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Abstract: In contrast to previous works on data augmentation using LIDAR (Light Detection and
Ranging), which mostly consider point clouds under good weather conditions, this paper uses point
clouds which are affected by spray. Spray water can be a cause of phantom braking and understanding
how to handle the extra detections caused by it is an important step in the development of ADAS
(Advanced Driver Assistance Systems)/AV (Autonomous Vehicles) functions. The extra detections
caused by spray cannot be safely removed without considering cases in which real solid objects
may be present in the same region in which the detections caused by spray take place. As collecting
real examples would be extremely difficult, the use of synthetic data is proposed. Real scenes are
reconstructed virtually with an added extra object in the spray region, in a way that the detections
caused by this obstacle match the characteristics a real object in the same position would have
regarding intensity, echo number and occlusion. The detections generated by the obstacle are then
used to augment the real data, obtaining, after occlusion effects are added, a good approximation of
the desired training data. This data is used to train a classifier achieving an average F-Score of 92.
The performance of the classifier is analyzed in detail based on the characteristics of the synthetic
object: size, position, reflection, duration. The proposed method can be easily expanded to different
kinds of obstacles and classifier types.

Keywords: LIDAR; point cloud; spray water; ADAS; AV; data augmentation; classification; synthetic
data; sensor model

1. Introduction

The high degree of reliability required by newer ADAS and AV functions makes the
combination of different sensors necessary [1–3]. Among those sensors, radar, cameras,
ultrasound and GPS (global positioning system) are common. Recently, LIDAR sensors
have also been used mostly due to their high resolution, ability to work under low light
conditions and direct distance measurement [4,5]. However, the high resolution obtained
by using infrared light comes at the cost of a reduced performance when dirt [6], rain,
fog [7], snow [8], exhaust gases [9] and spray water [10] are present. Besides reducing range,
these phenomena cause extra detections which can have negative effects like phantom
braking. Mechanisms to filter out those extra detections are difficult to implement, as there
is a risk of removing detections caused by real objects.

In this context, this paper focuses on correctly classifying solid objects in point clouds
affected by spray water. Spray water is especially problematic because it can generate point
clouds with characteristics that highly resemble those of solid objects. Figure 1 shows a real
example in which the spray cloud generates detections with a shape close to the ‘L’ shape
of a vehicle [10]. True positives are needed to train a classifier to remove this kind of false
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positive. This corresponds to cases in which real solid objects are present simultaneously
with spray, as caused, for example, by objects falling off of a vehicle. As the amount of
spray shown in Figure 1 is usually generated at highway speeds, collecting this kind of
data is extremely dangerous even if done at a proving ground. Even using a high number
of data collecting vehicles, the number of examples obtained may be too low for training.
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Figure 1. Bird’s eye view of a sequence in which a ghost object is generated due to spray water. A
wrong object hypothesis created at the beginning (dashed line) is not rejected in subsequent frames;
as a consequence, an extra object is generated (solid line). The field of view of the sensor is shown in
light grey (based on [10]).

State of the Art

Regarding data augmentation, there have been multiple approaches going from trans-
formations of a real training set [11–16], to combinations of real and synthetic data [17–20],
to purely synthetic data [21–23] and domain adaptation techniques [24–26]. In [12], the
point clouds of previously labeled objects are added by concatenation at different positions
into the training data in order to improve the training of the network. Possible collisions
between added objects are automatically removed. In [15], an adversarial strategy is used
in order to simultaneously train an ‘augmentor,’ which is a neural network specialized
in creating augmented data which causes a reduction in the performance of a classifier.
When trained simultaneously, the classifier learns features that are independent of the
possible modifications caused by the augmentor. As there is a broad range of operations
that can be applied for augmentation, in [16] a search method is proposed in order to find
the optimal augmentation policy, understood as a series of augmentation operations with
their respective parameters.

Similar to our method in [17], real scans are used for the background which corre-
sponds to portions of streets in which the movable objects and pedestrians are removed.
Synthetic movable objects and pedestrians are then placed with a number, position and
pose based on probabilities extracted from labeled real datasets. A sensor model is then
used to generate the final point clouds. This permits the generation of high amounts of
annotated 3D data for training. A similar approach is used in [18]. In this case, a synthetic
object is added on top of the roof of vehicles in real point clouds. This synthetic object
is modeled in order to attack the point cloud-based classification algorithm, reducing its
accuracy and hence identifying possible vulnerabilities.

Unique to our approach is the use of real point clouds affected by spray water. The
collection of this data and the setup used are explained in Section 2. The ROI (region of
interest) in which the synthetic object is generated is based on previous results regarding
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the spatial distribution of spray and the possible actions that can be taken to protect
the passengers.

As the synthetic object needs to match the characteristics of a real object placed in the
ROI, spray itself has to be simulated. As done in previous works, the scene is rendered. In
our case, a physically based render is used to simulate the LIDAR sensor [27] with material
properties based on real reflection values. Spray and rain are simulated using particle
systems which generate detections with a spatial distribution similar to those caused by
real spray [10]. After rendering, the detections caused by the obstacle are extracted and
concatenated into the real point clouds. Finally, the effect of occlusion and noise are added.

With the obtained point clouds, a two-layer feedforward neural network is trained.
The results are presented in Section 3. The classifier is trained to identify detections caused
by the added obstacle. The method uses a bird’s eye view of the 3D point cloud in which
detections are assigned to bins in a 2D histogram similar to what is done in [28,29] for the
extraction of vehicle bounding boxes. The obtained histogram(s) is then convoluted with
objects having the dimensions and orientation corresponding to the features that need
to be extracted. The use of the bird’s eye view with fixed histogram sizes and a simple
network for classification allows to keep the required time budget. Classification based on
detections instead of a binary classification of the whole scene has as advantage that the
decision to activate any safety mechanism can be made based on the extracted obstacle:
dimensions, position, rotation and/or reflection and the characteristics of the ego vehicle,
such as its ground clearance, for example. The results are discussed in Section 4.

2. Experiment
2.1. Region of Insterest

The region at which spray detections are usually seen, based on our measurements
on the highway and considering that the spray is generated by one leading vehicle (LV),
corresponds approximately to 6 m to each side of the ego vehicle and up to 20 m in front
of it [10]. These measurements were taken with an average ego speed of 89 km/h. Under
these circumstances, if a solid object is present in the spray cloud, it is not possible to
correct the vehicle trajectory in time. An emergency stop would also not be enough to stop
the vehicle before hitting the possible object and would be quite dangerous. There are,
however, corrective measures that can be taken. The actuator of the seatbelt pretensioner
can be activated as fast as 100 ms to 300 ms [30]. There are also numerical studies regarding
the rotation of the seats, in which rotations up to 90◦ under 200 ms are considered possible
and useful in order to protect the passengers [31]. Additionally, a slight brake can be
applied. Taking 200 ms as the average for the actuator and adding 300 ms for the detection
and classification of the object yields a total of 500 ms. Based on the previously mentioned
average speed of our spray measurements, this corresponds to a distance of 12.36 m.
Additionally, in order to take curved roads into account and the possibility that a falling
object moves from an adjacent lane to the ego lane, we used a cone-shaped ROI. The angle
is based on the value of the vehicle exit angle for European roads, which corresponds to
the angle between the road edge line and the vehicle straight trajectory [32]. An angle of
30◦, which should cover most of the left and right curves found in European highways,
was chosen. The final ROI is shown in Figure 2. During the measurements the ego vehicle
occupied either the second or third lane while the LV occupied the first or second lane,
respectively. For this reason, to the right there could be either a road boundary or another
lane. This makes the classification more challenging, as can be seen in Figure A1 in
Appendix A.
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Figure 2. Region of interest. The size is based on the region in which spray is usually detected [10]
for the LIDAR and speeds used. Before 12.4 m, even if a solid object is detected no meaningful action
can take place. The 30◦ are based on the curve radii found in European roads. The ‘x’ marks the
center of the added synthetic object.

2.2. Measurement

An automotive LIDAR sensor on the position indicated in Figure 3 was used for data
collection. The measurement was taken on a highway during the dates indicated in Table 1.
Those days were rainy days. The rainfall during the measurement as reported by nearby
weather stations is also indicated [10].
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Figure 3. Placement of the LIDAR sensor in the ego vehicle (based on [10]).

Table 1. Highway measurements (taken from [10]).

Date Duration Rainfall

13 April 2018 1 h 17 min 2 mm
16 May 2018 3 h 26 min 3.6 mm
17 May 2018 2 h 20 min 3.1 mm

A total of 13.162 frames were collected. In each measurement there is a LV, which
generates spray, located in the lane to the left of the ego vehicle. The position of the LV was
tracked using the internal tracker of the sensor and is reported in Figure A3. The ego speed
had a value of (89 ± 4) km/h.
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2.3. Simulation

The simulation setup used is presented in Figure 4. This setup is based on the model
introduced in [10]. The original simulation setup was based on the following assumptions:

• Simulating real water drops as well as the exact forces that act upon them cannot be
done in real time. However, the number of detections that those drops cause is usually
much smaller as a high concentration of drops is needed to cause a reflection strong
enough to cause a detection. Therefore, a more efficient approach is to use particles to
directly simulate detections instead of single drops.

• The solver used by Blender [33] to calculate the trajectories of the particles is stable in
the required parameter range.

• The LIDAR sensor itself can be simulated in the same way as a camera image is
rendered by adapting the calculation done inside the material shader. The calculation
is changed from the default multiplication of intensities to an addition of ray distances.
One color channel is left unchanged; as a result, each camera pixel contains the
information about the distance that the ray traveled from the light source and its
corresponding intensity. The light source is placed next to the camera and both camera
and light source are configured based on the resolution and field of view of the sensor.

• If physically based values are used for the materials, as shown inside the dashed line
region of Figure 4, the calculated intensities per pixel should be proportional to the
ones obtained using the real sensor.
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Figure 4. Simulation setup. The object index (OI) is a parameter used by the render to create a
separate mask for the object to add composition effects [34] and makes it is possible to identify which
object caused which detections. Notice the correspondence with Figure 2. The ROI is marked in red.
The region in violet corresponds to a volume in which confined particles are uniformly distributed to
simulate the detections caused by rain. The index of refraction (IOR) and absorption used for the
material of each object is shown in the dashed line region [10].

These assumptions were validated by comparing the trajectories of the particles
generated by Blender with those generated by a fourth order Runge-Kutta solver for the
required parameter range. Additionally, the correlation of the spatial distribution of the
real and simulated point clouds was calculated using the Pearson correlation coefficient
obtaining values going from 0.5 to 0.74. The rendering time per frame using an Intel CORE
i7-8850H CPU varies from 40 ms (8 particles per wheel per frame) up to 260 ms (50 particles
per wheel per frame) [10].
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In this setup, the camera was configured on the basis of the resolution of the sensor
but, instead of a one-to-one relation, a three-to-one relation was used. The extra pixels were
used to simulate multiple echoes: secondary and tertiary reflections coming from the same
direction. Additionally, the confined particles inside the violet volume were unique to this
simulation. These detections were needed in order to make the echo values in simulation
and in reality coincide. The number of free and confined particles used is presented in
Table 2.

Table 2. Number of particles used.

Particles Number of Particles Distribution Mesh Diameter

Free ~50 per wheel per frame Defined by acting forces 1.8 cm
Confined 200.000 Uniformly 6 mm

A box was used as an obstacle. Any other obstacle shape could be used, but we
decided to use a box for simplicity in the description of its shape.

The position of the LV in the simulation was set equal to the real position for the
corresponding frame. This means every real frame has an equivalent synthetic frame. The
number of free particles in the simulation was based on the number of detections caused
by spray in reality [10]. These particles are emitted from the wheels, and their size and the
forces that act upon them (i.e., wind x and y components) are calibrated on the basis of
physical values and the spatial distribution of spray in real measurements [10]. For this
specific simulation, the effect of the wind in y, which originally is simulated using two
forces, was reduced to only one and the value of this force increased to direct the spray
towards the ROI.

The confined particles were distributed uniformly over the violet volume in Figure 4
but were emitted randomly with a lifetime of one frame. This generates a distribution
of detections similar to the one observed in real rain measurements using the same
sensor [8,10].

In order to calibrate the intensity of the light source, the accumulated histogram of the
real and synthetic echo pulse width (EPW, proportional to the intensity of the reflection [8])
values were compared. This was done before adding the box to the simulation. The
intensity of the lamp in the simulation was adjusted to generate a similar intensity range as
in the measurements.

After calibration of the light source was completed, the box was added to the simu-
lation. The position of the center of the box is distributed uniformly over the whole ROI.
It was verified that there was no collision between the box and the LV. Possible collisions
with the point clouds generated by other vehicles or by the road boundary in the real data
were dealt with afterwards. The width, length and height of the box were sampled from a
uniform distribution going from 20 cm to 2 m. The z position of the box was adjusted to be
half its height to ensure that it remained on the street surface. The rotation was uniformly
distributed between 0◦ and 90◦ as is the reflectivity, which goes from 0 to 1. Its duration,
which corresponds to the number of frames in which it remains in the same position, was
varied between 1, 2 and 3. An equal number of examples for each duration was used.
Figure 5 presents the results obtained by accumulating the boxes generated over multiple
frames keeping the LV position constant. The transparency in the boxes in the figure is
proportional to their reflection value.
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Figure 5. Examples of the generated synthetic obstacles accumulated over multiple frames. The red
and dotted lines mark the ROI. The transparency of the box is proportional to its reflection value.
The blue box marked ‘LV’ corresponds to the position of the leading vehicle and collisions with it are
automatically removed.

Figure 6 shows the results obtained after rendering. The left side of the figure uses colors
for the detections based on their EPW, while the right side uses different colors to identify
the corresponding echo number. Three different frames are shown. In Figure 6a,b the box is
not added. A direct comparison can be made with Figure 7a,b which corresponds to the real
equivalent (same position of LV). As can be noticed, there are similarities in the distributions
of the EPWs (before training the classifier the histogram of the EPW values of the detections
caused by the synthetic object is adjusted to resemble the one obtained by the real reflections
on the rear of the LV (see Figure A4). This is done in order to avoid biasing the classifier
towards this difference. The histograms are also trimmed to have the same maximum value.)
and echo values. The region close to the sensor (<5 m) contains detections caused mostly by
rain, with very low intensity and an echo number of one or two. The detections caused by
spray tend to have a very low to low EPW. Mostly first and second echoes are seen with very
few third echoes. Something similar happens with the vehicle itself, which is a reason why
removing detections caused by spray is difficult. The intensities and echoes are in similar
ranges, and only the shape allows for a clear differentiation.

figfig:sensors-1246607-f006c,d shows a frame in which the box is added, causing occlu-
sion to a portion of the vehicle (the box height goes from 20 cm to 2 m which allows for the
occlusion of multiple layers). Notice how the distribution of the intensities in the box makes
physical sense with the size perpendicular to the sensor having a higher intensity. The
echo number also coincides to what would be expected. Finally, in Figure 6e,f an example
is given in which the box does not occlude the vehicle. This occlusion, which happens
naturally in the simulation, has to be artificially added when the real data is augmented.

After the synthetic data is generated, the object with OI 4 is extracted and concatenated
to the corresponding frame of the measured point clouds. Additionally, Gaussian noise is
added to the detections caused by the box. This noise has a standard deviation of 5 cm and
mean of zero. The value of the standard deviation is extracted from real reflections caused
by the rear of the LV. The effect of adding the noise is shown in Figure 7e,f.

As previously explained, the cases in which the box intercepts with the LV are auto-
matically removed. It is, however, possible that the box intersects with the road boundary
or with vehicles in the adjacent lane as shown in Figure 8c. Additionally, the presence of
the box would occlude objects further in the light path as shown in Figure 8a. In order to
tackle these two issues, an algorithm based on the radial histogram of the detections per
layer is used (Figure 8 right, radial histograms).
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Figure 6. Examples of the generated synthetic frames. On the left side the detections are colored
based on the EPW value and on the right are based on the echo number. In (a,b) there is no added
obstacle. In (c,d) the effect of occlusion caused by the box is shown. In (e,f) a box that does not cause
occlusion is added. The arrows in (c,e) show the position of the obstacle.
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Figure 7. Examples of a real frame before (a,b), after augmentation (c,d) and after adding noise (e,f).
On the left side the detections are colored based on the EPW value and on the right based on the echo
number. The frame in (a,b) is the corresponding real frame to the synthetic one shown in Figure 6a,b.
The arrows mark the position of the box after augmentation. Notice how the intensity distribution
on the box makes physical sense due to the way in which the synthetic data was generated. The
echo number is also plausible. The effect of adding noise extracted from real measurements (e,f) also
increases the similarity.
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Figure 8. Examples of cases in which occlusion has to be calculated after adding the synthetic object. In (a) the detections
caused by the LV in the same angular region and layer as the obstacle (dotted line) should be removed. Equivalently in (c),
the obstacle itself should be removed as its random position happens to be inside another vehicle. The (b,d), respectively.
The angular bin size needs to be selected to avoid strong undersampling of the point cloud if the value is too high. However,
if it is too small, the desired occlusion effect does not take place. In our case, a value slightly higher than the resolution of
the sensor was used. The occlusion is calculated before the Gaussian noise is added to the synthetic detections.

The algorithm works as follow:

1. For each frame, the radial histogram per layer is calculated.
2. The bins that contain detections caused by the box are extracted.
3. The detections inside the bins are organized in ascending order based on their radial

distance from the sensor.
4. The first detection is used and the rest are removed. The detections in the region from

0 to 5 m are not taken into consideration as their effect was already included when
generating the synthetic data.

Notice that the examples shown in Figure 8a,c and in Figure 6c,d correspond to cases
in which all layers are occluded. This is done to clearly identify the effect but would only
happen in rare cases in which the synthetic object’s height approaches the upper limit of its
range (2 m).

3. Results

As a classifier, a feedforward neural network was used with two layers, one hidden
layer with 10 neurons and one output layer. As a training function, scaled conjugate
gradient backpropagation was used. Cross entropy was used to evaluate performance.

As output classes: No Box (NB) and Box (B) were used. The NB class included the
detections caused by spray, other vehicles, the road boundary and raindrops. The B class
corresponded to the detections caused by the synthetic obstacle. In order to compensate
for the class imbalance, an error weighting of 20% was used for the NB class and of 100%
for the B class.

For training, the region from −6 m to 6 m in ‘y’ and 0 to 20 m in ‘x’ was divided into
histograms with different bin sizes. The following bin sizes were used on the basis of the
features they should help to identify:
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• Small features: 10 cm in ‘x’ by 10 cm in ‘y’.
• Vehicle rear: 20 cm in ‘x’ by 2 m in ‘y’.
• Vehicle side: 4 m in ‘x’ by 10 cm in ‘y’.
• Middle size features: 50 cm in ‘x’ by 50 cm in ‘y’.
• Radial: 1◦.

The following classification parameters were used (per detection). The number of counts
correspond to those of the bin containing the detection for the corresponding histogram:

1. X position.
2. Y position.
3. Echo number.
4. Layer number.
5. EPW value.
6. Number of counts (radial).
7. Number of counts (small features).
8. Number of counts (vehicle rear).
9. Number of counts (vehicle side).
10. Number of counts (middle size feature).
11. Absolute value of the subtraction of parameter six of the current frame from parameter

six of previous frame.
12. Convolution with horizontal matrix (Appendix B) (small features).
13. Convolution with corner matrix1 (small features).
14. Convolution with corner matrix1 rotated 90◦ (small features).
15. Convolution with impulse matrix1 (small features).

Table 3 presents the classification results using the F-Score as metric. The results
are divided between ‘All durations,’ which corresponds to the classification results for
durations of one, two and three frames, and ‘Duration 3f’ which contains only the examples
in which the object remains in the same position for three frames. The results for durations
of one and two frames were very similar and hence are not shown. An F-Score for the B
class of 92.13 and 92.26 was obtained, respectively. This indicates, as expected, that the
classification improves the longer the box remains in the same position and that adding
more parameters like parameter 11 could further improve the results.

Table 3. Classification results.

Predicted Class

All Durations Duration 3f

NB B NB B

Actual
class

NB 12,454,236 20,036 4,150,856 6686
B 3848 141,545 1178 47,055

F-Score 99.90 92.22 99.91 92.29

In order to find problematic regions in the parameter space, Figure 9 shows the results
obtained by using the previously trained classifier on smaller clusters of the data. Here
the focus is on the effect of changes in the obstacle size and the position of the LV. Further
dependencies can be seen in the Figure A2.

Regarding execution times, a single threaded, not optimized version of the proposed
algorithm is required to extract the feature vector and complete the inference of 182 ± 51 ms
per frame, using C++ in a computer with an Intel CORE i7-8850H CPU. The variation
was caused by the changing number of detections. However, current platforms used for
AV like RENESAS R-Car and NVIDIA Drive integrate accelerators for image processing
tasks [35,36], which, given our use of fixed histogram sizes, can be employed to highly
parallelize the computation, reducing the execution time. If for example three consecutive
sensor frames are used, this corresponds to ~120 ms [37], and segmentation of the ROI
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for each of those frames should take few milliseconds, leaving around 150 ms for the
calculation of the feature vector and classification which should be attainable. The time
required to generate the synthetic data and train the neural network is not included as it is
assumed that it can be done offline. The pretrained network can then be used in a vehicle
and updated if needed over the air.
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Figure 9. Classification results are analyzed in detail by dividing the available data into small portions. Regions where the
F-Score is lower than 92% are shown in black. Blue regions are empty (the combination of parameters currently does not
contain any example). On the right, the meaning of each of the parameters is shown. SOvol corresponds to the volume of
the synthetic object, SOx and SOy to its coordinates. LVx and LVy correspond to the coordinates of the leading vehicle. In
both cases, the position is calculated with respect to the position of the LIDAR sensor on the Ego vehicle. The difficulty of
the classification task increases when the synthetic object is located close to the road boundary (a,b) or when is close to the
LV and has a small size (b), additionally when the synthetic object is farther away in x-direction as the LV (c) or when the
LV moves to the Ego lane (d).

4. Discussion

Figure 9 shows that the classification becomes difficult when the center of the box
moves closer to the road boundary SOy < −2.5 m Figure 9a,b. This is due to the multitude
of shapes that the road boundary can generate (see Figure A1), which can be easily confused
with a rectangular-shaped object. Additionally, when the LV moves into the ego lane while
overtaking LVy < 2.25 m Figure 9d, the accuracy of the classifier is reduced as it probably
learns that when there is an object in the ego lane, it is most likely an obstacle. Something
similar happens when the synthetic object is far away from SOx > 16.5 m Figure 9c. In this
case especially, if the box is not big enough and there is lots of spray, it is likely to result
in a misclassification. Finally, when the LV is quite far to the left LVy > 4.25 m Figure 9d
or close to the beginning of the ROI LVx < 15.5 m Figure 9c, only a portion of the vertical
sideline of its shape can be seen. This is easier to misclassify than the usually expected
‘L’ shape. Although these regions are challenging to classify, accuracy in general is high.
This would not be the case if the probability of finding objects in the driving lane for the
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used ROI were not as low. For instance, at lower speeds or in urban traffic the task would
be more challenging, as the position of the synthetic object would not be as important
a classification parameter as it is on a highway at high speeds. Additionally, although
care was taken to make the synthetic data as similar as possible to the real data, it can be
that some of the parameters are still different enough to make the classification task easier.
For instance, a unique reflection value was used while real obstacles would probably be
composed of different materials with different reflection values.

The presented model constitutes a basis upon which more complex scenarios can be
simulated with relatively small changes. For example, the type of synthetic object can be
easily changed and its position can be animated or simulated as desired. Their number can
also be increased and they do not have to be static. For instance, they can simulate other
vehicles. Real and synthetic data can also be combined in different ways. The spray could
be generated completely synthetically, keeping just the real detections caused by the LV, or
a synthetic LV can be used leaving just the real spray detections.

The proposed methodology is based on open-source tools and can be easily applied
to other LIDAR sensors. It can also be used to simulate other weather-related effects. For
instance, the simulation of the detections caused by exhaust gases.

A certain amount of data collection is needed as many of the simulation parameters
are extracted from the characteristics of the real point clouds. It is, however, a much easier
collection task as no real obstacles need to be present on the spray region.

5. Conclusions

Regarding future research directions, even though a shallow neural network was
considered enough for the current use case, the use of a more sophisticated network type
and architecture can increase classification accuracy. This is especially true if other obstacle
types are introduced, for instance bicycles, tires, vehicle parts, etc., in which case manually
defining the classifier features is difficult. Additionally, even though only one reflection
value for the whole obstacle object was used, a texture can be used to give different parts
different reflection values. More complex physics can also be added for the obstacle, such
as bouncing or breaking apart.
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Abbreviations

ADAS Advanced driver assistance systems.
AV Autonomous vehicles.
EPW Echo pulse width.
GPS Global positioning system.
IOR Index of refraction.
LIDAR Light detection and ranging.
LV Leading vehicle.
OI Object index.
ROI Region of interest.
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Appendix A

Some of the road boundary shapes are shown in Figure A1a–c. Figure A1d shows
another vehicle. As can be noticed, the road boundary can generate shapes that can be
easily confused with other objects and, due to curves, it is not limited to a specific region.
Other vehicles like trucks can also generate complex point clouds.
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Figure A1. Examples of the point clouds generated by different road boundaries (a–c) and vehicles
in other lanes (d). The ROI is limited in ‘y’ by the read lines and in ‘x’ by the dotted line.
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Figure A2. Continuation of Figure 9, including the dependencies for other parameters. In black regions
with a F-Score lower than 92% are shown, and blue regions that are empty are shown (the combination
of parameters currently does not contain any example). Besides the already explained parameters, SOR

corresponds to the reflection of the synthetic object and SOrot to its rotation in degrees. In (a–c) high
reflection values for the synthetic object seem to reduce the F-Score. A high reflection generates a high
EPW value, high EPW values are more likely on the LV (Figure A4) making the classification harder.
The rotation (d) and volume (c–e) do not seem to have a strong influence by themselves.
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Figure A3. Probability distribution for the position of the LV with respect to the ego vehicle. The
reference point in the LV is the middle of the lower side of its bounding box (considering bird’s
eye view).
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Figure A4. Histograms showing the probability distributions of the EPW values for the rear part of
the real LV (up) and the synthetic object (down). The mean and standard deviation as obtained after
rendering the scene for the synthetic object are adjusted to resemble those of the LV.

Appendix B

Matrices used in the convolutions: impulse (A1), horizontal (A2) and corner (A3).
These matrices are used to identify features such as isolated detections as present in the
spray cloud or parts of the synthetic object or leading vehicle. −1 −1 −1
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 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
2 2 2 2 2 2 2 2 2 2
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1

 (A2)


−1 −1 −1 −1 −1
−1 2 2 2 −1
−1 −1 2 2 −1
−1 −1 −1 2 −1
−1 −1 −1 2 −1

 (A3)
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