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Abstract: Concrete is a heterogeneous material with a disordered material morphology that strongly
governs the behaviour of the material. In this contribution, we present a computational tool called
the Concrete Mesostructure Generator (CMG) for the generation of ultra-realistic virtual concrete
morphologies for mesoscale and multiscale computational modelling and the simulation of concrete.
Given an aggregate size distribution, realistic generic concrete aggregates are generated by a se-
quential reduction of a cuboid to generate a polyhedron with multiple faces. Thereafter, concave
depressions are introduced in the polyhedron using Gaussian surfaces. The generated aggregates
are assembled into the mesostructure using a hierarchic random sequential adsorption algorithm.
The virtual mesostructures are first calibrated using laboratory measurements of aggregate distribu-
tions. The model is validated by comparing the elastic properties obtained from laboratory testing
of concrete specimens with the elastic properties obtained using computational homogenisation
of virtual concrete mesostructures. Finally, a 3D-convolutional neural network is trained to directly
generate elastic properties from voxel data.

Keywords: concrete, mesoscale, modelling, virtual mesostructure, machine learning

1. Introduction

Concrete is a highly heterogeneous composite material with a random microstructure
across the length scales. This includes the material topology, size distribution, as well
as their spatial configuration. Variations in the aggregate size distribution and the pore-size
distribution from the nanometer scale to the decimeter scale manifest as variations in the
behaviour of concrete at the macroscopic scale. The macroscopic properties of concrete such
as strength, stiffness, permeability, diffusivity, etc. are completely determined by the het-
erogeneities in the material [1]. To enable concrete material design that is well-suited
for a specific engineering application, it is important to understand and establish a clear
relationship between the role of the material structure (aggregate distribution, pore-size
distribution, etc.) and the macroscopic behaviour subject to various multiphysical loadings.
However, establishing such a relationship using purely conventional testing methods in the
laboratory is not practical due to the large variety of material compositions that have to be
considered. To address this issue, several modelling and simulation approaches ranging
from continuum micromechanics models [2–4] to mesoscale models (see for e.g., [5–17]),
that take into account the role of the material structure in simulating the material response
have been proposed. It is essential to adequately resolve the details of the material morphol-
ogy at a particular scale, such that the relevant mechanisms at this scale can be correctly
captured. Computational mesoscale models explicitly resolve the heterogeneity of the
material and provide deeper insight into the role of the heterogeneity on the material’s
behaviour especially in processes that are governed by localised phenomena, such as mi-
crocracking and failure processes. Recently, due to the advancement in computational
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resources and X-ray computed tomography (CT), models, in which mesostructures directly
incorporated as voxel data from CT scans, have been proposed and used for numerical
meso-scale simulations [18–21].

However, the process of virtually generating the mesostructure is much faster and
cheaper as compared to extracting the microstructure using CT scans, provided that
the virtually-generated mesostructure provides the same level of detail and information.
Moreover, a method to generate realistic virtual mesostructures would significantly accel-
erate and support simulation models that integrate CT data into their pipelines. The aim
of this paper is to present a tool to generate realistic virtual concrete mesostructures. In or-
der to generate a virtual mesostructure, inclusions are first generated using a variety
of computational methods and then assembled onto the main mesostructure volume us-
ing certain packing algorithms. Several optimised algorithms have been proposed in the
last two decades for the random packing algorithm, constituting the most basic packing
algorithm. Applications include integrated spherical particle kinetics models [22], molec-
ular dynamics models [23,24], and discrete element models [25,26]. All these algorithms
focus on achieving a maximum packing density for spherical inclusions. With regard to
the inclusion shape (i.e., the aggregates), owing to the complexity involved in simulating
realistic concrete aggregates, the inclusions are often represented by spherical or ellipsoidal
shapes with random orientations embedded in a mortar matrix [8,27–30]. However, as the
shape of the aggregate particle plays an important role in the local stress distribution in the
mesostructure, virtual inclusions with smooth surfaces fail to capture stress concentrations
due to sharp corners in concrete aggregates. To this end, attempts have been made to
generate more realistic cement paste aggregates by employing dodecahedral shapes [31].
Xu et al. [22] used random polyhedrons created by extending triangular fundamentals to
generate aggregates for asphalt mixture. Even though these shapes closely resemble real
aggregates, when actual concrete mesostructures are studied, it is evident that these inclu-
sions still lack important features such as multiple irregular faces and concave depressions
etc. These features in concrete aggregates have been considered in [32] with regards to
the aggregate shape, however restricted to a 2D representation.

In this contribution, a computational tool called Concrete Mesostructure Generator
(CMG) that allows an efficient generation of ultra-realistic concrete mesostructure, is de-
veloped. A Python implementation is available here: https://pycmg.readthedocs.io/en/
latest/ (accessed on 9 June 2021). The proposed methodology is calibrated and validated
using a variety of data obtained from laboratory measurements of real concrete specimens.
Finally, as an add-on, and one of the many possible potential applications of CMG, we de-
velop an artificial neural network (ANN) model for directly predicting the elastic properties
from voxel data of concrete mesostructures generated by CMG.

2. Concrete Mesostructure Generator (CMG)

The procedure for generating a virtual concrete mesostructure consists of two steps:
(a) The generation of realistic concrete aggregate inclusions using irregular polyhedron
geometries with concave depressions and (b) the packing of aggregates into the cementi-
tious mortar (host material). The final mesostructure morphology is represented in terms
of discrete voxels.

2.1. Modeling a Generic Aggregate

Coarse concrete aggregates are characterised by multiple faces, sharp corners, and
irregular surfaces. Even though the shape of aggregates has a strong effect on the stress
concentration, crack initiation, and propagation in concrete [33], often oversimplified mod-
els are used in most numerical analyses. In this work, we aim at modelling the aggregate
topology featuring sharpness, elongation, as well as concavity by means of an irregular
polyhedron geometry. The option to include an interfacial-transition-zone (ITZ) between
the aggregate and the mortar matrix is also available. The procedure to generate a virtual

https://pycmg.readthedocs.io/en/latest/
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aggregate involves the sequential reduction of an initial cuboid to a polyhedron through
slicing operations tangential to an imaginary inscribed ellipsoid as shown in Figure 1 (left).
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Figure 1. Concrete Mesostructure Generator (CMG): 2D section of a 3D polyhedron enclosing
an ellipsoid in CMG (Left), calculation of tangent points between the ellipsoid surface and polyhedron
planes with random angles (Right).

Given the maximum aggregate size Dmax in mm, we generate a 3D array of voxels
of dimension l × l × l. Here, l = Dmax/h and is rounded-off to the nearest integer and
its dimension is [voxels]. The parameter h [mm/voxel] is the resolution of the virtual
mesostructure generated by the CMG. h is used to convert physical dimensions in SI units
into voxels, its value can be set depending on the available computational resources. If l
is an even number, then l is incremented by one. This is to ensure that the array contains
a mid-point voxel. The voxel at the mid-point of the array at position [(l − 1)/2, (l −
1)/2, (l − 1)/2] is set as the origin for a cartesian coordinate system in voxel coordinates.

In order to model flat and elongated aggregates, we introduce the aspect-ratio ξ.
Given the aspect-ratio and the voxel dimensions l, we first inscribe an imaginary ellipsoid
with dimensions rx = l/2, ry = rx · ξ, rz = rx · ξ. Then, the required number of faces N
on the polyhedron representing the aggregate is specified. Subsequently, N points, denoted
by the position vector X i, which are located on the surface of the inscribed ellipsoid are
chosen randomly (see Figure 1 (right)). The faces of the polyhedron are assumed to be
tangential to the inscribed ellipsoid at these points. Each tangent plane i is defined using
a planar equation, which is a function of the point X i and orientation angles αi, βi, and γi.
The position vectors X i are determined as:

X i = P · R ·Qi · u, i = 1, 2, 3, . . .N, (1)

with u denoting a unit vector. The rotation operator P with angles θx, θy, and θz determines
the final orientation of the polyhedron, and the rotation operator Qi with angles γi, βi,
and αi determines the orientation of a polyhedron face i. The rotation angles θx, θy, and θz
are chosen randomly, as aggregates in concrete do not in general orient themselves along
a certain axes. R is a matrix that specifies the dimensions of the ellipsoid. All geometrical
operations are performed using real numbers. After having specified the final geometry
of the aggregates, we round-off the real number to the nearest integer that corresponds
to the discrete voxel positions. The complete expressions for the operators introduced
in Equation (1) are given below:

u =

1
0
0

, R =

rx 0 0
0 ry 0
0 0 rz

 with rx = l/2, ry = rx · ξ, rz = rx · ξ,

P =

cosθz −sinθz 0
sinθz cosθz 0

0 0 1

.

 cosθy 0 sinθy
0 1 0

−sinθy 0 cosθy

.

1 0 0
0 cosθx −sinθx
0 sinθx cosθx

,
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Qi =

cosγi −sinγi 0
sinγi cosγi 0

0 0 1

.

 cosβi 0 sinβi

0 1 0
−sinβi 0 cosβi

.

1 0 0
0 cosαi −sinαi

0 sinαi cosαi

,

where θx, θy, θz ∈ [0, 2π], and αi, βi, γi ∈ [0, 2π].
In order to perform the imaginary cutting operation (sequential reduction of the

cuboid to a polyhedron), all voxels with position vectors Xk are set to one if they satisfy
the following condition:

[∇ · f (X i)] · (Xk − X i) ≤ 0, i = 1, 2, . . ., N. (2)

Here, f (X i) = ∑(Xi
j/rj)

2 − 1 for j ∈ 1, 2, 3 is the surface of the ellipsoid at X i.
The above expressions are evaluated at all voxel positions. The position of the kth voxel
is denoted as Xk. (It should be noted, that X i is rounded to the nearest integer before
performing the calculations.) Figure 1 (left) shows an illustration of a section of the 3D
array after having performed the aforementioned operations.

Certain aggregate geometries are characterised by concave depressions, e.g., from
crushing the aggregates during the production process. So far, we have designed a polyhe-
dron whose geometry is described by voxel value = 1 embedded in a matrix material with
voxel value = 0. Certain volumes of the voxel can be sculpted out to introduce concave
depressions. This translates to replacing certain voxels with value 1 that are inside the vol-
ume to be sculpted out to 0. Concave depressions are introduced on the inscribed ellipsoid
using the Gaussian surface equation (see Figure 2, right). The condition for setting a voxel
to zero is specified as:

bi exp
(− (Xg

2 × Xg
2 + Xg

3 × Xg
3 )

σ2w

)
+ Xg

1 × Xg
1 ≥ ci, for i ∈ 1, 2, 3, . . ., M,

where ci = X i, bi = d · X i, Xg = P ·Qi · Xk,

(3)

where M denotes the total number of concave depressions centered at X i. This equation
implements a Gaussian surface below the ellipsoidal surface and checks if the voxel value
is zero or not. Here X i are computed from Equation (1). The width of the Gaussian surface
is w, the depth is d, and σ2 is the variance parameter (see Table 1 for more details). Concave
depressions are generated on the surface of the imaginary ellipsoid at random locations.

The procedure is as follows: First, M number of positions X i for the Gaussian surface
are generated. Using these positions, the concave equations (Equation (3)) are generated
with the input parameters d and w, which control the depth and width of the concavity from
the ellipsoid surface. The voxel values of the points which lie inside the polyhedron and be-
low the Gaussian surface are changed from zero to one as shown in Figure 2. X i is rounded
to the nearest integer before performing the calculations and Xk are the voxel positions.
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Figure 2. Concrete Mesostructure Generator: 2D section of a 3D polyhedron with concave depressions
(Left), calculation of basis points on the ellipsoid surface for the Gaussian surface generation (Right).



Materials 2021, 14, 3782 5 of 19

A summary of all parameters for the generation of realistic generic aggregates are
provided in Table 1.

Table 1. Input parameters for the CMG.

Input Symbol Input Description CMG Algorithm

Lx ,Ly,Lz Micro/mesostructure size in mm

Assembly algorithm

v fmax
Maximum volume fraction of inclusions

in micro/mesostructure
{lpart} Aggregate size distribution
{v fpart } Volume fraction list

{ξ} Aspect ratio list
{N} Number of faces list

{Scon} Concave provision list (Yes/No)
{SITZ} Coating provision list (Yes/No)

{d},{w} Width and depth parameter list for the
concave depression

{t} Coating thickness list

Kmax
Maximum number of failed assembly attempts

for each particle

T Threshold to switch algorithm from RSA to
SRSA

Dmax Maximum size of aggregate

Aggregate generator—Polyhedron
N Number of faces of polyhedron
ξ Aspect ratio of the aggregate

Scon Concave depression boolean (Yes/No)
SITZ ITZ provision boolean (Yes/No)

M Number of concave depressions

Aggregate generator—Concave surfaced Depth parameter
w Width parameter
σ2 Variance parameter

t ITZ thickness Aggregate generator—ITZ

In order to include the ITZ as a coating around the aggregate, the thickness t of the ITZ
is the only input. The algorithm uses the same technique as that of the polyhedron and
the Gaussian surface, but with a larger concentric imaginary ellipsoid. The thickness t is
added to the polyhedron ellipsoid axes to obtain the coating surface,

R =

rx + t/h 0 0
0 ry + t/h 0
0 0 rz + t/h

. (4)

Hence, there will be two sets of concentric polyhedron and Gaussian equations.
The final algorithm checks for all points in the domain first for the outer surface followed
by the inner surface. Voxels at the ITZ are represented with voxel value 2. This methodology
can also be used to enforce a minimum spacing between the aggregates by setting these
voxel values equal to that of the matrix (host) material.

Figure 3 shows aggregate samples generated by the aforementioned procedure. For
a better visualisation, the surface region of the aggregates is smoothed. With multiple
irregular surfaces, different aspect ratios, and concave depressions, it can be seen from these
samples that the proposed algorithm can generate realistic aggregate geometries. Figure 4
shows aggregates in their original voxel form with and without a layer representing
the ITZ (in red).
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Figure 3. Aggregate samples generated by CMG.

(b) (c)(a)

Figure 4. (a,b)Visualisation of the polyhedrons with maximum length of 2.5 cm (50 voxels), elongation
ratio of 2.5 with 30 number of cuts, with and without coating. (c) Selected section featuring concave
regions of the polyhedron.

Figure 5 shows the effect of the number of polyhedron faces N and the elongation
(1/ξ) on the aggregate shape. The aggregate size l of all aggregates is set to 50 voxels.
The elongation varies from 1 to 4, while the number of cuts varies from 10 to 45. The
aggregates are visualised using the open-source software Paraview using the decimate
filter. By varying the number N of cuts and the aspect ratio ξ, we can obtain different types
of concrete aggregates ranging from smooth-surfaced pebbles to sharp-edged aggregates
that can be spherical, flat, or elongated.
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Figure 5. Influence of the number of cuts (N) and the elongation on the aggregate shape. The elonga-
tion corresponds to the value 1/ξ.
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2.2. Generating a Concrete Mesostructure

Once the aggregate is generated, it is assembled into the concrete mesostructure with
a mortar matrix. The mesostructure includes both the mortar host material and aggregate
inclusions in voxel format. At a given voxel position, the mortar host phase is represented
with value zero and the aggregate phase with a non-zero value. The size of the voxel
domain can be varied based on the requirement of the resolution and size of the mesostruc-
ture. The CMG assembly algorithm first initialises a voxel domain to the required size
(Lx/h, Ly/h, Lz/h) rounded to the nearest integer filled with voxels of zeros representing
the mortar host phase. Then, inclusions are generated using the aforementioned aggregate
generation procedure and assembled into the domain. The basic requirements of a packing
algorithm (see for e.g., [34,35]) are as follows: (a) Ensuring that the aggregates do not
overlap, (b) ensuring random spatial distribution, (c) providing maximum packing density,
and (d) that the mesostructure at the boundaries must be periodic.

The random sequential adsorption (RSA) algorithm [36] is used as the basis for the
assembly procedure. In this algorithm, starting with the homogeneous voxelised domain,
representing the mesostructure containing only the host phase, inclusions are generated
and randomly placed in the domain. A random location from the 3D domain is identified
and an attempt is made to include an aggregate (also in voxel format) at this location.
The aggregate candidate is embedded into the current domain if there is no overlap
of the aggregates. To check for overlapping, one-to-one comparison of the voxels between
the inclusion matrix and that of the mesostructure matrix at the proposed assembly location
is made. If all the voxels at the assembly location in the mesostructure matrix have the value
of zero, then assembly is executed. According to the original RSA algorithm, if there is
interference with an already assembled aggregate, a new random point is chosen and
the same procedure is repeated until the particle finds a new position without any overlap
with other aggregates. Once assembled, the same procedure is repeated for the newly
created aggregate inclusion until the required maximum volume fraction of each inclusion
size is achieved. To achieve the fastest possible assembly and higher packing density,
the aggregates are assembled sequentially in a hierarchic manner according to the aggregate
size from largest to smallest.

As the hosting domain is incrementally populated with aggregates, the probability
of finding free space to embed a new aggregate becomes increasingly small. In the original
(sub-optimal) MATLAB implementation of the model, the RSA algorithm, even though it
generates statistically equivalent mesostructures by randomly distributing the aggregates
in the mesostructure, achieving a packing density of more than 30%, requires a significant
time for computations since the assembly procedure is completely random. Hence, to
achieve a higher packing density in less computation time, the algorithm was modified
from a random to a semi-random assembly algorithm (SRSA). According to SRSA, if the ag-
gregate to be assembled does not find free space in the current random position, instead
of finding a new random position, the current aggregate is incrementally translated along
an orthogonal plane (either xy, xz, or yz) until the non-overlapping condition is fulfilled.
SRSA was four times faster than the RSA algorithm in the Matlab implementation. How-
ever, in the current Python implementation available in [37], we observed no significant
speed up as the base code was already significantly improved and optimised.

The assembly algorithm also implements periodic boundary conditions. Figure 6
shows typical concrete mesostructures showing the aggregate phase, the mortar matrix
phase, and the concrete mesostructure generated by the CMG. The parameters used to
generate this mesostructure are presented in the following section.
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Figure 6. (Left) Virtual concrete mesostructure RVEs generated by the CMG. Visualisation of concrete
mesostructures with aggregates only (Center) and visualisation of the mortar matrix (Right).

2.3. Data for the Calibration of the CMG

At the mesoscale, the internal material structure of concrete is characterised by a large
volume fraction of aggregates (up to 60–70%) of different sizes, embedded in the cemen-
titious matrix. One of the most conventional aggregate size distribution curves is that
of standard DIN-1045 or the Fuller curves. As a result, a realistic virtual concrete sample
should statistically represent such a distribution. To this end, the concrete standard AB16
(according to DIN-1045) with the largest aggregate size of 16 mm is considered. The voxel
size is chosen to be 0.5 mm, i.e., the parameter corresponding to the resolutions h = 0.5.
Only coarse aggregates of a size larger than 3 mm onwards are explicitly resolved. The fine
aggregates are embedded in the hardened cement paste to form the mortar material.

A detailed quantification of aggregate size distribution for AB16, together with
the measurement of elastic properties of the investigated concrete samples was performed
in the laboratory. The aggregates size distribution obtained from the measurements is
summarised in Table 2. This data serves as the direct input for the packing algorithm,
resulting in a total aggregate volume fraction of 48.29% that will be explicitly resolved.

Table 2. The composition of standard AB16 obtained from laboratory measurements.

Cement
Matrix Fine Aggregates Coarse Aggregates

Size [mm] - 0.063 0.125 0.25 0.5 1 2 2.8 4 5.6 8 11.2 16

Volume
fraction [%] 29.259 1.504 1.619 1.758 1.758 3.634 12.174 5.0626 5.146 6.743 16.606 2.904 11.832

Total [%] 29.259 22.448 48.292

Total [%] 29.259 70.741

The procedure for the calibration of the parameters defining the morphology of the
aggregates is as follows: For each particle, the two most important parameters are the aspect
ratio and the number of faces of the polyhedron N. As it was found that the aggregates of a
larger size exhibit a wider range of aspect ratio, the aspect ratio of aggregates greater than
8 mm is randomly chosen from 1.75 to 3.25. Similarly, the aspect ratio range of aggregate
sizes from 4 mm to 8 mm is within 2 to 3 and for a size of 3 mm, it is within 1 to 2. The
number N for each size is determined by multiplying the aggregate size (in terms of voxel)
by a factor whose value is either 0.5 or 0.625. It is to be noted that this range of values
was chosen after performing several trials to obtain a realistic geometry. With regards to
the concave depression in the aggregates, only aggregates larger than 12 mm are assumed to
exhibit such a feature, with the prescribed values of 5 concave surfaces, 3 mm in width, and
2.5 mm in depth per aggregates particle. The variance parameter of the surface was chosen
as σ2 = 10. This choice of value provided the most realistic concave depressions for the
considered aggregate sizes. For each successful placement of an aggregate, statistical data,
such as volume fraction and number of particles of each size, are recorded as a footprint
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of the numerical sample. CMG can also be used as a tool for testing a certain distribution
of aggregates before the actual production of concrete samples.

2.4. Comparison of Simulations vs. Laboratory Measurements

In order to test the capability of the method to generate virtual AB16 mesostructures
using the data from the previous section, three sample sizes of 5, 10, and 20 cm were
considered. From each sample size, three specimens are generated to capture the possible
stochastic fluctuation of the samples, analogous to experimental practice. The visualisation
of each size is shown in Figure 7, together with the statistical information, number of par-
ticles, and volume distribution with respect to particles size. It can be seen that, in most
samples, the distribution curve is in agreement with the actual grading curve obtained
from laboratory measurements. The average total number of particles for each size are 1039,
7838, and 62,553 particles. The total volume fraction of these nine specimen range from
47.3% to 49.95% due to the stochastic nature of the random operations, which is acceptable,
considering the computational efficiency and large number of aggregates.
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Figure 7. Visualisation of virtual concrete samples of size 5, 10, and 20 cm (Top), and their associated statistical data, namely
particle size distribution curve (Center). Absolute volume fraction and particle counts with respect to size (Bottom).

Figure 8 shows the actual concrete mesostructure image (Left) compared with the vir-
tual mesostructure image (Right) generated by the CMG. Comparing the aggregate shapes,
orientations, and distributions, the mesostructure image from the CMG and the actual
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concrete image are very similar. We can observe in both the images that the particle shapes
range from an almost circular surface to highly elongated sharp-edged surfaces and that the
packing density varies from less concentrated aggregate regions to densely packed regions.
One can also observe concave depressions on actual concrete image similar to the CMG
mesostructure. Figure 9 shows large-sized virtual concrete mesostructures according to the
AB16 standard with a maximum aggregate size of 16 mm.
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u
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ti
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-]

Virtual AB16
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Standard AB16

Figure 8. (Left,Center) Qualitative comparison of an actual concrete slice and the statistically equiva-
lent virtual concrete generated by the CMG. (Right) Statistical data of the cumulative volume fraction
of aggregates (laboratory measurements of AB16 vs. virtual AB16).

Figure 9. (Left) Virtual concrete specimens of size 10× 10× 40 cm discretised by 200× 200× 800
voxels. (Right) Specimen of size 60× 60× 30 cm, constructed by stacking eight identical periodic
blocks of virtual concrete mesostructures of size 30× 30× 15 cm.

The time required for generating a mesostructure of resolution 101× 101× 101 on a
6-year-old Intel(R) Core(TM) i5-4210U CPU @ 1.7 GHz laptop for various volume fraction
of aggregates is shown in Figure 10. Computation times are hardware specific and the val-
ues shown here are expected to be the lower bound on the expected time for generating
a virtual mesostructure using PyCMG [37].
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Figure 10. Time required to generate a virtual mesostructure using PyCMG [37] as a function of the
volume fraction of aggregates on a 6-year-old Intel(R) Core(TM) i5-4210U CPU @ 1.7 GHz laptop.

3. Estimation of the Elastic Properties Using Computational Homogenisation

In this section we compute the elastic properties of the virtual AB16 mesostructure
using computational homogenisation and validate the results with data from the laboratory.
First we describe the data for model validation and then we compare this data with
model predictions.

3.1. Data for Model Validation

In order to validate CMG, a series of tests were conducted to determine the effective
properties of concrete and aggregates. The investigated concrete samples are made of Port-
land cement of type CEM I 52.5 R with w/c = 0.45 and one type of aggregates (Quartz) with
a maximum size of 16 mm. The Young’s modulus and Poisson ratio of Quartz aggregates
are measured as 84.6 GPa and 0.12. The measurement of the average Young’s modulus
for the concrete samples is obtained from an uniaxial compression test. Two samples of size
10 cm were loaded using displacement control with a displacement rate 0.1 mm/h. Teflon
sheets were placed between the sample and the loading platens to simulate the frictionless
boundary condition. To accurately measure the true axial deformation of the sample,
two external strain gauges (DD1 Displacement Transducers) were installed. The Young’s
modulus was estimated using a linear regression between two points from the stress-strain
curve, at 10% and 30% of the maximum compressive stress. Table 3 summarises the data
obtained from laboratory measurements.

Table 3. Material properties of concrete and its constituents.

Density [kg/m3] Young ’s Modulus [GPa] Poisson’s Ratio

Cement paste 1 1898 18.7 0.24

Quartzitic aggregate 2560 84.6 0.12

Concrete 2378 48.03 0.15
1—Material parameters of cement paste is taken from [38].

3.2. Computational Modeling

The elastic properties of the virtual concrete mesostructures are computed by directly
using voxelised data from the CMG in a Lippmann–Schwinger-based computational ho-
mogenisation scheme (LS-FFT) [39] and a finite-cell homogenisation scheme (FCH) [40,41].
As the authors have access to both these methods, and as these methods are highly suited
for voxelised data, we decided to use both these methods to compute the elastic properties
of the virtual concrete mesostructure. A total of three virtual concrete samples of size 5 cm3

are generated (Figure 11). The aggregate volume fraction ranges from 49.66% to 47.74%,
which is slightly higher than the value corresponding to laboratory measurements. This
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is a consequence of the preprocessing procedure in the current implementation. Before
assembling the aggregate into the mesostructure, the algorithm loops over the prescribed
list of aggregate sizes starting from the largest aggregate. For each size, a virtual aggregate
is generated, and its volume fraction is computed. Then, the total number of aggregates
in this family is estimated by dividing the total aggregate volume fraction with the volume
fraction of that aggregate sample size. This value is rounded to the nearest integer as this
corresponds to the number of aggregates. Thus, the total volume fraction of aggregates in the
virtual concrete samples with the same prescribed grading curve would also slightly vary.

Sample 1 Sample 2 Sample 3

Figure 11. Visualisation of virtual concrete samples of size 5 cm used in the homogenisation proce-
dure.

The elastic material parameters for the voxels representing the aggregate material
are set to Ei = 84.6 GPa and νi = 0.12, taken directly from the laboratory measure-
ments. The material properties of the voxels representing the mortar host are specified
as Emortar = 29.67 GPa and νmortar = 0.206. These values were obtained using the Mori–
Tanaka homogenisation scheme (see Appendix A for further details).

Table 4 summarises the results of model predictions and the data from laboratory mea-
surements. The FCH homogenisation was performed using a grid size of 703 cells with
polynomial degree 1 and space-depth value 2. In the FFT-based Lippmann–Schwinger ho-
mogenisation, the virtual concrete samples of size 5 cm3 are discretised using 201× 201× 201
voxels with voxel size 0.25 mm. In all cases, the predicted Ehom is slightly overestimated
but generally still in very good agreement with the data from laboratory measurements.
The Poisson’s ratio is estimated as 0.169 and 0.160 by LS-FFT and FCH respectively. Once
the morphology of a certain concrete mix is fully characterised for a given experimental
mixture, this comparison demonstrates that the virtual sample generated using CMG is
highly realistic and representative and can provide important insight in computational simu-
lations of microstructural damage of concrete, where the local behaviour (distributed damage
around aggregates) governs the overall behaviour of the material.

Table 4. Comparison of model predictions from two homogenisation methods (LS-FFT and FCH)
and measured data (Lab.) for the elastic properties of concrete.

Vol. Frac. [%] Youngs Modulus [GPa] Poisson’s Ratio

LS-FFT FCH Lab. LS-FFT FCH Lab.

Sample 1 49.67 49.468 51.817

48.03

0.1679 0.16

0.15Sample 2 48.73 48.983 51.331 0.1687 0.1607

Sample 3 47.64 48.407 50.566 0.1697 0.1621

Average 48.68 48.952 51.238 48.03 0.16876 0.16093 0.15
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4. Direct Computation of Elastic Properties

In this final section we explore the potential of training an artificial neural network
using data generated from the numerical simulations for predicting stiffness and the pois-
son ratio of concrete. The aim is to directly predict the elastic properties using virtual
mesostructure data i.e., directly from CMG. Machine learning (ML) techniques have suc-
cessfully established linkages between the microstructure and the macroscopic property
of several materials based on the data acquired from experiments and numerical simula-
tions. Once trained, the ML model can predict the material properties at speeds comparable
to that of analytical methods. Hashemi et al. [42] used artificial neural networks (ANNs)
along with FEM to perform real-time homogenisation of liver tissue for simulated surgery.
Yang et al. [43] developed structure-property linkages for high phase contrast compos-
ites using a convolutional neural network (CNN). Recently, Rao et al. [44] employed
3D-CNN to predict macroscopic properties of micro- and mesostructures filled with spher-
ical inclusions. However, efforts to build structure-property relations for concrete with
a realistic representation of its mesostructure are limited. To build a ML model for the
direct upscaling of concrete mesostructures, a database of realistic mesostructures along
with their corresponding macroscopic properties is essential. To this end, in the following
section, first, the data generation process and architecture of the ML model are explained.
Then, the trained model is verified by comparing the predicted values with results from
high-fidelity simulations.

4.1. Data Generation and Pre-Processing

Assuming concrete to be an isotropic material, a 3D-convolutional neural network
is trained to predict the elastic modulus (Ehom) and the Poisson ratio (νhom) of concrete
directly from the voxel data of the material phases. To train the model, two types of concrete
standards, 9 volume fractions, 4 phase contrasts, and 20 samples for each of theses types
are used. A summary of these parameters is given in Table 5. First, 360 mesostructures
are generated using the CMG by varying the underlying standard, the sample count, and
the volume fraction according to Table 5. These mesostructures are then homogenised
for 4 phase contrasts using FCH to calculate the elastic modulus and Poisson ratio. Hence,
in total, there are 360 × 4 = 1440 data points to train the model. Homogenisation is
performed using a FCH grid size of 40 × 40 × 40 cells, since this size has a good trade-off
between accuracy and computational time for the considered volume fractions. Using
mesostructures of size 100× 100× 100 from CMG as inputs and 2 homogenised values from
the FCH simulations as outputs, the 3D-CNN model is trained to learn structure-property
relationships. However, to incorporate phase-contrast information into the input data
for the 3D-CNN model, before feeding the data to the 3D-CNN model, the mesostructure
from CMG is preprocessed to represent phase-contrast values by the voxel values of the
mesostructure. Voxel values of the aggregates are set to a value corresponding to the phase-
contrast value p and the value of the matrix = 1. Thus, for a mesostructure with phase
contrast 4, voxel values at the aggregate positions are represented by the value 4 and voxels
corresponding to the mortar phase are set to 1.

Table 5. Parameter variations for generating the dataset.

Parameters Values

Standard AB8, AB16
Sample count 20

Volume fraction v f 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.40, 0.45
Phase-contrast p 2, 3, 4, 5

total 2 × 20 × 9 × 4 = 1440 mesostructures



Materials 2021, 14, 3782 14 of 19

4.2. 3D-CNN Architecture

Training the 3D-CNN model involves choosing a set of parameters (e.g., CNN type,
number of layers, filter size, stride size, activation function, loss function, etc.) depending
on the application. The requirement at hand involves building a link between volumetric
features of the mesostructure, such as volume fraction, shape, and distribution of aggre-
gates, along with phase contrast information, to the elastic concrete properties.

It can be argued that 2D slices can be used to train a 2D-CNN for generating the
structure-property relationship, as this would be much cheaper. However, a 2D image
analysis of virtual concrete mesostructures generated by CMG (Figure 12) shows, that
the volume fraction of the mesostructure can vary up to 10% from the expected value for a
mesostructure of size 100× 100× 100 voxels when represented as 2D images. It is observed
that samples of smaller sizes exhibit higher deviation in the 2D volume fraction around its
mean values, in comparison to larger-sized samples (see Figure 12). Even though a sample
of 20 cm appears to have a more regular distribution throughout the volume element,
a difference up to 5.2% is still encountered. Since this would deteriorate the accuracy of the
CNN model and, most importantly, as this is inconsistent with the physics of the problem,
a 3D-CNN model is chosen for our application.

Figure 12. The 2D volume fraction of samples (5, 10, and 20 cm) at a different slicing position and
the corresponding standard deviation of 2D volume fraction.

In order to choose the optimal parameters for the model, we performed a prelim-
inary study, based on which we finally selected two 3D convolutional layers with two
max-pooling layers. The architecture of the layers is given in Figure 13 and the corre-
sponding details are summarised in Table 6. The first convolutional layer has 10 filters
of size 10 × 10 × 10 and strides of size 3 × 3 × 3, the second layer has 20 filters of size
5 × 5 × 5 with strides of size 2× 2 × 2 and one maxpool layer of size 2 × 2 × 2 after
each convolutional layer. Following these layers, a flattened layer and two dense layers
of size 20 and 2, respectively, are considered. The final layer is of size 2 × 1. A Rectified
Linear Unit (ReLU) activation function is employed for all the layers. Optimisation is per-
formed using the stochastic gradient descent (SGD) algorithm with the mean squared error
(MSE) chosen as the loss function with learning rate of 0.0005. This 3D-CNN architecture
for homogenisation is implemented using Keras, a high-level neural networks API, using
Python 3.7.

Table 6. 3D-CNN architecture.

Layer No. Layer Details Input Size Output Size

1 Conv3D, 10 filters (103), strides (33),
‘ReLU’

100 × 100 × 100 × 1 31 × 31 × 31 × 10

2 Maxpooling 3D (23) 31 × 31 × 31 × 10 15 × 15 × 15 × 10

3 Conv3D, 20 filters (53), strides (23),
‘ReLU’

15 × 15 × 15 × 1 6 × 6 × 6 × 20

4 Maxpooling 3D (23) 6 × 6 × 6 × 20 3 × 3 × 3 × 20
5 Flattening 3 × 3 × 3 × 20 540
6 Dense layer, ‘ReLU’ 540 20
7 Dense layer 20 2
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Figure 13. 3D-CNN architecture used for training and prediction of an ML model for predicting
the elastic concrete properties directly from the mesostructure of the material.

4.3. Results

Training of the 3D-CNN model was performed on 80 Intel R Xeon R Gold 6148 CPUs.
The total time for training the model was approximately 22 hours for 500 epochs with a
batch size of 32. The total dataset of 1440 mesostructures with the corresponding labels
(the elastic properties) is split into 1080, 180, and 180 batches for training, validation, and
testing, respectively. The testing batch is used for testing the performance of the trained model
since these mesostructures are completely unseen by the CNN model during training and
validation. Figure 14 (left) shows how the current 3D-CNN model captures the volumetric
information of the mesostructure in each CNN layer. The accuracy metric i.e., the evolution
of the mean squared error (MSE) vs. epochs is plotted in Figure 14 (right). Since the errors
are mean squared values, in order to achieve a high accuracy in the predictions, training
was carried out up to 500 epochs. According to the graph, the CNN model has ‘learned’
the structure-property link in a mere 100 epochs with an exponential learning trend, however,
comparing MSE at 100 and 500 epochs shows that the error metric value reduced by almost
50% (from 0.0034 to 0.0015), demonstrating the importance of training for higher epochs.

Once the model was trained, the macroscopic properties of the new RVEs from
the training set are predicted, and results are compared with actual values from FCH
simulations. The mean squared error (MSE) calculated between the actual results from
FCH simulations and the predicted values from the 3D-CNN are found to be 0.0048,
showing an excellent prediction accuracy. It can also be seen in Figure 15 that the predicted
values from the 3D-CNN are very close to the high-fidelity results obtained from FCH
simulations for all volume fractions (left)) and phase contrasts (right) used in the dataset.

Input Conv3d-1 Conv3d-2
0 100 200 300 400 500

Epoch [-]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

M
S

E
 [

-]

Figure 14. Visualisation of input slice of mesostructure with outputs from each 3D-CNN layer (Left); evolution of the mean
squared error (MSE) vs. epochs (Right).
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Figure 15. Comparison of homogenised results from FCH simulations (high-fidelity) and the ML
model (3D-CNN) for various volume fractions (Left) and phase contrasts (Right).

5. Conclusions

In this paper, we presented a computational tool, denoted as the Concrete Mesostruc-
ture Generator (CMG) for generating realistic virtual mesostructures for application in com-
putational mesoscale simulations of concrete. CMG is open-source, implemented in Python,
and available for all users working on mesoscale analysis of concrete structures. The results
of the virtual RVE’s using the CMG have been validated by comparing the elastic properties
obtained from laboratory measurements with results from two different methods of com-
putational homogenisation (finite-cell homogenisation and Lippmann–Schwinger-based
scheme) of the virtual mesostructures. An excellent agreement was obtained for both
homogenisation methods. Finally, we developed a 3D-convolutional neural network model
that is able to generate the elastic properties directly from virtual mesostructure images
in a voxel format. The output from the trained CNN model shows an excellent agree-
ment with results from computational homogenisation. It is concluded that the tool can
be used to rapidly estimate the elastic properties of a real concrete mesostructure given
either the design data from specific concrete designs, such a the grading curve, or directly
using data obtained from CT scans in a voxel format. The application and use of CMG
in mesoscale models that simulate distributed damage and damage identification using
diffuse ultrasonic waves will be presented in a subsequent publication.
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Abbreviations

The following abbreviations are used in this manuscript:

CMG Concrete Mesostructure Generator
CT Computed Tomography
ANN Artificial Neural Network
ITZ Interfacial-Transition Zone
RSA Random Sequential Adsorption
SRSA Semi-Random Sequential Adsorption
LS-FFT Lippmann–Schwinger Fast Fourier Transform-based homogenisation
FCH Finite Cell Homogenisation
MT Mori–Tanaka homogenisation
3D-CNN 3 Dimensional Convolutional Neural Network
ReLU Rectified Linear Unit
SGD Stochastic Gradient Descent
MSE Mean Squared Error
ML Machine Learning

Appendix A. Analytical Homogenisation of Mortar Matrix

As shown in Table 2, a threshold of 3 mm is set to distinguish between coarse and fine
aggregates. Fine aggregates and coarse aggregate are 22.44%, and 48.292%, respectively.
Subsequently, a homogenised mortar material consists of 56.59% cement matrix and 4.41%
fine aggregates. Fine aggregates are generally modeled as hard spherical inclusion of stiff-
ness Ci and volume fraction φi. According to the Mori–Tanaka homogenisation scheme,
the effective stiffness tensor is computed as:

Ce f f = Cm − φiCm : AMT,i, (A1)

where Ce f f ,Cm denotes the elasticity tensor of mortar and harden cement matrix. The so-
called Mori–Tanaka concentration tensor AMT,i of inclusions i can be computed with
the help of the Eshelby solution S [45].

AMT,i = AD,i : (AD,iφi + Isφm)
−1, (A2)

AD,i = (Cm −Ci)
−1 : Cm : ((Cm −Ci)

−1 : Cm − Si)
−1. (A3)

Using data given in Table 2, Young’s modulus and Poisson’s ratio of mortar with
approximately 43.51% Quartz volume fraction are estimated as:

Emortar = 29.67 GPa, νmortar = 0.2058.
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