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Abstract: In this paper, a Lagrangian-Eulerian (LE) two-way coupling model is developed to numeri-
cally study the cavitation bubble cloud. In this model, the gas-liquid mixture is treated directly as a
continuous and compressible fluid and the governing equations are solved by methods in Eulerian
descriptions. An isobaric closure exhibiting better consistency properties is applied to evaluate
the pressure of gas-liquid mixture. The dispersed gas/vapor bubbles are tracked in a Lagrangian
fashion, and their compression and expansion are described by a modified Rayleigh-Plesset equation,
which considers the close-by flow properties other than these of the infinity for each bubble. The
performance of the present method is validated by a number of benchmark tests. Then, this model is
applied to study how the bubble cloud affects the shape and propagation of a pressure wave when
the pressure pulse travels through. In the end, a three-dimensional simulation of a vapor cloud’s
Rayleigh collapse is carried out, and the induced extreme pressure is discussed in detail. The total
bubble number’s influence on the extreme collapse pressure and the size distribution of bubbles
during the collapse are also analyzed.

Keywords: dispersed bubbly flow; lagrangian-eulerian model; bubble dynamics; rayleigh-collapse

1. Introduction

Dispersed flows are characterized by one dispersed phase distributing within another
continuous carrier phase in the form of solid particles, fluid droplets, or gas bubbles.
Typical examples include solid particles suspending in gas or liquid, atomized drops in
gas, and bubbly flow with dispersed gas/vapor bubbles. Dispersed flows are common
and of great importance in various industrial and medical processes, e.g., fluid mixing and
cleaning, sonochemical applications, and drug- and gene- delivery strategies [1–6]. In this
paper, the flow cavitation, which has been investigated in diagnostic ultrasound treatment
and chemistry processes [3,4,7], is studied, with a focus on the flows with cavitation
bubble clouds.

Cavitation occurs when the static pressure of a liquid is decreased under the vapor
pressure, which leads to the formation of vapor-filled cavities in the liquid. Violent collapse
of these cavitation bubbles can induce damages to devices in engineering applications,
such propellers, liquid fuel injectors, and turbines, which is considered as the main event
contributing to the destructive influence of cavitation [8–10]. When a bubble collapses
violently, the resulting shock wave can induce noise and destroy the surfaces of nearby
equipment. Thus, cavitation is usually undesirable and should be avoided in engineering
design processes. However, cavitation also plays a positive role in many medical appli-
cations [4,11]; for example, the treatment efficiency in high-intensity focused ultrasound
(HIFU) surgery can be improved by using cavitation bubble clouds.
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Over the past few decades, computational fluid dynamics (CFD) has become an in-
dispensable tool in engineering and science to investigate complex practical problems.
Although experiments may provide critical insights into the phenomena of bubble cloud
cavitation [12–14], CFD can give precise measurement for individual bubbles, which is a
challenging task by experiment due to the fast dynamic of bubble oscillations under small
spatial scale. In recent years, many problems regarding cavitation have been studied numer-
ically, e.g., shock wave propagation in bubbly flow [15,16], bubbly flow turbulence [17,18],
and bubble cloud in an acoustic field [19,20].

Nevertheless, numerical modeling of cavitation flow is challenging due to the poly-
dispersity of cavitation bubbles which ranges from dilute to dense. In general, gas-liquid
interfaces can be classified into fully solved (resolved), under-resolved, and sub-grid in-
terfaces with respect to grid size. A schematic of three different interface types is given
in Figure 1. Various of numerical methods, such as those in References [9,21], have been
developed to model the resolved and under-resolved interfaces. In this work, the sub-grid
bubble-fluid interface is mainly considered, and the Lagrangian-Eulerian (LE) coupling
model is adopted.

under resolved

resolved

sub-grid 

Figure 1. Schematic of three interface types with respect to the computational grid: the fully-resolved,
under-resolved, and sub-grid dispersed interfaces.

The LE coupling model includes the Lagrangian tracking of dispersed bubbles, the
Eulerian description of carrier fluids, and an LE coupling scheme [20,22,23]. By this
model, the dynamics of each bubble and that of the bubble-scattered pressure wave can
be accurately captured with an acceptable computational cost [24]. Besides, this model is
capable of taking into account the effect of non-uniform spatial distribution of bubbles on
shock propagation and mimicking the experimental conditions, which is essential for both
numerical and theoretical analysis [14]. Generally, LE coupling scheme can be classified
into two groups according to the coupling approach, i.e., one-way and two-way couplings.
In one-way coupling, the influence of the carrier phase on the dynamics of the dispersed
phase is assumed to be the dominant effect [25]. When the mass of the dispersed phase is
comparable with that of the carrier phase, the backward influence, that of the dispersed
phase on the carrier phase, cannot be ignored anymore, and a two-way coupling is needed.
In addition, the advection of the gas volume fraction and the pressure closure of the
gas-liquid mixture are still challenging and remain open questions [20,23,26].

In this paper, we propose an LE two-way coupling model to study the cavitation
bubble cloud. The isobaric closure, which has better mathematical properties regarding
consistency and hyperbolicity than the isothermal closure [21], is applied. The gas-liquid
mixture is treated as a compressible fluid with pressure equilibrium and solved in Eulerian
frame. The dispersed bubbles move passively with the bulk fluid, and their dynamics are
described by a modified Rayleigh-Plesset (RP) equation. The equilibrium pressure will be
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consequently applied to formulate the nearby flow properties in the modified RP equation,
which allows the fluid surrounding each bubble be physically modeled. After validating
this model by several benchmark cases, we apply it to study two practical problems, i.e.,
pressure wave interacting with a cavitation bubble cloud and Rayleigh collapse of a bubble
cloud. The remainder of this paper is organized as follows. Section 2 describes the details
of the proposed model. The corresponding numerical methodologies for the model and
related equations are introduced in Section 3. Section 4 presents three benchmark test
cases for validation. Two applications are then given in Sections 5 and 6, respectively, and
concluding remarks are drawn in Section 7.

2. LE Two-Way Coupling Model

In the present LE two-way coupling model, the cavitation fluid mixture is assumed to
be a homogeneous compressible fluid solved in Eulerian framework, while each individual
bubble in the cavitation bubble cloud is modeled using Lagrangian discrete tracking. In
addition, we assume that bubbles do not significantly influence the momentum or the
velocity of the mixture; thus, the bubble, carrier liquid and mixture are set to share the
same local velocity. The effect of bubbles on the flow is considered by varying the mixture
density and the pressure field due to their convection and mixing with the carried liquid.
In this section, the coupling model-related equations, including the governing equations,
the gas volume fraction, and fluid mixture models, are presented.

2.1. Governing Equations

In Eulerian description, the governing equation for inviscid and compressible gas-
liquid mixture yields

∂U
∂t

+∇ · F(U) = 0, (1)

where U = [ρ, ρu, E]T is the vector of conservative variables, and F = [ρu, ρuu + pδ, u(E + p)]T

represents the flux vector. Here, ρ denotes the density, u the velocity, p the equilibrium pres-
sure of the mixture, δ the unit matrix, and E = ρe + ρu·u

2 is the total energy. By introducing
the liquid and gas volume fractions αl and αg, the mixture density and internal energy
during gas-liquid mixing have the following expressions:

ρ = αlρl + αgρg

ρe = αl(ρe)l + αg(ρe)g

1 = αl + αg

, (2)

where the subscripts l and g denote the carrier liquid and the gas bubbles, respectively.
Without taking account the bubble fission and coalescence, the motion of each dis-

persed bubble is tracked by
dxb
dt

= u(xb), (3)

where b is the bubble index, and u(xb) is the local velocity of the fluid mixture. Following
the classical RP equation [27,28], dynamics of a spherical bubble surrounded by a weakly
compressible liquid at infinite can be expressed as

ρ

[
R

d2R
dt2 +

3
2

(
dR
dt

)2
]
= pB − p∞ −

2S
R
− 4µ

R
dR
dt

, (4)

where R is bubble radius, S surface tension, µ viscosity, and p∞ denotes the far-field
pressure of the surrounding fluid. Note that only the influence from surrounding fluid
is involved in the dynamics, and the bubble-bubble interaction is not considered. As a
cavitation bubble always contains vapor and some quantity of contaminant gas, we denote
pv as the vapor pressure, and p0

g as the pressure of contaminant gas at a reference bubble
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size R0. When the bulk fluid’s temperature at infinity T∞ stays constant, pv is considered
constant, too. pB is the pressure inside the bubble and has the following expression:

pB = pv + p0
g

(
R0

R

)3γg

. (5)

To close the system of governing equations in Equation (1), the gas volume fraction
and the fluid-mixture pressure are needed.

2.2. Gas Volume Fraction

One key function of the LE coupling scheme is the formulation of the gas/vapor
volume fraction αg distribution derived from the size and location of the instantaneous
bubbles. Following References [20,26,29], we adopt a truncated Gaussian kernel function

ζσ(x− xb) =


1(

σ
√

2π
)d exp

[
− (x− xb)

2

2σ2

]
|x− xb| ≤ 3σ

0 |x− xb| > 3σ

, (6)

where d is the space dimension, and σ is the kernel width. Here, 3σ is set as the cut-off
radius according to numerical experiments for the purpose of saving computational effort
and ensuring sufficient accuracy. To enforce mass conservation, the kernel function is
normalized over the entire domain by∫

Ω
ζσ(x− xb)dV = 1, (7)

where Ω is the entire domain. With the kernel function, the explicit expression of gas
volume fraction gives 

αg(x) = ∑Nb
i=1 Rbiζσ(x, xb) if n = 1

αg(x) = ∑Nb
i=1 πRbi

2ζσ(x,xb) if n = 2

αg(x) = ∑Nb
i=1

4
3

πRbi
3ζσ(x,xb) if n = 3

, (8)

where Nb is the total number of the dispersed bubbles within the cut-off radius, and Rbi is
the radius of bubble i.

2.3. Fluid-Mixture Pressure

An isobaric closure is applied to obtain the fluid-mixture pressure p. To avoid numeri-
cal oscillation near the interfaces [21], such closure must have the consistency properties:
(a) the mixing of two fluids with the same pressure should maintain a mechanical equi-
librium, and (b) the mixture pressure should degenerate correctly when one phase is
vanishing. Here, we apply the stiffened-gas EOS to model pl and pg, which gives

pi = (γi − 1)ρiei − γiBi, (9)

involving adiabatic exponent γ and reference pressure B for each fluid i. For gas bubbles,
we take γg = 1.4 and Bg = 1 atm; for carrier water, γl = 5.5 and Bl = 492 atm. By introducing

ξg =
1

γg − 1
, ξl =

1
γl − 1

, and ξ = αlξl + αgξg, an implicit expression for p is given

as [30,31]
ρe = pξ + αlγl Blξl + αgγgBgξg, (10)



Water 2021, 13, 2684 5 of 21

which yields the equilibrium pressure

p =
ρe
ξ
− 1

ξ

(
αlγl Blξl + αgγgBgξg

)
. (11)

It can be observed that Equation (11) satisfies the consistency properties. In addi-
tion, note that such pressure closure has been used for the numerical modeling of multi-
component flows with immiscible interface to obtain the fluid pressure in the near-interface
region [30,32].

3. Numerical Methods

In this section, numerical formulations for discretizing the LE two-way coupling
model, including spatial discretization and time integration, are presented.

3.1. Bubble Dynamics

To avoid numerical oscillations, the truncated Gaussian distribution function as in
Equation (8) is implemented for the gas volume fraction calculation in the mapping from
Lagrangian frame to Eulerian frame. Note that bubbles may be several times larger than
their initial sizes during the simulation; therefore, a constant kernel width σ cannot satisfy
the needs that the volume fraction should be sufficiently smooth at each time step. To
ensure that the interfaces are fully diffused in neighbor cells and avoid a negative volume
fraction, the kernel width σ should be larger than the grid size and the maximum bubble
radius, i.e.,

σ > max(max(Rbi), dx), (12)

where dx is the grid size at the finest level of the multi-resolution mesh [33]. In addition,
note that the restrictions of distance between bubbles, which should be larger than a
characteristic distance, is not imposed in this model, allowing the overlap of the kernel
widths of different bubbles. Thus, a pressure wave can only be resolved if its length is
greater than σ. Otherwise, the pressure wave will be merged.

In classic RP equation as Equation (4), the radius R of a spherical bubble is defined by
the pressure inside bubble pB and the infinity flow properties, i.e., p∞ and ρ∞. However,
defining the reference p and ρ of the surrounding liquid at infinity as p∞ and ρ∞ to model
bubble cloud dynamics other than a single bubble is not suitable. To obtain p∞ and ρ∞
in Equation (4) for a bubble cloud, we define the fluid surrounding each bubble inside a
limited volume Vs as fluid mixture. The volume Vs should enclose the bubble and be larger
than the kernel support area [20]. According to numerical tests, we suggest 6σ as the radius
and the volume is marked by |xk − xb| ≤ 6σ. For bubble i, p∞ and ρ∞ have the following
explicit expressions: 

p∞ =
1
Vs

∫
Vs

pdV

ρ∞ =
1
Vs

∫
Vs

ρdV
. (13)

3.2. Spatial Discretization

We briefly describe here the spatial discretization of governing equations Equation (1).
For simplicity, we consider the following one-dimensional hyperbolic conservation law

∂q
∂t

+
∂ f (q)

∂x
= 0, (14)

where q(x, t) = (ρ, ρu, E)T , and f (q) = (ρu, ρu2 + p, u(E + p))T . On a uniform grid, we
denote xi = i∆x, where ∆x is the grid spacing, and [xi−1/2, xi+1/2] a computational cell
i. Thus, Equation (14) on grids yields a system of ordinary differential equations (ODEs),
which gives

dqi
dt

= −∂ f (q)
∂x
|x=xi , i = 0, 1, . . . , n. (15)



Water 2021, 13, 2684 6 of 21

Here, the collocated finite volume (FV) scheme is applied, and the cell average value
q̃i of a variable q is defined as

q̃i =
1

∆x

∫ xi+1/2

xi−1/2

qdx. (16)

Equation (15) in cell i can be reformulated as

dq̃i
dt

= − 1
∆x

(fi+1/2 − fi−1/2), (17)

where fi±1/2 is the approximated flux at the cell edge i± 1/2. The cell average value q̃i is
applied to further do the reconstruction on each cell edge qi+1/2. A stencil involving several
neighboring cells q̃i−k, · · · , q̃i+l is used for the reconstruction. Note that the reconstruction
is required to be high-order accurate in smooth region and be essentially non-oscillatory
(ENO) near discontinuities. In this work, the 5th-order weighted essentially non-oscillatory
(WENO) scheme [34] is adopted, and the reconstruction is performed in characteristic
space. Specifically, the variables are first locally decomposed onto the characteristic field
and then reconstructed; afterwards, they are projected back into the physical field [35].

Normally, in FV reconstruction, the conservative variables q̃i are reconstructed to
derive the left and right states of the conservative values qL

i+1/2 and qR
i+1/2. However,

numerical oscillations may present if the pressure pi+1/2 is evaluated by the total energy
Ei+1/2 and ξi+1/2 at cell edges in Equation (11) where isolated subgrid interfaces exit. After
reconstructing the total energy Ei+1/2 and ξi+1/2 within the stencil, the pressure equilibrium
will not be maintained. To address this problem, the primitive variables, instead of the
conservative ones q̃i, are reconstructed for maintaining the pressure equilibrium [36]. Thus,
at each time step in our methodology, we first build the cell-average primitive variables
õi = (ρ̃i, ũi, p̃i, ξi) from q̃ and αg by

ρ̃i = q̃i(1)
ũi = q̃i(2)/q̃i(1)

p̃i =
q̃i(3)−ρ̃i ũ2

i
ξ − 1

ξ (αliγl Blξl + αgiγgBgξg)

ξi = αliξl + αgiξg

. (18)

Then, the obtained õi is adopted to reconstruct the left and right states of oi, i.e., oL
i+1/2

and oR
i+1/2. Finally, oL

i+1/2 and oR
i+1/2 are applied to build the conservative values qL

i+1/2
and qR

i+1/2, as well as the flux vectors fL
i+1/2 and fR

i+1/2.

3.3. Time Integration

A 2nd-order Runge-Kutta scheme is applied for time integration in Eulerian frame,
which includes the following two steps:{

q(1) = qn + f(qn, tn)∆t/2
qn+1 = qn + f(q(1), tn + ∆t/2)∆t

, (19)

where ∆t denotes the time-step size and is constrained by the Courant-Friedrich-Lewy
(CFL) condition for numerical stability. In this work, we choose the CFL number of 0.6 for
all cases, following Reference [33].

With the given pressure and velocity data from Eulerian grids, behaviors of the
cavitation bubbles can be studied by solving the modified RP equation in Equation (4).
One difficulty in solving RP equation is the successful presenting of the collapse and
rebound stages, even when a bubble has the minimum size and the change rate of R
is extremely large. When bubble radius R becomes incorrect, negative, or unstable, the
computation of the volume fraction may fail in Eulerian frame. To address this difficulty,
the variable time-step numerical algorithm [37] is adopted. In this algorithm, the time-
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step size of the Lagrangian computation corresponds to the radio of the bubble size. We
define the time-step size for each bubble as ∆tb = tbn+1 − tbn. Following Reference [37], a
criterion is applied to ensure that the rate of Rb is numerically controllable in each time
step, which gives:

• if | ∆Rn | /Rn < 0.02, ∆tbn+1 = ∆tbn;
• if | ∆Rn | /Rn > 0.02 and ∆Rn < 0, ∆tbn+1 = ∆tbn/1.3;
• if | ∆Rn | /Rn > 0.02 and ∆Rn > 0, ∆tbn+1 = 1.3∆tbn.

Numerical experiments also suggest that the variable time-step algorithm with the
adopted criteria can solve the bubble dynamic equations successfully, even when a wide
range of pressure values and variations are present. In our simulation, the time-step size
∆tb is much smaller than that of the Eulerian simulation. Thus, in each time step ∆t,
bubbles variables are updated several times, until the integration of ∆tb reaches ∆t.

3.4. Computing Procedure

The overall computing procedure of the LE two-way coupling model can be briefly
summarized as follows:

• Lagrangian computation. Update the gas bubbles positions xb and radii Rb. Here, dxb
dt

is directly derived from the velocity field u of the mixture. The radius Rb is updated
by Equation (4). The p∞ and ρ∞ in Equation (4) are derived by Equation (13).

• Update the volume fraction in each computation cell by Equation (8).
• Eulerian computation. Compute the temporal evolution of the fluid mixture using

the adaptive multi-resolution method [33,38]. The isobaric closure in Equation (11) is
applied to derive the equilibrium pressure p.

4. Validation
4.1. Isolated Bubble

Following References [20,39], a single gas bubble inside water excited by a pressure
wave towards the bubble center, where an analytical solution is available for rigorous
comparison, is simulated to validate the present method. The pressure wave follows

pl =

{
p0 +4psin(2π f t) 0 ≤ t f < 1
p0 t f ≥ 1

, (20)

where p0 = 1 atm,4p = 2 atm, and f = 150 kHz. The bubble’s initial radius is Rb0 = 50 µm,
and the bubble pressure is initially in equilibrium with p0. We simulate this case in one-
dimension (1D) and three-dimension (3D). In the 1D simulation, the domain size is 20 mm,
and the grid size dx is set as 4Rb0 or 2Rb0. The width of the kernel support is initialized as
6Rb0. The results for two tests using different grid sizes, as well as their analytical solutions,
are presented in Figure 2. It is clear that the results agree well with the analytical solutions
in terms of the amplitude of the bubble’s radius and bubble’s frequency.

In the 3D test, the domain size is 20 mm × 10 mm × 10 mm with two resolutions
([64 × 32 × 32] and [32 × 16 × 16]). A spherical bubble with identical initial condition is
placed at the center of the computational domain. The time evolution of the dimensionless
parameter R∗ for two different meshes and the analytical solution are shown in Figure 3.
Compared to the results in Reference [20], which used the resolution of [100 × 50 × 50],
the time history of the bubble radius is obtained accurately by the present model with a
coarse resolution of [64 × 32 × 32]. Since the present model adopts the isobaric closure
and the modified RP equation, it can calculate the pressure and density field surrounding
the bubbles with sufficient accuracy, even with a coarse resolution.



Water 2021, 13, 2684 8 of 21

tf

R
*

0 1 2 3 4 5 6
0

0.5

1

1.5

2

Analytical

100

200

Figure 2. Isolated bubble: The time history of the bubble size R∗ = Rb/Rb0 in 1D simulation. Results
of grid resolutions of 100 (dx = 4Rb0) and 200 (dx = 2Rb0) are compared with the analytical solution.

32

64

Analytical

Figure 3. Isolated bubble: The time history of the bubble size R∗ = Rb/Rb0 in 3D simulation.

4.2. 1D Bubble Advection

When a gas bubble streams with the same speed as the carrier fluid under no-slip
motion, the exact solution to this problem is the advection of the volume fraction and
mixture density under a constant speed. The numerical model should also preserve
the constant pressure and velocity profile along the streamline well. In the dispersed
Lagrangian model, the advected interface leads an inconsistency between the volume
fraction αg and the mixture pressure p because the volume fraction is evaluated directly
from the bubbles’ sizes and locations. Indeed, the numerical oscillation induced from this
inconsistency cannot be removed completely.

We consider one gas bubble inside another phase with the following initial states:{
(ρ, u0, p0, γ)T

E = (1.0, 0.1, 1.0, 1.4)T

(ρ, u0, p0, γ)T
L = (10.0, 0.1, 1.0, 1.6)T , (21)
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where the subscripts ‘E’ and ‘L’ denote the Eulerian phase and Lagrangian phase, re-
spectively. Dimensional unites are given by using 1 atm and 0.1 mm. The length of the
computational domain is 5.12, with a finest resolution of 1024. A Lagrangian bubble with
initial diameter of 0.02 is placed at the domain center. The kernel width is initialized as
σ = 0.03. Figure 4 gives the volume fraction αl , mixture density ρ, pressure difference
(p− p0)/p0, and velocity difference (u− u0)/u0 at t = 0 and t = 3. A numerical peak
emerges after the first time-step and propagates afterwards. The normalized magnitude
of the pressure and velocity oscillation has been limited to the order of 10−4 and 10−3,
respectively, which is acceptable for later simulations.
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Figure 4. 1D bubble advection: The solid line represents the initial fluid condition, and ◦ represents
the results when the Lagrangian bubble reaches x = 2.86 at t = 3.0.

4.3. Single Bubble Oscillating

In this part, we consider a single gas bubble oscillating inside water. The Rayleigh
collapse is a typical transient behavior when there is an over-pressure from the surrounding
fluid. The Rayleigh time, the approximated characteristic bubble collapse time, for a single
vapor bubble, gives

tRayleigh = 0.915R0

√
ρl

p∞ − pv
. (22)

The bubble oscillates actively as R = R0(1− εsin2πωt), where ε is the perturbation
magnitude, and ω is the frequency. We set R0 = 100 µm, ε = 0.1, and ω = 100 kHz. The 1D
dimension length is L = 300R0. The bubble is initially located at the center of the domain.
The width of the support in the Gaussian kernel is initialized as σ = 6.0R0. Figure 5
presents the volume fraction αl along the radial axial under three different resolutions,
i.e., 128, 256, and 1024. The resolution of 1024 is used for the further simulations.
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The bubble oscillates actively only for a half period 0.5t f ; afterwards, the volume of
the bubble returns to its initial radius and remains still. In Figure 6, the pressure wave along
the radius axis at t∗ = t f = 0.5, 1.0, 3.0, and 5.0 are given. The bulk fluid is expanded, at
first, and then compressed due to the variation of the bubble. As a result, a first-negative
and second-positive pressure wave propagating along the radius axis presents. Figure 7
gives the pressure waves along the radius axis at t∗ = t f = 0.5, 1.0, 3.0, and 5.0 of the
second case, in which the bubble oscillates continuously without pause. It can be observed
that the amplitude and frequency of the continuous pressure waves induced by the bubble
oscillation are also well resolved.
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Figure 5. Single bubble oscillating: Volume fraction αl along the bubble radius for different resolutions.
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Figure 6. Single bubble oscillating: Pressure wave propagation induced from an oscillating gas
bubble at t∗ = t f = 0.0, 1.0, 3.0, and 5.0.
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Figure 7. Single bubble oscillating: Pressure wave propagation induced from a continuous oscillating
gas bubble at t∗ = t f = 0.0, 1.0, 3.0, and 5.0.

5. Application of a Bubble Cloud Interacting with Pressure Wave

The interaction between a cavitation bubble cloud and a pressure wave is important in
many biomedical and chemical applications [40]. To better understand the transformation
of the pressure wave when it passes through a bubble cloud, and to analyze the acoustic
pressure oscillation induced by the bubble cluster, a 2D cylindrical bubble cloud interacting
with a sinusoidal pressure pulse in the fluid is simulated. According to the research in
Reference [20], the bulk fluid has low nuclei concentration with the gas volume fraction
in the order of 10−5 and 10−4. Under the lower gas volume fraction, the shape of the
pressure wave is only slightly disturbed by the dispersed bubbles [41]. In the present work,
the average gas volume fraction is larger, which is in the order of 10−3.

Figure 8 shows the bubble cloud with a radius of A0 = 2 mm containing 200 gas
bubbles with a random radius distribution between 1 µm and 5 µm. The scattered black
tiny points represent the bubbles, and the gas fraction αg, which ranges from 0.0 to 0.003,
colored by a gray scale contour, is used to visualize the bubbles distribution. The sinusoidal

pressure wave moving from left to right is initialized by using p = p0 +∆p sin
(

2π
x− x0

λ

)
,

with a wave length of λ = 0.5A0 and amplitude of ∆p = 15 atm and the pressure at infinity
p0 = 1.0 atm. The negative pressure reaches the bubble cloud first, inducing the bubbles
to expand. The initial velocity field is set to zero. The computational domain is 2 L× L
(L = 10.24 mm), and the finest resolution is [2048× 1024]. The kernel width for each gas
bubble is initialized as σ = 3.0 dx, with dx denoting the finest grid size. Four bubbles,
i.e., Bubble A (on the left side), Bubble B (on the bottom), Bubble C (at bubble cloud center),
and Bubble D (on the right side), are marked. They are used to analyze the influence of the
pressure wave on the bubbles at different locations in the cloud.
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A
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p (atm) α
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0

0.003

Bubble A

Bubble B

Bubble D

Bubble C

Figure 8. Initial setup of the simulation of a bubble cloud interacting with pressure wave. The radius
of the bubble cloud is A0 = 2 mm, and it has 200 bubbles with random size distribution between
1 µm and 5 µm. The computation domain is 2 L× L (L = 10.24 mm). The distribution of the gas
bubbles is visualized by both the volume fraction αg and the radius Rb of Lagrangian spherical
particles. Four bubbles (bubble A, B, C, and D) located at the four boxes’ centers are marked for
future reference.

At t = 0, the center of the bubble cloud is at (0.5 L, 0.78 L), and the center of the
pressure wave is at x0 = 0.34 L. Then, the pressure wave propagates from left to right and
interacts with the bubble cluster. The pressure fields at 1.0 µs, 2.5 µs, 3.5 µs, 4.5 µs, and
5.5 µs are shown in Figure 9. It can be observed that the pressure wave reaches the bubble
cluster boundary and is reflected by the cloud boundary. When the fluid has a low gas
volume fraction, the shape of the pressure wave is almost unaffected [20]. In our results,
the pressure wave is partially reflected, and the rest of the wave travels through the cluster.
The bubbles vibrate when the pressure arrives, while remaining in equilibrium with the
bulk fluid before the pressure wave.

As shown in Figure 9, the pressure pulse inside the bulk fluid induces the bubbles’
vibration. In turn, the vibration of the gas bubbles induces the pressure disturbance in the
bulk fluid. The evolution of the pressure p at the cloud’s center is reported in Figure 10.
This results correspond to two different resolutions on x-axis. The driving pressure wave
propagation in the liquid without the bubble cloud is also plotted. With a higher resolution
of 2048 in x-axis, the amplitude of the pressure wave is increased. Note that the frequency
of the pressure wave has already been resolved well with a resolution of 1024. Due to
bubbles’ oscillation and bubble-bubble interactions, the pressure at the cloud center can
reach an amplitude of 30 atm.

Meanwhile, in Figure 11, the volume fraction αg at 1.5 µs, 2.0 µs, 2.5 µs, 3.0 µs, 3.5 µs,
and 4.5 µs is given. Generally, a larger gas volume fraction would be achieved when nega-
tive pressure approaches the bubbles as the bubbles expand. Instead, overpressurization
compresses the bubbles, indicating a smaller value of αg. As the pressure wave is partially
reflected at the cluster’s boundary, there is no major change in the volume fraction at the
cloud’s center. To better understand the influence of the pressure wave on αg, the time
evolution of radii for Bubble A–D is recorded in Figure 12. From Figure 12, it can be
observed that the bubbles’ radii are constant before the arrival of the pressure wave, which
means the bubbles are in equilibrium with the carrier fluid. The negative pressure first
reaches Bubble A, inducing its violent expansion. This corresponds well with the larger
volume fraction field at t = 2.0 µs in Figure 11. The positive pressure wave follows and
condenses Bubble A, which makes the bubble unstable and oscillates actively. Similarly,
Bubble B expands, at first, then shrinks, and finishes by actively oscillating. However, for
Bubble C (at the cloud’s center) and D (on the right), no obvious expansion presents when
the pressure wave arrives. The difference of the bubble radius history is induced by the fact
that the pressure wave is damped when it propagates to Bubble C and even becomes weak
at Bubble D due to the reflection and absorbing during the interaction. This phenomenon
corresponds well with the volume fraction field at t = 3.0 µs, 3.5 µs, and 4.5 µs in Figure 11.
As also shown in Figure 9, the pressure wave is reflected at the interface and absorbed, and
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only a small amount of the pressure successfully passes the bubble cloud. In the end, all
four bubbles actively oscillate as a result of the pressure wave, until they return to a state
of equilibrium with the carrier fluid.

15

0

-15

p (atm) α
g

0

0.003

(t = 0) (t = 1.0 μs)

(t = 2.5 μs)

(t = 4.5 μs)

(t = 3.5 μs)

(t = 5.5 μs)

p (atm)

-15                   25

Figure 9. The pressure field induced by the bubble cluster when the bubble cluster interacts with
a sinusoidal pulse. The initial state and the pressure field at 1.0 µs, 2.5 µs, 3.5 µs, 4.5 µs, and 5.5 µs
are shown.
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Figure 10. The time history of pressure at the bubble cloud center without (the dashed line) and with
bubble cloud for two different resolutions.
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Figure 11. The gas volume fraction αg when the bubble cluster interacts with a sinusoidal pulse at
1.5 µs, 2.0 µs, 2.5 µs, 3.0 µs, 3.5 µs, and 4.5 µs.
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Figure 12. The time history of bubble radius Rb of Bubble A (on the left side), Bubble B (on the
bottom), Bubble C (at bubble cloud center), and Bubble D (on the right side).
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6. Rayleigh Collapse of a Bubble Cloud

Collapsing bubbles are essential in the applications of underwater explosions, ultra-
sonic cleaning, and non-invasive biomedical processes. However, a complex pressure field
presents in the whole process, involving shock waves and acoustic pressure disturbances,
which is hardly detected and distinguished experimentally. In addition, the detailed col-
lapse dynamics of bubble clusters has been poorly investigated in experiments as the length
and time scale during the collapse and bubble oscillation could hardly be detected due
to measurement limitations. In this section, we perform a 3D simulation for the Rayleigh
collapse of a cavitation vapor bubble cloud and study the extreme pressure induced by the
violent collapse of bubbles, as well as the size distribution of bubbles during the collapse,
in detail.

6.1. Rayleigh Collapse

The schematic of the initial set-up is shown in Figure 13. First, a spherical bub-
ble cluster with N0 = 200 spherical bubbles is placed into still water, the radii of which
are initially randomly distributed between 100 µm and 500 µm. The radius of the bub-
ble cluster is A0 = 7.5 mm, with averaged bubble radius 308 µm. The 3D domain size is
25.6 mm× 25.6 mm× 25.6 mm, and the resolution at the finest level is set as [256× 256× 256].
The center of the bubble cluster coincides with the center of the computational domain. All
boundary conditions are out-flow conditions. The velocity field is initialized as zero, and the
temperature remains constant at 293 K. The viscosity and the non-condensible gas inside the
bubbles are neglected. All the bubbles are vapor bubbles, and the vapor pressure remains
constant with pv = 2430 pa. The initial bulk fluid over-pressure is p∞ = 10.0 atm. The initial
strong over-pressure induces the violent collapse of the cloud. To save computation efforts,
bubbles with extremely small volume are labeled as “inactive” to signify their collapse,
and the Lagrangian computation of the inactive bubbles will be terminated. Thus, in the
present collapse simulation, the cloud rebound will not be considered. The collapse time
here refers to the time at which the bubble cloud meets the first collapse point. For the
coupling scheme, the width of the Gaussian kernel function is initialized as σ0 = 6.0 dx.

Cloud Boundary

A(t)

Bulk Fluid

Bubble-Fluid Mixture

Figure 13. Schematic of the set-up of the bubble cloud Rayleigh Collapse. A spherical bubble cloud
with N0 vapor bubbles is placed inside the bulk water. A(t) is the radius of the bubble cloud.

6.2. Results and Discussion

Figure 14 gives six snapshots of the collapsing process of a bubble cloud. The iso-
surface of volume fraction αg = 0.002 is visualized with gray color to represent the vapor
bubble distributions. In addition, the spherical vapor bubbles, indicating the location and
volume, are also presented with blue color. The non-symmetrical collapse process happens
from outside to inside. At the beginning of the process, until around t = 9 µs, the cloud
collapses slowly. After that point, the rate of the collapse increases considerably, and the
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bubble cloud collapses violently between 14 µs and 16 µs. The obtained collapse agrees
qualitatively well with the first collapse of the simulation result in Reference [18].

t = 0 μs t = 12 μs

t = 6 μs t = 14 μs

t = 9 μs t = 16 μs

A0 = 7.5 mm

10                   160
pm (atm)

X
Y

Z

Figure 14. The snapshots of the collapsing process of a bubble cloud with N0 = 200 vapor bubbles
(at t = 0 µs, 6 µs, 9 µs, 12 µs, 14 µs, and 16 µs). The distribution of the vapor bubbles is visualized
both by the iso-surfaces of the volume fraction αg = 0.002 (αl = 0.998) and the Lagrangian spherical
particles of the radius Rb. Slices of the high pressure area (higher than 10 atm) at the center of the
bubble cloud are also plotted, which indicate the cloud collapse induced violent pressures.

During the collapse, extremely high pressures are generated from the center of the
bubble cloud. In Figure 14, the slices of the higher pressure region, where the pressure is
greater than 10 atm, are presented at each time instant. The higher pressure increases over
time. At the end of the collapse process, the extreme pressure reaches its maximum value
around 174 atm when the collapse rate reaches its maximum value. In Figure 15, revolutions
of the dimensionless active bubble number Nb/N0 and the dimensionless averaged gas
fraction β/β0 (β = ΣVc αg/Vc) are reported. The vapor clouds collapse completely at about
t = 14.5 µs.

To analyze the influence of the bubble initial number N0 on the cloud’s collapse time,
we simulate N0 = 300 and 400 under the same initial condition as above. Figures 16 and 17
provide snapshots of the collapse process at t = 0 µs, 6 µs, 9 µs, 12 µs, 13 µs, and 14 µs.
In Figure 18, the time history of Nb/N0 (N0 = 400) and β/β0 are given. We can observe
that, similar to N0 = 200 in Figure 15, the collapse time of the bubble cloud with N0 = 300
or N0 = 400 is also around 14.5 µs. However, the larger bubble number leads to greater
violent pressure at the cloud’s center. The maximum pressure for N0 = 300 is roughly
226 MPa, while, for N0 = 400, the maximum pressure is about 313 MPa.
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Figure 15. The time history of the non-dimensional active bubble number Nb/N0 (N0 = 200) and the
averaged gas fraction β/β0, here being β = ΣVc αg/Vc.

t = 0 μs t = 12 μs

t = 6 μs t = 13 μs

t = 9 μs t = 14 μs

A0 = 7.5 mm
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pm (atm)

X
Y

Z

Figure 16. The snapshots of the vapor bubble cloud collapse process with N0 = 300 vapor bubbles
(t = 0 µs, 6 µs, 9 µs, 12 µs, 13 µs, and 14 µs). Distribution of the vapor bubbles is visualized both
by the iso-surfaces of the volume fraction αg = 0.002 (αl = 0.998) and the radius Rb of Lagrangian
spherical particles. Slices of the extreme pressure area (higher than 10 atm) at the center of the bubble
cloud are also plotted, which indicate the cloud collapse induced violent pressures.
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t = 0 μs t = 12 μs

t = 6 μs t = 13 μs

t = 9 μs t = 14 μs
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Figure 17. The snapshots of the vapor bubble cloud collapse process initially with N0 = 400 vapor
bubbles (t = 0 µs, 6 µs, 9 µs, 12 µs, 13 µs, and 14 µs). Distribution of the vapor bubbles is visualized
both by the iso-surface of the volume fraction αg = 0.002 (αl = 0.998) and the radius Rb of Lagrangian
spherical particles. Slices of the high pressure area (higher than 10 atm) at the center of the bubble
cloud are also plotted, which indicate the cloud collapse induced violent pressures.
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Figure 18. The time history of the non-dimensional active bubble number Nb/N0 (N0 = 400) and the
averaged gas fraction β/β0 (β = ΣVc αg/Vc).
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For the case of the bubble cloud with N0 = 400, the distribution of bubble radii
during the collapse is analyzed according to their sizes. Figure 19 shows the bubble size
density distribution at t = 0 µs, 6 µs, 9 µs, 12 µs, 13 µs, and 14 µs. The first bar on the
left side indicates the density of the collapsed (inactive) vapor bubbles. From Figure 19,
we can observe that the vapor bubbles become compressed all together because of the
higher environmental pressure. As given in Equation (22), with a bubble radius increases,
its collapse time tRayleigh also increases. For a bubble cloud, we find that there are two
factors affecting the final collapse time, i.e., the bubble size distribution and the initial
overpressurization. In the three above conditions of different initial bubble numbers,
bubbles in the cloud follow the same initial size distribution, which means the average
bubble radius remains unaltered. When the bubble radius distribution remains unchanged,
the number of bubbles inside the cloud has no significant influence on the time instant
when the cloud finally collapses, except a larger bubble number increasing the averaged
vapor volume fraction β = ΣVc αg/Vc. However, the larger bubble number induces greater
pressure at the cloud’s center because of a larger vapor void.

r
b  
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b  

(10-4 m)

r
b  
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b  

(10-4 m)
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b  

(10-4 m)
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t = 0 μs t = 12 μs

t = 6 μs t = 13 μs

t = 9 μs t = 14 μs

Figure 19. The bubble distributions (radii density bar graphs) of the bubbles’ radii at t = 0 µs, 6 µs,
9 µs, 12 µs, 13 µs, and 14 µs. The first bar from the left side indicates the density of the collapsed
vapor bubbles.
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7. Concluding Remarks

In this paper, an LE two-way coupling model is developed based on a multi-resolution
Eulerian solver. To close the system of governing equations, an isobaric pressure closure
is applied. The gas fraction is modeled as a formulation of the sizes and locations of the
gas bubbles. Benchmark cases are used to validate the present method in both 1D and 3D
contexts. The simulation of a cylindrical bubble cloud interacting with a pressure wave is
carried out as one application. The results reveal that the shape of the pressure pulse in the
fluid significantly changes after passing through the bubble cloud due to the reflection at
the cloud’s boundary and at the sub-grid interfaces when the gas void fraction is in the
scale of 10−3. In the 3D simulation of Rayleigh collapse of a bubble cloud, it is observed
that the number of bubbles inside the cloud has no notable influence on the cloud’s final
collapse time if the bubble size distribution remains the same. However, the larger number
of bubbles leads the higher of averaged vapor volume fraction, thus inducing more violent,
higher pressures.
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