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Abstract: Remote Sensing, as a driver for water management decisions, needs further integration with
monitoring water quality programs, especially in developing countries. Moreover, usage of remote
sensing approaches has not been broadly applied in monitoring routines. Therefore, it is necessary to
assess the efficacy of available sensors to complement the often limited field measurements from such
programs and build models that support monitoring tasks. Here, we integrate field measurements
(2013–2019) from the Mexican national water quality monitoring system (RNMCA) with data from
Landsat-8 OLI, Sentinel-3 OLCI, and Sentinel-2 MSI to train an extreme learning machine (ELM), a
support vector regression (SVR) and a linear regression (LR) for estimating Chlorophyll-a (Chl-a),
Turbidity, Total Suspended Matter (TSM) and Secchi Disk Depth (SDD). Additionally, OLCI Level-2
Products for Chl-a and TSM are compared against the RNMCA data. We observed that OLCI Level-2
Products are poorly correlated with the RNMCA data and it is not feasible to rely only on them to
support monitoring operations. However, OLCI atmospherically corrected data is useful to develop
accurate models using an ELM, particularly for Turbidity (R2 = 0.7). We conclude that remote sensing
is useful to support monitoring systems tasks, and its progressive integration will improve the quality
of water quality monitoring programs.

Keywords: Landsat 8 OLI; Sentinel 2 MSI; Sentinel 3 OLCI; water quality monitoring system;
extreme learning machine; support vector regression; inland waters; turbidity; Chlorophyll-a; secchi
disk depth

1. Introduction

Inland waters, as a source of good water quality, are essential to human health. The
amount of worldwide population relying on surface water for drinking purposes ranges
between 70 and 85% [1]. Additionally, surface waters provide services such as irrigation,
fisheries for food, hydropower, purification of wastewaters, flood protection, wetland
plants for fuel and construction, as well as water and nutrient cycling provided by surface
waters [2]. The impact of human anthropogenic activities such as discharge of waste
products or increased loads of nutrients and sediments from agriculture and urban areas
escalate the eutrophication of global inland waters. This situation raises concerns about the
protective measures of inland water resources and how to ensure their adequate environ-
mental quality. A fundamental task to understand and prevent environmental threats is the
continuous monitoring of water quality. The information gathered during monitoring is
used to warn of current and emerging risks and assent of applicable regulations by pointing
to changes in trends of quality parameters. From monitoring, empirical data is provided
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to aid decision-making on health issues, and it provides evidence for water quality man-
agement in the long term. Currently, monitoring water quality is a growing challenge
because of the difficulty in costs and time resources of sampling tasks and identifying a
large number of chemicals for industry and domestic uses that make their way into inland
waters. Nowadays, every country is responsible for the state of its water. In developing
countries, the priority has been to supply drinking water and control wastewater. In these
cases, water quality monitoring programs are designed to be conducted with conventional,
boat-based, or buoy-based measuring techniques at specific times and locations and their
subsequent laboratory analysis. Some national monitoring programs for inland waters are
already under continuous development and operation.

In Latin America, Mexico has established a national water monitoring network (RN-
MCA) since 1996. Initially, with 200 stations and a sampling frequency of 2 to 3 campaigns
a year for lakes, it has gradually been expanded to operate with more regularity after
a major renovation in 2012. Today, 2700 stations integrate a surface water dataset with
information about the location of the stations and measurement frequency. In Brazil, a
similar number of stations (4500) were planned to be reached by 2020 [3], but other cases
are still in need of improvement, such as Argentina with 617 stations [4] or Chile, where
until 2009, it lacked a coordinated monitoring system at a national level [5]. However, even
with the improvement in such cases, the coverage in spatial and temporal scales of the
water monitoring programs is limited by the economic costs of each sampling station and
the frequency of measurement. Remote sensing offers a strong potential to monitor water
quality in inland waters because it magnifies forthcoming data availability by providing
radiometric measures prone to be associated with water quality parameters. Mainly visible
(VIS) and near-infrared (NIR) bands of the electromagnetic spectrum have been used in
several studies to obtain correlations between radiometric data acquired from sensors on
board satellites and physical and biochemical constituents in water [6–13]. As a result
of many years of research, the UN Environment Project recognizes the need to integrate
remote sensing sensors in the water quality monitoring tasks [2].

To reliably establish such relation from modeling, radiometric values and in-situ
water quality measurement should be acquired in a coincident acquisition date. Models
capable of finding a relationship between radiometric data from sensors and water quality
constituents can be classified as empirical, semi-analytical, or machine learning-based [14].
Empirical models fit a standard linear regression between spectral radiometric values in
the form of bands or band ratios from the sensor and in-situ water quality measurements.
These models are simple and transparent in their process, requiring minimal computational
requirements. However, they are limited to the range and temporal scale of the input data
because weather conditions and water conditions create significant alterations in observed
radiometric data, bounding its regional generalization. Semi-analytical models are based on
the optical properties of the water and the atmosphere, which are unrelated to the light field
and are therefore called inherent optical properties (IOPs). These IOPs are used to calculate
absorption and backscattering coefficients from which water quality parameters can be
retrieved. Because of its physics background in the properties of water and atmosphere,
these models are generalizable on a regional scale. However, there is a need for extensive
in-situ data for validation. The required information about atmospheric composition and
bottom reflectance makes its application difficult where this data is missing [15]. Machine
learning (ML) incorporates the advantages of empirical modeling but with an increased
computational capacity to handle complex nonlinear relationships. Similar to empirical
methods, ML algorithms are limited by the range and settings of input data of its trained
models. However, they present several advantages such as iterative learning to reduce
the overall error and to maximize fit [16]. Due to its novelty, the use of ML is still not
well understood in water quality retrievals, and its application is still necessary to further
understand its behavior in remote sensing of inland waters [17].

Several sensors are available for potential applications in water quality retrievals to
supply these varieties of models with input data. The Operational Land Imager (OLI)
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onboard NASA’s satellite Landsat-8 (launched 2013) has a broad background of applica-
tions in inland waters through the former Landsat missions [11,18–23]. Despite its original
design for terrestrial applications, it is suited to inland waters due to its spatial and spectral
resolution (11 spectral bands, up to 30 m spatial resolution) and with the drawback of
a sparse temporal resolution for regular monitoring (16 days) [24]. The use of Medium
Resolution Imaging Spectrometer (MERIS) (15 bands, 300 m resolution) on board the Euro-
pean Space Agency (ESA) ENVISAT contributed to monitoring inland waters from 2002 to
2012 [8,17,25,26] and its archives still offer a potential data mine for further applications.
The ESA designed the Ocean and Land Color Instrument (OLCI) on board the Sentinel-3
with similar and improved characteristics (21 spectral bands, up to 300 m spatial resolution)
is expected to assume the legacy of MERIS and continue with suitable applications on
monitoring inland waters. The MultiSpectral Instrument (MSI) onboard Sentinel-2 has
suitable characteristics for water quality monitoring (13 spectral bands, up to 10 m spatial
resolution) and temporal resolution (10-days single and 5-days combined constellation re-
visit frequency of Sentinel-2A and Sentinel-2B). Chlorophyll-a (Chl-a) concentrations have
been recently investigated with MSI in different locations worldwide such as Estonia [27]
or Africa [28]. The utilization of geographic information systems (GIS) is a key resource
to gather and manage field and remote sensing data. GIS merges different types of data
into a common framework where layers of information are displayed to detect patterns
and relations. These observations are useful to communicate, analyze and take decisions to
solve complex problems. For monitoring, GIS plays a key role, because of the clear manner
the changes can be detected using a variety of data [29]. When monitoring inland waters by
remote sensing, the patterns of water parameters are retrieved from models using sensors’
data and they are commonly displayed in spatial and temporal scales, represented in maps
of spatial distribution [30].

Despite the available approaches in computational modeling and remote sensing
data, the consideration of such techniques when planning and executing tasks in water
quality monitoring is limited. Consequently, remote sensing may not be recognized as the
main driver of the design of water quality monitoring programs and decisions of water
managers. This may be because local managers are not considering technical expertise
in remote sensing techniques and because research integrating data from entire water
monitoring programs for modeling purposes is scarce [31]. Therefore, an evaluation of
remote sensing techniques using data from water quality monitoring programs is necessary
as an initial step to foster the integration of remote sensing data into the monitoring
routines. This work addresses this situation using the RNMCA in Mexico as a case study,
acquiring entire time series of relevant-remote-sensing water quality parameters. This
data is matched with available remote sensors and modeled through machine learning
approaches to evaluate the feasibility of integrating existing monitoring data into predictive
models. Additionally, we provide suggestions to improve monitoring programs with the
progressive integration of remote sensing.

The specific objectives of this study are: (1) to verify the feasibility to use existing
data (gathered with no considerations of remote sensing) from monitoring programs in a
routine of water quality parameter retrievals by remote sensing; (2) evaluate readily-to-use
(Level 2 Products) water quality remote sensing products with respect to historical water
quality measurements; (3) use radiometric data from available sensors and machine learn-
ing techniques for water quality parameters estimations; (4) find feasible water quality
parameters and inland waterbodies for such monitoring routine. Additionally, it is pro-
vided a critical opinion of the main limitations and challenges when integrating these two
independent sources of data. This work highlights the need of upscaling this research field
using national-wide monitoring data, evaluating different available sensors, and applying
multitemporal analysis with the availability of the sensor’s archives.
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2. Study Areas

We study five Mexican lakes identified by the Mexican water authority as the most
relevant ones in terms of size and regional use, therefore we considered them as priority
targets in terms of the integration of monitoring systems with remote sensing: Chapala,
Cuitzeo, Pátzcuaro, Yuriria, and Catemaco [32]. These are all located in the Trans-Mexican
Volcanic Belt (TMVB) and have a volcanic origin, with the exception of the lake of Yuriria,
which is artificial. Catemaco belongs to the Gulf-Center hydrological-administrative region,
and the other four lakes are within the Lerma-Santiago-Pacific area (Figure 1). The sampling
stations of the RNMCA are displayed in Figure 2.
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Chapala Lake is the largest inland lake in Mexico. It covers approximately 3% of its
territory with an area of 1116 km2, and it is considered one of the largest and shallowest
tropical lakes in the world [32]. It is located at 1523.8 m.a.s.l. at 19◦05′–21◦03′ N and
99◦22′–103◦31′ W. It has a mean depth between 4 and 6 m with a maximum depth of 8 m.
Its dimensions are 75 km in length and 5.5–20 km in width [33,34]. The lake’s primary input
is precipitation, but it also receives water from the water sheet and several streams, the
Lerma River being its main tributary. Evaporation, pumping, and the Santiago River are
the main outflows [35]. The lake’s catchment area is a mixture of lacustrine sediments with
volcanic rocks and basaltic and andesitic lavas accumulated since the Miocene. Thermal
springs, outcrops, and calcareous sinter are also present in the basin [36]. The weather in
the catchment is mainly humid subtropical, with a mean annual precipitation of 730 mm
and a uniform temperature around 24 ◦C [34]. Chapala lake has a high level of sediments
and turbidity, partly by the geology and topology of the area that facilitates the transport
of clay particles to the lake. In particular, the Lerma River can carry many sediments from
areas affected by erosion [33,36]. Due to intense water extraction, dry periods, and land-use
change, the lake’s volume has decreased up to 42% [35]. In addition, the rivers and streams
can transport contaminants from industrial, agricultural, and livestock activities in the
catchment area [33,34].
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Located at 1820 m.a.s.l with coordinates 20◦05′–19◦52′ N and 100◦50′–101◦19′ W,
Lake Cuitzeo is the second largest lake in the country by surface area [37,38]. With a
maximum potential area of 420 km2, currently, Cuitzeo Lake consists of brackish waters
of 1–2 m of depth over an area fluctuating around 300 km2 [39,40]. The lake is highly
susceptible to weather variations and has been closed to desiccation during at least three
severe drought periods in the last century [38]. The approximately 4000 km2 watershed
has several low and high hills originated by volcanic activity during the Miocene and
Pliocene, including pyroclastic-fall deposits and fluviolacustrine plains [39]. The Grande
and Queréndaro Rivers are the main tributaries [37]. There is no natural outlet in the
lake, although according to Soto-Galera [41], it could have been connected to the Lerma
River during the Holocene. The climate in the catchment is moderate, with temperatures
ranging from 10 to 28 ◦C. Annual precipitation can vary from 765 to 1200 mm and it is
concentrated in the summer, from May to October [37,39,41]. As the quality and quantity
of the water feeding the lake have decreased (e.g., waters coming from municipal and
industrial activities or agricultural runoffs), the lake is in a hypertrophic state. Furthermore,
it also has detectable arsenic levels coming from geothermal boreholes around the lake and
a thermal spring located on a magmatic chamber [37].

Pátzcuaro Lake is located at 19◦32′–19◦42′ N and 101◦32′–101◦42′ W and 3035 m.a.s.l.
It has a maximum surface area of 116 km2 with an average depth of 5 m, although certain
zones can have up to 12 m [42]. The lake and its four islands originated from volcanic
activity during the Pleistocene about 1 million years ago [43]. The lake is well mixed,
not stratified, and it is maintained mainly by small springs of shallow groundwater and
by local runoff [44,45]. The drainage basin covers 929 km2 and, while the system today
is endorheic, it could have drained to the Lerma River 25,000 years ago. Two seasons
dominate the weather: rainfall in summer and stable dry conditions in winter with a
mean annual precipitation of 950 mm [45]. Pátzcuaro Lake has been subject to several
paleoenvironmental studies where the extracted cores contain lacustrine sediments that
record climate change, human impact, volcanic activity and earthquakes for periods up to
48,000 years ago [43–46]. In recent years, fish biodiversity in the lake has decreased due to
anthropogenic activities [42,44,45].

Yuriria Lake is located at 20◦13′–20◦17′ N and 101◦12′–101◦03′ W at 1740 m.a.s.l. [47].
With 13.79 km in length and 5.88 km wide, it has a surface of 66 km2 and a maximum depth
of 3.2 m [48]. It is an artificial lake considered the first post-Columbian hydraulic work,
as it was formed after building a deviating water channel from the Lerma River in 1548.
The silty clay on the surface avoids water leakage to the aquifer [47]. The channel from the
Lerma river is still the main tributary of the lake [48], although precipitation and runoff
also contribute to it. The mean annual temperature in the area is 18 ◦C and the rainy season
is from May to September, with annual precipitation that can vary from 669 to 797 mm.
The lake supports migratory and resident birds, and the area is considered a Wetland of
International Importance (RAMSAR) since 2004 [47]. Espinal Carreón et al. [48] identified
eutrophication and contamination levels that may be dangerous for fish biodiversity
and recreation.

Catemaco lake is located at 322 m.a.s.l. with coordinates 18◦21′–18◦27′ N, and 95◦01′–
95◦07′ W, between San Martín Tuxtla Volcano and the Sierra de Santa Marta. It is part of the
subcatchment of the San Juan River, a tributary of the Papaloapan River, the second most
fast-flowing river in Mexico [49]. With an approximately squared layout, Catemaco Lake
has an area of about 75 km2. The mean depth is 7.6 m, but while the lake basin is mainly
a plateau of 11 m deep maximum, there are three pits that reach up to 22 m depth [50].
The lake receives water from at least 10 tributaries, and it is also fed by groundwater and
precipitation, which can be up to 5000 m per year. Its main effluent is the Grande de
Catemaco River, a tributary of the San Juan River [51,52]. Catemaco Lake is considered a
warm polymictic lake, there is no stratification, and the concentration of dissolved oxygen
is constant across the water column. The light penetration between 0.53 and 2 m depth
and its temperature ranges from 23 to 28 ◦C [53]. The catchment area of Catemaco covers
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322.2 km2. It has escarpments, cinder cones, and maars resulting from volcanic activity
in the late Miocene (~7 million years ago) and having the latest eruptions in the XVIII
century. In fact, the lake formed when several cinder cones blocked the drainage to the
north, and the lake contains many islands formed by subaquatic vulcanism [54]. Catemaco
Lake is in the tropical rain forest and has high biodiversity. Divided by the NW–SE
axis, approximately half of the lake borders with the Natural Reserve of Los Tuxtlas [51].
However, the area is affected by deforestation, water abstraction, and water pollution due
to agriculture and livestock farming [51]. With coliform, organic matter, hydrogen sulfur,
water lilies, and phosphorous, the lake has been classified as eutrophic [52].

In general, the lakes are affected by well-known stressors caused by anthropogenic
activities. Furthermore, they are exposed to a certain degree of diversions and removals
of water for agricultural, livestock, and industrial activities [33], numerous discharges of
untreated industrial and municipal wastes, and a growing urban population [41]. This has
disruptive effects, such as drying up and refilling by sediments from erosion and runoff
from deforested uplands due to poor management of soil resources [48], loss of surface
area, reduction of the water column, lower water transparency and hyper-eutrophication,
erosion, or nutrient loads [53,55]. As the lakes are surrounded by large urban areas or are
close to industrially developed regions, the spectral signature is contaminated to some
degree by atmospheric effects caused by aerosols and other gases. Hence, the optical
properties and identification of various optical water types are challenging.

3. Materials and Methods
3.1. In-Situ Data

This work utilizes the dataset available from the national water monitoring network
(RNMCA) managed by the Mexico’s national water council (CONAGUA), which is the
primary source of water quality data in the country. The historical-series data contain
daily physic-chemical data taken in different intervals between 2012 and 2018 using in-
situ field campaigns with exact sampling dates. The information is open access under
http://sina.conagua.gob.mx/sina/ (accessed on 8 June 2020) The water quality measures
are taken on monitoring stations operated by CONAGUA all over the country, which in
2019 had more than 4000 fixed locations. The biggest lakes of the country analyzed in
this study counted with 30 in Chapala, 15 in Cuitzeo, 10 in Pátzcuaro, 8 in Yuriria, and
4 in Catemaco, and frequency of measurement is also limited to 2 to 3 times per year.
From the available parameters, this study focuses on Chlorophyll-a (Chl-a), Turbidity, Total
suspended matter (TSM), and Secchi disk depth (SDD) as these are important for water
quality and present in remote sensing of inland waters studies [14,24,56].

CONAGUA manages the RNMCA to obtain the water quality parameter following
national and international standards to the parameter determinations. In this sense, the
Chl-a measurement derived from the extraction method 10200-H described in the American
Public Health Association [57]; turbidity determination follows the nephelometry method
referred in the NMX-AA-038-SCFI-2001 [58], while the TSS are determinate under the
Mexican standard NMX-AA-034-SCFI-2015 [59] procedures; SDD is measured following
the 30 cm Secchi Disk procedure [57]. These Mexican standards follow the general criteria
for controlling the quality of analytical results from NMX-AA-115-SCFI-2015 [60]. When
the usage of water is for the supply of drinking water, the relevant norm for sampling in
surface and groundwater for water quality parameters is the NOM-014-SSA1-1993 [61]
which indicated measures should be taken with the bottle immersed in the water with the
neck facing down, up to 15 to 30 cm deep. Unfortunately, no measurements of radiometric
data are available from RNMCA. Descriptive statistics of the water quality dataset are
shown in Table A1.

3.2. Satellite Data and Processing

The general characteristics of the sensors used in this study are shown in Table 1.
Landsat-8 OLI multispectral images were downloaded from the United States Geological

http://sina.conagua.gob.mx/sina/
http://sina.conagua.gob.mx/sina/
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Service (USGS) website (earthexplorer.usgs.gov (accessed on 10 June 2021), Collection
1 Level 2, on-demand products). Sentinel-3 OLCI Level 1 Full Resolution images were
downloaded from the European Organization for the Exploitation of Meteorological Satel-
lites EUMETSAT Data Centre website https://archive.eumetsat.int/usc/ (accessed on
10 September 2020). Sentinel-2 MSI Level-1C (L1C) images were downloaded from the
Copernicus Open Access Hub https://scihub.copernicus.eu/dhus/#/home (accessed on
12 October 2020) using the Sen2r package [62]. Additionally, Sentinel-3 OLCI Level-2 Full
Resolution Water Products (OLCI WFR) were considered for further comparison of its
Chl-a and TSM layers. Table A2 displays the selected bands from the sensors used in
this study.

Table 1. Characteristics of the optical sensors used in this study.

Satellite
Temporal

Resolution
(Days)

Spatial
Resolution (m) Launched Spectral Bands

Landsat-8 OLI 16 30 2013 11

Sentinel-3A and 3B 2–3 300 3A, 2016;
3B, 2018 21

Sentinel-2A and 2B 5 10 and 20 2A, 2015;
2B, 2017 13

Synchronized field and satellite data were identified with the allowance of ±3 days of
difference. For OLI, 41 matches were found, while 47 for OLCI and 31 for MSI. The number
of sampling points present on each image and more details of the synchronized data are
shown in Table A3. Pixel averaging was not considered since the sampling stations are
well located and the resolution is considered adequate for all the sensors [33].

OLI Collection 1 Surface Reflectance includes the use of the Land Surface Reflectance
Code (LaSRC) (version 1.4.1), which produces Top of Atmosphere (TOA) Reflectance
and TOA Brightness Temperature (BT) using calibration parameters from the metadata.
These TOA products are further corrected with water vapor and ozone data from the
Moderate Resolution Imaging Spectroradiometer (MODIS) and digital elevation derived
from the Earth Topography Five Minute Grid (ETOP05) to generate surface reflectance
(SR) [22]. Atmospheric correction of OLCI L1b radiances was based on the well-known
Case 2 Regional CoastColour (C2RCC) processor available as plug-in in SNAP (v7.0).
This selection was made based on the standard and recurrent application of the C2RCC
in literature and its use as a standard atmospheric corrector, which helped develop the
methodology with certainty. The C2RCC retrieves directly remote sensing reflectance (Rrs).
Sentinel-2 MSI images were resampled to 60 m with the Resampling (v2.0) tool to give
the same base for each AC processor. Similarly, C2RCC (v0.15) was applied to Sentinel-2
products and the retrieved Rrs.

3.3. Modeling Methodology

Dimensionality reduction was necessary due to the many scenarios to analyze with
different lakes (5), sensors (3), algorithms (3), hyperparameters and bands as predictors,
and the cross-validation necessary on each model. Selecting a subset with the relevant
predictors was desirable to prevent overfitting and enhance the generalization and avoid
collinearity conditions, commonly present in nearby bands situated next to each other [63].
The advantages of this reduction are fewer training periods and fewer computational
demands. Investigated bands were inside the VIS, and NIR regions as these are well
documented for having spectral relation to the studied water parameters [14,64] and
work well when developing algorithms for Case 2 waters. To gain hints about further
relevant wavelengths to use for every sensor, the correlation between bands and field data
was inspected utilizing its distribution and scatterplots. Attributes were also tested with
logarithmic, exponential, and cubic transformation for visual analysis. Linear relationships

earthexplorer.usgs.gov
https://archive.eumetsat.int/usc/
https://scihub.copernicus.eu/dhus/#/home
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between predictors and parameters were using Pearson’s correlation. The correlations were
further displayed in a heatmap matrix to inspect further and enhance the most correlated
bands. The bands of every sensor with stronger correlation to the field data were selected
to further be analyzed as input for the models.

Different ML algorithms were trained with the field and radiometric data. Recent
trends are focused on applying neural network techniques in the remote sensing of inland
waters [23,65,66] for its robust results and capacity to detect nonlinear patterns between
radiometric data and water quality parameters. A novel approach is the extreme learning
machine (ELM). Its basic form is a feedforward neural network with a single hidden layer
that adjusts randomly the weights of the hidden layer with no iterative optimization,
reducing the computational demand of a traditional feedforward neural network [67].
With a d number of nodes, L as the input layer and m as the output layer, for training
samples as {(xi, ti)}N

i=1, where xi = [xi1, xi2, · · · , xid] ∈ Rd, the matrix of the network is
expressed as:

Hβ = T (1)

being

H =


g(w1, b1, x1) . . . g(wL, bL, x1)

...
...

...

g(w1, b1, xN)
... g(wL, bL, xN)


NxL

, β =

 βT
1
...

βT
L


Lxm

and T =

 tT
1
...

βtT
L


Nxm

(2)

where wi = [wi1, wi2, · · · , wid]
T is the vector of the input weights of the node i and bi is the

bias, with both wi and bi randomly generated; βi = [βi1, βi2, · · · , βim]
T is the output weight

vector and g the activation function. The least-square solution of the outputs weights in
the hidden layer is found to train the ELM. The β is expressed as:

β = H†T, (3)

where H† is the Moore–Penrose generalized inverse of H [67].
Hyperparameters to tune for the ELM are the number of neurons in the hidden layer

and the activation function. We evaluated different logarithmic ranges for the number of
hidden neurons. All the available activation functions [68] for the ELM implementation
were evaluated for the different options of hidden neurons.

Additional algorithms were tested to gain insights into the ELM performance against
algorithms with previous applications in the region. Support vector regression (SVR) and
least-squares linear regression (LR) demonstrated a good performance when retrieving
Turbidity and SDD [64,69–73] in central Mexico [17]. Both SVR and LR algorithms have
been applied in predicting water quality parameters with successful results, and their use
starts to be common in the evaluation of ML approaches. To tune the hyperparameters
of the SVR, the radial basis, sigmoidal and linear kernel together with the regularization
parameter and the kernel coefficient in logarithmic ranges were evaluated. The rest of
the hyperparameters were used as default. More details of the SVR can be found at
Vapnik et al. [74] or in previous applications [17].

To search the optimal hyperparameters of each algorithm, a grid of predefined val-
ues was analyzed using leave-one-out cross-validation (LOOCV) to evaluate all possible
combinations due to the limited matches between field and satellite data used in training
and validations. In this process, a score of performance is calculated for each set, and a
later function displays the values reaching the highest score to select the most adequate
hyperparameters combination. The individual and synergistic behavior of the investigated
bands was evaluated, analyzing all the possible combinations of the remaining predictors
by implementing a power set (PS) to perform a spectral sensitivity analysis to finally select
the number and kind of predictors retrieving the best error metrics. The power set is
defined as follows:

PS(b) = 2b, (4)
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where b is the number of predictors for that specific dataset.
After dimensionality reduction, tuning of hyperparameters and optimal number of

predictors, the ELM, SVR and LR models were evaluated against each other using their
best configurations through a LOOCV for each sensor, lake, and parameter. The training
size used for each LOOCV varied depending on the resulting dataset of each lake and
sensor, and a correlation analysis, and for all cases it was equal to nsamples − 1. From
the three models, the one with best performance was selected as the ideal to model the
specific parameter used for a specific sensor. For this we use different controlling metrics,
the coefficient of determination (R2), the root mean squared error (RMSE), and the mean
absolute error (MAE), defined as:

RMSE (y, ŷ) =

√√√√ 1
nsamples

nsamples−1

∑
i=0

(yi − ŷi)
2, (5)

R2(y, ŷ) = 1− ∑
nsamples−1

i=0 (yi − ŷi)
2

∑
nsamples−1

i=0 (yi − yi)
2

, (6)

MAE(y, ŷ) =
1

nsamples

nsamples−1

∑
i=0

|yi − ŷi|2, (7)

where ŷi is the estimated value, yi is the observed value and nsamples is the number of
samples. Usage of ELM was performed via the Caret library [75] in R, which applies the
elmNNRcpp package from Mouselimis [76] based on the implementation of Gosso [77].
The base codes of ELM can be found at: https://www3.ntu.edu.sg/home/egbhuang/
elm_codes.html (accessed on 12 February 2021). SVR and LR were implemented using the
Scikit-Learn library (0.20.1) [78] in Python (v.3.8.3).

4. Results
4.1. OLCI Water Products Compared to RNMCA

Chl-a and TSM values estimated with OLCI WFR were compared against all the
in-situ data (Figure 3) to evaluate the possibilities of using these products as part of the
monitoring system.
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The overlap between histograms shows significant differences for both water pa-
rameters when compared with in-situ data. Chl-a field concentrations are usually low
(avg: 14 mg m−3) compared to the OLCI products (avg: 30 mg m−3). Furthermore, the
distribution of the OLCI derivations from Chl-a seems to have a closely normal distribution
shape spread in the range 5–30 mg m−3. The averages values for field TSM (avg: 53 g m−3)
and OLCI derived (avg: 53 g m−3) are very close to each other; however, the constraints
from the TSM layer relies on the frequent prediction of values close to either 0 or 100 g m−3,
as seen in Figure 2b). The complete overlap of histograms by lake is shown in Figure A1.
Figure 4 shows the scatterplots of the OLCI water products in-situ data. The Pearson’s
correlation of both data remains low, particularly for TSM (r = 0.07), where the differences
of extreme predictors between 0 and 100 g m−3 values display scattered values. On the
other hand, Chl-a water products were underestimated above 30 mg m−3.
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Figure 4. In-situ and S3 derived water quality parameters. (a) OLCI WFR Chl-a vs. in-situ measure-
ments, (b) OLCI WFR tsm_nn vs. in-situ measurements.

Individually, Chl-a retrievals were overestimated in Chapala. Pátzcuaro had little
agreement with under and overestimation before and after 15 mg m−3. Catemaco showed
a better agreement. For TSM, Pátzcuaro, Chapala and Yuriria suffered poor agreement, and
Catemaco again showed the best correlations at lower concentrations.

4.2. Data Evaluation and Model Performance

Generally, the exploratory analysis on a single set per sensor containing all the water
quality data of each lake did not present strong correlations between reflectance from
sensors and RNMCA data (Figure 5). For OLI, higher correlations were seen in the VIS
for Turbidity and TSM (R ≈ 0.30) and b5 for Chl-a (R ≈ 0.31). OLCI displayed slightly
better correlations in the VIS for Chla (R ≈ 0.38) and b12 for Turbidity and TSM (R ≈ 0.57
and R ≈ 0.38) alongside b1, b2, and b12 for SDD. MSI displayed higher correlations in VIS
bands with Chla (R ≈ −0.38), NIR with Turbidity (R ≈ 0.35) and SDD (R ≈ 0.47). TSM
showed the weakest correlations in OLCI (R ≈ 0.03) and MSI (R ≈ 0.12) and slightly better
for OLCI (R ≈ 0.30). Further analysis of Pearson’s coefficient was performed, analyzing
each data set separate by sensor and lake with an additional cleaning process of noise
values prior to model training. From a practical point of view, Sentinel-3 OLCI presents the
strongest correlation for all the target parameters except SDD.

The average error metrics by lake and parameter are shown in Tables 2 and 3 as an
overview of the performance in error metrics of lakes and water parameters. The complete
validation of models displaying error metrics, the best algorithm for each lake, sensor,
and water parameter together with tuned hyperparameters and training size is shown in
Tables A4–A6. Scatter plots of all the in-situ parameters and best models for each sensor
resulting from the LOOCV are shown in Figure 6. Modelled algorithms varied in every
sensor and lake depending on the approach and hyperparameters. The additional factor
of varying training sample size due to the different matched samples and the remotion of
noisy values influenced further the error evaluation.
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Table 2. Average coefficient of determination (R2) of the developed models by sensor and lake together with the average
number of samples (n). Operational Land Imager (OLI) (left), Ocean and Land Color Instrument (OLCI) (center), and Multi
Spectral Instrument (MSI) (right).

Lake OLI OLCI MSI

R2 n R2 n R2 n

Chapala 0.37 141 0.45 75 0.45 44
Cuitzeo 0.55 23 0.67 19 0.90 7

Pátzcuaro 0.37 43 0.42 31 0.21 39
Yuriria 0.21 16 0.52 17 0.60 11

Catemaco 0.27 17 0.32 17 0.88 7

Table 3. Average error metrics of the trained models by sensor and water parameter. Error metrics of all lakes are included
on each water parameters RMSE: Chla in mg m−3, Turbidity in NTU, TSM in g m−3, SDD in m. The number of samples is
also displayed on average.

Parameter OLI OLCI MSI

R2 RMSE MAE n R2 RMSE MAE n R2 RMSE MAE n

Chl-a (mg m−3) 0.18 19.99 13.81 40 0.36 21.27 8.86 32 0.64 8.47 6.23 20
Turbidity (NTU) 0.48 35.23 23.31 51 0.69 17.80 30.99 30 0.71 17.24 47.40 22

TSM (g m−3) 0.42 107.31 40.37 49 0.35 33.12 28.10 32 0.48 118.21 24.70 23
SDD (m) 0.33 0.08 0.05 52 0.50 0.26 0.18 32 0.61 0.45 0.36 23

Averages showed that OLI performs better for Cuitzeo (R2 = 0.55) than the other
lakes, behaving the worst in Yuriria R2 = 0.21). Its best prediction is obtained for Turbidity
(R2 = 0.42). OLCI performs better in Cuitzeo (R2 = 0.67) and Yuriria (R2 = 0.52) and better
predicts Turbidity (R2 = 0.69) and SDD (R2 = 0.50). MSI has on average higher performances
due to a low number of training samples in Cuitzeo, Yuriria, and Catemaco, due to
poor image coverage in sampling dates and cloud coverage in the few matching images
(Table A3). The comparison is feasible only with Chapala where its performance is similar
(R2 = 0.45) and Pátzcuaro where it is the poorest (R2 = 0.21). An easier comparison comes
from analyzing the model performances by water parameter. Turbidity resulted in a higher
performance (R2 = 0.71) with also relatively good Chl-a and SDD (R2 = 0.64 and R2 = 0.61).

From the water parameters, TSM showed to be the most challenging parameter to model
as seen in the poor performance in terms of error metrics for all sensors (OLI: R2 = 0.42,
OLCI: R2 = 0.35, MSI: R2 = 0.48). Additionally, Chl-a was also poorly correlated for OLI
and OLCI (OLI: R2 = 0.18, OLCI: R2 = 0.36). Turbidity models displayed the best perfor-
mances for Chapala, Cuitzeo Pátzcuaro, and Yuriria, shown in Tables A4–A6. Individually,
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no model could retrieve a good correlation for TSM in Yuriria in any sensor (OLI: R2 = 0.19,
OLCI: R2 = 0.34, MSI: R2 = 0.11), Chl-a in Pátzcuaro (OLI: R2 = 0.14, OLCI: R2 = 0.38,
MSI: R2 = 0.21) in Tables A4–A6. For the 5 lakes and 4 parameters to the model, ELM
occurrence (37 times) for better performance was the highest among all sensors, followed
by LR (15 times) and SVR (8 times) (Table 4).
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Figure 6. Comparison of estimated Chlorophyll-a (Chl-a, column (a)), Turbidity (column (b)), total suspended matter (TSM,
column (c)) and Secchi disk depth (SDD, column (d)) by sensor. Individual estimations by lake are displayed on each figure:
Operational Land Imager (OLI) (top), Ocean and Land Color Instrument (OLCI) (center) and Multi Spectral Instrument
(MSI) (bottom).

Table 4. Model occurrence in every sensor as a result of better predictive capabilities.

Model OLI OLCI MSI Total

ELM 10 14 13 37
SVR 5 3 - 8
LR 5 3 7 15

Total 20 20 20 60

ELM was better suited for OLCI data, and LR was useful in few samples (MSI). SVR
showed not to be suited for MSI, most likely because of the combination of limited data
and better suitability of ELM and LR (Tables A4–A6).

4.3. Spatial Patterns from Sentinel-3 OLCI WFR and Estimated Parameters

Locally calibrated models were used to produce spatial distribution maps of Chl-a
and TSM. These maps were also compared against the OLCI WFR retrievals. The map
product of the modeling, regardless of the uncertainties associated with its empirical nature,
contribute to a higher understanding of the spatial distribution of water parameters in
comparison with being based on sampling stations. The complete maps for all lakes are
shown in Figure 7. For display purposes, a random image was selected for its usefulness
for visual analysis on every lake.
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developed the models in this study for all lakes.

Derived maps suggest different interpretations in terms of magnitude and distribution
of the parameters between both types of derivations. In Lake Chapala, Chl-a concentrations
from OLCI products are generally overestimated, which is visible in most of the lake
surface where no significant changes are observed. The east part of the lake shows more
variations in the quality in agreement with the location of river discharges discussed in
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Section 2. In agreement with the previous histograms, OLCI TSM presents fixed values
near 100 g m−3 mainly in the east part of the lake (Figure 7a–d). Similarly, Lake Cuitzeo
varies from homogeneous distribution of Chl-a and TSM from OLCI products to a higher
variability depending on the section of the lake with apparent underestimation from OLCI
(Figure 7e). Lake Pátzcuaro displayed similitudes between OLCI and modelled Chl-a, with
visible differences only near the shores of the lake, especially in the southwest (Figure 7i,j).
OLCI TSM for Lake Pátzcuaro also shows overestimation compared with modelled TSM
(Figure 7k,l). Lake Yuriria shows the different spatial distribution of both Chl-a and TSM.
However, the patterns of river discharges carrying suspended solids (Figure 7p) are clearly
distinguishable only in the maps derived from the models.

For Lake Catemaco (Figure 7q) and Lake Pátzcuaro (Figure 7i), lower differences
are observable for Chl-a OLCI products and maps from models. However, TSM showed
higher variability in Pátzcuaro from 85 g m−3 for OLCI products to lower values of
50 g m−3 in the calibrated models. As a general observation, more refined details and
distinguishable patterns can be discernible in the maps from the trained models; for Chl-a
estimations, for example, regions with higher Chl-a content seem to be revealed in areas
where primary productivity may be expected to occur as in river discharge or nutrients
deposit. Additionally, further characteristics of each lake not studied in this work, such
as wind direction, bathymetry, hydrodynamic and morphological features, might induce
strong influence in the distribution and magnitude of both parameters.

5. Discussion
5.1. OLCI Water Products

Significant limitations exist when integrating remote sensing available products to
support the monitoring system in Mexico. A substantial mismatch between OLCI WFR and
field measurements was found (Figure 3). OLCI product tends to overestimate Chl-a and
TSM values. A deeper analysis on each lake individually displayed little correspondence,
except for Chl-a and TSM in Lake Yuriria (Figure A1). Furthermore, an analysis of the
spatial distribution of such parameters based on single images showed that patterns
regarding the path and concentration of these parameters are difficult to detect via OLCI
WFR layers. Likewise, the surface of the lakes appears to be highly homogeneous, while
significant spatial variations were identified via local modeling (Figure 7). It is vital to
notice that OLCI L2 algal pigment concentration is conceived for ocean products, and
its range varies from 0.01 to 100 mg m−3 in Case 2 waters. The lakes in this study had
lower concentrations, particularly Lake Chapala (Table A1) and therefore an overestimation
of Chl-a is not surprising. A similar situation occurs with TSM. These findings suggest
that, to rely only on these products to support monitoring program tasks is unfeasible,
and therefore there is the need for locally trained models. Even with the disagreement
between OLCI WFR and field data from the RNMCA, OLCI L1C products were found to
be among the most reasonable sensors to use when monitoring big enough inland waters
in the region.

5.2. Comparison of Sensors

OLI has outstanding features in terms of spatial resolution and adequate preprocessing
routines. In this study, these features contributed to keeping spectral information from
proximal stations to water shores. Additionally, its launch in 2013 increased the number of
matched images with RNMCA substantially. Its application is further endorsed by years
of legacy from the Landsat constellation and its perpetual presence in research of remote
sensing of inland waters [18,20,79–81]. Therefore, it was expected to retrieve better results
from models trained with its radiometric data, although essential restrictions constrained
its application. The temporal resolution (16 days) limits the number of matches with the
existing field data. Despite its longevity, the retrieved datasets were of similar size to OLCI
and the large archive advantage was not compelling to gain a privileged place as the best
sensor (Tables A4 and A5). This limitation was already appointed by Mandanici [82] who
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compared OLI and MSI, finding limitations in OLI temporal resolution for continuous
water quality monitoring. Furthermore, as OLI is designed to observe the main features in
earth and not water resources; except for the NIR-band, the spectral amplitude and spectral
coverage of the other bands in the VIS region measured by OLI sensor represent a common
limitation to carry out specific studies related to the water quality assessment. In other
words, OLI is not designed to observe characteristics and features of important parameters
involving algae blooms such as Chl-a, commonly used as a proxy of the trophic state of
inland waters.

In the sense of the above, the spectral resolution of OLCI is higher (21 bands) than OLI
(11 bands), and the bands are located in relevant regions of the spectra for water quality
monitoring. Specifically, wavelengths at 681 nm or at the range 700–710 nm allowed the
development of Chl-a based algorithms as the fluorescent line height (FLH) [83] or the
maximum chlorophyll index (MCI) [84]. Furthermore, the location of many bands in the
Red and NIR regions (b8–12) allowed Turbidity and TSM patterns to be detected. The
temporal resolution is reinforced with both S3-A and S3-B, which could have potentiated
the found matching data. Unfortunately, the availability of Sentinel-3B was limited when
investigating matching dates of the RNMCA, and the data remained limited to S3-A except
for a couple of S3-B images. The major limiting factor was possibly the spatial resolution
when working with stations close to shores, as some existed in the RNMCA. Due to the
size of a single pixel (300 × 300 m) which averages the shore radiances with the ones of
adjacent water, such stations were rejected and data availability constrained. If considered,
these stations could lead to adjacency error (AE) which would add further uncertainty to
the models. For this study and considering the target lakes as the biggest in the country,
the resolution of OLCI did not represent a limiting factor as enough pixels were constantly
retrieved from the surface of the lakes. However, if OLCI is intended to be used in routinary
monitoring tasks, the resolution will likely be a program for small inland waters. It was
recently demonstrated that available atmospheric correction procedures, including the
C2RCC, for OLCI have difficulties when removing atmospheric disturbances over small
inland waters [85]. This is particularly challenging when there are many small lakes as in
central Mexico [32], and no radiometric data is measured as part of the RNMCA routines.
To improve the methodology applied here, a more comprehensive evaluation needs to
analyze different AC or errors associated to different radiometric data as TOA radiances.
In terms of model performance from OLCI data, the error metrics (Tables 3 and 4) even
when far from perfect fitting, showed reasonable performances with enough data in most
of the lakes and parameters, which may also indicate a good generalization ability.

MSI combines high spatial and temporal resolution due to the availability of both S2-A
and S2-B, and expectations with its data were high. Unfortunately, coverage of MSI for the
sampling dates and regions of the lakes analyzed in this study was limited and only some
images matched with the RNMCA (Table A3). Furthermore, cloud coverage also impeded
the processing of some of those few images. This resulted in a limited number of matched
points, especially for Lakes Cuitzeo, Yuriria, and Catemaco (Table A6). These factors played
an important role. and models using MSI data are likely to lack the generalization ability
out of the range of the limited training data. Moreover, similarly to OLI, its design is based
on terrestrial and vegetation applications. Therefore current AC processes for S2 are still
a matter of research to further validate the quality of the corrected radiometric data over
different inland waters [27].

5.3. Data Analytics and Machine Learning Modeling

The data analytics routine demonstrated to be useful, as seen in the developed models
using spectral and RNMCA data. As seen in the exploratory data, not all the bands or band
ratios of the sensors strongly correlated with the water quality parameters (Figure 3). This
was corroborated with poor performances from the models in specific lakes or parameters
(Tables A4–A6). However, good agreements were also found and models with strong
correlations were developed for each sensor, particularly for turbidity, which exhibited
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constant high performance in every lake. The usage of shallow algorithms as LR and
SVR is shown to be a good base for modeling tasks in inland waters, since they provide
straightforward results that can serve as a proxy for test modeling.

Regarding ELM, it is a state-of-the-art shallow algorithm that is in constant develop-
ment and starts to be applied in evaluations of remote sensing of inland waters [23,65].
Furthermore, the usage of ELM in this study resulted in being useful to develop more
accurate models in certain cases. Since it is expected that acquisitions from the RNMCA
will continue, further validation and calibration should complement and adapt the models
developed here and open new doors for more accurate algorithms. This is especially valid
for the use in research of machine learning models, which are in constant change and
evolution. Additionally, the evaluation of machine learning models against approaches as
empirical-based or bio-optical models is important to further understand the more suitable
methodology for remote sensing of inland waters. The promising performance of machine
learning models was found in this study. To go further, alternatives such as Deep Learning
has already been pointed out in recent research [65,66] as an adequate methodology to deal
with the challenges of working with enormous amounts of data storage (as satellite images
could be) and water quality datasets. In addition, although different approaches may
lead to more robust or generalizable models, its application may be complex and could
require large amounts of in-situ data for calibration [63]. These requirements greatly restrict
the application of semi-analytical models, favoring empirical approaches. Here is where
machine learning offers a good balance between computational power and straightforward
application. In this study, machine learning approaches were a useful methodology applied
to consistently evaluate the available data from RNMCA. The results suggest that these
models are adequate approaches to support the monitoring tasks in emerging economies
like Mexico.

The challenges in the application of machine learning approaches are primarily due
to the calibration of the hyperparameters. LR has the advantage of not requiring this
calibration, but the relationships between water quality parameters and radiometric data
are often not linear. Therefore, the importance of a good calibration of SVR and ELM is to
reveal non-linear patterns or non-normally distributed data as water quality parameters.
Regarding SVR, its application resulted in being straightforward due to the considered
hyperparameters calibrated. Nevertheless, if a broad spectra of hyperparameters are
considered, this can lead to long training time. To reduce the computing time, the usage of
known kernels and particular values for the regularization parameter (C) and the kernel
coefficient (γ) based on powers of 10 resulted in a comprehensive grid that covered a
wide range of possible combinations. The case of ELM was further challenging due to the
many activation functions available for neural networks and the large number of hidden
neurons that can be taken. Ideally, considerations regarding the convergence speed of the
ELM with the activation function or perseverance of normalization. These were evaluated
by considering training times and normalization of the data before training. However,
activation functions did not influence training times as much in Caret using the RNMCA
and radiometric data, but more challenging was determining the number of hidden neurons
in the hidden layer. From Huang et al. [67], it is known that the generalization performance
is stable on a wide range of number of the hidden neurons. Therefore, a range of values
based on powers of 10 resulted again in an effective way to find variations in the ELM
performance. A small number of neurons (≈10) retrieved results tending to the mean
of the training samples. A number of neurons greater than 15,000 or 20,000, together
with training data of n > 100 and a LOOCV, resulted in hours of training and minimum
improvement of the error metrics, which is not the optimal performance of an ELM. The
range of hidden neurons in this study was found to be optimally varied between 1000
and 10,000. A further sensitivity analysis of the number of neurons to better set a range
of the ideal number of neurons of an ELM using remote sensing and water quality data
is recommended. In addition, it is important to consider that there are additional model
capability limitations from radiometric data product of time delay in matching satellite
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and water quality data [33] and the limited amount of matching data, which leads to small
datasets for model training. To face these challenges, we exclude region/pixels which
may be corrupted by clouds or adjacency effects, and therefore possible uncertainties and
the model routines are evaluated with strict LOOCV. However, this study used data from
a single atmospheric correction and did not evaluate further possibilities nor estimate
the uncertainties.

5.4. Integration of Remote Sensing and the RNMCA

The performed analysis of the selected parameters using OLI, OLCI, and MSI stresses
the complications of retrieving accurate estimations of water quality in the region using
the available data. From the investigated parameters, turbidity is the parameter better
positioned to be estimated using optical and RNMCA data. Different and varied factors
may enhance difficulties in estimations. Limitations regarding the nature of the RNMCA
and the modeling itself were present in the development of this work and pose challenges
for future integration of remote sensing and water quality data.

The current state of the RNMCA data and its acquisitions routines is independent
of the satellite acquisitions. Consequently, a lack of synchronization between the field
campaigns to measure in-situ data and the satellite overpasses leads to the rejection of data
for being too sparse in time (Table A3). Similarly, only some fixed stations on each lake
are regularly sampled in field campaigns. For specific dates, there are no measurements of
all the stations, most likely subject to different priorities, and limiting the availability of
data. Moreover, in-situ radiometric measurements are not routinely measured, impeding
validation of the reflectance of the sensor and identification of the optical water types
or consideration of further modeling approaches. In addition, the frequency of field
campaigns limiting because it was observed to be limited to a couple of times every year
or in single campaigns spread over several days. This detaches samples from the date
of satellite acquisition, leading to reduction of usable data. This situation affected to a
minor degree to Lake Chapala or Lake Catemaco, but it was observed more frequently in
Lake Yuriria and Lake Catemaco. In the studied lakes, some sampling stations are located
near the shores, which leads to adjacency effects on the acquired radiometric energy in
that location and induces errors in the modeling process. Therefore, in this study, these
stations were rejected due to its proximity to the land. Access to the data is also of major
importance. For instance, the complete dataset of all the measured parameters in the last
decade was available only until late 2019. Before this, the available information was limited
to information regarding biological oxygen demand (BOD5), chemical oxygen demand
(COD), and total suspended matters (TSM). Since the water quality information from the
RNMCA focused on displaying the results rather than its acquisition and usage, application
and research from it were limited. By the beginning of 2020, the increase of data availability
and the possibility to use it in an adequate format improved conditions for monitoring
research. Currently, this data is also already available in the global freshwater quality
database portal (GEMStat), where until the writing of this paper, Mexico leads the amount
of data water quality data available for inland waters [86].

There are also inherent challenges regarding the methodologies in field campaigns,
the use of radiometric data or the wind and temperature conditions in the lakes. From
field measurements methodologies described in Section 3.1, we assume that samples
collect water from the surface up to a maximal depth of 15–30 cm. For those parameters
which require less water volume in sampling, such as turbidity (100 mL), it is likely that
the sample is filled at a lower depth than for those that require more, such as TSM or
Chl-a (1000 mL), but for all cases the limit is between 15 and 30 cm. This lead us to
the assumption that, for Chl-a, turbidity, and TSM, possible discrepancies due to NIR
bands are not relevant or relevant in a lower degree Still, the depth of sampling and the
effective depth of remote sensing reflectance might not match, which surely add some
uncertainties, however, this is a common issue in the remote sensing studies. In our case,
this is supported by the fact that turbidity showed the better metrics for all parameters and
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its models include NIR bands consistently (Tables A4 and A6) or the use of NIR bands in
studies where similar parameters are studied [30] or even at deeper measurements [80,87].
Partial discrepancies due to sampling methods are, however, very likely for SDD. For
example, Secchi Disk Depth is based on a subjective measure from the operator, and it
reflects the total depth in which the disk is lost from sight, therefore, it is not representing a
property of a shallow layer of water directly. Furthermore, the SDD in average is higher
than the NIR penetration rate in water of 10 cm (Table A1). In this case, the use of NIR
bands may represent a bias in the developed models, which use these bands. Therefore,
results for SDD should be taken with caution and not be conclusive. Prevailing winds are
capable of generating dispersion phenomena as a result of forcing or friction on the water
surface that induces waves, as well as the generation of aerosols due to natural evaporation
processes. Additionally, vertical mixing induces movement of waters due to temperature
gradients and this may conditionate the satellite measurements. The study areas are located
in low wind zones [88], but the wind patterns or prevailing winds should be considered
as a challenge for toe reliability of results [89]. Determination of temperature profiles
to find mixing areas would also contribute to increase the reliability of the estimations
and the determination of the associated uncertainties. The atmospheric correction has
several challenges to deal with, as the many variables influencing the radiance spectra used
to train the models. Low signal-to-noise-ratio product of the small amount of reflected
light in water bodies requires an accurate correction for atmospheric contributions [90].
The predominance of the effect of a specific constituent over another in the water may
create the masking effect and avoid estimating the non-dominant constituent in the water
with enough confidence [56]. Since turbidity depends strongly on TSM and Chl-a, and
given that all the lakes (except lake Catemaco) preserve relative high concentrations of
both parameters; turbidity was the parameter better positioned among the investigated
parameters. On the other side, radiometric data may be improved through preprocessing.
An additional glint-correction on the image may help to improve the response derived
from the sub-surface water layer, retrieving a more reliable water-leaving radiance this
may help to diminish the dispersion effect produced by the reflection of the wind-waves,
aerosols associated to natural evaporation in the air-water layer.

To include remote sensing into the RNMCA routines, it is important to understand the
obstacles of integration. One of the main reasons is the lack of awareness or expertise from
local managers of remote sensing techniques. Schaeffer et al. [31] assessed this situation
in a local study in the US. According to their findings, local managers commonly lack the
knowledge to interpret and use the technical descriptions of remote sensing and model-
ing techniques to retrieve water parameters. Therefore dialog between researchers and
resource managers is essential and applications that foster the embracing of remote sensing
are necessary to show its full potential continuously. After the limitations described in this
work, it is clear that requirements for the applications of remote sensing approaches should
be considered when designing sampling campaigns. For example, the field campaigns may
consider synchronization with satellite acquisitions after a revision of the most adequate
sensor and considering the spatial and temporal requirements. Scales of days are needed
and resolutions below 300 m and 30 m are adequate for big and small lakes, respectively.
The number of field campaigns and sampling stations are equally important. A minimum
of four field campaigns per year is recommended for the United Nations Environment
Program (UNEP) [2], one for each season. In Catemaco or Yuriria, the fourth and fifth
biggest lakes in the country only have five and four stations, respectively. The loss of
one or two stations are due to shore proximity or incomplete sampling limits data avail-
ability. Furthermore, the inclusion of in-situ radiometric data measurements to validate
the satellite’s sensors reflectance spectra and further classify the optical water types. For
this, upwelling radiance from water and downwelling sky radiance are key parameters.
Routines of calibration should then be applied to normalize this data to downwelling
irradiance. The derivation of remote sensing reflectance can be then done through known
procedures [91].
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The benefits for water managers are well known. Costs regarding time consumption
in field campaigns and human resources can be mitigated, and the enhancement of spatial
and temporal information is highly significant compared to field campaigns alone. The
recommendation for integration is already suggested by the UNEP, where the advice is to
schedule and adapt the field campaigns considering the use of remote sensing for water
monitoring [2]. The initial step could be the most challenging since it will require an
assumption from the highest level of water managers to direct how the field campaigns
are being taken. Meanwhile, the data from the RNMCA are highly valuable and set the
basis for an extensive network for water quality monitoring. The identification of fixed
stations, the high variety of water parameters measured (around 30 in the complete dataset),
and its endurance through the years will likely allow high-quality and comprehensive
data to be available for practical and research applications. Besides, it should be clear
that a hypothetical integration of remote sensing into the design of management routines
will be in continuous evolution. It is expected that the routines are adapted with the
availability of future sensors, which can incorporate better features suited for inland water
quality monitoring. Furthermore, resources such as cloud computing should be taken into
account to develop large applications that process great amounts of data as a monitoring
water system at a national level or satellite imagery. Cloud computing infrastructure and
applications based on AI may facilitate water quality monitoring through access to NASA,
USGS, and ESA archives.

6. Conclusions

This work focuses on the implications of the lack of integration of remote sensing in
water quality monitoring routines, taking as a study case the existing monitoring system
(RNMCA) of the five biggest lakes in the country. Available ready-to-use products from
Sentinel-3, OLCI WFR, tend to overestimate or underestimate field values for Chl-a and
TSM, and validation results indicate a need for alternative approaches based on field data.
Through a routine based on data analytics and machine learning algorithms, Landsat-8 OLI,
Sentinel-3 OLCI, and Sentinel-2 MSI sensors were studied to investigate their suitability
to monitor water quality in the region. ELM resulted in the most used methodology for
modeling followed by LR and SVR. The results ranged widely in performance, from weak
to strong relationships. From the three sensors, Sentinel-3 OLCI showed a moderate better
performance over Landsat-8 and Sentinel-2 MSI for these study areas with good results for
turbidity and moderate correlations for Chl-a, TSM, and SDD. The current state of the data
and the fact that the RNMCA is developed independently and without considering remote
sensing techniques placed different difficulties in the processing methodology and led to
considerable losses of in-situ data. It is recommended to study the local needs and available
in-situ data when choosing a sensor for monitoring water quality or design routinely field
campaigns based on the acquisition calendar of only one sensor. Due to their design, it
is not possible to select a sensor for monitoring inland waters. To magnify their use and
full potential, synergistic applications should be developed to combine the strengths of
various sensors and mitigate their limitations. This work contributes to creating awareness
of the misuse and absent application of remote sensing by water managers in emerging
economies for water monitoring routines. The progress of remote sensing for inland waters
is bound to its usage to improve existing monitoring tasks, which will impact management
and protection of water resources.
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Figure A1. In-situ and S3 derived water quality parameters vs. field data from RNMCA by lake. The upper row shows the
Chl-a comparison, the lower row shows TSM.

Table A1. Descriptive statistics of the RNMCA dataset.

Lake Stations Parameter Count Mean St. Dev. Min 25% 50% 75% Max

Chapala 26 Chl-a (mg m−3) 307 8.3 21.7 0.0 0.1 0.9 8.3 218.4
Turbidity (NTU) 387 36.2 51.1 0.3 18.0 24.0 34.0 750.0
TSM (mg L−1) 388 49.5 61.4 10.0 18.0 30.1 52.0 475.0

SDD (m) 388 0.4 0.2 0.1 0.3 0.4 0.5 2.3
Cuitzeo 9 Chl-a (mg m−3) 116 35.7 41.7 0.1 8.0 20.3 50.3 247.5

Turbidity (NTU) 120 181.4 191.5 2.5 52.8 122.5 238.5 1176.0
TSM (mg L−1) 118 152.4 159.9 10.0 56.3 96.5 170.0 790.0

SDD (m) 121 0.1 0.1 0.0 0.1 0.1 0.2 0.7
Pátzcuaro 17 Chl-a (mg m−3) 266 27.3 39.9 0.4 7.6 15.8 26.2 395.4

Turbidity (NTU) 268 92.2 43.6 4.5 62.2 87.3 115.2 302.7
TSM (mg L−1) 268 47.6 36.1 6.0 20.0 38.5 64.0 250.0

SDD (m) 268 0.2 0.1 0.0 0.2 0.2 0.2 0.5
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Table A1. Cont.

Lake Stations Parameter Count Mean St. Dev. Min 25% 50% 75% Max

Yuriria 6 Chl-a (mg m−3) 75 21.4 20.5 0.1 7.3 13.5 30.7 91.3
Turbidity (NTU) 76 92.3 45.6 26.4 65.9 82.5 115.5 262.7
TSM (mg L−1) 76 65.3 69.7 8.0 21.5 41.0 73.3 333.0

SDD (m) 76 0.2 0.1 0.1 0.2 0.2 0.2 0.5
Catemaco 4 Chl-a (mg m−3) 57 26.1 62.8 0.0 0.1 10.1 28.3 345.8

Turbidity (NTU) 58 4.9 4.2 1.0 3.1 3.8 5.1 31.3
TSM (mg L−1) 58 17.4 14.8 10.0 10.0 12.5 17.5 90.0

SDD (m) 57 0.8 1.3 0.2 0.5 0.6 0.8 10.0

Table A2. Summary of the bands used in this study.

OLI b1 b2 b3 b4 b5 b6 b7

Wavelength
(nm)

0.43–
0.45

0.45–
0.51

0.53–
0.59

0.64–
0.67

0.85–
0.88

1.57–
1.65

2.11–
2.29

Resolution (m) 30 30 30 30 30 30 30

OLCI Oa01 Oa02 Oa03 Oa04 Oa05 Oa06 Oa07 Oa08 Oa09 Oa10 Oa11 Oa12
Center (nm) 400 412.5 442.5 490 510 560 620 665 673.75 681.25 708.75 753.75

Resolution (m) 30 30 30 30 30 30 30 15 30 100 100

MSI b1 b2 b3 b4 b5 b6 b7 b8 b8a
Center (nm) 442.7 492.4 559.8 664.6 704.1 740.5 782.8 832.8 864.7

Resolution (m) 60 10 10 10 20 20 20 10 20

Table A3. Matching satellite acquisitions and RNMCA sampling dates. Complete table with images ID is provided in the
complementary material.

Sensor Lake Matching Images Total

OLI Chapala 13
Cuitzeo 11

Pátzcuaro 4
Yuriria 4

Catemaco 9 41
OLCI Chapala 12

Cuitzeo 13
Pátzcuaro 6

Yuriria 9
Catemaco 7 47

MSI Chapala 10
Cuitzeo 4

Pátzcuaro 5
Yuriria 9

Catemaco 3 31
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Table A4. OLI Model validation and predictive capability results for all datasets including coefficient of determination (R2),
root mean square error (RMSE), mean absolute error (MAE), and the number of samples (n).

Sensor Lake Parameter Model Hyperparameters Bands Used R2 RMSE MAE n

OLI Chapala

Chl-a ELM af = hardlims,
hn = 10,000 All 0.38 4.63 3.22 100

Turbidity LR - b2, b4, b5, b6 0.66 20.17 8.80 154

TSM ELM af = hardlims,
hn = 10,000 All 0.21 417.07 115.89 154

SDD SVR C = 100, γ = 0.01,
k = sigmoid

logb1, logb2,
logb4, logb5,
logb6, logb7

0.30 0.11 0.08 154

Cuitzeo
Chl-a ELM af = hardlim, hn = 150 All 0.13 34.55 20.38 22

Turbidity LR - b2, b5, b6, b7 0.74 97.64 64.38 22

TSM ELM af = purelin, hn,
hn = 15,000 All 0.91 60.86 41.18 14

SDD SVR C: 10, γ = 5, k = sigmoid logb4, logb5,
logb6, logb7 0.41 0.1 0.06 33

Pátzcuaro
Chl-a ELM af = hardlims, hn: 1000 All 0.14 34.98 25.43 43

Turbidity SVR C = 500, γ = 5 All 0.56 27.75 19.21 43
TSM SVR C = 1000, γ = 500 b2, b4 0.38 19.9 14.85 43
SDD SVR C = 0.5, γ = 500 b3, b4, b5 0.42 0.04 0.03 43

Yuriria
Chl-a ELM af = hardlims hn: 5000 All 0.11 15.88 12.56 16

Turbidity LR - b1, b3, b5, b7 0.32 21.42 18.23 16

TSM SVR C = 0.5, γ = 1 × 10−5,
k = linear

logb5 0.19 20.83 15.73 16

SDD LR - b1, b4 0.22 0.046 0.031 16
Catemaco

Chl-a ELM af = hardlim, hn = 10,000 All 0.15 9.90 7.47 18

Turbidity ELM af = hardlims,
hn = 10,000 All 0.12 9.16 5.91 18

TSM ELM af = hardlim, hn = 8000 All 0.42 17.87 14.20 16
SDD ELM af = hardlims, hn = 100 All 0.40 0.09 0.07 16

af: Activation function, hn: Number of hidden neurons, C: Regularization parameter, γ: Gamma for SVR, k: kernel.

Table A5. OLCI Model validation and predictive capability results for all datasets including coefficient of determination
(R2), root mean square error (RMSE), mean absolute error (MAE), and the number of samples (n).

Satellite Lake Parameter Model Hyperparameters Bands Used R2 RMSE MAE n

OLCI
Chapala

Chl-a ELM af = hardlims, hn = 500 All 0.25 3.07 1.92 77
Turbidity ELM af = hardlims, hn = 500 - 0.67 6.08 4.47 72

TSM ELM af = hardlims, hn = 500 All 0.20 14.47 9.63 74

SDD SVR C = 10, γ = 0.1,
k = ‘sigmoid’ b8 0.67 0.06 0.05 77

Cuitzeo
Chl-a ELM af = purelin, hn = 10 All 0.47 59.94 16.20 20

Turbidity ELM af = harlim, hn = 10,000 All 0.82 44.99 35.75 13

TSM LR -
b1, b10, b11,

b3, b4, b5, b6,
b7, b9

0.58 77.83 55.09 21

SDD ELM af = poslin, hn = 10,000 All 0.82 0.04 0.12 21
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Table A5. Cont.

Satellite Lake Parameter Model Hyperparameters Bands Used R2 RMSE MAE n

Pátzcuaro

Chl-a ELM af = hardlims,
hn = 10,000 All 0.38 26.74 16.19 31

Turbidity LR - b7, b8 0.77 14.08 10.62 31

TSM SVR C = 500, γ = 10

logb1, logb2,
logb3, logb4,
logb5, logb6,

logb7

0.36 20.32 15.86 31

SDD ELM af = purelin, hn = 5 All 0.18 0.02 0.02 29
Yuriria

Chl-a SVR C = 500, gamma = 1,
k = ‘rbf’

logb1, logb2,
logb3, logb4,

logb5
0.32 8.61 4.373 17

Turbidity ELM af = tribas, hn = 15,000 All 0.83 23.32 100.85 18
TSM ELM af = tansig, hn = 10 All 0.34 51.12 48.06 17
SDD ELM af = purelin, hn = 50 All 0.60 0.11 0.25 17

Catemaco
Chl-a LR - b1, b4, b6, b7 0.38 8.01 5.63 17

Turbidity ELM af = harlim, hn = 10,000 All 0.36 0.54 3.27 16
TSM ELM af = harlim, hn = 1000 All 0.26 1.86 11.89 17
SDD ELM af = tribas, hn = 12,500 All 0.26 1.04 0.45 16

af: Activation function, hn: Number of hidden neurons, C: Regularization parameter, γ: Gamma for SVR, k: kernel.

Table A6. MSI Model validation and predictive capability results for all datasets including coefficient of determination (R2),
root mean square error (RMSE), mean absolute error (MAE), and the number of samples (n).

Satellite Lake Parameter Model Hyperparameters Bands Used R2 RMSE MAE n

MSI
Chapala

Chl-a ELM af = hardlims,
hn = 10,000 All 0.24 2.68 1.51 26

Turbidity ELM af = hardlims,
hn = 10,000 All 0.60 7.37 25.62 47

TSM ELM af = satlins, hn = 15,000 All 0.43 45.08 38.69 52

SDD LR -
logb3, logb4,
logb6, logb7,

logb8
0.53 0.08 0.06 52

Cuitzeo

Chl-a LR -
logb3, logb6,
logb1, logb7,

logb8
0.98 0.92 0.76 7

Turbidity LR - b1, b2, b3, b4,
b6 0.91 18.53 16.35 7

TSM LR - b1, b2, b4, b6,
b7 0.94 13.4 9.81 7

SDD ELM af = hardlim, hn = 5000 All 0.78 0.07 0.07 7
Pátzcuaro

Chl-a ELM af = radbas, hn = 500 All 0.21 25.91 10.15 47
Turbidity ELM af = tribas 5000 All 0.36 44.90 104.14 36

TSM ELM af = poslin, hn = 10,000 All 0.14 423.63 35.25 36
SDD LR - logb6, logb7 0.15 1.96 1.6 36
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Table A6. Cont.

Satellite Lake Parameter Model Hyperparameters Bands Used R2 RMSE MAE n

Yuriria

Chl-a ELM af = hardlims,
hn = 10,000 All 0.81 4.85 13.57 11

Turbidity ELM af = poslin, hn = 10,000 All 0.82 14.63 90.41 11
TSM ELM af = satlins, hn = 1500 All 0.11 107.57 38.64 11

SDD LR -

logb1, logb3,
logb4, logb5,
logb6, logb7,

logb8

0.68 0.07 0.05 11

Catemaco

Chl-a ELM af = hardlims,
hn = 15,000 All 0.95 7.97 5.14 7

Turbidity ELM af = hardlim, hn = 1000 All 0.85 0.79 0.50 7
TSM ELM af = poslin, hn = 1000 All 0.81 1.34 1.09 7

SDD LR -
logb1, logb2,
logb5, logb6,

logb7
0.91 0.09 0.04 7

af: Activation function, hn: Number of hidden neurons, C: Regularization parameter, γ: Gamma for SVR, k: kernel.
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