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Abstract: Nuclear magnetic resonance (NMR) spectroscopy is well-established to address questions
in large-scale untargeted metabolomics. Although several approaches in data processing and analysis
are available, significant issues remain. NMR spectroscopy of urine generates information-rich
but complex spectra in which signals often overlap. Furthermore, slight changes in pH and salt
concentrations cause peak shifting, which introduces, in combination with baseline irregularities,
un-informative noise in statistical analysis. Within this work, a straight-forward data processing tool
addresses these problems by applying a non-linear curve fitting model based on Voigt function line
shape and integration of the underlying peak areas. This method allows a rapid untargeted analysis
of urine metabolomics datasets without relying on time-consuming 2D-spectra based deconvolution
or information from spectral libraries. The approach is validated with spiking experiments and
tested on a human urine 1H dataset compared to conventionally used methods and aims to facilitate
metabolomics data analysis.

Keywords: NMR; metabolomics; data processing; voigt-fitting

1. Introduction

The field of metabolomics aims to study the complex mixture of metabolites in any
tissue or organism and is widely used in several research fields for biomarker discovery, in
nutritional studies or to personalized medicine-related scientific questions [1–4]. Two main
spectroscopic methods dominate this field, namely mass-spectrometry (MS) and nuclear
magnetic resonance spectroscopy (NMR) [5]. Despite the lower sensitivity, proton-NMR
spectroscopy has the advantage of directly producing quantitative measures and addi-
tionally offers structural information, as well as high reproducibility [6–8]. Nevertheless,
drawbacks and challenges exist. Proton signals underlie the sensitivity against minor
changes in pH or matrix composition, which results in drifts along the chemical shift axis
of some metabolites whereby the extend differs between resonances [9–11]. This positional
noise adds variation to the dataset and therefore affects subsequent analysis. Several
alignment algorithms, e.g., recursive segment wise peak alignment (RSPA) [12], address
the problem of peak shifting, but they are not optimal. Furthermore, baseline irregularities
occur based on spectral artefacts from electronic distortions, incomplete digital sampling
or cumulative underlying signals [13]. Metabolites with similar chemical shifts exhibit
peak overlap, which also affects further analysis. As metabolomics often aim to identify
biomarkers from datasets, which tend to have high variances in metabolite presence and
concentration by nature, additional variance should be kept as low as possible.
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Various tools have been published, which circumvent these drawbacks and facilitate
data analyses, utilizing defined metabolite libraries and fitting peaks, according to their
pre-defined multiplicities and characteristics within defined matrices [14–16]. A compre-
hensive overview can be found in Bingol et al. (2018) [5]. These methods have been shown
to produce reliable and quantitative results, but rely on databases, which are often limited
to a specific biofluid, and fail to extract unknown informative features. Non-commercial
untargeted approaches are made up from two main strategies, full spectra analysis, which
uses all points of the spectrum and various binning methods, where equidistant binning
with a binsize of 0.01 − 0.001 ppm is prevalent [17]. Both methods are affected by peak
shifting, baseline influence and signal overlap, which adds uninformative noise. Further-
more, full spectra analysis results in large datasets which are bulky to process. Binning has
the advantage of a reduction in dimensionality, which speeds up analysis, but limits the
ability of detecting metabolites of interest as some peaks may shift between bins through
the dataset. In particular, binning either sums up all data points within a certain bin or
determines the area under the curve (AUC), significant changes in minor peaks may be
covered by general variance caused by baseline differences or signal overlap. To address
these issues an easy-to-use and straightforward processing step is introduced, which is
based on a peak-picking algorithm followed by a Voigt lineshape model fitting. In theory,
NMR peaks are Lorentzian. However, slight variations in peak linewidth (e.g., due to
shimming imperfection) lead to random error in the Lorentzian model. To account for this
issue, a Voigt lineshape model, which is a convolution of Lorentzian and Gaussian shapes,
has shown to be more accurate [18,19]. As both binning and full spectra analysis are widely
used methods for NMR metabolomics processing, the performance of the Voigt fitting
workflow is validated by comparison to these methods. The introduced workflow aims
to provide an enhanced processing method that extracts information from NMR spectra
without limitations set by the necessity of pre-defined databases.

To overcome these drawbacks we introduce an untargeted workflow for complex
NMR spectra, which consists of 6 main steps that are shown in Figure 1. As with the
input information, the workflow uses aligned, normalized NMR spectra and a reference
spectrum (e.g., quality control or mean spectrum (mean (x)). First, a peak picking approach
is performed on the full dataset for every single spectrum by finding all local maxima.
This is followed by an optional noise reduction step, where all peaks with a net intensity
between the local maximum and the neighboring minimum are discarded. Therefore, an
adjustment for the noise level, especially in regions with a baseline above zero, as well
as in overlapping peak regions is achieved. In the next step, the non-linear peak fitting
algorithm constructs Voigt line-shaped approximated peaks to the experimental data by
optimizing amplitudes, peak maxima, the ratio between Gaussian and Lorentzian and peak
width. Peak fitting is based on the lsqcurvefit function inbuilt in MATLAB, employing
a trust-region-reflective algorithm. In the following step, the AUC of fitted peaks are
calculated over a defined integration range (i.e., multiple of optimized peak width). The
chemical shift (i.e., their local maxima) of these peak integrals vary slightly, even in aligned
datasets. Therefore, peak shifts are adjusted to the reference spectrum by an alignment step
that iterates through every processed spectrum to find peaks within a user defined peak
shift window. The generated dataset of integrated peaks can now be further reduced by
applying a frequency filter to exclude peaks that are present in less than a set percentage
in the dataset. Finally, the workflow gives as output: a list of peak integrals, a plot of
each fitted spectrum and quality metrics, such as the residual sum of squares and the
standard error of fit for the fitting parameters. These metrics, as well as the graphical
results (see Figure 2) allow a quality assessment of the obtained data and consider it for
further processing, e.g., applying weighting function.
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are present; initial spectrum is shown as black line, fitted peaks are depicted in colored lines. 

2. Results 
Error Estimation over Matrices 

Efficient metabolomics analysis aims to uncover patterns and trends within the data. 
However, in NMR metabolomics analysis, such trends are often covered by background 
noise and peak shifts. The comparability of the introduced approach with conventionally 
used methods, full spectra (i.e., peak height) and binned data analysis (i.e., AUC of spec-
tral bin), is shown using a standard addition of three metabolites (Alanine, Caffeine and 
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results in 12 data points. The data are used to calculate a standard curve for every method. 
These equations were used to re-calculate the concentration for all 12 individual values. 
Boxplots (see Figure 3) are employed to illustrate the error proneness for all three methods 
sorted by the respective metabolite including standard errors. Averaging the mean stand-
ard errors over the three investigated metabolites for every method gives total mean rel-
ative standard errors (RSE) (13.31% for full spectra analysis, 11.02% for binned data and 
7.33% using Voigt fitted data). The metabolites differ, shown in this study, in their chem-
ical shift, their tendency to shift and/or overlap, thus, the large span of relative errors (see 
Figure 3) is somewhat expectable. Overall, these results indicate that applying the Voigt 
fitting algorithm does not artificially increase the variation in comparison to full spectra 
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Figure 2. Typical fit results for an exemplary urine spectrum in three regions where signals overlap and/or small peaks are
present; initial spectrum is shown as black line, fitted peaks are depicted in colored lines.

2. Results
Error Estimation over Matrices

Efficient metabolomics analysis aims to uncover patterns and trends within the data.
However, in NMR metabolomics analysis, such trends are often covered by background
noise and peak shifts. The comparability of the introduced approach with conventionally
used methods, full spectra (i.e., peak height) and binned data analysis (i.e., AUC of
spectral bin), is shown using a standard addition of three metabolites (Alanine, Caffeine
and Nicotinamide) with three spiked concentrations in four different urine samples,
which results in 12 data points. The data are used to calculate a standard curve for every
method. These equations were used to re-calculate the concentration for all 12 individual
values. Boxplots (see Figure 3) are employed to illustrate the error proneness for all three
methods sorted by the respective metabolite including standard errors. Averaging the
mean standard errors over the three investigated metabolites for every method gives total
mean relative standard errors (RSE) (13.31% for full spectra analysis, 11.02% for binned
data and 7.33% using Voigt fitted data). The metabolites differ, shown in this study, in
their chemical shift, their tendency to shift and/or overlap, thus, the large span of relative
errors (see Figure 3) is somewhat expectable. Overall, these results indicate that applying
the Voigt fitting algorithm does not artificially increase the variation in comparison
to full spectra and binned data analysis. The main advantage of the Voigt function
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integral lies in the removal of background noise, illustrated by large improvements in
RSE for the overlapped signal of caffeine and similar RSE for relatively large and/or
non-overlapped peaks, such as alanine and nicotinamide and is therefore applicable for
usage in metabolomics approaches.
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Figure 3. Boxplots of standard errors of relative quantification for all three spiked metabolites and
methods, individual relative standard errors (RSE) are given as well as the mean RSE (RSE) for
each method.

The publicly available dataset MTBLS1 [20] from the MetaboLights repository [21]
was processed using the full spectra, binned data and Voigt fitted data approach. The
MTBLS1 study contains 132 spectra of human urine samples from patients with Type 2
diabetes mellitus (T2DM) and a control group. A principal component analysis (PCA) was
performed to determine the areas of highest variance using the different data processing
methods as input data. In Figure 4A–C scores plots of the first two principal components
(PC1 and PC2) are shown for all three methods, which are colored according to their
groups (T2DM/Control). Both full spectra and binned data scores plots fail to separate
healthy and diseased individuals. Using Voigt fitted peak integrals as the input data for
PCA, a separation can be observed between patients with type 2 diabetes mellitus (T2DM)
and the control group, which was intuitively expected. The loadings plot of full spectra
analysis (Figure 4D) shows that the majority of variance arises from high amplitudes in
the upfield region (δ < 1 ppm), around the residual water signal (δ~4.7 ppm) and in the
very downfield region (δ > 8.5 ppm). In these regions, generally, few or no peaks occur
in urine samples and they are mainly dominated by bare baseline. Similar results are
observed for binned spectra, where high variations in uninformative regions also dominate
the principal components (Figure 4E). The Voigt peak fitting approach reduces the spectral
data to informative peak areas. Here, the loadings for PC2 (Figure 4F) show high variance
of urinary glucose levels between patients and the control group (ratio between mean
relative intensities (a.u.): 2.09 T2DM/Control, which is expected in an unmedicated cohort.
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Intriguingly, this obvious information could not be extracted from PCA loadings of the full
spectra and binned data analysis, as it was covered by background noise.
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confidence ellipses for each group (Type 2 diabetes mellitus (T2DM) and control); loadings plot for PC1 for all three methods
(black) with reference spectrum (blue) (D–F).

In summary, these results show that using Voigt fitted peak integrals instead of the
whole spectrum (as is or binned) allows a crucial reduction of noise, and thus, facilitate the
unsupervised data analysis.

Supervised methods, such as orthogonal projection on latent structures (OPLS) [22],
aims to separate the total variation within a dataset into a predictive (i.e., information
related to the sample class) and an orthogonal (i.e., unrelated) component. This method
is generally accepted to exclude non-informative noise and thus uncover the relevant
information related to the sample class. In Figure 5A–C OPLS discriminant analysis scores
plots are shown including their R2 and Q2 values. Although all three methods yield a valid
model to distinguish diabetic and non-diabetic individuals, both R2 and Q2 are higher
using the Voigt fitted dataset. Furthermore, the loadings plots of the predictive component
(Figure 5D,E) still show a considerable influence of non-informative regions (~0 ppm,
~5 ppm, >8.5 ppm).
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predictive component for all three methods (black) with reference spectrum (blue) (D–F).

Overall, these results indicate that the noise reduction achieved by applying the
introduced peak fitting using a Voigt approximation enables a more convenient analysis
of NMR metabolomics datasets. Through the reduction of the dataset, a yet inevitable
visual inspection of results becomes more simple and false positive results caused by
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baseline differences are reduced. Furthermore, the impact of different data analysts is
largely reduced.

3. Discussion

The field of untargeted NMR metabolomics became increasingly important over the
past few years. However, effective and reliable data processing remains a bottleneck. The
majority of studies published in the field of untargeted metabolomics rely on, either full
spectra analysis or on different binning methods. Although NMR is generally highly
reproducible, minor changes in baseline intensities may occur due to accumulation of
underlying signals, as well as line broadening due to inhomogeneity of the magnetic
field. Both conventionally used methods are limited in their ability to compensate for
this non-informative variance. Nevertheless, a reduction of this noise is a crucial aspect
in uncovering relevant variance and allow identification of biomarkers. The introduced
approach aims to improve the efficiency of untargeted NMR metabolomics data analysis
by using a peak fitting approach, based on a Voigt line shape model approximation in a
least square sense, along with alignment of peak integrals to a reference spectrum. Peak
fitting reduces the noise driven bias by reduction of the data. Regions containing mere
baseline or very small peaks below a defined S/N ratio are excluded from further analysis,
and thus, reduce the influence of the measurement error, which is usually relatively large
for small values, and the irrelevant variation within the data. A comparison of all three
data processing methods (full spectra, binning and Voigt fitting) demonstrates the reduced
extend of noise influence of analysis performed using Voigt fitted data compared to conven-
tionally used processing methods for both unsupervised and supervised analysis methods.
A significant influence of noise within the first principal components is a well-known
feature and generally accepted as fact within the NMR metabolomics community. An
orthogonal PLS is typically the method of choice to segregate this noise from the biological
variation of interest. Although an orthogonal filter is applied, a significant influence of
non-informative variance is demonstrated using conventional data processing. Several
research articles have been published, optimizing both integration and data reduction in
various biofluids. From these, several approaches need input data, such as a predefined
target list or spectral libraries and deliver a targeted metabolomics output, as reviewed
by Bingol et al. [5], while our approach remains untargeted. Other workflows, such as
SigMa [23] require extensive compound libraries. Applied to serum and plasma samples,
Takis et al. [24] introduced a deconvolution-free integration method, SMolESY, which
enables a suppression of the macromolecular background, which is particularly important
in blood samples. Its application to urine samples remains unclear, as plasma, unlike urine,
does not face extensive peak shifting. Our project contributes to the continuous progress in
the field of optimized data processing in untargeted NMR metabolomics.

Voigt-fitting decreases the chance of detecting false positive markers by general data
reduction and simplifies the interpretation, and analysis of loadings, respectively weights.
Nevertheless, thresholds for S/N and frequency filter must be adjusted carefully to avoid
rejection of relevant signals. The Voigt fitting approach was developed and tested on
human urine samples as representative biofluid for complex mixtures. However, this
method can also be adapted and optimized for other biological matrices.

The relevance of improved data processing methods is clearly supported by the
comparison of performance of data processing methods in this work. Peak fitting using a
Voigt line shape model has been demonstrated to enhance the power of statistical analysis
in contrast to conventionally used methods. The used script is written in MATLAB R2020a
and can be obtained for implementation by contacting the corresponding author.

4. Materials and Methods
4.1. Study Cohort

For illustration of performance improvement the fitting approach in comparison with
full spectra and binning approach the MTBLS1 dataset (raw spectra) from the MetaboLight



Metabolites 2021, 11, 285 7 of 9

repository [21]. The MTBLS1 dataset consists of 48 samples from unmedicated patients
with Type 2 diabetes mellitus (T2DM) and 84 samples from healthy individuals as control
group. The study was conducted to examine urinary metabolic changes in patients with
T2DM in comparison to the control group. Details about sampling, sample preparation,
acquisition along with main findings are available in the original manuscript [20].

4.2. Validation Dataset

The error estimation of the three tested methods was calculated using four different
urine samples each spiked with L-alanine, Caffeine and Nicotinamide in three concentra-
tions by comparing the results to peak height in full spectra analysis and AUC in binned
spectra analysis. L-alanine was used because its resonance appears in a non-crowded
region and shows a distinct doublet as easy-to-integrate standard. Caffeine has resonances
in a crowded region where baseline effects do occur (3–4 ppm) and Nicotinamide causes
resonances in the downfield area to comprehensively cover the whole spectrum. A stock
solution of 1 mg mL−1 H2O was prepared. A total of 135 µL urine was combined with
either 5, 10 or 15 µL stock solution resulting in an addition of 5, 10 and 15 µg standard. The
samples were then filled up to a total volume of 150 µL, 50 µL 1.5 M K2PO4-buffer (pH 7.4)
containing 0.1% Trimethylsilylpropionic acid (TSP) in 100% D2O was added, samples were
thoroughly vortexed and centrifuged at 4 ◦C for 10 min at 12,700× g. A volume of 180 µL of
supernatant was transferred into 3-mm NMR tubes. Samples were measured immediately
after preparation.

4.3. NMR Data Acquisition and Processing

The samples were analyzed on a Bruker 800 MHz spectrometer operating at 800.35 MHz
equipped with a quadrupole inverse cryogenic (QCI) probe probe (Bruker BioSpin, Rhein-
stetten, Germany). A total of 256 scans were recorded into 64 K datapoints with a spectral
with of 16 ppm and a 90◦ pulse of 13 µs. All spectra were acquired at 300 K using a standard
1D-pulse sequence with water suppression (noesygppr1d) during an recycle delay of 4 s, an
acquisition time of 3 s, and a mixing time (tm) of 200 ms. Spectra were manually phased
and baseline corrected in TopSpin 3.6.1 (Bruker BioSpin, Rheinstetten, Germany).

4.4. Data Processing

Spectra were imported into Matlab software (R2020a; Mathworks) for data processing
with a resolution of 2.5 × 10−4 ppm, resulting in 44,001 data points per spectrum (−1 to
10 ppm). The water region was removed (δ 4.70−4.85 ppm). Spectra were aligned using
a recursive segment-wise peak alignment (RSPA) algorithm [12], probabilistic quotient
normalization was used to account for biological variation in urine dilution [25]. To
compare the performance of the here introduced approach, two conventionally used
processing methods (full spectra analysis and binning of spectra) were used as state of
the art reference for untargeted metabolomics [4,26]. For full spectra analysis the data
matrix was used as is after water removal and alignment resulting in a 132 × 43,400 matrix.
Binning was performed by dividing every spectrum in equidistant buckets with a bin
width of 0.01 ppm and determining the area under the curve (AUC) for every bin by
trapezoidal integration. The resulting data matrix has a size of 132 × 1085. Peak fitting
was performed using the above described workflow and is resulting in a 132 × 432 data
matrix. A threshold was set to a minimum of 30% abundance through the samples with a
signal to noise (S/N) ratio above 5.

Principal component analysis (PCA) was performed in Matlab software (R2020a;
Mathworks) using unit variance (UV) scaling prior to analysis.

Orthogonal projection on latent structures (OPLS) discriminant analysis was per-
formed according to the method described in Cloarec et al. (2005) [27].
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