truth signals, I employed the so-called 

resolution matrix ≥ ∈ ℝcGG×cGG which results from the composition of the inverse and 

forward models: 

/ = ≥= = ¥5(¥¥5 + 8<)67¥= 

The forward model is a linear mapping given by the lead field matrix ¥ and the inverse 

model is a linear mapping given by the minimum norm spatial filter ¥5(¥¥5 + 8<)67. Herein, 

in accordance with recommendations in the literature, the regularization parameter 8 was 

set to 8 = ;R(¥¥5)/25. 

Ultimately, our objective was to compute the amplitude envelope correlation (AEC) 

between the representative time series. For two signals F= and F>, the AEC is defined as 

X!k(F=, F>) =
1
2 ∂≤(RRDê

(F=), ê(F>L=)E + ≤(RRDê(F>), ê(F=L>)E∑ 

where ê(F) denotes the envelope of F. Further, F>L= refers to the signal F> phase-

orthogonalized w.r.t. F= and F=L> refers to the signal F= phase-orthogonalized w.r.t. F>. 

Hence, there are four signals involved in the computation of the AEC: F=, F>, F=L>, and 

F>L=.  

To quantitatively compare the different methods for estimating representative time series, 

I compute both the minimum and average of the following values: 

• K(F=, ==,common) = "fraction of variance of ==,common explained by F=" 
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• K(F=L> , ==,common) 

• K(F> , =>,common) 

• K(F>L=, =>,common) 

Henceforth, the minimum and average of these values are referred to as minimum and 

average explained variance scores, respectively. 

Results and conclusion 

I have computed the explained variance scores for several values of the mixing parameter 

≤mix (0.1, 0.5, 0.9). Visualizations of the network definitions are provided in Figure 4-1. 

Figure 0-1 shows the explained variance scores of the different methods averaged 

across all connections and for 64 random repetitions of the experiment. The values 

presented in the figure are relative scores, defined as the ratio between the score obtained 

from the method of interest and the score obtained from the benchmark method, which 

involves standard PCA without any orthogonalization. The values in Figure 0-1a and 

Figure 0-1b correspond to the case ≤mix = 0.5. Scores averaged across repetitions for all 

tested values of ≤mix are provided is Figure 0-1c and Figure 0-1d. The results demonstrate 

that both pairwise and global orthogonalization can significantly enhance the variance of 

the common ground truth signal that is explained by the representative time series. Among 

the methods tested, the best performing method is the global orthogonalization with 4) =

5. This method exhibits an average improvement in the average and minimum explained 

variance scores of roughly 20% and 50%, respectively. The variant of this method, with 

4) = 3, performs similarly well but offers the practically important advantage of being 

computationally less demanding. Furthermore, the pairwise orthogonalization entails a 

notable improvement as well, with an increase in average and minimum explained 

variance scores of roughly 7% and 38%, respectively.  

I also evaluated the computation time of the different methods: To compute one pair 

of orthogonalized time series using the pairwise orthogonalization method, it takes roughly 

0.1 s. To compute a representative time series for an individual network using the global 

orthogonalization approach, it takes about 0.1 s for 4) = 1, 0.3s 4) = 2, 1.5s 4) = 3, 4s 

4) = 4, and 10s 4) = 5. These times have been obtained for the Yeo 7 network definition. 

I conclude that the primary method for extracting representative time series should be 

global orthogonalization with 4) = 3. 
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Figure 0-1: Relative explained variance scores achieved by the different methods for the YEO7 network 
definition. Panels a) and b) show results for the case $mix = 0.5 and for 64 random repetitions of the 
numerical experiment. Black circles indicate the mean of scores across repetitions. Panels c) and d) show 
averaged explained variance scores across repetitions for three values of the mixing parameter $mix. 



  4 

A.2 Distributions of dependent variables 

 

Figure 0-2: Distributions of pain intensity, depression scores and age for the individual data sets. For the 
distributions of pain intensity, it is additionally specified for each data set to which time period (prior to 
assessment) the ratings refer. For the distributions of depression scores, it is additionally specified which 
questionnaire was used for the assessment. Moreover, the distributions of depression scores are rescaled to 
the interval [0, 1]. The original rating scale boundaries are indicated for each data set. The rating scale 
boundaries do not necessarily correspond to the actual range of the data.  

 

 

  

0 2 4 6 8 10

DAY

YARNITSKY

WAGER

ADHIA

ZEBHAUSER

PainlabDiscover

painVars

0 0.2 0.4 0.6 0.8 1

DAY

YARNITSKY

WAGER

ADHIA

ZEBHAUSER

PainlabDiscover

depressionVars

0 20 40 60 80 100

DAY

YARNITSKY

WAGER

ADHIA

ZEBHAUSER

PainlabDiscover

age
Pain Depression Age

0 63

4 20

0 21

8 32

1 5

41 79.4

BDI

PROMIS

DASS-21

PROMIS

EQ-5D

PROMIS**

4 Weeks

1 Week

24h

1 Week

4 Weeks

1 Week *

* Mean across least severe, most severe, and average pain.
** T-score, a value of 50 and a difference of 10 correspond to the mean and standard deviation of a normative sample, 

respectively.

PaDi

ZEB

DAY

YAR

WAG

ADH



   5 

A.3 Chronic back pain and activity of intrinsic brain networks 
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Figure 0-4: Relation between pain intensity and activity in individual intrinsic brain networks in patients with 
chronic back pain.  The color coding in both subfigures is the same as in Figure 4-4. (a) Results from the 
discovery+replication approach. (b) Results from the mega analysis. 

Figure 0-3: Relation between pain intensity and patters of intrinsic brain network activity in patients with 
chronic back pain. Explanations of the individual tables can be found in Figure 4-5. 


