
remote sensing  

Article

Agricultural Drought Detection with MODIS Based Vegetation
Health Indices in Southeast Germany

Simon Kloos 1,* , Ye Yuan 1 , Mariapina Castelli 2 and Annette Menzel 1,3

����������
�������

Citation: Kloos, S.; Yuan, Y.; Castelli,

M.; Menzel, A. Agricultural Drought

Detection with MODIS Based

Vegetation Health Indices in

Southeast Germany. Remote Sens.

2021, 13, 3907. https://doi.org/

10.3390/rs13193907

Academic Editor: Won-Ho Nam

Received: 15 September 2021

Accepted: 25 September 2021

Published: 30 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 TUM School of Life Sciences, Ecoclimatology, Technical University of Munich, 85354 Freising, Germany;
yuan@wzw.tum.de (Y.Y.); annette.menzel@tum.de (A.M.)

2 Institute for Earth Observation, Eurac Research, 39100 Bolzano-Bozen, Italy; mariapina.castelli@eurac.edu
3 Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany
* Correspondence: simon.kloos@tum.de

Abstract: Droughts during the growing season are projected to increase in frequency and severity
in Central Europe in the future. Thus, area-wide monitoring of agricultural drought in this region
is becoming more and more important. In this context, it is essential to know where and when
vegetation growth is primarily water-limited and whether remote sensing-based drought indices can
detect agricultural drought in these areas. To answer these questions, we conducted a correlation
analysis between the Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature
(LST) within the growing season from 2001 to 2020 in Bavaria (Germany) and investigated the
relationship with land cover and altitude. In the second step, we applied the drought indices
Temperature Condition Index (TCI), Vegetation Condition Index (VCI), and Vegetation Health Index
(VHI) to primarily water-limited areas and evaluated them with soil moisture and agricultural yield
anomalies. We found that, especially in the summer months (July and August), on agricultural land
and grassland and below 800 m, NDVI and LST are negatively correlated and thus, water is the
primary limiting factor for vegetation growth here. Within these areas and periods, the TCI and VHI
correlate strongly with soil moisture and agricultural yield anomalies, suggesting that both indices
have the potential to detect agricultural drought in Bavaria.

Keywords: NDVI; LST; TCI; VCI; VHI; soil moisture; crop yield; remote sensing; drought monitoring;
corn

1. Introduction

Drought is a complex, globally occurring phenomenon that affects humans and nature
alike [1]. It can be examined from different perspectives: meteorological (precipitation
deficit), agricultural (soil moisture deficit), hydrological (runoff and water storage deficit),
and socio-economic drought (consideration of water supply and demand) [2–4]. Drought
events in Europe have far-reaching impacts and economic costs within different sectors of
society [5,6]. Within the European Union and United Kingdom, the annual economic losses
(1981–2010) from drought are estimated at EUR 9 billion year−1 [7]. In Central Europe, and
thus also in Bavaria, extreme drought events in recent years have repeatedly resulted in
massive damage and losses in agriculture and forestry [8–11].

Since the beginning of the 21st century, Central Europe has experienced recurrent
periods of exceptional drought, with the years 2003, 2015, and 2018, in particular, being
extremely hot and/or dry [12–15]. While climate data from the past do not yet allow a
consistent statement on drought trends in Central Europe [16–19], future projections mainly
assume an increase in drought frequency and severity during the growing season [20–23].
In addition, there could be a significant increase in the risk of consecutive droughts and
their affected areas in the future [15].

In this context, the detection and forecast of drought are becoming more and more
important, a major challenge being the monitoring of the impacts of agricultural drought
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on vegetation. In addition to in-situ measurements, remote sensing based observations
allow a broad scale detection and can identify and fill relevant knowledge gaps within this
thematic area. A variety of approaches based on remote sensing exist to detect drought
impacts on vegetation [24–26], some of which have already been applied in Central Europe,
with different methodologies. The majority of existing studies made use of remotely sensed
vegetation indices (VIs).

One possibility is the comparison of VIs with meteorological drought indices. It has
been shown that the Normalized Difference Vegetation Index (NDVI) and Vegetation Opti-
cal Depth (VOD) could capture agricultural drought events in response to meteorological
droughts within Europe [27]. In addition, it has been found that meteorological drought
indices for shorter periods were associated with crop stress (defined via the Vegetation
Condition Index (VCI) and Vegetation Health Index (VHI)), while longer accumulation
periods correlated better with the vegetation status of forest areas. At the same time, the
magnitude of regional differences in drought impacts within Europe was pointed out [28].
Equally, when the NDVI and Standardized Precipitation Index (SPI) data in spring and
summer were compared to each other, high positive correlations were detected, especially
in Eastern Europe and on the Iberian Peninsula [29].

Another approach within VI use is the analysis and comparison with soil moisture data.
Comparing the NDVI with soil moisture indices such as the Palmer Drought Severity Index,
the Self-Calibrating Palmer Drought Severity Index and the Normalized total depth Soil
Moisture (NSM), clear differences in correlations have been observed across Europe [29].
Here, the NSM achieved the highest correlations (also in Eastern Europe and on the Iberian
Peninsula), whereby this was explained primarily with the additional information included
in NSM compared to the other indices about soil moisture in deeper soil layers. Using the
NSM as a soil moisture variable, it was also found that in European areas with a warmer
summer climate, the NDVI only responded to fluctuations in soil moisture, but not in
temperature. In spring, this dependency was reversed. In colder regions, the NDVI was
only dependent on temperature in both seasons. Furthermore, during the 2018 agricultural
drought in the Netherlands, negative soil moisture anomalies occurred 2–3 weeks before
the first VI reduction, using near-infrared reflectance of terrestrial vegetation and VOD as
VI [30]. When comparing NDVI and Climate Change Initiative soil moisture data, an offset
between soil moisture drought and vegetation drought in Europe was also found [31].

In Central Europe, analyses of VIs have been used to assess the impact of agricultural
droughts on corn and winter wheat yields. Corn yields at the NUTS3 level in Germany
correlated well with VCI and VHI in August, although clear spatial correlation differences
could also be seen [28]. On the other hand, comparing Temperature Condition Index (TCI),
VCI and VHI with winter wheat yields in northern and eastern Germany, VHI, in particular,
was able to achieve higher correlations than meteorological indices [32]. Comparing the
VIs NDVI and Enhanced Vegetation Index (EVI) with climatic datasets, it was shown that
during the extreme drought in July 2018, 1.5 times more area within Europe was negatively
impacted than during the extreme drought in August 2003. Differences within land-use
types were also found [33].

Within remote sensing of agricultural drought, there are also studies which developed
combined drought monitoring in Central Europe. Sepulcre-Canto et al. [34], for example,
applied a combination of SPI, soil moisture anomaly, and the fraction of Absorbed Photo-
synthetically Active Radiation (fAPAR), while Trnka et al. [35] used a combination of soil
moisture data (remotely sensed, modelled, and reported) and EVI in the Czech Republic
and Slovakia. Both approaches were shown to be promising. Finally, approaches also exist
within this topic to determine areas and time periods where water is the primary limiting
factor for plant growth. In Europe, a correlation analysis between LST and NDVI has
revealed that energy was a limiting factor mainly in northern Europe, at high altitudes, and
in spring, while water limited plant growth mainly in southern Europe and in summer [36].

Despite the large numbers of existing studies on agricultural and vegetation-based
drought in Central Europe using remote sensing, uncertainties and larger knowledge gaps
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still exist. For example, the spatial as well as temporal resolution of results indicating where
and when water is the limiting factor for vegetation growth is still rather limited. There
are also hardly any evaluations that deal with other explanatory environmental variables
for vegetation stress caused by drought. In Bavaria in particular, there are still hardly
any approaches for continuous drought monitoring via remote sensing-based VIs that can
demonstrate an appropriate spatial and temporal resolution. Therefore, our study aims, for
the first time, to provide results with a much better spatial and temporal resolution than
currently exists as to where and when in Central Europe water is the limiting factor for
vegetation growth. Second, the analysis of this limitation incorporates other environmental
conditions to explain it, which has rarely been done before. Finally, an approach not yet
practiced in Bavaria is presented to perform continuous drought monitoring via remote
sensing-based VIs at an appropriate spatial and temporal resolution.

Addressing the aforementioned gaps in knowledge, the general objective of this study
is to detect agricultural drought using remote sensing in Central Europe on water-limited
areas for vegetation growth. Specifically, this means, with a spatial resolution of up to
250 m and a temporal resolution of up to 8 days:

1. To determine, by means of a correlation analysis between Moderate Resolution Imag-
ing Spectroradiometer (MODIS) NDVI and LST, areas and time periods in which water
is the limiting factor for vegetation growth. In addition, it will be examined whether
and to what extent the factors of land cover and altitude influence these conditions;

2. To carry out drought monitoring using the TCI, VCI, and VHI, as well as to evaluate
their results by soil moisture and agricultural yields. The question to be addressed here
is whether and to what extent these indices can be used to detect agricultural drought.

2. Materials and Methods

The general work-flow of this study is shown in Figure 1, including preprocessing of
data, the classified correlation analysis between NDVI and LST, and the calculation and
evaluation of the drought indices. All relevant analyses were carried out in R (version 4.0.3).
More details on the following steps are provided in the respective subsections.

2.1. Study Area

The study area of Bavaria is located between 47◦N and 50.5◦N, and between 9◦E
and 14◦E, in the southeastern part of Germany, Central Europe (Figure 2). The climate
of the region is mainly influenced by strong relief, with higher elevations in the south
(northern edge of the Alps) and east (Bavarian Forest and Fichtel Mountains; Figure S1 in
Supplementary Materials). The mean annual temperature ranges from −3.3 to 11 ◦C, but
in the majority of the territory, it is between 8 and 10 ◦C (Figure S2, based on data from the
German Meteorological Service, 1991–2020). The mean annual precipitation sums range
from 515 to 3184 mm, with wetter conditions in the southern part of Bavaria (Figure S3).
The land cover in Bavaria is largely dominated by agriculture (54.58%) and forest (35.38%).
The agricultural areas are mainly found in the northwest and southeast of Bavaria, while
forest cover dominates towards the Alps and in the east of Bavaria. Open grasslands and
larger water areas are mostly localized in the Alpine region and Alpine foothills. Munich
and Nuremberg constitute the largest urbanized areas (Figure 2, based on Corine Land
Cover (CLC) 2018 data). Bavaria is divided into 96 counties (based on the yield data for
agricultural crops/Statistical Offices of the Federation and the states).
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tation Health Index; CLC = Corine Land Cover; EU-DEM = European Digital Elevation Model). 
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Figure 1. Flowchart of data used and processed (white boxes) and methodology applied (gray boxes;
NDVI = Normalized Difference Vegetation Index; LST = Land Surface Temperature; LC = Land
Cover; TCI = Temperature Condition Index; VCI = Vegetation Condition Index; VHI = Vegetation
Health Index; CLC = Corine Land Cover; EU-DEM = European Digital Elevation Model).

2.2. Data

MODIS NDVI, LST, and Land Cover (LC) products were used for both the correlation
analysis between NDVI and LST and the calculation of drought indices. The chosen
period for all MODIS products was from 2001 to 2020. The NDVI raster data (MOD13Q1)
have a spatial resolution of 250 m and a temporal resolution of 16 days [37]. The LST
raster data (MOD11A2) provide Daytime Land Surface Temperature [K] with a spatial
resolution of 1 km and a temporal resolution of 8 days [38]. The LC product from MODIS
(MCD12Q1) is issued annually with a spatial resolution of 500 m. We used the International
Geosphere-Biosphere Programme (IGBP) classification (LC Type 1) [39].

Both the LST and LC data were resampled first to a spatial resolution of 250 m in order
to be compatible with the NDVI data. In addition, an annual vegetation mask (Table S2) was
created using the MODIS LC data and applied to the NDVI and LST data to preemptively
avoid misinterpretation, especially with respect to NDVI. Finally, the 16-day NDVI grid
data were linearly interpolated to an 8-day temporal resolution in order to perform both
the correlation analysis between NDVI and LST and the calculation of drought indices in
8-day time steps.

In addition, we used the land cover product CLC 2018 and the European Digital Eleva-
tion Model (EU-DEM) v1.1 for a better and more differentiated evaluation of the correlation
analysis between NDVI and LST. The CLC and EU-DEM datasets are produced within
the framework of the EU Copernicus Service coordinated by the European Environment
Agency (EEA) and have a spatial resolution of 100 [40] and 25 m [41], respectively. To
combine the two datasets, the elevation model was aggregated to a spatial resolution of
100 m using the arithmetic mean.
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Figure 2. Land cover in Bavaria based on CLC 2018 (simplified according to Table S1). Agricultural
land (orange) dominates mainly in the northwest and southeast of Bavaria, while forested land (dark
green) mainly dominates in the northeast and south. All further results and representations refer to
this area, whereby a further longitude and latitude indication was omitted.

To evaluate the calculated drought indices VCI, TCI, and VHI (see Section 2.4), soil
moisture index data from 2001 to 2020, as well as yield data for agricultural crops in
combination with land use data were used. The present work exploits the Soil Moisture
Index (SMI) published by the Helmholtz Centre for Environmental Research (UFZ). SMI
represents the percentile of soil moisture content in the topsoil up to a depth of 25 cm,
relative to its frequency distribution in the period 1951–2019. The data have a monthly
temporal resolution and a spatial resolution of 4 km [42,43]. In order to compare the data
with the calculated raster data of the drought indices, the soil moisture index data were
bilinearly resampled to a spatial resolution of 250 m.

The yield data for agricultural crops from 2001 to 2019 are published in the Regional
Database Germany, which is operated by the Statistical Offices of the Federation and the
states. The data are given as the annual mean yield per hectare in dt ha−1 and are provided
at county level [44]. The land use data for the agricultural holdings in Bavaria originate
from the Bavarian State Office for Statistics and refer to the reference year 2016. The
cultivated area of the respective field crop is also given for each county [45]. In the present
paper, the area ratios of the individual cultivated crops within the counties are assumed to
be relatively stable and thus refer to the observation period of the yield statistics (2001 to
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2019). For the selection of yield data to be included in the analysis, data on annual harvest
dates in Bavaria from 2001 to 2019 were used based on selected phenological observations
of the respective crops (Phase ID 24—“Ernte”) from the German Meteorological Service
(DWD) [46].

2.3. Correlation Analysis between NDVI and LST

The first step of the present study is a correlation analysis between NDVI and LST
to determine when and where water is the limiting factor for vegetation growth. NDVI
is one of the most widely used vegetation indices in remote sensing and is defined as
follows [47,48]:

NDVI =
ρNIR − ρR
ρNIR + ρR

, (1)

where ρNIR is the reflectance in the near-infrared band and ρR is the reflectance in the
red band. NDVI allows one to distinguish between healthy and stressed vegetation and
to determine the growth status of vegetation, and thus a measure of general vegetation
health [26,49,50]. In addition, NDVI can also be an effective indicator of the vegetation-
moisture condition [51]. LST, in turn, mirrors soil moisture conditions, evapotranspiration,
and vegetation water stress. Because evapotranspiration cools the earth’s surface, rising
surface temperatures may be linked to decreasing water content or a soil moisture deficit
and thus water stress in the vegetation canopy [52,53]. If both variables are well correlated,
the limiting factor for vegetation growth can be determined depending on the season and
location: The NDVI-LST correlation is negative if water is the limiting factor, but it is
positive if energy is the limiting factor [36,54,55].

Here the correlation analysis between NDVI and LST was performed at pixel level,
at a monthly time scale, following the method of Abdi et al. [56]. The Bravais-Pearson
correlation coefficient was calculated for each pixel and month in the vegetation period
from March to October using all available MODIS data from 2001 to 2020 (Table 1).

Table 1. Monthly subdivision of Moderate Resolution Imaging Spectroradiometer (MODIS) day
numbers for pixel-based monthly correlation analysis between NDVI and LST.

Month MODIS Day Numbers

March 065–089
April 097–113
May 121–145
June 153–177
July 185–209

August 217–241
September 249–273

October 281–297

The calculated correlation coefficients were additionally analyzed by land cover,
altitude, and their combination. For this, the monthly NDVI-LST correlation maps were
resampled to 100 m spatial resolution. Subsequently, both the land cover data (CLC 2018)
and the digital elevation model data (EU-DEM v1.1) were classified into different classes
(Table 2). The selected land cover classes had to meet two criteria: (1) contain vegetation;
and (2) cover at least 1% of the Bavarian land area. The altitude classification followed
relevant papers with a reasonable number of classes [57–60]. The respective independent
masks were then intersected with the monthly NDVI-LST correlation maps and finally
characterized using boxplots.
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Table 2. Land cover (CLC 2018) and elevation (EU-DEM v1.1) classes and their IDs applied to the
monthly NDVI-LST correlation maps.

ID Land Cover Classes (CLC 2018) ID Altitude Classes (EU-DEM v1.1)

NAL Non-irrigated arable land AL1 <300 m
PAS Pastures AL2 300–500 m
BLF Broad-leaved forest AL3 500–800 m
CFF Coniferous forest AL4 800–1200 m
MXF Mixed forest AL5 >1200 m
NGL Natural grasslands

When combining both classifications, the land cover masks were intersected with the
altitude masks. All 30 (6 land cover classes × 5 altitude classes) combined masks were
then intersected with the monthly NDVI-LST correlation maps, for which the median was
determined for each class.

2.4. Calculation and Evaluation of the Drought Indices VCI, TCI, and VHI

The VHI consists of two components, i.e., VCI and TCI. The VCI is defined as
follows [61–63]:

VCI = 100 ∗ (NDVI − NDVImin)

(NDVImax − NDVImin)
. (2)

The NDVI is the smoothed 8-day NDVI, the NDVImin, and the NDVImax the corre-
sponding multiyear absolute maximum and minimum. The VCI is accordingly scaled
from 0 to 100 and takes on larger values the higher the NDVI is. The TCI is defined as
follows [61–63]:

TCI = 100 ∗ (Tmax − T)
(Tmax − Tmin)

, (3)

where T is the smoothed 8-day temperature, Tmin and the Tmax are the corresponding
multiyear absolute maximum and minimum. The TCI is also scaled accordingly from 0 to
100 but takes on higher values the lower T is. In this work, T is defined via the LST. The
combination of both described indices results in the VHI [61,62,64]:

VHI = α ∗ VCI + (1 − α) ∗ TCI, (4)

where α determines the share of VCI and TCI in the VHI. Since this share depending
on location and time is unknown, the weight of both indices was assumed to be equal
(α = 0.5) [64–66]. The value range of the VHI is also from 0 (severe vegetation stress) to 100
(very favorable conditions). The VHI is based on the assumption that there is a negative
correlation between NDVI and LST: During a drought period, the NDVI tends to be low,
while the LST tends to be high [54].

In this work, all three drought indices were calculated pixel-based for Bavaria in 8-day
resolution within the growing season (March–October) from 2001 to 2020. Due to the VHI
assumption of a negative correlation between NDVI and LST, it is important to exclude all
areas with a non-negative NDVI-LST correlation in order to avoid misinterpretations. For
this purpose, a threshold value of −0.1 was applied to all monthly NDVI-LST correlation
maps, and all areas with a correlation coefficient >−0.1 were then removed from the
respective drought index time series on a monthly basis.

For the evaluation of the drought indices time series, TCI, VCI, and VHI were com-
pared with the SMI and the yield data. For the comparison with the monthly SMI, we
calculated the monthly arithmetic means of the 8-days drought indices, based on Table 1.
Subsequently, the Bravais-Pearson correlation coefficients were determined between the
SMI and the drought index data-sets for the complete time series (monthly and total vege-
tation period). Agricultural yield data comprised winter wheat, winter rye, summer barley,
oat, sugar beet, winter rapeseed, and silage corn, i.e., major crops for which harvest dates
in Bavaria were available and which were on average harvested at the end of July at the
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earliest (Day of year > 200; Table 3). The reason for this threshold value was the inclusion of
at least one month (July) in the evaluation, in which water can be assumed as the limiting
factor for vegetation growth over large areas in Bavaria.

Table 3. List of selected crop yield data from the Regional Database Germany and the corresponding
mean harvest dates (as the day of the year) from 2001 to 2019 in Bavaria in the evaluation study.

Selected Crops in The Yield Statistics
(Regional Database Germany)

Mean Harvest Date (Day of The Year) in
Bavaria from 2001 to 2019

Winter wheat 215
Winter rye 212

Summer barley 211
Oat 221

Sugar beet 283
Winter rapeseed 205

Silage corn 266

To be compared with crop yield data, drought indices were averaged pixel-wise and
annually for a crop-specific period of influence, i.e., all months from May to July for winter
wheat, winter rye, summer barley, oat, and winter rapeseed or May to September for sugar
beet and silage corn. Then, mean drought indices were determined for each county. A
correlation analysis was then performed between the mean annual drought indices and
the respective relative annual yield anomaly at county level in Bavaria. These correlations
were accordingly also determined within the counties. In order to avoid misinterpretations,
counties, where, for a specific cultivated crop, the area share of the total area of the seven
selected crops was less than 3%, were excluded from the spatial correlation analysis.

In order to summarize the results across the individual crops, an additional analysis
was carried out based on weighted relative crop yield anomalies. For this purpose, the
share of the total area of the seven selected crops was determined for each county and each
crop. Subsequently, the respective annual crop yield anomalies were weighted with the
area shares for each county and each year and summed up. In any case, years in which data
were not available for all crops grown in that county were removed to ensure comparability.
Mean annual drought indices (May to July or May to September) were also weighted at
the county level according to the corresponding area shares of the crop and added up
to obtain a weighted drought index. Finally, an overall correlation analysis, as well as a
spatial correlation analysis differentiated by county between the relatively weighted crop
yield anomalies and the weighted drought indices, were carried out.

3. Results
3.1. Correlations between NDVI and LST

As evidenced by the monthly correlation analysis between NDVI and LST for the
period 2001 to 2020, NDVI-LST relationships clearly depend on several factors. The first
factor is the time of the year. Across Bavaria (Figure 3 and Table S3), positive NDVI-
LST correlations occurred above all both at the beginning (March to May) and at the
end (September and October) of the vegetation period. In contrast, in the middle of the
vegetation period or summer season (June to August), negative correlations prevailed.
Regardless of the season, areas in the Alps, the Bavarian Forest, and the Spessart region
showed consistently positive correlations, while negative correlations prevailed for the
main part of the vegetation period within the Main-Franconian Plates or the Isar-Inn Hills.

This seasonal influence on the sign of the correlation between NDVI and LST was also
confirmed when being classified by land cover, altitude, and their combination. Similarly,
the correlation coefficients were higher at the beginning and end of the growing season
than in the summer months of June, July, and August. Negative NDVI-LST correlations
occurred especially in these summer months, while in the marginal months of March, April,
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and October only positive correlations were observed in almost all classes (Figures 4 and 5;
Table 4).
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The second factor that significantly influences the NDVI-LST relationship is land
cover (Figure 4) with a clear dichotomy of the results. Except for the marginal months of
March and October, the medians of the correlation coefficients of the agricultural classes
(non-irrigated arable land (NAL) and pastures (PAS)) were always significantly lower than
those of the forest and grassland areas. While the agricultural areas showed predominantly
negative correlation values, especially in summer (June, July, and August), none or only
positive correlations occurred in the other classes.
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When combining the factors land cover and altitude (Table 4), natural grasslands
(NGL) at lower altitudes, in addition to the agricultural classes NAL and PAS, also showed
significantly lower correlation coefficients than the forest areas except for March and
October. Altitudes below 800 m which constitute more than 90% of the total area were
characterized by this negative NDVI-LST correlation in the summer months, while forest
areas showed no or a slightly positive correlation in summer. Above 800 m the effect of the
dichotomy decreased significantly since forests predominated.
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Table 4. Median pixel-based monthly correlation coefficients (Bravais-Pearson) between NDVI and LST in Bavaria from 2001 to 2020, by altitude and land cover classes. The percentage (in
parentheses) of the respective altitude class indicates the area share of this class in the total area of Bavaria. The percentage of the respective land cover class indicates the area share of
this land cover in the total area of the respective altitude class. The color-coding of the individual median values is based on Figure 3. Land cover classes according to CLC 2018 are
non-irrigated arable land (NAL), pastures (PAS), broad-leaved forest (BLF), coniferous forest (CFF), mixed forest (MXF), and natural grasslands (NGL). Altitude levels are <300 m (AL1),
300–500 m (AL2), 500–800 m (AL3), 800–1200 m (AL4), and >1200 m (AL5; Table 2).

Altitude CLC 2018 Number of Pixels March April May June July August September October
AL1 NAL 240,901 (48.69%) 0.35 0.00 −0.09 −0.23 −0.35 −0.33 −0.19 0.01

(7.01%) PAS 77,745 (15.71%) 0.46 0.19 0.01 −0.12 −0.29 −0.36 −0.14 0.12
NGL 1650 (0.33%) 0.46 0.09 −0.01 −0.08 −0.43 −0.41 −0.19 0.15
BLF 38,559 (7.79%) 0.42 0.32 0.16 0.08 −0.06 −0.06 0.12 0.18
CFF 24,399 (4.93%) 0.31 0.31 0.16 0.14 −0.03 −0.05 0.13 0.12
MXF 22,339 (4.51%) 0.36 0.38 0.17 0.14 −0.03 −0.02 0.14 0.18

AL2 NAL 1,603,322 (43.47%) 0.44 0.07 −0.03 −0.12 −0.26 −0.29 −0.08 0.14
(52.28%) PAS 609,244 (16.52%) 0.55 0.16 −0.01 −0.09 −0.26 −0.33 −0.01 0.18

NGL 13,274 (0.36%) 0.44 0.19 0.09 −0.03 −0.23 −0.29 0.08 0.16
BLF 253,590 (6.88%) 0.45 0.35 0.19 0.14 −0.01 0.04 0.20 0.18
CFF 627,277 (17.01%) 0.40 0.22 0.15 0.10 −0.05 −0.07 0.10 0.12
MXF 239,313 (6.49%) 0.44 0.31 0.17 0.13 −0.02 −0.01 0.16 0.17

AL3 NAL 511,891 (22.01%) 0.51 0.09 0.00 −0.07 −0.24 −0.21 −0.02 0.14
(32.96%) PAS 646,484 (27.80%) 0.64 0.18 0.02 −0.06 −0.22 −0.16 0.10 0.20

NGL 8681 (0.37%) 0.61 0.24 0.11 0.00 −0.18 −0.15 0.10 0.17
BLF 92,655 (3.98%) 0.53 0.34 0.19 0.12 0.00 0.05 0.20 0.15
CFF 595,578 (25.61%) 0.53 0.24 0.16 0.10 −0.02 0.03 0.11 0.13
MXF 254,112 (10.93%) 0.53 0.30 0.18 0.09 −0.01 0.06 0.17 0.13

AL4 NAL 0 (0.00%) n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
(5.51%) PAS 95,015 (24.43%) 0.71 0.35 0.09 −0.02 −0.13 −0.02 0.21 0.23

NGL 15,785 (4.06%) 0.60 0.54 0.27 0.03 −0.01 0.08 0.25 0.27
BLF 37,420 (9.62%) 0.52 0.40 0.27 0.10 0.15 0.14 0.25 0.11
CFF 129,960 (33.42%) 0.55 0.37 0.24 0.08 0.08 0.14 0.20 0.16
MXF 94,833 (24.38%) 0.54 0.39 0.27 0.11 0.10 0.16 0.25 0.13

AL5 NAL 0 (0.00%) n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
(2.23%) PAS 747 (0.47%) 0.34 0.69 0.43 0.13 0.13 0.16 0.29 0.40

NGL 35,529 (22.58%) 0.34 0.66 0.46 0.17 0.10 0.16 0.36 0.42
BLF 8214 (5.22%) 0.47 0.51 0.32 0.08 0.16 0.14 0.25 0.24
CFF 58,431 (37.14%) 0.42 0.53 0.34 0.11 0.14 0.14 0.27 0.31
MXF 14,883 (9.46%) 0.47 0.53 0.34 0.10 0.16 0.13 0.28 0.27
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Thirdly, monthly NDVI-LST correlations vary with altitude in Bavaria (Figure 5).
Except for the altitude level above 1200 m in March, the correlation coefficients increased
continuously with altitude in all months. Negative correlations were on average only
achieved at altitudes up to 800 m, and at altitudes below 300 m, the median of the correlation
coefficients was clearly negative (from June to September). When combining altitude and
land cover classes (Table 4), the results of the simple altitude classification were confirmed,
whereby here even negative correlations could occur up to 1200 m in the median (July).
Finally, it is important to note that hardly any strong relationships are observed within the
NDVI-LST correlation analysis with respect to all described perspectives.

3.2. Drought Indices VCI, TCI, and VHI and Their Evaluation Results

Figure 6 is showing the prominent drought year 2003 as an example: The VHI is a clear
combination of both indices, with weeks of low drought stress taking higher values (e.g.,
day 129) and weeks of high drought stress taking lower values (e.g., day 193–233). The TCI
basically changes more dynamically than the VCI, both spatially and temporally. From the
20-year time series of the VCI, TCI, and VHI, all areas with a monthly mean NDVI-LST
correlation coefficient >−0.1 had to be removed. While in the summer months of July and
August a large part of the area was still retained (62.25 and 58.83%, respectively), in the
marginal months of March (0.15%), April (8.00%), and October (5.95%) hardly any area
was included in the analysis. The months of May (18.15%), June (34.31%), and September
(24.04%) represented intermediate stages, in which mainly focal areas in the south-east and
north-west of Bavaria were included in the analysis (Figure S6 and Table S3).

When evaluating for the above described sensitive areas the drought indices TCI,
VCI, and VHI with the SMI (Table 5), several observations could be made. Over the entire
growing season, similar ranges of values were found for the correlation coefficients of SMI
with TCI (0.54) or VHI (0.48), while the one between VCI and SMI was considerably lower
(0.27). This tendency of lower VCI than TCI/VHI correspondence to SMI could be observed
across all months, especially in the summer months of July and August. Generally, the
MODIS-based drought indices corresponded much better to the SMI in summer than at the
beginning and end of the growing season.

Table 5. Bravais-Pearson correlation coefficients between Soil Moisture Index (SMI) and the MODIS-
based drought index data sets for the complete time series from 2001 to 2020 (monthly and total). All
correlation coefficients are statistically significant (p-value < 0.05). The corresponding scatterplots for
the complete time series (March to October) are included in Figure S7.

SMI vs. TCI VCI VHI

March 0.26 0.09 0.25
April 0.52 0.11 0.37
May 0.38 0.16 0.32
June 0.34 0.15 0.30
July 0.63 0.26 0.52

August 0.69 0.37 0.61
September 0.47 0.38 0.51

October 0.07 0.05 0.08

Total 0.54 0.27 0.48
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When comparing the MODIS-based drought indices with annual yield data for dif-
ferent crops, positive correlations of varying strength were found (Table 6). In contrast
to SMI, the correlations of all the three drought indices with the yield anomalies were
in a similar value range, e.g., across all field crops as indicated by the weighted yield;
they ranged between 0.45 (VCI) and 0.49 (VHI). Additionally for the individual crops, no
obvious differences were apparent among TCI, VCI, and VHI correspondence to yield
anomalies. However, the correlation varied considerably for individual crops. While espe-
cially winter wheat, summer barley, and winter rapeseed showed low positive correlations,
the correlations of sugar beet and silage corn were high.

The correlations between weighted crop yield anomalies and the corresponding TCI, VCI,
and VHI at county level highlighted spatial patterns across Bavaria (Figures 7c and S9e,f).
Similar to Table 6, for each of the drought indices, almost all correlations were positive,
with significant variations across counties. There were hardly any differences between
the maps of the individual drought indices. However, all counties in the north of Bavaria
tended to have higher correlation values than southern areas. Another focus area with
positive correlations was the northwest of Bavaria, with statistically significant correlations
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>0.8. One county in the south, was also striking, showing a slight to medium negative
linear correlation for all the three drought indices.

Table 6. Bravais-Pearson correlation coefficients (r) between crop-specific mean drought index values and the respective
annual field crop or weighted yield anomalies (county level). All correlation coefficients are statistically significant
(p-value < 0.05). The corresponding scatterplots between weighted yield anomaly and weighted annual mean drought
index are included in Figure S8.

r Winter
Wheat Winter Rye Summer

Barley Oat Sugar Beet Winter
Rapeseed Silage Corn Weighted

Yield

TCI 0.12 0.34 0.10 0.28 0.38 0.10 0.62 0.47
VCI 0.21 0.25 0.19 0.25 0.50 0.09 0.51 0.45
VHI 0.16 0.33 0.14 0.28 0.46 0.10 0.61 0.49
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Figure 7. Bravais-Pearson correlation coefficients between (a) the relative annual silage corn yield anomalies and the annual
mean VHI, (b) the relative annual winter wheat yield anomalies and the annual mean VHI, and (c) the annual relatively
weighted crop yield anomalies and the annual weighted VHI differentiated by county. The corresponding maps with TCI
and VCI are provided in Figure S9.
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Within the correlation maps between the individual field crop yield anomalies and the
drought indices TCI, VCI, and VHI, clear differences could be recognized depending on
the crop type (Figures 7a,b and S9–S12). While silage corn, oats, winter rye, and sugar beet
showed a homogeneous picture of positive correlations, winter wheat, winter rapeseed, and
summer barley showed a predominantly heterogeneous picture of positive and negative
correlations. In addition, it became clear that the correlations in northern Bavaria generally
had higher values than in the south. The strongly negative outlier in the southern county
was also confirmed in the maps of individual crops. In contrast, there were hardly any
notable differences between the individual drought indices. In conclusion, it must also be
noted within this subsection that, as with the NDVI-LST correlation analysis, few strong
relationships emerged in the evaluation of the drought indices.

4. Discussion

This study addresses three research questions that are not satisfactorily answered
in the current literature. First, it provides results with much better spatial and temporal
resolution than the current one to determine where and when water is the limiting factor for
vegetation growth in Central Europe. Second, the analysis of this constraint incorporates
other environmental conditions to explain it, which has rarely been the case before. Finally,
an approach not yet practiced in Bavaria is presented to perform continuous drought
monitoring using remote sensing-based VIs at appropriate spatial and temporal resolution.

Our study showed that the correlation between NDVI and LST depends on the season,
land cover, and altitude, and that the TCI and VHI correlate well with both soil moisture and
yield data in Bavaria. Considering that the NDVI-LST correlation is negative when water
is the limiting factor for vegetation growth and positive when energy is the limiting factor,
several conclusions can be drawn from the results presented. In Bavaria, this relationship
is, firstly, dependent on the season: At the beginning and end of the vegetation period
the correlation between NDVI and LST is predominantly positive, whereas in the summer
months it is predominantly negative. Accordingly, the primary growth-limiting factor of
energy is replaced by the factor of water, especially in July and August. This seasonal
dependence of the NDVI-LST relationship has already been demonstrated globally, for
example in China [67] and North America [54,55] and even both from temporal and spatial
perspectives in Europe [36], although not in such a detailed spatial and temporal resolution.

Classifying the correlations according to land cover, it is noticeable that only agricul-
tural land and grassland show negative NDVI-LST correlations in the summer months,
while forest shows none or only positive correlations throughout the year. This indicates
that forests have a greater water storage capacity and/or a higher resilience to drought
stress than agricultural plants and grasses. Accordingly, the growth of forests in Bavaria in
summer seems in this study primarily energy-limited, while water is the primary limiting
factor for arable plants and grasses. However, it is important to emphasize that this is an
averaging analysis over 20 years: Extreme drought years also affect forest areas in Central
Europe and are associated with tree mortality [9,68].

The fact that the relationship between NDVI and LST varies depending on the land
cover or vegetation type has also already been demonstrated in several regions of interest,
e.g., on the Iberian Peninsula [69], in the Arctic [70], Mongolia [71], and North America [54].
The differences in forest areas and other vegetation types have only been investigated
in Mongolia [71] and North America [54]. Similar correlation differences were found
in Mongolia as well, although the analysis does not include seasonal differentiation. In
North America, it was also shown that forest areas are less prone to negative NDVI-LST
correlations than agricultural areas or grasslands. However, the different data, classification,
and geographical conditions must be taken into account when making these comparisons.

The third factor that significantly influences the relationship between NDVI and LST
is altitude. An increase in the correlation coefficient between NDVI and LST with altitude
has similarly been observed in other parts of the world before, for example in North
America [54], Mongolia [71], and Europe [36].
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Additionally, in Bavaria the correlation coefficient increases with altitude in all months,
with negative correlations only occurring below 800 m a.s.l. on average. Thus, especially
in summer at low altitudes in Bavaria (<800 m), water is the primary limiting factor for
vegetation growth, while above this altitude energy continues to be the primary factor.

Looking at the calculated drought index maps from TCI, VCI, and VHI (Figure 6), it
can be seen that MODIS data can primarily capture the temporal and spatial dynamics
of NDVI and LST. Comparing this with drought index calculations from other satellites
(e.g., [72,73]), this is an advantage in drought monitoring, especially in the temporal
dimension. However, some compromises have to be made within the spatial resolution. In
general, it can thus be argued that MODIS data are particularly useful for near-real-time
drought monitoring, while general classifications at selected time periods with high spatial
resolution are more useful with other platforms.

When evaluating the drought indices TCI, VCI, and VHI, with the soil moisture
index, two aspects are particularly relevant. Firstly, TCI and VHI show higher correlations
with soil moisture than VCI, with TCI resulting in the highest correlation overall. It
can be concluded from this that surface temperature generally reacts faster to changes
in soil moisture than vegetation state. Further studies with similar methodology exist
mainly for Asia and North America. Positive correlations between soil moisture and VHI
have been observed also in [74–76]. In Mongolia, the correlation between TCI and soil
moisture is higher than that for VCI, firstly, at different soil depths (but only with lagged
measurements) [77] and secondly, in areas with predominant vegetation cover [78]. In
China, soil moisture measurements and TCI also correlate higher than VCI in different
months [79]. A similar picture emerges for rice fields in Vietnam, and only on forest land
do both indices show a similar soil moisture correlation [80]. The results for Bavaria are
thus largely supported in other regions of the world.

The second relevant aspect of the correlation analysis between soil moisture and the
drought indices is the seasonal course. In summer, all indices correlate more strongly with
soil moisture than at the beginning and end of the vegetation period. This suggests that
soil moisture in summer has a stronger influence on both the surface temperature and
the status of the vegetation. This can be explained by the fact that water is the primary
limiting factor for plant growth in the warmer or hot summer months when the biomass
to be sustained is high: If soil moisture shows negative or positive anomalies in summer,
this has a stronger influence on the water balance of the vegetation and thus also on the
temperature [81] than in the other seasons, in which energy is the primary limiting factor.

When comparing the agricultural yield data with the drought indices, three aspects
are particularly central. Firstly, all three indices (TCI, VCI, and VHI) show similarly high
positive correlations in general, i.e., as indicated in the weighted yields. Also, there is no
general tendency for the superiority of any index for the individual crops. All three indices
thus reflect the annual anomaly of agricultural yields in Bavaria well. Two aspects are
noticeable here: VHI shows only slightly superior correlations here than its two components
separately. On the other hand, VCI and TCI correlate with yield at the same level, although
VCI is assumed to have a much more direct link to agricultural yield via NDVI than the TCI
via LST. This suggests that drought, which is reflected in higher than normal vegetation
thermal conditions, was the main cause of yield losses in the study area. Other correlation
studies in Europe involving yield data have also shown positive correlations with the three
drought indices almost without exception [61,64,82,83]. However, a direct comparison is
usually difficult due to the different methodologies, data situations, selected crops, and
geographical locations. When comparing with the most methodologically similar study
by Bachmair et al. [28], the results are confirmed in terms of both correlation strength and
spatial distribution, although in the other study the VCI shows slightly higher correlations
than the VHI. The added value in the present paper compared to this study is mainly the
analysis of several crops and the inclusion of the TCI.

The second aspect worth mentioning is the difference in correlation strength between
the individual crops. Especially sugar beet and silage corn show higher correlations than
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the others, which can be explained primarily in the monitoring period: While most crops
are harvested at the end of July/beginning of August, sugar beet and silage corn are
harvested at the end of September/beginning of October (Table 3). Thus, for these two
crops, more growing time and area (especially in August) is included in the correlation
analysis, which is obviously reflected in the drought indices. In comparison with other
studies, it is noticeable that winter wheat yields in north-eastern Germany [32] show higher
correlations with the VIs used than in Bavaria. The decisive difference here, however,
is in the methodological choice to include only relevant areas in north-eastern Germany
in the monitoring or the correlation analysis, whereas in our study all vegetation areas
with negative NDVI-LST correlation were included. Our results of the yields for wheat
and barley in connection with the drought indices are also confirmed by a Europe-wide
temporal correlation analysis between NDVI and wheat and barley yields [84]. Here, both
correlations in Germany decrease significantly from June onwards (Day 153) and reach
similar value ranges as in our analysis.

The third and last aspect to be noted is the spatial difference within the correlation
analysis. The general impression is that for all indices and crops the correlation between
yield and drought index is higher in northern/eastern Bavaria than in southern Bavaria.
The reason for this can be traced in the different precipitation conditions (Figure S3): In
drier northern Bavaria, the sensitivity of both the drought indices and agricultural yields
to a change in the water balance is higher than that in wetter southern Bavaria. The
higher sensitivity causes a higher correlation and thus a stronger relationship between the
two variables.

Nevertheless, certain limitations of this study should be noted. The spatial resolution
of the underlying data should be thoroughly considered. Due to the small-scale features of
the landscape in Bavaria, mixed pixels often occur, especially in the remote sensing data,
which can lead to inaccuracies both in the correlation analysis between NDVI and LST
and in the index calculation. Within the evaluation data, this indication is equally true
for both the soil moisture data (4 km) and the agricultural yield data (county level). In
addition, it must be noted that the data in this paper show significant differences within
temporal and spatial resolution. In order to match the data, they are adjusted on both levels
(e.g., via resampling or interpolation). This causes additional inaccuracies and could be an
explanation for partially low correlations within the results. In addition, the assumption
of a 19-year identical distribution of crop shares within the counties introduces—to some
extent—further uncertainties.

Another aspect worth discussing is the general use of VIs for estimating vegetation
growth and the application of NDVI in particular. Thus, VIs only ever provide an indirect
vegetation proxy, and several limitations must be considered here: On the one hand, detec-
tion on heterogeneous surfaces and at different canopy heights is problematic, and on the
other hand, factors such as sensor calibration, sensor viewing conditions, solar illumination
geometry and soil moisture, also influence the data quality of the indices [85–87]. NDVI in
particular is one of the most widely used vegetation indices and thus offers a wide range of
comparisons. It allows a large number of estimations of different vegetation properties and,
in addition, it has a sensitivity to green vegetation even on areas with low vegetation cover.
Nevertheless, the NDVI also brings uncertainties in the detection due to the influence of
soil brightness, soil color, clouds and cloud shadows as well as leaf canopy shadows and a
saturation problem in the presence of high vegetation diversity [86,88–90].

From a methodological point of view, two aspects, in particular, should always be
kept in mind: Firstly, the application of the drought indices is in part severely limited
in terms of area due to the threshold value set for the correlation coefficient between
NDVI and LST (which refers to the entire period and partially masks individual drier
years). The evaluation of the indices is thus only of limited significance, especially in the
marginal months of the vegetation period and in counties with little area included. On
the other hand, the area included in the analysis is always the same when evaluating the



Remote Sens. 2021, 13, 3907 19 of 24

drought indices with the individual crop yields and no differentiation is made between the
individual crops.

5. Conclusions

In this study, we aimed at identifying by means of a correlation analysis between
NDVI and LST when and where in Bavaria vegetation growth is primarily water-limited
and how this is related to the factors of land cover and altitude. In addition, we investigated
whether and to what extent the remote sensing-based drought indices TCI, VCI, and VHI
can capture agricultural drought and yield losses within these areas. The indices were
calculated from 2001 to 2020 within the growing season and evaluated with both soil
moisture and yield anomalies of agricultural crops.

We found that in Bavaria, especially in the summer months of July and August, on
agricultural land and grassland and below 800 m, water is the primary limiting factor for
plant growth. Within these areas and periods, the remote sensing-based drought indices
TCI and VHI correlate strongly with soil moisture and agricultural yield anomalies. From
both a soil- and a vegetation-based perspective, both indices have the potential to detect
agricultural and vegetation-based drought, respectively.

However, there are also further research potentials within this thematic focus. With
regard to the LST-NDVI relationship, it would be particularly interesting to include in the
correlation analysis other relevant variables, such as evapotranspiration, precipitation, and
global radiation and to specifically analyze individual drought years with regard to this
relationship. Within the evaluation of the drought indices, further soil- and vegetation-
related variables could be included in the analysis. In addition, a temporally differentiated
(e.g., monthly) correlation analysis between the drought indices and the field crop yield
anomalies would be desirable to determine possible seasonal focal points in the context.
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