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1 Introduction

1.1 Motivation

Global air traffic has grown significantly throughout the past decades. The number of
global airline flights has increased from 23.8 million in 2004 to 38.9 million in 2019, re-
sulting in a compound annual growth rate of 3.33 percent (International Air Transport
Association 2023b). The number of globally boarded airline passengers has increased even
faster in the same period, from 2.0 billion to 4.5 billion, corresponding to a compound
annual growth rate of 5.56 percent (International Air Transport Association 2023c). Nat-
urally, disruptive events such as the terrorist attacks of September 11, 2001 or the crisis
caused by the SARS-CoV-2 virus have severely affected global aviation. However, de-
mand recovered remarkably fast after these crises, and air traffic is currently approaching
pre-SARS-CoV-2 levels (International Air Transport Association 2023a). Global air traf-
fic can therefore be expected to continue its growth in the long term, despite recurring
disruptive events.

Since the deregulation of the airline sector in the 1980s and the 1990s, most airlines
operate hub-and-spoke networks to reduce their total network costs and make use of
economies of scale (Brueckner 2004, Burghouwt and de Wit 2005, Tu et al. 2020). In
these networks, passenger flows are consolidated at one or more hub airport(s) to allow
larger, more efficient aircraft to operate between the hubs and to maximize aircraft load
factors. Aircraft typically arrive and depart in waves at hub airports, as airlines aim to
offer their passengers short connecting times and a large number of attractive connecting
flights at their hubs (Burghouwt and de Wit 2005, Mirković and Tošić 2016, 2017). This
causes considerable fluctuations of traffic volume and fleet mix over the course of each
day.

1



1 Introduction

The combination of traffic growth and traffic concentration during peak times imposes
high demands on the capacity of hub airports. In particular, the airport infrastructure
must be able to handle the traffic well during peak times. Airport infrastructure is usually
divided into airside and landside infrastructure (e.g., International Civil Aviation Orga-
nization 1987, International Air Transport Association 2004, Ashford et al. 2011, Young
and Wells 2011, de Neufville and Odoni 2013). The airside comprises the runway, taxi-
way, and apron systems, while the landside includes the terminal building (with areas for
check-in, passport control, baggage claim, and security control), parking areas, transit
stations, and ground access systems such as roads and rails. The interface between land-
and airside infrastructure is formed by the gates where aircraft are parked during their
time on the ground and passengers board and disembark (Horonjeff et al. 2010). The
total capacity of an airport results from the capacities provided at the individual land-
and airside infrastructure elements, as well as the relations between these elements (Kat-
sigiannis and Zografos 2021). In order to successfully compete for new airlines, routes,
and transfer passengers, hub airports must ensure that all infrastructure elements have
sufficient capacity to allow for short transfer times as well as seamless day-to-day oper-
ations. Furthermore, in the competition for passengers who do not transfer but begin
and/or end their flight journey at a hub airport, also the capacity and attractiveness of
the feeder systems available to connect the airport to the surrounding region are of high
importance. Therefore, in the course of this work, we will also include the infrastructure
necessary for the operation of feeder systems (such as suburban train stations) in the
airport infrastructure, even if it is not installed at the airport itself, but in the region
surrounding the airport.

Prior to the crisis caused by the SARS-CoV-2 virus, many hub airports were operating at
their capacity limits (Gelhausen et al. 2020). Given the general trend of air traffic growth,
airports will reach their capacity limits again in the near future. To mitigate capacity
shortages, airports can (a) use new space to build additional infrastructure such as run-
ways or terminal buildings, (b) adapt existing infrastructure to increase throughput using
the existing space, or (c) optimize operational processes to improve efficiency without
touching the infrastructure. Of course, combinations of (a), (b), and (c) are also pos-
sible. While (a) provides the greatest leverage to increase capacity significantly, airport
expansions that require additional space are not always feasible for financial, political,
and environmental reasons, especially in Europe, or because there is no space available
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1 Introduction

in the vicinity of the existing airport. For example, London Heathrow Airport has been
subject to numerous expansion plans but cannot easily be extended as it is surrounded
by urban development. At Munich Airport, the construction of a third runway has been
discussed for more than a decade, but the current Bavarian government has put these
plans on hold until further notice (Munich Airport 2023b). Also in Munich, plans were
pursued between the years 2000 and 2008 to connect the city center with the airport by a
high-speed maglev train, significantly improving access to the airport. However, the plans
were discontinued due to a considerable increase in the cost projections of the project. As
a result, the current expansion plans of airports in the sense of (a) may not be sufficient
to keep up with the growing demand for air transport (Eurocontrol 2018), increasing the
importance of (b) and (c).

Existing literature addressing airport capacity, particularly in terms of airport infrastruc-
ture, can be divided into two branches. In the first branch, capacity is considered as
decision variable on the strategic level. For instance, Sun and Schonfeld (2015) propose a
model to strike a balance between capacity expansion costs and aircraft delay costs caused
by capacity shortages assuming demand uncertainty. Xiao et al. (2013) investigate runway
capacity choices for profit-maximizing, welfare-maximizing, as well as competing airports,
also assuming demand uncertainty. While both Sun and Schonfeld (2015) and Xiao et al.
(2013) consider airport capacity strategically in their models, they do not address how the
capacities determined by their models can actually be provided in reality. In the second
branch, operational problems associated with individual elements of airside infrastructure
(which address what we earlier denoted by (c)) are considered. For example, in the run-
way scheduling problem, the optimal sequence of departing and/or arriving aircraft on
one (or more) runway(s) is determined to maximize the throughput of a given runway
system and/or to minimize deviations from the flight plan. A recent literature review on
this problem is provided by Ikli et al. (2021). In the gate assignment problem, arriving
aircraft are assigned to available and compatible gates. Numerous objectives have been
proposed for this problem in the literature, and a recent survey is provided by Daş et al.
(2020). Finally, in the aircraft ground routing problem, optimal taxi routes for aircraft
between parking positions and runways are determined to minimize aircraft taxi times,
fuel consumption, and/or delays (e.g., Guépet et al. 2016, Weiszer et al. 2020). However,
in all three problems, the airport infrastructure is assumed to be given and cannot be
changed. Thus, to the best of our knowledge, no literature exists to date that exam-

3



1 Introduction

ines the extent to which the capacity of airport infrastructure can be optimized through
(re)construction measures.

1.2 Scope and structure of the dissertation

In this dissertation, we address three planning problems related to the optimization of
airport infrastructure. First, we consider the establishment of a shuttle network for a
given airport using small, electrically powered, vertical takeoff and landing aircraft to
improve airport accessibility. Such aircraft need special structures for landing, ground
handling and take-off, also known as vertiports. We present a framework for determining
the optimal locations for vertiports in the area surrounding an airport, with the objective
to maximize the number of passengers who choose to travel to the airport by air taxi. In
doing so, we explicitly take into account competing means of ground transport and the
mode choice behavior of passengers.

In the second planning problem, we optimize the positions and orientations of aircraft
parking positions close to a given airport terminal, considering two lexicographically or-
dered objectives. We first identify a layout that minimizes the overall number of aircraft
weighted by size that cannot be parked near the terminal, incorporating the traffic char-
acteristics at hub airports and the resulting variations in traffic volumes and fleet mix.
Among all layouts that are optimal with respect to this objective, we then search for the
layout that minimizes the number of parking positions that need to be built, weighted by
the size of the largest aircraft that they are equipped for. Our model can be applied to
both greenfield and brownfield instances, allowing it to be used whenever a new terminal
is in planning or an existing one is to be rebuilt. The approach addresses the gap we
identified above, as it enables airports to optimize the parking capacity of a given apron
without using additional space.

This also applies to the third planning problem considered in this dissertation, which
involves the recurring decision of which aircraft parking position at the facade of a given
terminal should be equipped with which and how many passenger boarding bridge(s). We
consider a planning horizon of up to 10 years and assume that the positions and orienta-
tions of the aircraft parking positions at the terminal facade are given. The objective is

4



1 Introduction

to minimize the total cost for the airport over the time horizon, including investment and
operating costs for passenger boarding bridges as well as penalty costs for aircraft that
cannot be parked at a parking position close to the terminal. Using our approach allows
airports to optimally adapt existing parking positions to the changing fleet mix over time
in order to handle as many aircraft as possible at parking positions close to the terminal
with existing apron and terminal space.

We apply a variety of modeling and solution methods in this dissertation. In the vertiport
location problem, we incorporate a multinomial logit model into a hub location problem
with multiple allocation and linearize the resulting model. In the apron layout planning
problem, we first strengthen our original model formulation using the Bron-Kerbosch al-
gorithm, and then apply a problem-specific decomposition approach as well as a number of
acceleration techniques to solve the problem efficiently. Finally, we employ Dantzig-Wolfe
decomposition to solve the third planning problem using a column generation heuristic.
For all three planning problems, we provide extensive case studies for Munich Airport to
showcase our approaches and to derive important managerial insights.

The remainder of this dissertation is structured as follows. In Chapter 2, we present our
framework for determining the optimal locations for vertiports in the area surrounding
an airport. This chapter is based on the working paper Hagspihl et al. (2023c), which
is currently under review at OR Spectrum. Our approach to optimize the positions
and orientations of aircraft parking positions close to an airport terminal is addressed in
Chapter 3. This chapter is based on the working paper Hagspihl et al. (2023a), which is
currently under review at Transportation Research Part B: Methodological after a major
revision. Chapter 4 presents our work on the equipment of aircraft parking positions with
passenger boarding bridges. In this chapter, we use several concepts already introduced
in Chapter 3, but with a different notation. Chapter 4 is based on the paper Hagspihl
et al. (2022), which was published in the European Journal of Operational Research in
September 2022. The dissertation then comes to its end in Chapter 5 with some concluding
remarks as well as an outlook on future research.
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2 Planning an Airport Shuttle
Network with Air Taxis

Airports and airlines share a common interest in providing passengers with fast and con-
venient access to airports. With the introduction of air taxis as a new means of transport,
the opportunity will soon emerge to introduce air taxi shuttle services to airports. In this
context, for each individual airport the question arises where the facilities for landing,
ground handling and take-off, also called vertiports, should be located in the area sur-
rounding the airport. We formulate the problem as a hub location problem with multiple
allocation, with the objective to maximize the number of passengers who choose to reach
the airport by air taxi. In our model, we explicitly incorporate passengers’ choice behavior
with respect to available means of transport using a multinomial logit model. We linearize
the problem and provide guidance on the steps needed to use the model in practice. In
an extensive case study, we apply the model to real data for Munich Airport, perform a
stated preference study to parameterize the multinomial logit model, suggest locations for
vertiports throughout Bavaria as a result, and investigate to what extent the introduction
of air taxi shuttle flights can reduce travel times to Munich Airport.

2.1 Introduction

Current technological advances are paving the way for the imminent market launch of
small, fully electric, vertical take-off and landing aircraft (eVTOL), also called air taxis in
the following. For example, several manufacturers are planning the introduction of their
first eVTOL models to the market for 2025 (e.g., Lilium 2022, SkyDrive 2023, Vertical
Aerospace 2023). The concept of Advanced Air Mobility (AAM) envisions the use of air

6



2 Planning an Airport Shuttle Network with Air Taxis

taxis as a novel means of transport to move passengers and cargo safely and efficiently
at low altitudes (Federal Aviation Administration 2022, Advanced Air Mobility Institute
2023). Under the umbrella of AAM, numerous potential applications for eVTOLs arise;
for instance, the literature suggests that air taxis may be used for special purposes, in
particular to create feeder networks for airports (e.g., Frej Vitalle et al. 2020, Straubinger
et al. 2020b, Garrow et al. 2021, Schweiger and Preis 2022, Fu et al. 2022). Further-
more, the terms Urban Air Mobility and Regional Air Mobility refer to the use of air
taxis in inner-city and inter-city point-to-point traffic, respectively, to relieve congested
metropolitan areas (National Aeronautics and Space Administration 2021, Federal Avia-
tion Administration 2022).

Regardless of the particular application, eVTOLs require appropriate ground infrastruc-
ture for take-off, landing, and all ground-based handling processes (Schweiger and Preis
2022). This infrastructure is commonly referred to as a vertiport (Rajendran and Shulman
2020). The design and operation of vertiports are not yet fully determined, which is why
investment and operating costs of vertiports can currently only be roughly estimated. De-
pending on the size, location, design, and operation, we find estimates for the investment
costs of a vertiport of up to €15 million, while predictions for annual operating costs per
vertiport range range up to €17 million (Lilium 2020, McKinsey & Company 2020). As
a result, the number of vertiports that can be opened at market launch is limited and
locations must be chosen carefully. The selection of vertiport locations, as well as the
construction of vertiports, will largely depend on the support of public authorities.

The deployment of Advanced Air Mobility faces a number of challenges. Passenger ac-
ceptance may suffer from initially high ticket prices, which both research and industry
predict (Ploetner et al. 2020, Pukhova et al. 2021, Holden and Goel 2016). In addition,
waiting times on the ground are to be expected before boarding and after deboarding, for
example for security checks as well as loading and unloading processes, reducing the time
savings that incentivize passengers to opt for an eVTOL flight. Moreover, Straubinger
et al. (2020b) and Schweiger and Preis (2022) point to local safety regulations as well
as political concerns, such as environmental issues, especially noise pollution, that could
impede the implementation of AAM. In light of these challenges, we consider shuttle ser-
vices to airports to be the most promising application area for air taxis at market launch.
Airport passengers are likely to have a high willingness to pay for eVTOL flights, as timely
arrival at the airport is particularly important (Frej Vitalle et al. 2020). Compared to
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intra-city routes, trips to the airport can also be longer, as airports are often located
remotely from the city center. As a result, the expected waiting times before boarding
and after deboarding of air taxi flights are less problematic, as they will have a smaller
relative impact on the overall travel time. Furthermore, safety and political concerns can
be mitigated, because air taxis can begin their flights to the airport from the outskirts of
cities, rather than from downtown.

While both public and research interest in AAM have grown significantly in the recent
past, the majority of contributions to date have focused on aircraft technology and op-
erational concepts, whereas the integration of AAM into existing transportation systems
has received less attention (Garrow et al. 2021). We address this gap by proposing an
approach to study optimal vertiport locations to create an air taxi feeder network for an
airport, pursuing the objective to maximize the number of passengers who choose to reach
the airport by air taxi.

We recognize that air taxis will compete with other means of transport from the moment
they enter the market. Passengers are free to choose which means of transport they use
to reach the airport, and it is also possible to change from one means of transport to
another en route. When choosing a means of transport, passengers primarily take into
account the travel times and travel costs of the available alternatives (Straubinger et al.
2020a,b). The travel times and travel costs associated with eVTOLs clearly depend on
the locations of the vertiports. If, for example, from an individual passenger’s point of
view, a vertiport is located on the direct way from his/her home to the airport, the use of
the air taxi is associated with shorter travel times and lower travel costs for this passenger
than if the vertiport were located in the opposite direction. Thus, demand for eVTOL
flights and optimal vertiport locations are interdependent.

Our contribution is threefold. To the best of our knowledge, we are the first to formulate
this problem as an uncapacitated hub location problem with multiple allocation and
integrated multinomial logit model to account for passengers’ choice behavior with respect
to competing means of transport. Second, we build on the ideas of Haase (2009) to
linearize the model, prevent numerical instabilities, and eliminate redundant constraints.
Third, we apply the resulting mixed-integer linear model to data from Munich Airport
and provide managerial implications based on the results of an extensive case study. For
this purpose, we conduct a stated preference study to parameterize the multinomial logit
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model. We find optimal locations for vertiports and discuss the influence of variations in
various parameters such as air taxi ticket prices and cruising speeds.

The remainder of this chapter is structured as follows. In Section 2.2, we review the
related literature, before introducing and adjusting our model in Section 2.3. We discuss
what data must be available and how this data can be obtained to apply the model to
real life instances in Section 2.4. Section 2.5 presents the case study for Munich Airport
including the stated preference survey, and we conclude the chapter in Section 2.6.

2.2 Related literature

2.2.1 Vertiport location problems

The selection of vertiport locations has been the subject of a number of papers in the recent
past. However, most papers consider air taxis in the general context of Urban or Regional
Air Mobility rather than as a new means of transport specifically for airport access.
Furthermore, few papers explicitly consider the interdependence of location decisions and
demand.

Existing quantitative work in the field can be divided into clustering-based analyses and
approaches using mathematical programming (Sinha and Rajendran 2023). Clustering-
based approaches are provided by Lim and Hwang (2019), Rajendran and Zack (2019),
and Jeong et al. (2021). Sinha and Rajendran (2023) employ both a clustering algorithm
and mathematical programming in a stepwise procedure. Wu and Zhang (2021) propose
an integer program to identify optimal locations for vertiports in order to create an on-
demand hub-and-spoke network using disaggregate demand data and apply their model to
the Tampa Bay area in a detailed case study. While they do consider the interdependence
of location decisions and demand for air taxis, they assume that travelers’ mode choice
results exclusively from the travel times and costs of available modes and the travelers’
value of time. Willey and Salmon (2021) formulate an integer program to design an urban
vertiport network and use subgraph isomorphism to ensure that the resulting network has
a structure desired by the decision maker. They also take into account that vertiports
can be used as transfer locations between air taxis, i.e., passengers can travel several
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legs of their journey by air taxi. However, they use a comparatively simplistic model to
estimate demand. Chen et al. (2022) present another mixed-integer program to identify
optimal vertiport locations to create an urban hub-and-spoke system. In contrast to
other contributions, they model the studied area as a grid. The demand between two
cells is treated as a given, regardless of the vertiport locations. They develop a problem-
specific variable neighborhood search to solve the problem efficiently, and in a case study
apply their approach to the Beijing metropolitan region. Wang et al. (2022) model the
interrelation of location decisions and passenger demand using a multinomial logit model,
and develop an adaptive discretization scheme to solve the non-linear problem. However,
instead of addressing the question of finding the optimal locations for vertiports from a
purely strategic point of view, they take a holistic system perspective, from which they
also consider tactical and operational aspects. Rath and Chow (2022) also propose an
integer model for identifying optimal locations of vertiports. In contrast to all other
contributions mentioned above, they consider air taxis as a new alternative means of
transport specifically for airport access. Vertiports are located with the alternative goals
to either maximize the number of passengers choosing air taxis to reach the airport,
or to maximize the revenue generated by the air taxi feeder network. Similar to our
approach, they employ a multinomial logit model to estimate the number of passengers
who will use each vertiport depending on the location decisions taken. However, while
we assume multiple allocation, i.e., passengers from one origin can make different choices,
they assume single allocation, which simplifies the problem but is not realistic.

2.2.2 Location problems with endogenous demand

Determining optimal vertiport locations is a specific application of hub location problems,
which in turn belong to the class of location problems. For an overview of location
problems, we refer the reader to Owen and Daskin (1998), ReVelle and Eiselt (2005),
Farahani and Hekmatfar (2009), Daskin (2011), and Laporte et al. (2019). Recent surveys
focusing on hub location problems are provided by Alumur and Kara (2008) and Farahani
et al. (2013). While many hub location problems consider systems in which the number
of passengers between origin-destination pairs are given as fixed values (e.g., because
only one transportation mode or service provider exists), we explicitly take into account
that passengers have the freedom of choice to reach their destination with or without
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using air taxis. That is, passengers compare the means of transport available to them
and choose the one that provides them with the highest utility. Thus, assuming that
travel time and travel costs significantly influence passengers’ decisions (see, e.g., Fu et al.
2019), demand depends on the vertiport location decisions. Existing work on hub location
problems under competition can be divided into approaches where gravity models are used
to reflect the dependence of demand on location decisions (e.g., Eiselt and Marianov 2009),
and approaches where discrete choice models are applied for that purpose (e.g., Aros-Vera
et al. 2013, Lüer-Villagra and Marianov 2013, Kim and Shim 2021, Rezaei et al. 2022).

2.2.3 Multinomial logit models

Discrete choice models have been employed with great success on various occasions to
model humans selecting one alternative from a finite set of alternatives. A comprehen-
sive introduction to the field is provided by Train (2009). Multinomial logit models are
predominantly used. Due to rigid assumptions, the predictions of these models can be
less realistic than those of more sophisticated approaches such as mixed logit models,
but they offer methodological advantages in terms of their integrability into optimiza-
tion models. In particular, they exhibit the independence of irrelevant alternatives (IIA)
property, which states that the relative ratio of the choice probabilities of two available
alternatives remains constant as further alternatives are added to or removed from the
choice set.

When using a multinomial logit model to depict the interrelation of demand and location
decisions, the hub location problem becomes non-linear (Aros-Vera et al. 2013). Haase and
Müller (2014) compare three different approaches from the existing literature to linearize
the problem, finding that the approach developed independently by Haase (2009) and
Aros-Vera et al. (2013) is the most efficient. In Section 2.3, we will therefore adapt their
approach, which is based on the IIA property, to our model and extend it.

Different people typically have different preferences, and depending on the circumstances
of the decision to be made, even a single person can arrive at different decisions when facing
the same choice set. For example, we might expect lower-income individuals to be more
price-sensitive than higher-income individuals, resulting in different choices. Furthermore,
a single person might choose different means of transport depending on the purpose
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of the trip. In consequence, multinomial logit models must be specified and estimated
on the basis of empirical data appropriate to the particular application. Some papers
specify and estimate multinomial logit models in the context of the introduction of air
taxis. Fu et al. (2019) investigate the choice behavior of commuting passengers in the
Munich region. They consider relatively short trips of 15km, and respondents can choose
between car, public transport, autonomous ground taxi, and autonomous flight taxi. Their
analysis focuses on the impact of travel time, travel costs, and the level of safety, as well
as sociodemographic variables of the respondents on the choice behavior. Ilahi et al.
(2020) provide a similar analysis for the Greater Jakarta area. Finally, Rimjha et al.
(2021a) employ a mixed logit model to investigate mode choice behavior of commuting
passengers in Northern California. Compared to Fu et al. (2019), the latter consider larger
distances, as they take into account origin-destination pairs from an area with 150km
radius. Unfortunately, we cannot use the findings from these papers for our Munich
Airport case study, as the data were either collected in other areas of the world (Ilahi
et al. 2020, Rimjha et al. 2021a), and/or the trip purpose was different (none of them
considered airport shuttle services). Thus, we conduct our own survey for our case study
(details will be discussed in Section 2.5).

2.3 Model

We identify optimal locations for vertiports by solving an uncapacitated hub location
problem with multiple allocation that explicitly accounts for the interdependence of de-
mand for air taxis and location decisions. In the following, we first introduce a discrete
choice model, which we use to depict the interrelation between vertiport locations and
demand in Section 2.3.1, before addressing the hub location problem itself in Section
2.3.2. The notation of both the discrete choice model and the hub location problem is
summarized in Appendix A.1.

2.3.1 Modeling passenger demand

The demand for air taxis as a means of transport for airport access results from the
number of passengers who choose to make use of an air taxi on their way to the airport.
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We model passenger choice behavior using a discrete choice model. Passengers from each
origin o ∈ O can choose between a finite number of itineraries i ∈ I to reach the airport.
An itinerary i ∈ I defines which means of transport is/are used and where, if applicable,
passengers change means of transport. For example, reaching the airport directly by car,
without changing to other means of transport en route, could be one itinerary i ∈ I.
Another itinerary could be to reach a certain vertiport by public transport, and then fly
to the airport by air taxi. We assume that passengers use air taxis for at most one leg of
an itinerary, and that this leg is always the last on the way to the airport. In addition, we
only consider itineraries with at most two legs. Note that our definition of an itinerary
does not specify the starting point of the trip, so in principle all itineraries are available
to passengers from all origins. However, as not all means of transport may be available
at each origin, Io ⊆ I denotes the set of itineraries which passengers from origin o ∈ O
can choose from. Furthermore, all purely ground-based itineraries are contained in set
Ignd ⊂ I, and all itineraries where passengers reach the airport by air taxi are contained
in set Iair ⊂ I. Thus, I = Ignd∪Iair. Note that the size of set Iair depends on the number
of opened vertiports, as each additional vertiport adds at least one additional itinerary.
Finally, let Igndo = Ignd ∩ Io and let Iairo = Iair ∩ Io.

In the following, we derive the probability poi that passengers from origin o ∈ O will choose
itinerary i ∈ Io based on Train (2009). For passengers from origin o, itinerary i ∈ Io is
associated with utility Uoi, and we assume that passengers exhibit a utility-maximizing
behavior when choosing the transportation mode, i.e., choose itinerary î ∈ Io for which
Uôi ≥ Uoi holds for all i ∈ Io \

{
î
}

. While we cannot directly observe the values of Uoi,
we can decompose Uoi into a deterministic component Voi, which can be estimated based
on passenger choices in empirical studies and which we will refer to as the representative
utility, and a random component εoi, which denotes the difference between the estimated
representative utility Voi and the true utility Uoi:

Uoi = Voi + εoi ∀o ∈ O; i ∈ Io (2.1)
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The choice probability poi is then given as

poi = p (Uoi ≥ Uoj ∀j ∈ Io \ {i})
= p (Voi + εoi ≥ Voj + εoj ∀j ∈ Io \ {i})
= p (εoj − εoi ≤ Voi − Voj ∀j ∈ Io \ {i}) . (2.2)

Assuming that the error terms εoi are independently and identically Gumbel distributed,
we obtain a multinomial logit model where poi is calculated (see, e.g., Train 2009, p. 36)
as

poi =
eVoi∑

j∈Io
eVoj

∀o ∈ O; i ∈ Io. (2.3)

2.3.2 Hub location problem

Model formulation In addition to the notation already introduced, we denote the
demand at origin o ∈ O by no. Furthermore, let K = {1, . . . , K} be the set of potential
vertiport locations, and let binary decision variable yk be 1 if vertiport k ∈ K is opened,
and 0, otherwise. For each itinerary i ∈ Iair, we denote the vertiport k ∈ K where
passengers transfer from any ground-based means of transport to air taxi by ki. Then,
we formulate the problem of optimally locating q vertiport locations as follows:

max z =
∑
o∈O

∑
i∈Iair

o

no · poi (2.4a)

subject to∑
k∈K

yk = q (2.4b)

poi =
eVoi · yki∑

j∈Ignd
o

eVoj +
∑

j∈Iair
o

eVoj · ykj
∀o ∈ O; i ∈ Iairo (2.4c)

yk ∈ {0, 1} ∀k ∈ K (2.4d)
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0 ≤ poi ≤ 1 ∀o ∈ O; i ∈ Iairo (2.4e)

Objective Function (2.4a) maximizes the expected number of passengers who choose an
itinerary i ∈ Iair. Constraint (2.4b) sets the number of vertiports to be opened to the
value of parameter q. Constraints (2.4c) are based on Eqs. (2.3) and determine the choice
probabilities for each origin and itinenary combination, depending on which vertiports
are opened. Finally, Constraints (2.4d) and (2.4e) define the variable domains.

Linearization Constraints (2.4c) are non-linear and thus have to be linearized. In view
of the findings by Haase and Müller (2014), we linearize Constraints (2.4c) based on the
approach proposed by Haase (2009) and Aros-Vera et al. (2013). The approach makes
use of the fact that multinomial logit models exhibit the IIA characteristic. That is, the
fraction of two choice probabilities poi and poj remains constant regardless of the number
of options available in the choice set. Let roi denote the probability that passengers from
origin o ∈ O use itinerary i ∈ Io assuming all vertiports k ∈ K are opened (i.e., yk = 1

for all k ∈ K). Note that the values of roi can be computed in a preprocessing step,
making roi a parameter. Then, we substitute Constraints (2.4c) by the following sets of
constraints:

poi ≤ yki ∀o ∈ O; i ∈ Iairo (2.5a)∑
i∈Io

poi = 1 ∀o ∈ O (2.5b)

roj · poi ≤ roi · poj + 1
(
j ∈ Iair

) (
1− ykj

)
∀o ∈ O; i, j ∈ Io : i 6= j (2.5c)

Constraints (2.5a) ensure for each origin o ∈ O and itinerary i ∈ Iairo that the choice
probability poi is 0 if vertiport ki is not opened. Constraints (2.5b) make sure that all
passengers from each origin have to select exactly one itinerary to get to the airport.
Finally, Constraints (2.5c) ensure that the IIA property (i.e., poi

poj
= roi

roj
) is adhered to

if both itineraries i, j ∈ Io are available, where 1 (·) represents the indicator function.
That is, if j ∈ Iairo and vertiport ykj is not opened, the

(
1− ykj

)
term ensures that the

respective constraint is not binding.
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Numerical instabilities Utilization probabilities poi may assume very small values for
certain origins o ∈ O and itineraries i ∈ Io, resulting in numerical instabilities when
solving the model. Following Haase (2009), we define a small value γ (e.g., γ = 0.0001)
and reformulate Constraints (2.5c) as follows to prevent numerical instabilities:

roj · poi ≤ roi · poj + 1
(
j ∈ Iair

) (
1− ykj

)
∀o ∈ O; i, j ∈ Io : roi, roj ≥ γ; i 6= j (2.6a)

poi = 0 ∀o ∈ O; i ∈ Io : roi < γ (2.6b)

Constraints (2.6a) are now only defined iff roi, roj ≥ γ. Otherwise, if roi < γ, poi is set
to 0 in Constraints (2.6b). As described by Haase (2009), this potentially leads to slight
deviations of poi from the actual utilization probabilities; however, for sufficiently small
values of γ, we expect these deviations to be negligible.

Redundant constraints Constraints (2.6a) contain redundant constraints due to tran-
sitivity (Haase 2009). For each origin o ∈ O, let îo denote the itinerary from set Igndo with
the highest choice probability given that all vertiports are opened, i.e., rôio ≥ roi for all
i ∈ Igndo . Then, we substitute Constraints (2.6a) as follows:

rôio · poi ≤ roi · pôio ∀o ∈ O; i ∈ Io : roi ≥ γ; i 6= îo (2.7a)

Note that the
(
1− ykj

)
term in Constraints (2.5c) and (2.6a) is no longer needed in

Constraints (2.7a), as we chose itinerary îo from set Igndo , i.e., îo is always available
regardless of the values of the yk variables. While Constraints (2.6a) are defined for all
tuples i, j ∈ Io : roi, roj ≥ γ; i 6= j, only one constraint per itinerary i ∈ Io : roi ≥ γ; i 6= îo

exists in Constraints (2.7a). However, we find that Constraints (2.7a) alone do not ensure
that the IIA property is adhered to. For example, consider a situation with only one
origin (i.e., we can drop the index o) and four itineraries I = {1, 2, 3, 4}. Furthermore,
let ri = (0.4, 0.2, 0.1, 0.3), where ri > γ ∀i ∈ I, and let Ignd = {1}. Now assume that
the vertiport used on itinerary i = 2 is not opened, i.e., p2 = 0 due to Constraints (2.5a),
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but all other vertiports are opened. Due to the IIA property, the pi variables should then
take the values (0.5, 0, 0.125, 0.375). However, with Constraints (2.5a), (2.5b), (2.6b),
and (2.7a) only, there are infinitely many feasible combinations for the values of the pi
variables (for example, pi = (0.6, 0, 0.15, 0.25)). In contrast to Haase (2009), we therefore
add Constraints (2.8a) to the model.

rôio · poi + 1
(
i ∈ Iair

)
(1− yki) ≥ roi · pôio ∀o ∈ O; i ∈ Io : roi ≥ γ; i 6= îo (2.8a)

Together with Constraints (2.7a), Constraints (2.8a) ensure that the IIA property is
always adhered to. However, the total number of Constraints (2.7a) and (2.8a) still
is considerably smaller than the number of Constraints (2.6a).

2.4 Model application

To apply Model (2.4a)-(2.4b), (2.4d)-(2.4e), (2.5a)-(2.5b), (2.6b), (2.7a)-(2.8a), several
preparation steps are necessary. In particular, some modeling decisions have to be made
and appropriate data has to be acquired. Often, the lack of available data severely limits
the modeling possibilities, so both processes should be considered simultaneously. The
notation introduced in this section is summarized in Appendix A.1.

2.4.1 Modeling decisions

Scope and granularity First, the planning territory and the planning granularity
must be defined to obtain the set of origins O. Both can be based on geometric as well
as administrative considerations. For example, the territory can be defined by a circle
with a certain radius around the airport, or by (federal) state borders surrounding the
airport, and the territory can be divided into origin cells based on regional administrative
boundaries (such as postal codes or municipal boundaries) or based on a custom grid
structure. In line with expert interviews that we conducted, we expect that administrative
concerns will usually be the determining factor, as the selection of vertiport locations and
the construction of vertiports will most probably be the responsibility of public authorities.

17



2 Planning an Airport Shuttle Network with Air Taxis

Vertiport locations Subsequently, the set of potential vertiport locations K has to
be defined. Again, the selection of potential vertiport locations can be based on diverse
criteria, such as legal, political, or technological concerns. For example, constructing a
vertiport may not be feasible and/or desired in densely populated areas, and the expected
operating range of air taxis may prohibit vertiports located too far from the airport. In
addition, regional circumstances can affect the selection of potential vertiport sites. For
example, in highly regulated areas of the world (such as the European Union), vertiports
might naturally be established at existing small airfields where take-offs and landings are
already authorized. Expert interviews and/or the use of focus groups can help identify
the set of potential vertiport locations. K does not have to be a subset of O, i.e., potential
vertiport locations can be selected regardless of how the set of origins is defined.

Itineraries The set of itineraries I should reflect all options passengers can choose from
to reach the airport. In this work, we consider four types of itineraries: Passengers can
reach the airport

• directly by car,

• directly by public transport (denoted by PT in the following),

• by air taxi, reaching the vertiport by car (car_AT), and

• by air taxi, reaching the vertiport by public transport (PT_AT).

In the following, we denote these sets of itineraries by Icar, IPT, Icar_AT, and IPT_AT,
respectively. As not all itineraries may be available at all origins, let Icaro , IPTo , Icar_ATo ,
and IPT_ATo be the sets of itineraries available to passengers at origin o ∈ O. Furthermore,
we define Igndo =Icaro ∪ IPTo and Iairo =Icar_ATo ∪ IPT_ATo . Additional types of itineraries
(e.g., car sharing) can be added to I and all subsets we introduced accordingly.

Representative utilities Next, the representative utility Voi that passengers from ori-
gin o have when choosing itinerary i needs to be determined for each origin o ∈ O and
itinerary i ∈ Io. We calculate the values of Voi as

Voi = βasc
i +

∑
q∈Q

βq
i · η

q
oi ∀o ∈ O; i ∈ Io, (2.9)
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where

• βasc
i represents the alternative-specific constant of itinerary i ∈ I,

• Q denotes the set of criteria considered by the passengers when evaluating alterna-
tive itineraries,

• βq
i is a weighting parameter for itinerary i ∈ I with respect to criterion q ∈ Q, and

• ηqoi is the performance of itinerary i ∈ Io for passengers from origin o ∈ O with
respect to criterion q ∈ Q .

The most important criteria passengers consider when choosing an itinerary are travel
times and travel costs (Straubinger et al. 2020b,a). Travel times include waiting times
such as transfer times at vertiports, which can account for a significant portion of travel
times on itineraries i ∈ Iair. Let βcar,asc, βPT,asc, βcar_AT,asc, and βPT_AT,asc denote the
alternative-specific constants for the respective itinerary types. Similarly, let βcar,tt, βPT,tt,
βcar_AT,tt, and βPT_AT,tt denote the itinerary type specific weighting factors for travel time,
and let βcar,tc, βPT,tc, βcar_AT,tc, and βPT_AT,tc be the itinerary type specific weighting
factors for travel costs. Finally, let ηttoi and ηtcoi denote the travel time and travel costs of
itinerary i ∈ I for passengers at origin o ∈ O. Then, we determine the representative
utilities for all o ∈ O and i ∈ Io as:

Voi =


βcar,asc + βcar,tt · ηttoi + βcar,tc · ηtcoi ∀i ∈ Icaro

βPT,asc + βPT,tt · ηttoi + βPT,tc · ηtcoi ∀i ∈ IPTo

βcar_AT,asc + βcar_AT,tt · ηttoi + βcar_AT,tc · ηtcoi ∀i ∈ Icar_ATo

βPT_AT,asc + βPT_AT,tt · ηttoi + βPT_AT,tc · ηtcoi ∀i ∈ IPT_ATo

(2.10)

2.4.2 Data acquisition

Passenger data For each origin cell o ∈ O, the number of airport passengers no needs
to be known. The values of no can be obtained from ticket sales data or passenger surveys.
Alternatively, no can also be estimated for each origin o ∈ O based on population data,
income data, and the distances to the airport considered as well as adjacent airports. Of
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course, no should only be estimated if no true passenger data is available. As a result, the
modeling decisions about what area to consider and how to divide the area into origin
cells will often depend on the availability of adequate passenger data.

Itinerary data To calculate the representative utility Voi for each origin o ∈ O and
itinerary i ∈ Io as defined in Eqs. (2.10), two sets of data must be acquired. First, the
values of all weighting factors and alternative-specific constants β need to be estimated
based on empirical data, which we will showcase in our case study in Section 2.5. Typically,
a stated preference survey has to be performed.

Second, travel times and travel costs for each origin o ∈ O and itinerary i ∈ Io, denoted
by ηttoi and ηtcoi in Eqs. (2.10), must be determined. For this purpose, various sources
and methods can be applied. We use Google Maps to determine travel times from all
origins o ∈ O to all vertiports k ∈ K and to the airport (abbreviated as “apt” in the
following), for both car and public transport. Let tcaro,k, tcaro,apt, tPTo,k , and tPTo,apt denote the
respective travel times. For each origin o ∈ O, we determine the travel times for all
itineraries i ∈ Icaro as the sum of tcaro,apt and tcar+, where tcar+ denotes the time needed to
park the car. Similarly, the travel times for all itineraries i ∈ IPTo are calculated as the
sum of tPTo,apt and tPT+, where tPT+ represents the waiting time at the departure station of
the public transport service. Similar to travel times, we denote the ground (i.e., street)
distances between origin o ∈ O, vertiport k ∈ K, and the airport by do,k and do,apt, and
the direct (i.e., Euclidean) distance between vertiport k ∈ K and the airport by dk,apt.
While numerous sources and methods can be used to determine all distances, we use
Google Maps. We approximate the travel times of air taxis from each vertiport k ∈ K to
the airport, denoted by tATk,apt, by dividing dk,apt by the air taxi cruising speed vAT. For
each origin o ∈ O, the travel times for itineraries i ∈ Icar_ATo are calculated as the sum of
tcaro,ki

, tATki,apt, t
car+, and tAT+, which denotes the transfer time at the vertiport. The travel

times for itineraries i ∈ IPT_ATo are determined analogously.

The travel costs for itineraries i ∈ Icaro are computed by adding a fixed component ccar,fix,
which accounts for the parking cost at the airport, to a distance dependent component
ccar,var · do,apt. For itineraries i ∈ IPTo we consider three cost levels cPT,low, cPT,mid, cPT,high,
depending on the location of origin o and the travel time tPTo,apt. If o is located in the
same local transport network as the airport or if tPTo,apt ≤ 90min, we assume travel costs
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of cPT,low. Otherwise, if 90min < tPTo,apt < 180min, we set the travel costs to cPT,mid, and
if tPTo,apt ≥ 180min, we set the travel costs to cPT,high. In line with Rimjha et al. (2021b),
we model air taxi ticket prices as the sum of a fixed cost component cAT,fix and a distance
dependent component cAT,var · dki,apt. For itineraries i ∈ Icar_ATo , the travel costs then
equal the sum of the costs of reaching vertiport ki ∈ K by car (including the fixed costs
for parking the car at the vertiport) and the air taxi ticket price from vertiport ki to the
airport. Similarly, the travel costs for itineraries i ∈ IPT_ATo are determined as the sum
of the respective costs for public transport and air taxi.

We summarize how we determine travel times and travel costs for all itineraries in Eqs.
(2.11) and (2.12).

ηttoi =


tcaro,apt + tcar+ ∀i ∈ Icaro

tPTo,apt + tPT+ ∀i ∈ IPTo

tcaro,ki
+ tATki,apt + tcar+ + tAT+ ∀i ∈ Icar_ATo

tPTo,ki + tATki,apt + tPT+ + tAT+ ∀i ∈ IPT_ATo

(2.11)

ηtcoi =


ccar,fix + ccar,var · do,apt ∀i ∈ Icaro

∈
{
cPT,low, cPT,mid, cPT,high

}
∀i ∈ IPTo

ccar,fix + ccar,var · do,ki + cAT,fix + cAT,var · dki,apt ∀i ∈ Icar_ATo

∈
{
cPT,low, cPT,mid, cPT,high

}
+ cAT,fix + cAT,var · dki,apt ∀i ∈ IPT_ATo

(2.12)

Once all values of Voi have been determined, Eqs. (2.3) can be used to calculate choice
probabilities roi for each origin o ∈ O and itinerary i ∈ Io, assuming that all vertiports
are opened. Then, all sets and parameters are defined and the model can be solved to
identify the optimal q vertiport locations from set K.
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2.5 Case study

In our case study we consider the introduction of an air taxi shuttle network for Munich
Airport. We first explain the general setting in Section 2.5.1; then, in Section 2.5.2, we
elaborate on the stated preference survey we conducted to estimate all weighting factors
β in Eqs. (2.10); finally, we present our computational experiments in Section 2.5.3.

2.5.1 General setting

Motivation With 47.9 million passengers handled in 2019, Munich Airport is among
the ten largest airports in Europe (Munich Airport 2020). In 2015, the airport was the
first in Europe to be awarded a five-star rating by the renowned rating organization
Skytrax (Munich Airport 2023a). The Skytrax airport rating considers key aspects of
passenger perception, such as service quality, ambience, cleanliness, and comfort in all
areas of the airport. The five-star rating was reconfirmed by Skytrax in 2017 and 2020,
validating the high level of service offered to passengers at Munich Airport. However,
compared to similar airports, Munich Airport is less accessible, both from the point of
view of its immediate surroundings including the city of Munich, and from a supra-
regional perspective. The airport is located about 30 kilometers northeast of Munich and
is connected to the city only by a highway and two suburban train lines. It takes about 50
minutes to reach the airport from Munich city center by suburban train, and the suburban
train lines suffer from poor reliability (Schubert 2023). From a supra-regional perspective,
the airport lacks regional and long-distance train connections, which, in contrast, are
available at Frankfurt Airport or Amsterdam Airport, for example. As a result, Munich
Airport in particular can benefit from the introduction of an air taxi shuttle network,
providing passengers with a fast and convenient access option.

Origins and vertiport locations We consider the entire territory of the Free State
of Bavaria as the catchment area of Munich Airport. To determine the set of origins O
as well as the number of passengers no for each origin o ∈ O, we employ the results of
a passenger survey that was conducted at Munich Airport in 2019, where approximately
30, 000 passengers were asked for the postal code from which they started their journey to
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the airport, as well as their residential postal code. The results are extrapolated to annual
traffic. The survey distinguishes between passengers traveling for business and leisure. In
addition, the survey differentiates between passengers departing from Munich Airport for
their outbound flight (source traffic) and passengers departing from Munich Airport for
their return flight (visitor traffic). In the following, we consider source traffic only, since
visiting passengers might adjust their travel plans when air taxis are introduced, whereas
we do not expect people to change residence based on vertiport locations. Furthermore, we
only consider respondents who started their journey to the airport from their residential
postal code (about 95% of the source traffic). We define set O as the set of postal code
areas in Bavaria that were specified by at least one respondent. In consequence, set
O consists of 1, 125 postal codes and no has values between 49 and 223, 535. In total,
7, 376, 700 passengers are considered.

We define the set of potential vertiport locations K based on interviews we conducted
with planning experts from Munich Airport. To account for the maximum range of air
taxis, all locations are within a maximum range of 150 kilometers (Euclidean distance)
from Munich Airport. In addition, either an airport, airfield, or heliport already exists at
all locations. In collaboration with planning experts from Munich Airport, we identified
locations which are distributed fairly evenly across Bavaria (except northern Bavaria; this
is due to the maximum distance between vertiport and airport of 150 kilometers). In
total, this yields a set of 24 potential vertiport locations (12 airports/airfields and 12

helipads). Figure 2.1 shows a map of Bavaria divided into postal codes, the location of
Munich Airport, and the potential vertiport locations. Postal code areas o ∈ O are colored
depending on no, with darker colors (as in and around Munich, for example) representing
higher values.

2.5.2 Stated preference survey

We estimate the values of all β parameters based on the results of a stated preference
survey that we conducted online in May 2023. The survey consisted of four parts. First,
participants were introduced to Advanced Air Mobility and provided with relevant in-
formation on eVTOLs. Second, respondents were asked several questions regarding their
current transportation mode choice behavior when travelling to Munich Airport. For
the third part, participants were asked to imagine themselves in the scenario of wanting
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Figure 2.1: Map of postal codes in Bavaria and potential vertiport locations

to travel to Munich Airport, with the distance between the starting point of their trip
and Munich Airport provided. Then, respondents were presented with twelve consecutive
single-choice tasks, each asking them to choose among a set of itineraries to reach the air-
port. In each choice task, participants were offered four labeled itineraries (one itinerary
of each type car, PT, car_AT, and PT_AT), and they were provided with travel times
and travel costs for each itinerary. In addition, participants could indicate that they would
not choose any of the provided options in each choice task. The choice tasks differed in
terms of the values of travel times and travel costs of the itineraries offered. In the fourth
and final part of the survey, participants were asked for socio-demographic variables like
age, gender, postal code, and income.
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Since passengers live at different distances from Munich Airport and the results of our
survey should be valid for all passengers independent of the distance from their origin to
the airport, respondents were assigned different distances at the beginning of the third
part of the survey (either 50, 100, or 150 kilometers) and the travel times and travel costs
of all itineraries offered in the choice tasks depended on the distance. Each respondent
was assigned only one distance - that is, the scenario did not change across the twelve
choice tasks - and the assignment of distances to participants was random. Furthermore,
respondents were not provided with the total travel time per itinerary, but with the net
travel time (i.e., time spent moving in the vehicle(s)) separate from the waiting time.
However, the impact of waiting time on the participants’ choices was insignificant, so we
calculate travel time values in Eqs. (2.10) as the sum of the values of net travel time and
waiting time from the survey. For each distance, the attribute values for travel costs, net
travel times, and waiting times used in the survey are provided in Table 2.1.

Table 2.1: Attribute values used in the stated preference survey

Attribute Itinerary type Distance

50 km 100 km 150 km

Travel costs [€]

car 40, 55, 70 70, 90, 110 90, 120, 150

PT 20, 25, 30 30, 40, 50 30, 60, 90

car_AT 50, 115, 180 80, 210, 340 110, 305, 500

PT_AT 35, 105, 175 50, 190, 330 65, 275, 485

Net travel time [min]

car 30, 40, 50 60, 80, 100 75, 100, 125

PT 55, 75, 95 80, 110, 140 125, 170, 215

car_AT 15, 30, 45 35, 60, 85 45, 75, 105

PT_AT 25, 50, 75 40, 75, 110 55, 115, 175

Waiting time [min]

car 5 5 5

PT 10 10 10

car_AT 10, 15, 20 10, 15, 20 10, 15, 20

PT_AT 15, 20, 25 15, 20, 25 15, 20, 25

Based on the results of a pilot study, we created an efficient design for the choice tasks,
using the commercial software Ngene. We ensured that no choice task had a dominant
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alternative, i.e., an alternative with lower travel costs, shorter net travel time, and shorter
waiting time than all other alternatives.

Sample data The survey was distributed on various social networks, inviting a wide
range of people to participate. A total of 251 people participated in the survey, 169 of
whom remained in the sample after filtering out respondents who were not from Bavaria,
were under 18 years old, and/or completed the survey remarkably fast (i.e., in less than
a third of the average completion time that we observed in the pilot study). Of all
respondents, 43% reported being female, 56% male, and 1% diverse. In Figures 2.2a and
2.2b, we compare the distribution of age and net monthly household income among our
sample with reference data available for Germany (Statistisches Bundesamt 2023a,b).

(a) Age (b) Net monthly houshold income

Figure 2.2: Distribution of socio-demographic data in the sample compared to reference
data

We observe a reasonable fit between the age distributions of the participants in our survey
and the German population. The overrepresentation of participants between the ages of
26 and 35 and the underrepresentation of respondents over the age of 76 can be explained
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by the fact that our survey was only distributed online and that young people are more
likely to use social networks than older people. As for the net monthly houshold income
data, low and medium incomes between 1, 000€ and 4, 999€ are underrepresented in our
sample, while high incomes of more than 5, 000€ are overrepresented. We identify the
following reasons for these deviations: First, many participants (> 15%) preferred not to
report their income. We cannot examine how this actually affects the distribution, but we
assume that primarily participants with low and medium incomes did not want to disclose
their income, even though the survey was conducted anonymously. Second, the reference
data covers Germany as a whole, whereas our sample is restricted to participants from
Bavaria, where incomes are higher on average than in Germany as a whole (Statistisches
Bundesamt 2022). Finally, we shared the survey through our own social networks, reach-
ing many colleagues in academia and industry with high levels of education and high
average incomes.

Estimating the multinomial logit model The participants chose the car itinerary
in 24.40%, the PT itinerary in 43.76%, the car_AT itinerary in 12.47%, and the PT_AT
itinerary in 19.37% of all choice tasks, respectively. To estimate the multinomial logit
model based on the survey results, we used the Apollo package for R (Hess and Palma
2019). We selected IPT as reference category, and thus set the value of βPT,0 to 0. The
resulting estimates and performance statistics of the model are provided in Table 2.2.

Table 2.2: Estimated coefficients and model statistics

Attribute Itinerary type

car PT car_AT PT_AT

Alternative-specific constant −0.92993* − −0.24990 0.15572

Travel time −0.01191* −0.01592* −0.01430* −0.01643*

Travel costs −0.01951* −0.02259* −0.02384* −0.02245*

Initial log-likelihood −2, 755.95
Final log-likelihood −1, 901.73
Adjusted Rho-squared vs. equal shares 0.31

* highly significant (p < 0.01)
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Besides βcar_AT,asc and βPT_AT,asc, all estimated coefficients are highly significant (p <
0.01). For itinerary types car, PT, car_AT, and PT_AT the resulting values of time are
36.62 €

hr , 42.27
€
hr , 35.99

€
hr , and 43.92 €

hr , respectively.

2.5.3 Computational experiments

We first define a base case for our experiments in Section 2.5.3.1. After inspecting the
optimal solution for this base case, we create a series of scenarios in the following sections.

2.5.3.1 Base case

We use the parameter values provided in Table 2.3 to calculate travel times and travel
costs for all origins o ∈ O and itineraries i ∈ Io as stated in Eqs. (2.11) and (2.12).

Table 2.3: Parameter values used to calculate travel time and travel costs in the base case

Parameter Value

tcar+ 5 min
tPT+ 10 min
tAT+ 15 min
vAT 200km

h
ccar,fix 20€
ccar,var 0.68 €

km{
cPT,low, cPT,mid, cPT,high

}
{15€, 25€,50€}

cAT,fix 50€
cAT,var 2.50 €

km

The value of the transfer time tAT+ results from expert interviews. We set the air taxi
cruising speed vAT to 200km

h based on available information from air taxi manufacturers
(e.g., Lilium 2022, Vertical Aerospace 2023). The cost per kilometer of driving ccar,var

originates from information provided by the German automobile club ADAC, which reg-
ularly calculates and publishes the total cost per kilometer for a variety of car models
with different specifications. We use the median value from the data for the 2021/2022
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winter season (Allgemeiner Deutscher Automobil-Club e. V. 2021). The public transport
fares are derived from different tariffs available in the Munich region. As for ticket prices
for air taxi flights, we find a wide variety of estimates in the literature. Clearly, ticket
prices will be high upon market introduction and decrease over time. Furthermore, they
also depend on the seating capacity of the air taxi due to economies of scale. Ticket prices
per passenger are often quoted in U.S. dollars per mile ( $

mi). Overall, we find estimates
between 0.50 $

mi and 9.50 $
mi per passenger (Holden and Goel 2016, Goyal et al. 2021).

Finally, for the base case we assume that upon market entry five vertiports are to be
opened, i.e., q = 5.

Computational results With the given objective and parameter values, vertiports are
opened at the five locations given in Figure 2.3.

In total, 6.22% of all passengers (458, 560 passengers) choose to reach the airport by air
taxi, where 48.26% of these passengers reach the vertiport by car, and the remaining
51.74% by public transport. 32.14% of all passengers choose the car to reach the airport
directly, and 61.64% choose public transport. The opened vertiports are located compar-
atively close to Munich Airport, for which we identify two reasons: First, the farther a
vertiport is located from the airport, the greater the absolute difference between air taxi
costs and the costs of purely ground-based transportation. As passengers weigh costs
more heavily than time (see Table 2.2), the utilities Voi of the air taxi itineraries Iair

generally decrease relative to the utilities of the ground based alternatives Ignd for longer
distances from vertiports to Munich Airport. Second, the average number of passengers
per postal code decreases with increasing distance from Munich Airport, so that more
distant vertiports are viable for fewer passengers.

2.5.3.2 Varying the number of opened vertiports

We now vary the number of vertiports to be opened. For this purpose, we solve the
problem for q ∈ {1, 3, 5, 7, 9}. For each value of q and each vertiport k that is opened
for the respective value of q, Table 2.4 gives the share of passengers who choose to reach
Munich Airport by air taxi via vertiport k (regardless of the means of transport used to
reach the vertiport). Across all values of q, between 2.27% and 7.36% of all passengers

29



2 Planning an Airport Shuttle Network with Air Taxis

Figure 2.3: Vertiport locations opened in the base case

choose to reach Munich Airport by air taxi. The optimal solutions which vertiport(s) to
open are consistent across different values of q, i.e., if a vertiport is opened for a given
value of q, it remains opened when q is increased to q + 2, q + 4, . . . , 9. Furthermore,
opening an additional vertiport has little impact on the passenger numbers at vertiports
that are already opened. E.g., the utilization of the vertiport in Oberpfaffenhofen reduces
from 2.27% (q = 1) to 2.22% (q = 3) when two more vertiports are opened in Manching
and Holzkirchen. The reasons for this are, on the one hand, the large distances between
most of the opened vertiports, in particular at small values of q, and, on the other hand,
the IIA characteristic of the discrete choice model.
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Table 2.4: Air taxi utilization per vertiport and in total when q is varied

q Vertiport*
∑

I II III IV V VI VII VIII IX

1 2.27% − − − − − − − − 2.27%
3 2.22% 1.52% 0.96% − − − − − − 4.70%
5 2.18% 1.50% 0.94% 0.85% 0.75% − − − − 6.22%
7 2.15% 1.48% 0.93% 0.83% 0.75% 0.50% 0.35% − − 6.99%
9 2.14% 1.48% 0.93% 0.82% 0.75% 0.50% 0.35% 0.20% 0.19% 7.36%

* The Roman numerals represent the following vertiports: I = Oberpfaffenhofen, II
= Manching, III = Holzkirchen, IV = Augsburg, V = Antersberg, VI = Augsburg
West, VII = Penzing, VIII = Brannenburg, IX = Regensburg

2.5.3.3 Varying air taxi travel costs and travel times

We now vary both travel costs and travel times of air taxi flights within realistic ranges
and examine the impact on air taxi utilization. For this purpose, we vary the values of
the fix costs per air taxi ticket cAT,fix (0€, 25€, 50€, 75€, 100€), the variable cost per air
taxi passenger and kilometer cAT,var (0.5 €

km , 1.5 €
km , 2.5 €

km , 3.5 €
km , 4.5 €

km), the transfer time
at the vertiports tAT+ (5 min, 10 min, 15 min, 20 min, 35 min), and the air taxi cruising
speed vAT (100km

h , 150km
h , 200km

h , 250km
h , 300km

h ). We use a ceteris paribus design, i.e.,
only one parameter is varied at a time. The results are shown in Figures 2.4a-2.4d.

The same vertiports are opened in all cases. That is, regardless of the values of cAT,fix,
cAT,var, tAT+, and vAT, vertiports are opened in Oberpfaffenhofen, Manching, Holzkirchen,
Augsburg, and Antersberg. Hence, the solution is robust to variations in ticket prices and
travel times when considering the objective to maximize the number of air taxi passen-
gers. Variations in the cost parameters cAT,fix and cAT,var have a stronger impact on the
utilization of air taxis than variations in the time parameters tAT+ and vAT. For example,
doubling the air taxi fix cost cAT,fix from 50€ to 100€ results in a 66.88% reduction in air
taxi utilization, while doubling the air taxi speed from 100km

h to 200km
h increases air taxi

utilization by only 22.20%.

There are two reasons for this discrepancy: First, passengers weigh travel cost per € more
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heavily than travel time per minute (Table 2.2), and second, a doubling of cAT,fix from 50€
to 100€ has a larger absolute impact in Eqs. (2.10) than a doubling of vAT from 100km

h
to 200km

h if the distance traveled by air taxi is shorter than 100 kilometers. This is the
case here, since the opened vertiports are located 49.29 kilometers from Munich Airport
on average.

2.5.3.4 Maximizing travel time savings

Thus far, we have solved the problem to maximize the number of passengers who use the
air taxi shuttle network. Since it is in the interest of public authorities to improve the
accessibility to Munich Airport, we now consider the alternative objective to maximize
the total time savings of all passengers traveling to Munich Airport compared to the
status quo. Let zgnd denote the total travel time of all passengers when no vertiport is
opened, i.e., when Iair = ∅ and passengers can only choose between ground-based means
of transport. Then, we define the new objective as follows:

max z = zgnd −

(∑
o∈O

∑
i∈Io

no · ηttoi · poi

)
(2.13)

We choose the same experimental setting as in Section 2.5.3.3. In contrast to the results
obtained in Sections 2.5.3.2 and 2.5.3.3, the decisions about which vertiports are opened
are no longer identical for different values of cfix and cvar. However, the average distance
between the vertiports that are opened and Munich Airport is consistently larger when
Objective Function (2.13) is used rather than Objective Function (2.4a). For example,
for the parameter values we assumed in the base case (cAT,fix = 50€, cAT,var = 2.5€,
tAT+ = 15 min, vAT = 200km

h ), the average (air) distance from the opened vertiports to
Munich Airport increases from 49.29 kilometers to 88.50 kilometers. The larger average
distance between vertiports and Munich Airport results from the fact that the transfer
time at the vertiport can only be compensated for on longer routes by the higher cruising
speed of air taxis compared to cars or public transport.

We provide the air taxi utilization and the total number of hours saved by passengers
traveling to Munich Airport for all values of cAT,fix, cAT,var, tAT+, and vAT in Tables
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(a) Variation in cAT,fix (b) Variation in cAT,var

(c) Variation in tAT+ (d) Variation in vAT

Figure 2.4: Impact of variation in air taxi travel costs and travel times on air taxi utiliza-
tion
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2.5a-2.5d. Air taxi utilization ranges between 0.04% and 11.91%, and the total time
saved by passengers ranges between 730 hours and 40.330 hours. The air taxi utilization
figures are significantly lower than those observed in Section 2.5.3.3, as travel costs for
itineraries i ∈ Iair increase disproportionately when distance increases compared to travel
costs for itineraries i ∈ Ignd. In consequence, we find that the average time saving per
passenger is rather low. For example, with the parameter values from the base case,
passengers reach the airport only about 0.08 minutes faster on average. Thus, to reduce
travel times to Munich Airport significantly, air taxi travel costs and/or times must be
significantly smaller than in our base case.

Variations in the cost parameters cAT,fix and cAT,var still have a stronger impact on the
utilization of air taxis than variations in the time parameters tAT+ and vAT. However,
this is not true for the time saved by passengers: In Tables 2.5a-2.5d, the time saved
falls within similar ranges. Thus, a higher air taxi utilization does not always translate
into greater average time savings for passengers (for example, check the time saved for
small values of cAT,var in Table 2.5b). In particular, lower air taxi travel costs also attract
passengers who save little time, or even lose time, by traveling to the airport by air taxi.
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Table 2.5: Air taxi utilization and time savings for different air taxi travel costs and travel
times when maximizing passenger time savings

cAT,fix [€] Utilization
[%]

Time
saved
[1, 000 hours]

0 1.72 24.44

25 1.03 14.87

50 0.57 9.55

75 0.36 6.17

100 0.19 4.31

(a) Variation in cAT,fix

cAT,var
[ €
km

]
Utilization
[%]

Time
saved
[1, 000 hours]

0.5 11.91 17.12

1.5 2.42 40.33

2.5 0.57 9.55

3.5 0.16 3.26

4.5 0.04 0.73

(b) Variation in cAT,var

tAT+ [min] Utilization
[%]

Time
saved
[1, 000 hours]

5 0.76 19.08

10 0.62 13.77

15 0.57 9.55

20 0.51 5.82

25 0.10 3.53

(c) Variation in tAT+

vAT
[km

h

]
Utilization
[%]

Time
saved
[1, 000 hours]

100 0.05 0.96

150 0.45 4.58

200 0.57 9.55

250 0.61 12.94

300 0.73 15.60

(d) Variation in vAT
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2.6 Conclusion

In this chapter, we investigated the potential of introducing an air taxi shuttle network
to improve airport access. To the best of our knowledge, we are the first to formulate this
problem as a hub location problem with multiple allocation and integrated multinomial
logit model to represent passengers’ itinerary choices. Based on the approach by Haase
(2009), we linearized the problem, reformulated the model to avoid numerical instabilities,
and eliminated redundant constraints. Furthermore, we extended the resulting model
by additional constraints to ensure that the IIA property is always adhered to. After
discussing what modeling decisions need to be taken and what data must be collected to
use the model for solving real life instances in general, we applied it to Munich Airport
in a detailed case study. For this purpose, we collected large amounts of data and, in
particular, conducted a stated preference survey to parameterize the multinomial logit
model.

The results of our computational experiments show that air taxi utilization will mostly
depend on the number and location(s) of opened vertiports as well as the ticket prices
for air taxi flights, while the transfer times at the vertiports and the air taxi cruising
speed had less of an impact in our experiments. In order to maximize the number of air
taxi passengers, vertiports should not be opened too far from the airport, especially when
(distance dependent) ticket prices are high, since high ticket prices impose significant
limitations on demand. However, the selection of vertiport locations too close to the
airport prevents passengers from saving travel time due to the transfer times at vertiports
and the short travel times of competing (i.e., ground-based) means of transport. On
the other hand, while the time saved per passenger increases the farther vertiports are
located from the airport, high ticket prices result in low choice probabilities for air taxi
itineraries when vertiports are located far from the airport. Thus, the results of our
case study suggest that air taxis can only reduce the average travel time to the airport
significantly in the medium to long term, when ticket prices decrease on longer air taxi
flights. Accordingly, our results suggest establishing vertiports near the airport first to
develop the market, and only later, when air taxi tickets can be offered at significantly
lower prices, integrating more distant vertiports into the system to reduce average travel
times of passengers to the airport.
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For future research, we suggest considering tactical and/or operational constraints in our
strategic problem. In particular, potential capacity restrictions as well as the resulting
challenges should be adressed. If, for instance, many passengers choose to use a certain
vertiport, capacity restrictions at this vertiport may cause additional waiting times in
queues. In return, additional waiting times may reduce the demand at the vertiport.
Similarly, capacity constraints can worsen travel times of ground-based means of trans-
port. For example, if many passengers travel to the airport directly by car, the streets
to the airport may be congested and it may be difficult to find a parking spot at the
airport. Furthermore, the waiting times at vertiports also depend on whether air taxi
shuttle flights are operated on a schedule or an on-demand basis. If air taxis are oper-
ated on a schedule, passengers can be expected to arrive at the vertiport with a time
buffer to avoid missing the air taxi, resulting in additional waiting times at the vertiport.
In addition, the accuracy of the multinomial logit model may be improved by including
additional independent variables besides travel times and travel costs to estimate choice
probabilities. For instance, average household income, political voting data, and/or age
distribution could be considered. However, only variables whose values are known for
each origin (e.g., for each postal code area) can be included. Finally, the travel costs of
itineraries where at least one leg of the trip is covered by car should be examined in more
detail. First, the travel costs per passenger depend on the number of passengers in a car,
as fuel and parking costs are incurred only once per car. This is different compared to
public transport and air taxi trips, where travel costs per passenger are mostly indepen-
dent of the number of passengers travelling together. Second, the parking fees depend on
the length of time the car is parked, and the parking fees at vertiports may also differ from
those at the airport. Lower parking fees at the vertiports may attract more passengers to
choose the air taxi to reach the airport.

We hope this work motivates further research in this up-and-coming field. We also encour-
age practitioners to make use of our approach to identify optimal locations for vertiports
in order to make the introduction of air taxis as a new means of transport a success.
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3 Optimal Positioning of Aircraft
Stands

At many airports, space on the apron is scarce and has to be used efficiently. To that
end, we optimize the layout of aircraft parking positions adjacent to the airport terminal,
pursuing two lexicographically ordered objectives. First, we minimize the number of air-
craft that have to be diverted to remote parking positions, because positions adjacent to
the terminal are not available. Second, we minimize the construction effort required for
gate infrastructure. Aircraft collisions must be prevented at all times, and we consider
various traffic situations, as traffic volume and fleet mix are not constant in time. We
introduce the Airport Gate Layout Problem and formulate it as a mixed-integer model,
which considers both greenfield and brownfield scenarios. To solve the problem efficiently,
we introduce a decomposition framework that exploits the structure of the problem and
employ various acceleration techniques. Our approach reduces computation times sub-
stantially, allowing us to solve instances that are intractable for CPLEX. Based on a case
study for Munich Airport, we demonstrate how airports can gain valuable insights from
solving the problem.

3.1 Introduction

At many airports, space on the apron is scarce and should therefore be used as efficiently
as possible (see, e.g., Caves 1994). We consider the situation where an airport terminal is
to be either constructed, extended, or refurbished and the arrangement of aircraft parking
positions adjacent to the terminal building needs to be determined. Compared to remote
parking positions, the use of parking positions adjacent to a terminal building is preferred
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by airlines, airports, and passengers as operations are safer, more efficient, and more
comfortable. Passengers and their baggage do not need to be transported over longer
distances and turnaround times are shorter. Consequently, the apron layout should be
designed to minimize the number of aircraft that have to be handled at remote parking
positions for space reasons.

When planning the layout, minimum safety distances between adjacent aircraft as well
as aircraft and airport infrastructure must be adhered to in order to prevent collisions
(International Civil Aviation Organization 2018, European Aviation Safety Agency 2017).
Furthermore, there is a wide variety of aircraft types, which differ considerably with regard
to their dimensions, minimum safety distances, and requirements for parking position
equipment. Hence, the equipment to be installed at a parking position as well as the
distances to adjacent parking positions are based on the aircraft to be handled at the
position, and the optimal overall layout depends on the expected fleet mix at the airport.
Moreover, traffic volume and fleet mix are subject to considerable fluctuations at most
airports, especially at large hub airports. Thus, airports are keen to identify the layout
that minimizes the number of aircraft having to divert to remote parking positions across
all expected traffic situations. On the other hand, the (re-)construction of a parking
position adjacent to a terminal building is associated with high costs. For example,
investment costs of 450.000€ are to be expected per passenger boarding bridge (see, e.g.,
Airport Improvement Magazine 2010, Travel PR News 2019). Consequently, among all
alternative layouts that minimize the number of aircraft that have to be handled at
remote parking positions, airports are particularly interested in determining the layout
that minimizes the number of parking positions that need to be built.

Currently, the planning problem described is mostly approached manually, with CAD
programs and simulation tools supporting the decision makers. However, while different
layout proposals can be evaluated relative to each other using simulation, there is currently
a lack of possibility to assess a proposal on its own, since the optimal layout is not known.
Hence, the quality of the resulting layout strongly depends on the experience and skills
of the planner. We address this gap by finding the best solution for a particular apron.

Layout planning problems in general have been considered from various perspectives in
the literature. Most prominently, existing work on the facility layout problem addresses
the general question of how individual facilities should be arranged within a given area,
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usually a factory floor, in order to minimize the overall transportation costs of goods.
Recent surveys on this class of problems and its variations are provided by Drira et al.
(2007) and Anjos and Vieira (2017). More application-specific layout planning problems
are considered by Briskorn and Dienstknecht (2019) and Huang et al. (2011), who inves-
tigate the optimal positioning of tower cranes at construction sites, as well as Stephan
et al. (2021), who maximize the capacity of parking lots. However, due to the complex
geometries of aircraft, the heterogeneity of different aircraft types, and the requirement
that the layout be optimal with respect to the totality of different traffic situations, none
these approaches can be applied to our problem.

In contrast, complex geometries and heterogeneity of objects are considered in two-
dimensional irregular object packing problems. There, objects with complex geometries
have to be positioned in a (potentially irregularly shaped) area such that the objects do
not collide and the total value of the objects that cannot be positioned is minimized. De-
tailed reviews of this class of problems are provided by Bennell and Oliveira(2008, 2009)
and Leao et al. (2020). There is a long history of heuristics for solving these packing
problems (see, e.g., Martinez-Sykora et al. 2017, Chehrazad et al. 2022, Umetani and
Murakami 2022, Zhang et al. 2022, Luo and Rao 2023), but recently exact solution meth-
ods have also been proposed (see, e.g., Alvarez-Valdes et al. 2013, de Souza Queiroz and
Andretta 2022). With respect to aircraft parking, Qin et al. (2018) use no-fit polygons to
place aircraft in a service hangar, minimizing the unused space. While two-dimensional
irregular object packing problems are related to our objective to minimize the number
of aircraft that have to be processed at remote parking positions, they do not consider
our second objective to minimize the number of parking positions that need to be built.
Additionally, we incorporate different traffic situations in our problem, and the parking
positions built need to be optimal across all situations. Furthermore, aircraft parking po-
sitions cannot be placed freely as objects in general packing problems, as we will explain
in more detail in Section 3.2.

Thus far, no studies have been published on optimizing the layout of parking positions at
airport aprons. There are several studies investigating apron capacity, which either assume
the layout is given or disregard it. For example, Mirković and Tošić (2014, 2016, and 2017)
provide a mathematical framework to describe the capacity of a given apron, and Steuart
(1974), Bandara and Wirasinghe (1989), Wirasinghe and Bandara (1990), Hassounah and
Steuart (1993), and Narciso and Piera (2015) present approaches to calculate the number
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of aircraft parking positions a terminal should be equipped with.

A related problem on the operative level of decision making that considers airport gates
is the Gate Assignment Problem, in which arriving aircraft must be assigned to aircraft
stands. Typical objectives are to minimize the total passenger walking distance or to
minimize the total aircraft taxi time. Daş et al. (2020) find that recent work tends to
consider multiple objectives simultaneously. Extensive reviews on the gate assignment
problem are provided by Dorndorf et al. (2007), Cheng et al. (2012), Guépet et al. (2015),
and Daş et al. (2020). Dorndorf et al. (2008, 2012, and 2017) also consider the prevention
of collisions between parked aircraft in their models. However, in contrast to the recurrent
operative task to assign arriving aircraft to available gates, defining the layout represents
a strategic problem.

In conclusion, no literature exists to date in which the layout of aircraft parking positions
is optimized by means of mathematical programming, nor can other existing modeling
approaches be directly applied to this problem. In the following, we introduce all aspects
of the Airport Gate Layout Problem (AGLP) in detail and provide a mixed-integer for-
mulation that can be applied to both greenfield and brownfield instances. We develop an
exact procedure for solving the problem, in which we combine a decomposition approach
with a bounding algorithm and a relaxation scheme. In a case study, we demonstrate the
superiority of our solution procedure over CPLEX and show how the results of our work
can support decision makers in practice.

The remainder of this chapter is structured as follows: In Section 3.2, we provide a
detailed problem description, and our modeling approach is described in Section 3.3. The
resulting mathematical model and our solution methodology are provided in Sections 3.4
and 3.5, respectively. In Section 3.6, we present our computational experiments based on
real world data, and we provide our conclusions in Section 3.7.

3.2 Problem description

Planning problem We consider the situation where an airport terminal is to be con-
structed, extended, or refurbished and the aircraft parking positions adjacent to the ter-
minal building must be planned. The position, shape, and dimensions of the terminal
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building and surrounding taxiways are given and define the areas where parking positions
can be planned. Furthermore, a forecast for the traffic that needs to be accommodated
at the apron is available. In this planning problem, we pursue two objectives, which are
ordered lexicographically. The primary goal is to minimize the number of aircraft that
cannot be parked in close proximity to the terminal building; the secondary goal is the
minimization of the implementation costs of the layout. That is, if a new terminal or
a terminal extension is in planning, the number of parking positions to be built should
be minimized. If an existing terminal is to be refurbished, as few changes as necessary
should be made to the existing layout.

Aircraft parking positions We will use the following terminology with respect to
aircraft parking. The terms gate and aircraft stand refer to a subarea of the terminal
apron utilized to accommodate an aircraft and are used synonymously1. Aircraft stands
in the immediate vicinity of the terminal building are called contact stands, while stands
at a greater distance from the terminal are referred to as remote stands.

Gates need to be equipped to handle aircraft, with equipment specifications depending on
the aircraft types to be accommodated at the gate. For example, a gate at which small
aircraft are to be handled must be equipped with a single passenger boarding bridge. At
gates where large aircraft are to be handled, however, a second (or even a third) passen-
ger boarding bridge must be installed to guarantee appropriate passenger boarding and
deboarding times. The equipment installed at a gate is downward compatible. In other
words, if an aircraft of a certain size can be handled at a gate, other aircraft of the same
size and all smaller aircraft can also be handled. Furthermore, gates can also be equipped
to handle either one large aircraft or two small aircraft simultaneously. Such gates are
referred to as Multi Aircraft Ramping Stands (MARS) (see, e.g., International Air Trans-
port Association 2004, National Academies of Sciences, Engineering, and Medicine 2010).

Due to the large number of infrastructure elements to be procured (for example, passenger
boarding bridges, fuel, power and fresh air connections, ground markings, equipment
inside the terminal), the construction of a new gate is expensive. In addition, since more
or larger equipment is needed to handle larger aircraft, the investment costs per gate
increase with the size of the aircraft to be handled. As a result, the number of gates to be

1This is in line with Dorndorf et al. (2007) and Ashford et al. (2011)
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built or rebuilt, especially those capable of handling large aircraft, should be minimized
as long as this does not reduce the airport’s ability to handle air traffic.

Aircraft handled at contact stands are commonly parked in the nose-in orientation, in
which the noses of parked aircraft point toward the terminal facade. The exact parking
positions of aircraft at gates are defined by lead-in lines and stop lines: When parked, the
fuselage of the aircraft is aligned collinearly with the lead-in line and the nose wheel is at
the stop line belonging to the aircraft type. Each lead-in line is assigned to exactly one
gate, whereas each gate must have at least one lead-in line. Lead-in lines can be placed at
any angle to the terminal facade. Although a greater number of lines per gate increases
flexibility in terms of parking aircraft at gates, as few lead-in lines as possible should be
used to minimize complexity in daily operations2. Lead-in lines are typically linear and
can therefore be defined by a starting point and an ending point. Figure 3.1 shows the
ground layout of three gates at Nice Airport, where gate 46 is a MARS position.

Figure 3.1: Gates 42, 44, and 46 at Nice Airport (Source: Google Maps)

Aircraft classes To ensure collision-free operations on the apron, the geometries of the
aircraft to be handled must be taken into account in the planning process. Because of the
large number of aircraft types, planning is simplified by grouping aircraft into size classes.
We will use the Airplane Design Group (ADG) for that purpose, which was introduced
by Federal Aviation Administration (2012) and classifies aircraft according to wingspan,

2MARS positions must have at least two lead-in lines to accommodate two small aircraft simultane-
ously.
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see Table 3.13.

Table 3.1: Classification of aircraft (Federal Aviation Administration 2012)

ADG Wingspan [m] Safety clearance [m] Reduced safety clearance [m]

I < 15 3 3

II 15 - 24 3 3

III 24 - 36 4.5 3

IV 36 - 52 7.5 4.5

V 52 - 65 7.5 4.5

VI 65 - 80 7.5 4.5

Aircraft parking restrictions There are few regulations regarding the design of air-
craft stands. Most importantly, International Civil Aviation Organization (2018) and
European Aviation Safety Agency (2017) consistently define minimum safety clearances
that must always be maintained between an aircraft and any other aircraft as well as
airport structures. The minimum safety clearances depend on the ADG of the particular
aircraft, and are reduced at aircraft stands equipped with a visual guidance docking sys-
tem or when other special cases apply. General and reduced safety clearances per ADG
are provided in Table 3.1.

Parking an aircraft of a given class at a specific lead-in line may be prohibited for three
reasons. First, certain areas of the apron may be inaccessible to aircraft of a certain
class and above. Second, the location of a lead-in line, in combination with the layout of
the surrounding infrastructure, might result in only aircraft up to a certain class being
allowed to park on the line, as otherwise minimum safety clearances between aircraft
and infrastructure would be violated or the aircraft would collide with the infrastructure.
Third, the parking of an aircraft of a given class on a particular lead-in line could be
temporarily prohibited if another aircraft of the same or a different class is being handled
simultaneously at an adjacent position. The reason for this restriction is again to avoid
violations of minimum safety clearances as well as collisions.

3The same classification is reproduced by International Civil Aviation Organization (2018) and Eu-
ropean Aviation Safety Agency (2017) using a different notation.
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Air traffic characteristics at hub airports Traffic volumes and fleet mix are typically
subject to significant fluctuations during the course of the day at hub airports. Traffic
arrives and departs in waves, so airlines can offer their passengers comparatively short
transfer times and a large number of transfer connections. Arrival and departure waves
directly propagate to the situation on the apron, where the number and composition of
the aircraft to be handled simultaneously can fluctuate considerably. To avoid recurring
congestion, the apron should therefore be designed to handle as much of the expected
peak-time traffic as possible at contact gates.

Moreover, the apron should not only be designed for current traffic peaks, but in antici-
pation of expected future traffic developments due to the high costs associated with gate
infrastructure as well as the high operational effort and financial burden in case of future
changes to the layout. For example, the proportion of very large ADG VI aircraft is likely
to decline in the medium term, as both Airbus and Boeing recently ceased production
of their only ADG VI aircraft, the A380 and 747-8, respectively, due to lack of demand.
In contrast, the proportion of slightly smaller ADG V aircraft can be expected to trend
upward due to their better fuel efficiency and greater operational flexibility.

3.3 Modeling approach

Representation of air traffic We represent air traffic on the apron as a collection
of snapshots, each containing the number of aircraft per class that must be handled
simultaneously at one particular point in time where traffic volume reaches a peak. We
refer to these snapshots as demand patterns, denoted by set K = {1, . . . , K}.

We classify aircraft according to the ADG classification, resulting in the set of aircraft
classes A = {1, . . . , A}, where classes are sorted by ascending aircraft size. For each
aircraft class a ∈ A, let Dak be the number of aircraft that are to be parked simultaneously
for demand pattern k ∈ K. We identify the set of demand patterns and the values of Dak

for all a ∈ A and k ∈ K from a given flight plan in a two-step procedure. First, we add
one demand pattern to set K for each point in time provided in the flight plan (e.g., for
each five-minute interval within a week) and determine Dak for all aircraft classes a ∈ A
based on the flight plan data. Then, we eliminate all demand patterns k ∈ K that are
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dominated by at least one other demand pattern k̂ ∈ K, i.e., for which we can find a
demand pattern k̂ ∈ K where Dak ≤ Dak̂ ∀a ∈ A and ∃a ∈ A : Dak < Dak̂ holds. For
hub airports, the remaining, non-dominated demand patterns represent the traffic peaks
which occur as traffic typically arrives and departs in waves.

Each value of Dak is associated with a weighting factor Wak ∈ [0, 1], which indicates the
relative importance of accommodating aircraft of class a ∈ A for demand pattern k ∈ K.
The value of Wak depends on the size of the aircraft in class a ∈ A and the frequency
of occurrence of demand pattern k ∈ K. The larger an aircraft, the more passengers it
can carry and the more important it is that it can be parked at a contact gate. Hence,
larger aircraft classes are associated with higher values of Wak. The more frequently a
demand pattern is expected to occur, the more relevant it is for the planning process.
Thus, demand patterns with a higher expected frequency of occurrence are associated
with higher values of Wak as well.

Aircraft parking positions Aircraft must be parked on lead-in lines, and each lead-in
line used to park an aircraft must be assigned to a gate. We employ the given layout of
the terminal building and the surrounding taxiways to derive sets of feasible positions for
gates and lead-in lines in the following.

In the first step, we identify polygons as subareas of the apron inside which lead-in lines
can be placed. The edges of these polygons are given either by airport infrastructure that
must not be infringed upon by aircraft (for instance, the terminal facade or edges of the
apron), or by taxiways. Second, in each polygon we define a set of starting points for
lead-in lines; by starting point we mean the point of the lead-in line at which the nose of
a parked aircraft is located. The starting points are placed at a constant distance ∆ > 0

from each other and at a constant safety distance from the terminal facade.

Third, we create lead-in lines by drawing straight lines from the starting points until they
intersect with an edge of the surrounding polygon. These intersections define the ending
points of the lead-in lines. We generate multiple lead-in lines from each starting point
by varying the direction of the line. Therefore, parameter κ denotes the rotation angle
between the lead-in lines that share the same starting point, 0 < κ < 360◦ and 360◦

should be an integer multiple of κ. Both ∆ and κ are parameters of our approach that
determine the planning granularity and must be specified up-front. Lead-in lines whose
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ending point is not on a taxiway cannot be reached by aircraft and are therefore discarded.
All remaining lead-in lines resulting from this process are included in set L = {1, . . . , L}.
Figure 3.2 shows an example of a terminal building with possible lead-in lines.

Figure 3.2: Example for generation of lead-in lines

Each lead-in line used to park an aircraft has to be assigned to a gate. Thus, we define
potential gate positions and introduce a parameter that indicates whether a lead-in line
can be assigned to a gate or not. We consider the set of lead-in line starting points as
the set of possible gate positions. All potential gates are contained in set G = {1, . . . , G}.
For each pair of lead-in line l ∈ L and gate g ∈ G, binary parameter Flg equals 1, if the
direct path between lead-in line l and gate g is unobstructed and smaller than a given
threshold, and lead-in line l can therefore be assigned to gate g. Otherwise, Flg equals 0.

Aircraft parking restrictions Parking an aircraft of a particular class on a particular
lead-in line could be either permanently or temporarily prohibited to prevent collisions

47



3 Optimal Positioning of Aircraft Stands

with airport infrastructure or other aircraft parked at adjacent positions. To identify all
such infeasibilities, we apply a two-step procedure.

First, we compute a so-called safety envelope for each aircraft class. The safety envelope
of an aircraft class a ∈ A is defined by the smallest possible polygon with the shape shown
in Figure 3.3 inside which all aircraft of the class can be parked in a given orientation,
including the minimum safety distances required according to Table 3.1. We compute
the safety envelope for each aircraft class based on the geometry data of all aircraft types
belonging to the class. The safety envelopes of all classes have the shape as shown in
Figure 3.3 and differ only in the dimensions. Details are provided in Appendix B.2.

Figure 3.3: Shape of safety envelopes (Source of aircraft model: Airbus 2022)

Second, for each aircraft class a ∈ A and lead-in line l ∈ L, we use the safety envelopes to
determine whether or not the aircraft can generally be parked on the line, and whether
or not the aircraft can be parked on the line if another aircraft of class b ∈ A is parked
on another lead-in line m ∈ L \ {l} at the same time. If we place the safety envelope of
an aircraft class on a lead-in line and the safety envelope then touches or intersects an
edge of the surrounding polygon, i.e., collides with airport infrastructure, no aircraft of
that class can be parked on the lead-in line. As a result, the binary parameter Cal equals
1 if aircraft of class a ∈ A can be accommodated on lead-in line l ∈ L, and 0, otherwise.
Cal also equals 0 if lead-in line l is located in an area of the apron that cannot be reached
by class a aircraft. If Cal = 0 for a given lead-in line l ∈ L and all aircraft classes a ∈ A,
line l is discarded. Similarly, for all combinations of two lead-in lines l,m ∈ L : l 6= m

and two aircraft classes a, b ∈ A, we place the safety envelopes of classes a and b on lines
l and m, respectively, and then examine whether the safety envelopes collide with each
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other (for details, we refer to Appendix B.3). Binary parameter Elmab is 1 if aircraft of
classes a and b cannot be handled simultaneously without collision at lead-in lines l and
m, and 0, otherwise.

3.4 Model

In this section, we present a mixed-integer linear program for the AGLP. The notation is
summarized in Table B.1 in Appendix B.1.

Decision variables First, the binary decision variable vga indicates whether or not
gate g ∈ G is equipped to handle aircraft of class a ∈ A. If vga = 0 for all aircraft
classes a ∈ A, gate g ∈ G cannot handle aircraft of any class and hence, is not built.
Furthermore, from the downward compatibility of gate equipment it follows that if vga = 1,
then vgb = 1 ∀b ∈ A : b < a.

Second, the binary decision variable yl equals 1 if lead-in line l ∈ L is used to park an
aircraft for any demand pattern k ∈ K, and 0, otherwise.

Third, the binary decision variable ugl is 1 if lead-in line l ∈ L is assigned to gate g ∈ G,
and 0, otherwise.

Fourth, the binary decision variable xglak equals 1 if for demand pattern k ∈ K an aircraft
of class a ∈ A is parked at lead-in line l ∈ L and lead-in line l is assigned to gate g ∈ G,
and 0, otherwise.

Finally, the non-negative decision variable qak yields for each demand pattern k ∈ K the
number of aircraft of class a ∈ A that cannot be accommodated at any of the lead-in lines
in set L, and hence, need to deviate to remote stands.

Model formulation We formulate the AGLP as follows:

min z1 =
∑
a∈A

∑
k∈K

Wak · qak (3.1a)
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min z2 =
∑
g∈G

∑
a∈A

vga (3.1b)

subject to∑
g∈G

∑
l∈L:Cal=1∩Flg=1

xglak + qak ≥ Dak ∀a ∈ A; k ∈ K (3.1c)

∑
g∈G:Flg=1

∑
a∈A:Cal=1

xglak ≤ yl ∀l ∈ L; k ∈ K (3.1d)

∑
g∈G:Flg=1

ugl = yl ∀l ∈ L (3.1e)

xglak ≤ ugl ∀g ∈ G; l ∈ L; a ∈ A; k ∈ K :

(3.1f)

Flg = 1;Cal = 1∑
l∈L:Flg=1

∑
a∈A:Cal=1

a · xglak ≤
∑
a∈A

vga ∀g ∈ G; k ∈ K (3.1g)

vga ≤ vgb ∀g ∈ G; a ∈ {2, . . . , A} ;
(3.1h)

b = a− 1

∑
l∈L:Flg=1

 ∑
a∈Asmall:Cal=1

xglak +
∑

a∈Alarge:Cal=1

2 · xglak

 ≤ 2 ∀g ∈ G; k ∈ K (3.1i)

∑
g∈G:Flg=1

xglak +
∑

h∈G:Fmh=1

xhmbk ≤ 1 ∀l,m ∈ L; a, b ∈ A; k ∈ K :

(3.1j)

Elmab = Cal = Cbm = 1; l < m

qak ≥ 0 ∀a ∈ A; k ∈ K (3.1k)
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vga ∈ {0, 1} ∀g ∈ G; a ∈ A (3.1l)

xglak ∈ {0, 1} ∀g ∈ G; l ∈ L; a ∈ A; k ∈ K :

(3.1m)

Flg = 1;Cal = 1

yl ∈ {0, 1} ∀l ∈ L (3.1n)

ugl ∈ {0, 1} ∀g ∈ G; l ∈ L : Flg = 1 (3.1o)

The two lexicographically ordered objective functions are given in (3.1a) and (3.1b). Ob-
jective Function (3.1a) minimizes the number of aircraft that cannot be processed at any
of the lead-in lines in set L over all demand patterns k ∈ K, where the values of qak are
weighted with weighting factors Wak. Objective Function (3.1b) minimizes the weighted
sum of gates built, where each gate is weighted with the largest aircraft class it is equipped
for. For example, if the largest aircraft that can be handled at a gate belongs to class
3, the gate is weighted with a factor of 3. This is ensured through Constraints (3.1h) in
Objective Function (3.1b).

Demand Constraints (3.1c) ensure for each aircraft class and demand pattern that ei-
ther all aircraft are handled at contact gates or qak is increased accordingly. Constraints
(3.1d)-(3.1h) determine the correct infrastructure decisions: Constraints (3.1d) make sure
that the value of yl equals 1 once lead-in line l ∈ L is used to park an aircraft. Constraints
(3.1e) enforce that each lead-in line that is used to park an aircraft is assigned to exactly
one gate. That is, while a lead-in line can be used to park an aircraft for more than one
demand pattern, it has to be assigned to the same gate for all demand patterns. Con-
straints (3.1f) align the values of variables xglak and ugl, and Constraints (3.1g) ensure
that gates are built and equipped for the aircraft classes they are supposed to handle.
Note that when two small aircraft are handled simultaneously at one gate (MARS), the
left side of the constraint takes both aircraft into account. For example, if two aircraft of
class 1 are handled at a gate simultaneously, the left side of Constraints (3.1g) equals 2.
Hence, the constraint necessitates that the gate be equipped for aircraft of class 2. This
takes into account that gates at which two aircraft of a class are handled simultaneously
require more equipment than gates at which only one aircraft of the same class is han-
dled. Most obviously, two passenger boarding bridges need to be installed to handle two
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aircraft simultaneously. Constraints (3.1h) make sure that gate equipment is downward
compatible, and Constraints (3.1i) enforce that a maximum of two aircraft (either two
small aircraft or one large aircraft) can be handled at one gate simultaneously. For that
purpose, we divide all aircraft classes from set A into two subsets Asmall and Alarge, each
containing the aircraft classes of which two and one aircraft, respectively, can be handled
simultaneously at a gate. Asmall contains ADG III aircraft and all smaller aircraft, while
Alarge contains all aircraft belonging to ADG IV or larger. Safety Constraints (3.1j) pre-
vent minimum safety clearances from being violated or aircraft from colliding with each
other. Finally, Constraints (3.1k)-(3.1o) define the domains of all decision variables.

Brownfield scenarios If an existing terminal is to be renovated or extended and ex-
isting parking positions can be relocated in the process, deviations from the existing gate
layout should be kept to a minimum to minimize investment costs. More specifically,
additional gates should only be built if they yield an improvement of z1.

In a brownfield scenario, the set G is extended by the gates that already exist in reality.
Additionally, we introduce the binary parameter Hga, whose value is 1, if existing gate
g ∈ G is equipped to handle an aircraft of class a ∈ A, and 0, otherwise. To account for
the downward compatibility of gates, Hgâ = 1 for all â ∈ {0, . . . , a− 1} if Hga = 1. For
all gates in G which do not yet exist in reality, Hga equals 0 for all a ∈ A.

Then, Model (3.1a)-(3.1o) is extended by the following constraints to ensure that existing
gates are considered in the optimization process.

vga = Hga ∀g ∈ G; a ∈ A :
∑
â∈A

Hgâ > 0 (3.1p)

Aggregating constraints For small distances ∆ and rotation angles κ between adja-
cent lead-in lines, the number of Safety Constraints (3.1j) becomes very large. We mitigate
this problem by aggregating Constraints (3.1j). For example, omitting the indices of de-
mand patterns and gates for simplicity, three individual Constraints (3.1j) xla + xmb ≤ 1,
xla + xnc ≤ 1, and xmb + xnc ≤ 1 can be substituted by one single, equivalent constraint
xla+xmb+xnc ≤ 1, where l,m, n ∈ L and a, b, c ∈ A. Let Xi denote the set of x variables
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contained in the sum on the left hand side of one aggregated constraint i. Our goal is to
minimize the number of aggregated constraints needed to ensure that no minimum safety
clearances are violated. However, a particular x variable xla can only be added to the
left hand side of an aggregated constraint i iff for each variable xmb ∈ Xi there exists
one Constraint (3.1j) xla + xmb ≤ 1. Otherwise, the aggregated constraints and original
Constraints (3.1j) would not be equivalent.

The problem of determining the set of aggregated constraints can be depicted as a clique
separation problem in a graph G = (V,E), where each vertex represents one tuple
(l ∈ L, a ∈ A : Cal = 1) and two nodes (l, a) and (m, b) are connected iff Elmab = 1. Us-
ing the Bron-Kerbosch algorithm (Tomita et al. 2006), we determine the list of maximal
cliques in this graph. We then map the optimal solution of the clique separation problem
onto the set of aggregated constraints as follows: For each maximal clique in this graph,
we create one aggregated constraint i that contains decision variable xla in Xi for each
node (l, a) in the clique.

In addition to reducing the number of constraints, the aggregated constraints strengthen
the LP relaxation of the problem, which reduces computation times considerably.

3.5 Solution methodology

The results of our computational experiments in Section 3.6 will demonstrate that Model
(3.1a)-(3.1p) quickly becomes intractable for decreasing values of ∆ and κ. Therefore,
we introduce a decomposition approach, which allows solving instances with high plan-
ning granularity within reasonable computation time to optimality. We will first give an
overview in Section 3.5.1 before providing detailed insights into individual components in
Sections 3.5.2 to 3.5.4. Finally, we will present the acceleration techniques that we use to
support our approach in Section 3.5.5. The notation used in this section is summarized
in Table B.2 in Appendix B.1.
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3.5.1 Overview

We provide a summary of our solution approach as pseudo-code in Algorithm 3.1.

Algorithm 3.1 Overview of our solution approach

1: Find set of areas S . See Section 3.5.2
2: Find set of demand decompositions C . See Section 3.5.3
3: Find initial value of LBc for all c ∈ C . See Section 3.5.4
4: i← 1
5: while |C| > 1 do
6: Select ĉ ∈ C where LBĉ ≤ LBc for all c ∈ C \ {ĉ}
7: Solve subproblems of ĉ . See Section 3.5.5
8: if i = 1 then
9: Determine UB based on the solution obtained

10: else
11: If possible, update UB and LBc for all c ∈ C
12: end if
13: Eliminate all c ∈ C where LBc ≥ UB
14: i← i+ 1
15: end while

First, we decompose the apron into a set of areas S = {1, . . . , S} that are independent with
respect to Safety Constraints (3.1j), intending to solve the AGLP for each area separately
(line 1 in Algorithm 3.1, see Section 3.5.2); however, Demand Constraints (3.1c) consider
the apron as a whole. Thus, in order to solve the problem for each area independently, we
must first decide for each demand pattern how many aircraft of which class(es) are to be
assigned to which area. Among the many possible ways to decompose demand patterns,
we only consider those where (i) all aircraft assigned to an area can be parked at contact
gates in the particular area and where (ii) the total number of aircraft (weighted by Wak)
that cannot be assigned to any area due to (i) is minimized. We call each of the resulting
assignments a demand decomposition, and the set of demand decompositions is denoted
by C = {1, . . . , C} (line 2, see Section 3.5.3). We generate all demand decompositions
that satisfy (i) and (ii).

Let z∗1 and z∗2 denote the optimal values of Objective Functions (3.1a) and (3.1b), re-
spectively. Similarly, let z∗1c and z∗2c be the optimal values of Objective Functions (3.1a)
and (3.1b) when aircraft are assigned to areas according to demand decomposition c ∈ C
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(z∗1c ≥ z∗1 and z∗2c ≥ z∗2). As we will show in Section 3.5.3, ensuring (i) and (ii) is equiv-
alent to minimizing Objective Function (3.1a), and thus all demand decompositions in
c ∈ C lead to z∗1 , i.e., z∗1c = z∗1 ∀c ∈ C. In order to solve the AGLP to optimality, we
must identify a demand decomposition c ∈ C that also leads to z∗2 , i.e., where z∗2c = z∗2 .
We reduce the number of demand decompositions that need to be examined to find z∗2
and to prove optimality of z∗2 by means of a bounding algorithm (lines 5 to 15). First,
we compute a lower bound LBc on z∗2c for each demand decomposition c ∈ C (line 3, see
Section 3.5.4). Then, we select the demand decomposition with the lowest value of LBc

and determine z∗2c. The result poses an upper bound UB on z∗2 . Thus, we can remove all
demand decompositions from C for which LBc ≥ UB holds (line 13). Furthermore, we
will show in Section 3.5.4 that the solution may be used to update LBc′ for other demand
decompositions c′ ∈ C \ {c}, potentially leading to their removal from C as well. In the
next iteration, we again select the demand decomposition c ∈ C with lowest value of LBc.
We repeat this process until no demand decomposition remains in C. Then, the value of
UB equals z∗2 .

To determine z∗2c for one demand decomposition c ∈ C, we solve Model (3.1b)-(3.1p)
separately for each area s ∈ S (line 7, see Section 3.5.5). We call the resulting models
the subproblems of the AGLP, and we denote the optimal objective function value of the
subproblem associated with demand decomposition c ∈ C and area s ∈ S with z∗2cs. When
the subproblems for all areas s ∈ S have been solved for demand decomposition c ∈ C,
we calculate z∗2c as

∑
s∈S

z∗2cs. We provide the mathematical formulation of a subproblem in

Appendix B.4.

3.5.2 Decomposing the apron into independent areas

We partition the apron into independent areas S in an iterative process. A terminal
facade can be described as a polygonal chain, consisting of a sequence of connected line
segments. We initially assume that all gates and lead-in lines located before the same
line segment are part of the same area, and that gates and lead-in lines located in front
of different line segments belong to different areas. Let Gs and Ls be the resulting sets of
lead-in lines and gates belonging to area s ∈ S.

55



3 Optimal Positioning of Aircraft Stands

Definition 3.1 (Independence of areas). Two areas s, t ∈ S, s 6= t are independent iff
Elmab = 0 ∀l ∈ Ls;m ∈ Lt; a, b ∈ A.

If two areas s, t ∈ S, s 6= t are not independent according to Definition 3.1, we combine
both areas into a new area u (Lu = Ls ∪ Lt, Gu = Gs ∪ Gt), add u to S, remove s and
t from S, and check again whether all areas s ∈ S are mutually independent according
to Definition 3.1. The process is finished when all areas in S are confirmed to be inde-
pendent4. As an example, Figure 3.4 shows how London Heathrow Airport Terminal 4 is
separated into four independent areas following this procedure.

Figure 3.4: Independent areas of London Heathrow Airport Terminal 4 (Source: Google
Maps)

3.5.3 Determining the set of demand decompositions

We identify demand decompositions using a two-step procedure: First, we determine for
each area s ∈ S how many aircraft of which classes can be parked simultaneously at
lead-in lines Ls.

4In a worst-case scenario, |S| = 1. In that case, our approach has no advantage over solving Model
(3.1a)-(3.1p) directly, as the problem cannot be decomposed into independent areas. However, in reality
|S| ≥ 2 is true for most terminals, especially when the terminal is large. Furthermore, if |S| = 1, our
approach can still be used as a heuristic by manually removing individual lines from the set of lead-in
lines L, resulting in independent areas according to Definition 3.1.
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Definition 3.2 (Parking patterns). Let ra ∈ N0 represent a number of class a ∈
A aircraft. We call (r1, r2, . . . , rA) a feasible parking pattern for an area if all aircraft
r1, r2, . . . , rA can be parked at contact gates of the area simultaneously. Let rap ∈ N0

denote the number of aircraft of class a ∈ A that are parked simultaneously in a parking
pattern p. We call p = (r1p, r2p, . . . , rAp) an efficient parking pattern for an area if rap
cannot be increased for any a ∈ A without leading to infeasibility with respect to Safety
Constraints (3.1j). The set of efficient parking patterns associated with area s ∈ S is
denoted by Ps.

Example 3.1. Let A = {1, 2}, with a = 1 and a = 2 representing small and large aircraft,
respectively. Assume that in a given area it is possible to park a maximum of four small
aircraft when zero large aircraft are parked, and that a maximum of two large aircraft
can be parked when zero small aircraft are parked. Furthermore, assume that two small
aircraft can be parked when the number of large aircraft that are parked is one. Then,
the set of efficient parking patterns for area s ∈ S is given as Ps = {(4, 0) , (2, 1) , (0, 2)}.

Second, once Ps has been determined for all areas s ∈ S, we create demand decompositions
by selecting one parking pattern p ∈ Ps for each demand pattern k ∈ K and area s ∈ S.

Definition 3.3 (Demand decompositions). Let the function p (c, s, k) return the park-
ing pattern p that is selected from Ps for area s ∈ S and demand pattern k ∈ K in demand
decomposition c ∈ C. Then, demand decomposition c ∈ C is defined as

p (c, 1, 1) p (c, 1, 2) . . . p (c, 1, K)

p (c, 2, 1) p (c, 2, 2) . . . p (c, 2, K)
... ... ... ...

p (c, S, 1) p (c, S, 2) . . . p (c, S,K)

 .

Patterns are selected such that
∑
a∈A

∑
k∈K

Wak ·
(
Dak −

∑
s∈S

rap(c,s,k)

)
is minimized, which is

equivalent to Objective Function (3.1a).

In the following, let Pcs = {p (c, s, 1) , p (c, s, 2) , . . . , p (c, s,K)} contain the parking pat-
terns from the s-th row of demand decomposition c ∈ C.
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3.5.3.1 Identifying efficient parking patterns

To determine the set of efficient parking patterns Ps for area s ∈ S, we employ a graph-
based approach, which is inspired by existing work on identifying the set of pareto-efficient
paths through a network (see, e.g., Martins 1984, Tung Tung and Lin Chew 1992) and
dynamic programming.

We create a directed graph in which each feasible combination of lead-in line l ∈ Ls and
aircraft class a ∈ A (Cal = 1) is represented by a node (l, a). Arcs between nodes represent
feasible combinations of two parked aircraft, i.e., two nodes (l, a) and (m, b) are connected
if Elmab = 0. Arcs are directed from lead-in lines with lower indices to lead-in lines with
higher indices. We add two dummy nodes to the network, one representing a single source
and the other representing a single sink. For each non-dummy node, an in-arc is added
from the source node and an out-arc is added to the sink node. Each path through this
network corresponds to one feasible, yet not necessarily efficient parking pattern for the
respective area. We construct paths incrementally by iterating over all nodes, starting
at the source node. Each iteration consists of two steps: First, we compare all paths
that lead into the particular node and prune paths if possible. Second, we extend all
non-dominated paths leading into the node to all nodes, which can be reached from that
node.

A path is pruned if it is dominated by another path (see Definition 3.4) or it becomes
apparent that the parking pattern associated with it is not needed given the demand
patterns (see Lemma 3.1). Let σ(i)

aπ denote the number of class a ∈ A aircraft parked in
path π leading from the source node to node i.

Definition 3.4 (Path dominance). A path π1 dominates another path π2 if σ(i)
aπ1 ≥

σ
(i)
aπ2 ∀a ∈ A and σ

(i)
aπ1 > σ

(i)
aπ2 ∃a ∈ A.

This directly follows from Definition 3.2. If paths π1, π2, . . . , πn are equivalent, i.e., σ(i)
aπ1 =

σ
(i)
aπ2 = . . . = σ

(i)
aπn ∀a ∈ A, one path is selected arbitrarily and all other paths are pruned.

Lemma 3.1 (Paths and demand patterns). A path π can be pruned if σ
(i)
aπ >

maxk∈K {Dak} ∃a ∈ A at a given node i.
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We consider situations where space is scarce5, i.e., the optimal value of Objective Function
(3.1a) is larger than 0 with respect to each demand pattern k ∈ K. Thus, parking more
class a ∈ A aircraft than is required for any of the demand patterns in K would translate
to fewer aircraft of another class b ∈ A that can be parked and hence, would result in a
worse outcome with respect to Objective Function (3.1a). �

Example 3.2. Assume there are A = 2 aircraft classes and demand patterns (15, 0),
(13, 1), and (10, 2). Then, a path π with σ2π = 3 can be pruned, since no more than two
aircraft of class 2 need to be accommodated for any demand pattern.

Before we extend a path to node (m, b), we verify that parking a class b aircraft at lead-in
line m does not lead to collisions with any other aircraft already considered in the path,
i.e., that Elmab = 0 for all nodes (l, a) already included in the path. While the definition
of arcs ensures that this is always true for the node that was most recently added to the
path, it may not be true for nodes added to the path earlier. Whenever we find that
Elmab = 1 for any node (l, a) already included in the path, we do not extend the path to
node (m, b). We observe this phenomenon when the value of κ is small and/or when the
terminal facade has a corner.

After the last iteration, i.e., when all paths have reached the sink node, none of the
remaining paths is dominated by another path. Thus, each path that reaches the sink
node is associated with a unique and efficient parking pattern for area s. Then, Ps contains
all existing efficient parking patterns for area s ∈ S except of those which cannot be part
of the optimal solution due to Lemma 3.1.

3.5.3.2 Creation of demand decompositions

A demand decomposition c ∈ C is created by selecting one parking pattern p ∈ Ps for
each area s ∈ S and demand pattern k ∈ K. Depending on the cardinalities of Ps, S,
and K, the number of possible demand decompositions may be very large. However, we
are only interested in those demand decompositions that lead to z∗1 . Objective Function

5Whether this condition is satisfied can be checked in practice, for example, by first solving the AGLP
for each demand pattern separately using CPLEX. If z∗1 = 0 and slack space exists, space is not scarce
and our decomposition approach should not be applied to that particular instance.
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(3.1a) as well as demand decompositions can be decomposed with respect to demand
patterns k ∈ K. Let z∗1k be the optimal value of Objective Function (3.1a) with respect
to demand pattern k ∈ K, i.e., z∗1 =

∑
k∈K

z∗1k. In order to lead to z∗1 , a demand decom-

position must lead to z∗1k for each k ∈ K; we use this by dividing the process to create
demand decompositions into K + 1 stages. In the k-th stage, we pretend that demand
pattern k is the only demand pattern that exists and create the set of all possible de-
mand decompositions, which we denote as Ck. Following the matrix representation of
demand decompositions as given in Definition 3.3, each demand decomposition c ∈ Ck is
a column vector (p (c, 1, k) , p (c, 2, k) , . . . , p (c, S, k))T . Next, for each c ∈ Ck we calculate
the associated value of Objective Function (3.1a) with respect to demand pattern k as∑
a∈A

(
Wak ·max

{(
Dak −

∑
s∈S

rap(c,s,k)

)
, 0

})
. Then, we determine z∗1k as the minimum of

the results and remove all c ∈ Ck not leading to z∗1k. Thus, in each stage k ∈ K we obtain
the set of vectors that can be chosen for column k in demand decompositions c ∈ C. In
stage K + 1, Ck has been determined for all k ∈ K and we can create the set of demand
decompositions C. That is, C is obtained as the Cartesian product C1 × C2 × . . .× CK .

3.5.4 Computing lower bounds for demand decompositions

The value of the lower bound LBc for a demand decomposition c ∈ C is derived from the
minimum number of gates needed to handle all aircraft contained in demand decompo-
sition c and the required equipment for these gates. Since each demand decomposition
c ∈ C defines how many aircraft of which class are assigned to which area s ∈ S and the
gates of the areas can be planned independently, we first compute area-specific partial
bounds LBcs and then compute LBc as LBc =

∑
s∈S

LBcs.

This division into area-specific bounds LBcs has two advantages: First, calculating LBc

as the sum of the area-specific bounds LBcs leads to a tighter bound on the value of
Objective Function (3.1b), because the assignment of aircraft to areas is incorporated
in the values of LBcs. Second, depending on the particular instance, different demand
decompositions c1, c2 ∈ C are often equivalent with respect to individual areas s ∈ S, i.e.,
Pc1s = Pc2s. From this follows LBc1s = LBc2s. Thus, once the subproblem of demand
decomposition c1 is solved to optimality for area s, not only can LBc1s be updated, but
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also LBc2s and hence, LBc2 . This potentially allows eliminating c2 if LBc2 > UB after
the update.

When computing LBcs for a pattern configuration c ∈ C and an area s ∈ S, we do not
specify which of the gates from Gs are used but we only consider the minimum number
of gates required per aircraft class. However, we take downward compatibility of gates
as well as MARS mode into account. Let ωcsa ∈ N be the minimum number of gates
equipped for class a ∈ A aircraft required in area s ∈ S to park all aircraft contained in
Pcs. Furthermore, let ψcsak ∈ N be the number of class a ∈ A aircraft that can be parked
at gates which are equipped for aircraft of class a′ > a in area s ∈ S for demand pattern
k ∈ K when aircraft are assigned to areas according to demand decomposition c ∈ C.
Then, Algorithm 3.2 describes our procedure to calculate LBcs in detail.

Algorithm 3.2 Algorithm to determine the value of LBcs

1: Initialize LBcs, ωcsa, and ψcsak

2: for all aircraft classes a ∈ A (in descending order) do
3: ωcsa ← 0
4: for all demand patterns k ∈ K do
5: if a = A then
6: ωcsa ← max

{
ωcsa, rap(c,s,k)

}
7: else
8: if rap(c,s,k) > ωcsa then
9: if a ∈ Alarge \ {A} then

10: ψcsak ←
∑

a′∈A:a′>a

(
ωcsa′ − ra′p(c,s,k)

)
11: else if a ∈ Asmall then
12: ψcsak ←

∑
a′∈A:a′>a,a′∈Alarge

2 ·
(
ωcsa′ − ra′p(c,s,k)

)
13: +

∑
a′∈A:a′>a,a′∈Asmall

(
ωcsa′ − ra′p(c,s,k)

)
14: end if
15: ωcsa ←

(
rap(c,s,k) − ψcsak

)
16: end if
17: end if
18: end for
19: end for
20: LBcs ←

∑
a∈A

a · ωcsa

21: return LBcs
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First, we determine the minimum number of gates required for aircraft of the largest
class A as maxk∈K

{
rAp(c,s,k)

}
in line 6. Next, we consider the next smaller aircraft class

A − 1. Here, for each demand pattern k ∈ K, we first compute how many of the class
A − 1 aircraft contained in p (c, s, k) can be parked at the gates equipped for class A
aircraft, but not occupied by a class A aircraft for demand pattern k (lines 9 to 14). For
the remaining aircraft, additional gates for class A − 1 aircraft must be provided (line
15). We continue according to this scheme until all aircraft classes have been considered.
As soon as the aircraft class under consideration is no longer included in Alarge but in
Asmall, we assume that the MARS mode can always be used, i.e., that two aircraft of class
a ∈ Asmall can be parked simultaneously at gates which are equipped for aircraft of the
classes belonging to Alarge (line 12).

In brownfield settings, we compare the results from Algorithm 3.2 with the already existing
gates and adjust gate quantities ωcsa accordingly if necessary. We provide our algorithm
for that task in Appendix B.5.

3.5.5 Acceleration techniques

We apply a number of problem-specific acceleration techniques to improve the perfor-
mance of our approach.

Solution pool Subproblems for a given area s ∈ S are often identical for different
demand decompositions, i.e., the same number of aircraft per class are assigned to a
given area in different demand decompositions. Therefore, we make use of a solution
pool, in which we store the solutions to all subproblems already solved and which we
inspect each time before solving another subproblem.

Solving relaxed subproblems Each time we search for the optimal solution of a
subproblem, we iteratively solve a relaxation of the problem and try to show that the
solution satisfies all constraints that were relaxed. If the latter fails, we add the violated
constraints to the relaxation and re-solve it in the next iteration. Otherwise, the solution
is feasible for the original subproblem. Similar approaches exist in literature on the

62



3 Optimal Positioning of Aircraft Stands

vehicle routing problem, where subtour elimination constraints are relaxed and added to
the problem only when they are violated by the solution (see, e.g., Laporte et al. 1984).
The solutions to the relaxed problems are also added to the solution pool and reused if
possible.

Consider the subproblem for a demand decomposition c ∈ C and an area s ∈ S. In
the relaxed subproblem, we first consider only one demand pattern k̂, and all constraints
of demand patterns K \

{
k̂
}

are removed. Once the optimal solution for the relaxed

subproblem is found, we determine for each of the remaining demand patterns k ∈ K\
{
k̂
}

separately whether the solution is feasible or not, i.e., whether all aircraft contained in
parking pattern p (c, s, k) can be parked at contact gates in area s given the positions of
and equipment installed at the gates in the solution. If we fail to show that the solution
is feasible for one demand pattern k̃, the constraints associated with demand pattern k̃

are added to the relaxed problem and the next iteration is started by solving the relaxed
problem again.

The behavior of the algorithm can be influenced by the sequence in which demand patterns
are considered. We first sort the parking patterns Pcs by decreasing values of rAp(c,s,k),
i.e., by decreasing number of aircraft of the largest class. When two parking patterns
have equal values of rAp(c,s,k), we sort them by decreasing number of aircraft of the second
largest aircraft class A− 1, etc. The demand pattern we consider first in the subproblem
is determined by the value of k of the first parking pattern in the resulting list, i.e., we
select the demand pattern where the number of aircraft belonging to the largest class that
occurs in Pcs is the highest. This ensures that already in the first iteration enough gates
are equipped for the aircraft of that class.

Definition 3.5 (Bottom-up and top-down strategies). We introduce two alternative
strategies defining the sequence in which the remaining demand patterns are checked for
feasibility.

• Top-down: We consider the demand patterns in the same order in which their
associated parking patterns p (c, s, k) appear in the sorted list.

• Bottom-up: We check the demand patterns in the opposite order. That is, we begin
with the demand pattern whose associated parking pattern p (c, s, k) accommodates
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the smallest number of large aircraft. Typically, this parking pattern has the highest
total number of aircraft, which is the motivation for first examining the demand
pattern associated with this parking pattern.

Example 3.3. Consider a situation where K = 3, A = 2, p (c, s, 1) = (6, 0), p (c, s, 2) =
(4, 1), and p (c, s, 3) = (2, 2) for a given demand decomposition c ∈ C and area s ∈ S. We
select demand pattern 3 with parking pattern (2, 2) in the first iteration, which ensures
that two gates for class 2 aircraft are built in the solution of the relaxed subproblem in
the first iteration. The solution may also be feasible for the remaining demand patterns
1 and 2, as gates are downward compatible and the MARS mode can be used. To verify
that the solution is indeed feasible for demand patterns 1 and 2 without violating any
Safety Constraints (3.1j), we need to perform a feasibility check for both demand patterns
individually. If we apply the bottom-up strategy, we first check demand pattern 1 with
parking pattern (6, 0). In contrast, following the top-down strategy we begin with demand
pattern 2 associated with parking pattern (4, 1).

Checking for feasibility To determine if a solution of the relaxed subproblem is fea-
sible for a demand pattern not considered in the relaxation, we use an adapted version
of the network approach presented in Section 3.5.3. Let v̂ga be the value of the variable
vga in the current solution of the relaxed problem, and let k be the demand pattern for
which the solution is checked. Before we create paths through the network, we delete all
nodes representing combinations of lead-in lines and aircraft classes for which no feasible
gate g ∈ Gs : Flg = 1, v̂ga = 1 exists. Again, we use an iterative process in which paths
are constructed, checked for reasonableness, and pruned if possible. Beyond the pruning
rules defined in Section 3.5.3, a path is truncated at node i if it meets any of the following
conditions.

Lemma 3.2 (Paths and parking patterns). A path π can be pruned if σ(i)
aπ > rap(c,s,k) ∃a ∈

A.

If the number of class a ∈ A aircraft parked in path π leading from the source node to
node i σ(i)

aπ is greater than the number of class a aircraft contained in parking pattern
p (c, s, k), σ(sink)

a′π must be smaller than ra′p(c,s,k) for another aircraft class a′ ∈ A \ {a},
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because parking pattern p (c, s, k) is efficient according to Definition 3.2. Hence, path π

is not suitable to show that the solution is feasible for demand pattern k. �

In addition, we prune a path if it violates Constraints (B.1d), (B.1f), or (B.1h). That is, (i)
each lead-in line that is used repeatedly for different demand patterns has to be assigned
to the same gate for all demand patterns, (ii) aircraft can only be parked at lead-in lines
which are assigned to gates equipped to handle aircraft of the respective class, and (iii)
a gate can simultaneously accommodate at most one aircraft belonging to Alarge or two
aircraft belonging to Asmall. Let ŷl and ûgl denote the values of variables yl and ugl in the
current solution of the relaxed subproblem, respectively. Furthermore, let βga ∈ N denote
the number of class a ∈ A aircraft that are handled at gate g ∈ Gs for demand pattern k

simultaneously. Then, we check compliance of a path π with Constraints (B.1d), (B.1f),
and (B.1h) as shown in Algorithm 3.3.

Algorithm 3.3 Heuristic algorithm to check compliance of a path with Constraints
(B.1d), (B.1f), and (B.1h)

1: Initialize βga and boolean variable ς
2: for all nodes in path π do
3: ς ← false
4: Get l ∈ Ls and a ∈ A represented by the node
5: for all g ∈ Gs if Flg = 1 and v̂ga = 1 do . Constraints (B.1f)
6: if not (ŷl = 1 ∧ ûgl = 0) then . Constraints (B.1d)
7: if

∑
a∈Asmall

βga + 2 ·
∑

a∈Alarge
βga < 2 then . Constraints

(B.1h)
8: βga ← βga + 1
9: ς ← true

10: break
11: end if
12: end if
13: end for
14: if ς = false then
15: return false . solution is infeasible
16: end if
17: end for
18: return true . solution is feasible

Algorithm 3.3 can be described as a greedy heuristic that tries to assign parked aircraft
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to the first available gate. Hence, there is no guarantee that Algorithm 3.3 returns that
a given solution is feasible if it actually is feasible; however, if the solution is actually
infeasible, Algorithm 3.3 will always return that it is infeasible.

Monitoring the upper bound Each time we have solved a (relaxed) subproblem for
a demand decomposition c ∈ C, we check whether z∗2c can still be smaller than the current
value of UB given the solution(s) found so far. If not, the solution process for demand
decomposition c can be stopped, and c can be removed from C. As we have shown in
Section 3.5.4, it may still be possible to update LBc̃ for other demand decompositions
c̃ ∈ C \{c} based on the solutions determined until abortion, which may also lead to their
removal from C.

Consistency of demand decompositions In the bounding algorithm, the set of sub-
problems to be solved next is found by selecting the demand decomposition from C that
has the smallest LBc value, ensuring that in each iteration the demand decomposition
with the best potential to lead to a new best solution is explored. However, due to the
large number of demand decompositions, we often observe several with the same LBc

values. We then sort the affected demand decompositions according to what we call the
consistency criterion.

Definition 3.6 (Consistency). Let ζcak denote the number of aircraft belonging to
classes {a, . . . , A} that are parked at all areas for demand pattern k ∈ K when air-
craft are assigned to areas according to demand decomposition c ∈ C, i.e., ζcak =∑
s∈S

∑
a′∈{a,...,A}

ra′p(c,s,k). We call demand decomposition c consistent if there is no area s ∈ S

for which
∑

a′∈{a,...,A}
ra′p(c,s,k1) <

∑
a′∈{a,...,A}

ra′p(c,s,k2) holds for any aircraft class a ∈ Alarge

and two demand patterns k1, k2 ∈ K : k1 6= k2, given that ζcak1 ≥ ζcak2 . A demand de-
composition thus is consistent if large aircraft are repeatedly assigned to the same areas
for different demand patterns, rather than being assigned to different areas. According to
the consistency criterion, preference should be given to consistent demand decompositions
over non-consistent demand decompositions with same LBc value.

Example 3.4. Consider a greenfield situation with A = 2, where a = 1 and a = 2

represent classes of small and large aircraft, respectively. Assume K = 2, with the
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demand patterns given as Dak = (10, 1) and (8, 2), and assume there are S = 2 areas.

Furthermore, consider two distinct demand decompositions c1 =

(
(3, 1) (3, 1)

(6, 0) (4, 1)

)
and

c2 =

(
(3, 1) (5, 0)

(6, 0) (2, 2)

)
. According to Algorithm 3.2, LBc1 = LBc2 . However, c1 is a

consistent demand decomposition, whereas c2 is not, and hence, demand decomposition
c1 is considered first in the bounding algorithm following the consistency criterion.

We provide the algorithm we utilize to determine whether a demand decomposition is
consistent or not in Appendix B.6.

3.6 Computational experiments

In the following, we examine the performance of our approach and analyze the solutions
of individual instances. In Section 3.6.1, we describe the instances we used in our ex-
periments. Section 3.6.2 compares the performance of our approach to CPLEX solving
Model (3.1a)-(3.1p) directly. In Section 3.6.3, we examine how the performance of our
approach behaves for larger instances, and in Section 3.6.4, we investigate the impact of
the acceleration techniques introduced in Section 3.5.5. Finally, we discuss the optimal
solutions for individual instances in detail in Section 3.6.5. All experiments were per-
formed on a computer equipped with an Intel Xeon E3-1225 v3 @3.20 GHz processor and
12 GB of working memory. The implementation was done in Java and CPLEX version
20.1.0 was used. To facilitate the reproducibility of our results and to encourage further
research on the AGLP, all our instances are available in a public repository at Mendeley
Data (Hagspihl et al. 2023b).

3.6.1 Instances

All instances are based on data from Munich Airport Terminal 1. With 47.9 million
passengers in 2019, Munich Airport is the second largest airport in Germany (Munich
Airport 2020). Before the crisis caused by the Corona virus in 2020, 101 airlines were
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active at Munich Airport, connecting the airport to 254 destinations in 75 countries.
Transfer passengers accounted for 38% of total passenger traffic in 2019, so Munich Airport
is considered a hub airport. The airport has two terminals, Terminal 1 being the smaller
of the two providing about a third of the airport’s total capacity. The terminal is currently
being renovated and extended by a new section. Figure 3.5 shows the apron layout for
Terminal 1, with the new extension highlighted in red.

Figure 3.5: Terminal layout of Munich Airport and extension of Terminal 1 (Source: Mu-
nich Airport)

As part of the expansion and reconstruction activities, the positions of gates and lead-in
lines have to be determined for the new section of the terminal, and changes may also be
made in existing sections of Terminal 1. We consider three planning scenarios, resulting
in three separate sets of instances:

• Greenfield: Existing gates and lead-in lines are not considered.

• Soft brownfield: Existing gates and lead-in lines south of the extension are consid-
ered. Existing gates cannot be changed, but additional lead-in lines and gates can
be added to the layout of these sections.
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• True brownfield: In sections south of the extension, the gate layout remains un-
changed, i.e., only existing gates and lead-in lines can be used.

As demand patterns are defined for the terminal building as a whole, we solve the AGLP
for the entire terminal, including the sections south of the extension regardless of the
planning scenario. To determine the sets of lead-in lines L and gates G for all instances,
as well as the values of the parameters Cal, Elmab, Flg, and Hga, which determine the rela-
tionships among the gates and lead-in lines, we applied the procedure described in Section
3.3 and validated the results with planning experts from Munich Airport. We employed
satellite images as well as floor plan drawings provided by Munich Airport to determine
the relevant coordinates of the terminal building and surrounding taxiways. In all brown-
field instances, 11 gates and 18 lead-in lines that already exist south of the extension were
added to sets G and L, respectively, based on their coordinates. Furthermore, all other
gates and lead-in lines south of the new extension were removed from sets G and L in
the true brownfield instances. To investigate the computational performance of our ap-
proach, we created instances of different complexity for each planning scenario by varying
the distance between adjacent starting points ∆ as well as the rotation angle κ between
the lead-in lines that share the same starting point, where ∆ ∈ {10 m, 7.5 m, 5 m, 2.5 m}
and κ ∈ {90°, 45°, 30°, 22.5°, 15°}. Depending on the values of ∆ and κ, the number of
gates G considered in the model is between 136 and 507, and the number of lead-in lines
L considered is between 119 and 2, 400. We ensured that 90◦ is an integer multiple of each
value of κ, since we concluded from the exchange with Munich Airport that lead-in lines
perpendicular to the terminal facade are the easiest to operate in practice. However, the
use of non-perpendicular lead-in lines may still considerably improve z∗1 , as they may allow
accommodation of additional aircraft in corners or at the ends of the terminal building.
We visualize sets G and L for ∆ = 5 m and κ = 22.5◦ in Appendix B.7 for each planning
scenario. In summary, we created instances for three scenarios, four values of ∆, and five
values of κ, resulting in 3 · 4 · 5 = 60 instances in total.

The smaller the values of ∆ and κ, the more flexibly aircraft can be parked on the apron,
and the better solutions we expect for Objective Function (3.1a). Better solutions for
Objective Function (3.1a) might suggest worse solutions for Objective Function (3.1b), as
accommodating more aircraft requires more gates. However, the smaller the values of ∆
and κ, the more precisely gates can be placed, potentially reducing the number of gates
needed to serve a given number of aircraft simultaneously.
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Table 3.2: Values of Dak derived from the flight plan forecast for the year 2030

k

a 1 2 3 4 5

1 39 31 29 25 23

2 0 2 3 5 6

3 0 0 0 1 1

In all instances, the set of aircraft classes is given as A = {1, 2, 3}, where aircraft classes
1 , 2, and 3 correspond to ADGs III, V, and VI as introduced in Table 3.1. Hence,
Asmall = {1} and Alarge = {2, 3}. Based on the interviews with experts from Munich
Airport, we set Cal to 1 for all a ∈ A and l ∈ L. Furthermore, Flg equals 1 if the path
between gate g and lead-in line l is unobstructed, and gate g is located at a maximum
distance of 40.5 meters to the left of lead-in line l from the point of view of the parked
aircraft. Finally, the values of Elmab were determined as stated in Section 3.3.

Demand patterns k ∈ K and associated traffic volumes Dak were obtained from the flight
plan forecast of Munich Airport for the year 2030. We identified five demand patterns for
Terminal 1, which are given in Table 3.2.

Aircraft of ADGs I, II, and IV are rarely seen at Munich Airport and are therefore not
present in any demand pattern. Finally, the weights Wak for Objective Function (3.1a)
are calculated as follows: We assume that all demand patterns given in Table 3.2 have
equal likelihood, and hence the values of Wak are independent of k. In contrast, larger
aircraft are associated with larger weights. Thus, for each a ∈ A and k ∈ K, we set Wak

to 0.2 · a2.

3.6.2 Computational performance compared to commercial
solver

To evaluate the performance of our approach, we applied it to all 20 soft brownfield in-
stances. We selected the soft brownfield scenario, because the sets G and L are the largest
for given values of ∆ and κ compared to the greenfield or true brownfield counterparts.
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Table 3.3: Computational results for soft brownfield instances
Instance Objectives Runtimes [min] Info on DA

Objective (3.1a) Objective (3.1b) Objective (3.1a) Objective (3.1b)

Nr. ∆ [m] κ [°] G L CPLEX* DA CPLEX* DA* CPLEX DA CPLEX DA C Ccon Cexa SPexa K̄SP

1 10 90 136 119 6.8 6.8 34 34 0 0 0 0 2625 69 4 6 1.86

2 45 235 6.2 6.2 35 35 0 0 1 0 798 36 4 6 1.86

3 30 297 4.6 4.6 43 [12] 43 0 0 > 1440 0 630 20 2 4 2

4 22.5 418 4.0 4.0 37 37 7 0 36 1 416 48 4 6 1.5

5 15 613 3.4 3.4 − 39 139 2 > 1440 2 396 16 2 5 1.4

6 7.5 90 178 154 8.6 8.6 34 34 0 0 3 1 840 80 6 12 1.5

7 45 310 7.4 7.4 34 34 3 0 65 0 2750 112 2 7 1.14

8 30 392 5.6 5.6 36 36 3 0 14 1 80 18 4 5 1.57

9 22.5 556 4.4 4.4 40 40 504 1 12 1 198 24 2 4 1

10 15 815 4.6 [43] 4.6 − 36 > 1440 5 > 1440 7 384 48 2 4 1.25

11 5.0 90 260 222 6.2 6.2 35 35 0 0 2 0 315 18 2 4 1.5

12 45 454 5.6 5.6 − 39 82 1 > 1440 1 630 20 2 3 1.5

13 30 578 4.2 4.2 37 [1] 37 787 2 > 1440 4 980 36 8 8 1.2

14 22.5 823 3.2 [50] 3.2 − 37 > 1440 5 > 1440 189 1400 48 3 5 1.5

15 15 1210 6.8 [91] 3.2 − 38 > 1440 17 > 1440 334 770 30 2 4 1.75

16 2.5 90 507 428 5.6 5.6 38 38 2 1 138 2 216 42 4 7 1.43

17 45 891 5.2 [77] 4.2 − 41 > 1440 5 > 1440 511 24 6 2 4 2

18 30 1139 32 [99] 3.6 14 40 > 1440 14 15 313 504 63 6 8 1.38

19 22.5 1626 38.2 [100] 2.8 14 39 [3] > 1440 25 32 > 1440 96 12 ≥ 2 ≥ 5 1.2

20 15 2400 45.8 [100] 2.2 14 ≥ 38** > 1440 172 11 > 1440 132 9 ≥ 1 ≥ 3 −

av. 270 684 10.4 5.1 − 37.5 581 12 652 212 709 37.75 3.2 5.5 1.48

* Values in parentheses indicate optimality gaps in percent
** Lower bound of first demand decomposition examined in the bounding algorithm

We used all acceleration techniques introduced in Section 3.5.5 and applied the top-down
strategy. As a benchmark, we solved Model (3.1a)-(3.1p) using CPLEX, with a time
limit of 24 hours per objective function. In Table 3.3, we provide for each soft brown-
field instance the resulting objective function values, optimality gaps, and runtimes for
both CPLEX and our decomposition approach (DA). Furthermore, we provide relevant
performance indicators for our approach, where Ccon denotes the number of consistent
demand decompositions of an instance; Cexa and SPexa represent the number of demand
decompositions and subproblems, respectively, examined in the bounding algorithm; and
K̄SP gives the average number of demand patterns that had to be included in the relaxed
subproblems until either feasibility of the solution for the remaining demand patterns was
proven or the optimization process was aborted.

Our results demonstrate that Model (3.1a)-(3.1p) cannot be solved to optimality by
CPLEX for small values of ∆ and κ within a reasonable amount of time. For five in-
stances, z∗1 was not found within 24 hours. Furthermore, for two instances z∗1 was found
but not proven to be optimal. Only for 11 of the 15 instances, for which z∗1 could be deter-
mined, could z∗2 also be found within the time limit. Again, for two of these 11 instances,
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z∗2 was found but not proven to be optimal. In summary, CPLEX could solve only 11 of 20
instances to optimality, thereby proving optimality for only nine instances. In particular,
no instance with κ = 15◦ could be solved to optimality, and for ∆ ∈ {5 m, 2.5 m} only
the instances with κ = 90◦ could be solved to optimality with no remaining optimality
gap.

In contrast, with the decomposition approach we can solve 18 of 20 instances to opti-
mality within 24 hours, and we find a feasible solution for one additional instance with
an optimality gap of 2.63%. Our approach finds z∗1 for all instances within less than
three hours. Averaged over all instances where z∗1 was found and proven to be optimal
by CPLEX within the time limit, our approach reduces the runtime per instance for
Objective Function (3.1a) by 84.14%. As for Objective Function (3.1b), the decomposi-
tion approach reduces the average computation time per instance by 84.06% compared to
CPLEX. Here, we only consider the instances for which both CPLEX and our algorithm
found z∗1 and z∗2 and proved optimality within the time limit. Averaged over the same
instances, our approach reduces the total computation time per instance, i.e., the time
needed to solve both objective functions to optimality, by 82.70%.

While the runtimes provided in Table 3.3 suggest that CPLEX can find z∗2 much faster than
our decomposition approach for Instances 18, 19, and 20, these short CPLEX runtimes
result from the fact that CPLEX cannot find z∗1 for these instances within the time limit
but only a (weak) upper bound. As a result, for Instances 18, 19, and 20, CPLEX can
solve Objective Function (3.1b) faster than our decomposition approach because only the
upper bound is added as a constraint in the lexicographic approach, not z∗1 . Thus, these
runtimes cannot be compared to those of our decomposition approach.

The number of demand decompositions found varies between 24 and 2, 750. In com-
parison, the number of demand decompositions examined in the bounding algorithm is
significantly smaller. For ten instances, only two demand decompositions need to be ex-
amined in the bounding algorithm until it is proven that the optimal solution has been
found. The maximum number of demand decompositions examined across all instances
is eight, highlighting the efficiency of the bounding algorithm. The number of subprob-
lems examined using CPLEX is also low, ranging between three and 12. The number of
independent areas found is four for Instances 6 and 7, and three for all other instances.

The objective function values meet our expectations. For a given value of κ, z∗1 improves
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when ∆ is reduced from 10 m to 5 m or from 5 m to 2.5 m. This is inevitable, because
instances with ∆ = 2.5 m include all lead-in lines and gates of instances with ∆ = 5 m,
and instances with ∆ = 5 m include all lead-in lines and gates of instances with ∆ = 10 m.
Instances with ∆ = 7.5 m do not fit into this scheme, which is why the z∗1 values of these
instances can be and in fact are worse than those of the instances with ∆ = 10 m.
Similarly, smaller values of κ generally yield better solutions with respect to Objective
Function (3.1a) for a given value of ∆. Regarding Objective Function (3.1b), we do not see
any systematic impact of the values of ∆ and κ on z∗2 . Nevertheless, the range of solutions
with values between 34 and 43 indicates that the choice of ∆ and κ exerts considerable
influence on z∗2 .

3.6.3 Computational performance for larger instances

In the following, we create larger instances with respect to three criteria. First, we generate
an instance with one additional independent area, which increases the total parking space
of the terminal by a third. To ensure that apron space remains scarce, we also increase
the value of Dak by 33% for all a ∈ A and k ∈ K (rounded to the next integer value).
Second, we create an instance with an additional demand pattern k = 6, where D16 = 21,
D26 = 7, and D36 = 1. Finally, we generate an instance where ADG IV aircraft also exist
(with demand 3, 3, 3, 2, 2 for demand patterns k ∈ K). All three instances are created
based on medium-sized Instance 13 from Table 3.3 (∆ = 5 m and κ = 30◦). We solve all
three instances with our decomposition approach and compare the performance to that in
Instance 13 in Table 3.3. The results are provided in Table 3.4, where ∆+

time,a and ∆+
time,b

denote the percentage runtime increase compared to the reference instance for Objective
Functions (3.1a) and (3.1b), respectively.

Table 3.4: Performance for larger instances
Instance description ∆+

time,a [%] ∆+
time,b [%] Info on DA

C Ccon Cexa SPexa K̄SP

Reference (Instance 13 from Table 3.3) − − 980 36 8 8 1.2

Additional area 270.59 15.42 81, 312 420 8 12 1.2

Additional demand pattern 2.61 −7.03 5, 880 22 2 4 1.5

Additional aircraft class 1, 050.33 693.88 19, 584 120 8 10 1.2

While we observe a significant increase in runtime when an independent area or aircraft
class is added, the runtime does not change considerably when a demand pattern is
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added. Furthermore, when the instance grows by an independent area or aircraft class, the
increase in runtime is higher for Objective Function (3.1a) compared to Objective Function
(3.1b). We observe that the number of demand decompositions grows exponentially, in
particular when an independent area or aircraft class is added. However, the number of
demand decompositions and subproblems examined in the bounding algorithm does not
change drastically. When a demand pattern is added, the values of Cexa and SPexa are
even smaller compared to the reference instance, which explains the shorter runtime for
Objective Function (3.1b). The high value of ∆+

time,b observed when adding an aircraft
class can be explained by the fact that the subproblems themselves become more complex
to solve. Due to our acceleration strategy to solve relaxations of the subproblems where
demand patterns are ignored, this is not necessarily true when a demand pattern is added.

3.6.4 Effectiveness of acceleration techniques

We introduced multiple acceleration techniques in Section 3.5.5. In the following, we
examine the impact of each of these acceleration techniques on the performance of our
approach. For this purpose, we solved all soft brownfield instances from Table 3.3 multiple
times, each time removing or exchanging exactly one of the acceleration techniques.

For each configuration of our approach with respect to acceleration techniques, Table 3.5
depicts the number of instances (out of 20) for which a feasible solution was found within
the time limit (nfea) and the number of instances that were solved to optimality within
the time limit (nopt). Furthermore, averaged over all instances counted in nopt, Table 3.5
provides the percentage runtime increase per instance (∆+

time) compared to the runtimes
obtained in Table 3.3, where all acceleration techniques and the top-down strategy were
used. As the acceleration techniques have no impact on the part of our approach ded-
icated to finding the best solution for Objective Function (3.1a), we concentrate on the
computation times for Objective Function (3.1b). If not stated differently, the top-down
strategy was applied to sort demand patterns.

Removing any acceleration technique leads to a degradation of the performance of our
algorithm. Most importantly, the average runtime per instance increases by more than
800% when subproblems are solved directly without relaxations, and fewer instances can
be solved in that case. When the optimization process of the subproblems associated
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Table 3.5: Performance results when individual acceleration techniques are deactivated

Description nfea nopt ∆+
time [%]

No solution pool 19 18 9.81

No relaxation of subproblems 15 14 859.21

Bottom-up strategy 19 18 58.17

No monitoring of UB 19 17 197.61

Consistency not considered 18 18 22.21

with demand decomposition c ∈ C is not terminated as soon as it becomes apparent that
z∗2c cannot be smaller than the current upper bound UB, we observe that the average
runtime per instance increases by almost 200%. The remaining acceleration techniques
also improve the performance of our algorithm, with average runtime reductions per
instance and acceleration technique ranging between 10% and 60%.

3.6.5 Analysis of optimal layouts

We now address the resulting gate layout for Munich Airport Terminal 1. We have solved
the greenfield, soft brownfield, and true brownfield instances for ∆ = 5 m and κ = 22.5◦,
and we compare the optimal layouts in the following. For each planning scenario, Figure
3.6 shows which gates and lead-in lines are used in the optimal solution, which lead-in lines
are assigned to which gates, and the safety envelope of the aircraft parked at each lead-in
line, indicating the class of each parked aircraft. The terminal facade and other airport
structures are shown by red lines, and taxiways are illustrated by yellow lines. Existing
gates are represented by gray circles in front of the terminal facade, whereas new gates
are colored cyan. Similarly, existing lead-in lines are depicted in purple, while new lead-in
lines are colored green. Black lines connect lead-in lines to the gates they are assigned
to. Finally, aircraft safety envelopes are displayed as blue polygons. In order not to
overload the figures, they show only lead-in lines and aircraft safety envelopes for demand
pattern 5. Which lead-in lines are used for the remaining demand patterns is illustrated
in Appendix B.8. Furthermore, for all planning scenarios, Table 3.6 provides the optimal
values of Objective Functions (3.1a) and (3.1b), the optimal values of Objective Function
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(3.1b) when already existing gates are not considered, and the number of gates used to
park aircraft across all demand patterns.

(a) Greenfield (b) Soft brownfield (c) True brownfield

Figure 3.6: Optimal solutions for different planning scenarios, demand pattern 5

Compared to the true brownfield case, sets G and L contain significantly more gates
and lead-in lines in the greenfield and soft brownfield scenarios, which increases planning
flexibility. Consequently, the number of aircraft that cannot be parked at contact gates
weighted by aircraft class and demand pattern (z∗1) is substantially lower in the greenfield
and soft brownfield scenarios than in the true brownfield scenario. However, there is no
difference in that value between the greenfield and soft brownfield scenarios, suggesting
that the existing gates and lead-in lines that distinguish the two scenarios from each other
do not lead to an increase in parking capacity in our case.

Our results indicate that the substantial decrease in the number of aircraft that cannot
be parked at contact gates weighted by aircraft class and demand pattern in the soft
brownfield scenario compared to the true brownfield scenario does not lead to an equally
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Table 3.6: Performance data of optimal layouts for different planning scenarios

Planning scenario z∗1 z∗2 z∗2 without already existing gates Number of gates used

Greenfield 3.2 36 36 27

Soft brownfield 3.2 37 23 28

True brownfield 6.2 35 21 25

significant increase in construction effort for gates. Instead, the increase in construction
effort is comparatively small, also when taking the already existing gates into account.
Thus, by allowing changes to the existing layout in the southern part of the terminal, a
significant improvement in parking capacity can be achieved, while the actual changes to
the existing gate layout remain relatively small.

Figure 3.6 shows that mainly orthogonal lead-in lines are used in the optimal layouts
regardless of the scenario, without explicitly incentivizing the use of orthogonal lead-in
lines in our model. Non-orthogonal lead-in lines are only used in three cases: (i) At
corners of the terminal building where no orthogonal lead-in lines can be used, (ii) when
specific geometric situations favor the use of non-orthogonal lead-in lines (for example,
consider the situation at the southern facade of the new extension building in the true
brownfield scenario), and (iii) when there is slack space that does not suffice to park
another aircraft, even if all lead-in lines were orthogonal. However, in situations (i) and
(ii), the use of non-orthogonal lead-in lines enables parking more aircraft simultaneously,
so non-orthogonal lead-in lines should always be considered in the planning.

Finally, we find that the optimal layouts in Figure 3.6 and Appendix B.8 are quite distinct
from each other. Nevertheless, the solutions for the greenfield and soft brownfield scenarios
are very similar in terms of our objective functions. Therefore, we suspect that several
solutions exist per scenario that are equivalent with respect to our objective functions. In
that case, it might be useful to identify all these equivalent solutions in order to be able
to provide the planner with several alternatives.
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3.7 Conclusion

We introduced the Airport Gate Layout Problem (AGLP) and presented a mixed-integer
model formulation for the problem that can be applied to both greenfield and brown-
field instances. To solve the problem efficiently, we presented a decomposition framework,
which features a custom bounding algorithm as well as problem-specific acceleration tech-
niques. In our computational experiments, we demonstrated the superior performance of
our approach compared to CPLEX and investigated the impact of each acceleration tech-
nique on runtimes. In addition, we explored how our approach performs when the number
of independent areas, demand patterns, or aircraft classes is increased. Finally, we ana-
lyzed and compared particular layouts for Munich Airport Terminal 1 in different planning
scenarios.

Solving the AGLP provides valuable decision support to planning experts. First, the
optimal layout shows how to make the best use of the available space, especially for
complex terminal geometries. Second, the optimal solution can be used as a benchmark
for layout alternatives created by planning experts. Finally, when a new terminal is to
be built and the layout of the building has not yet been determined, solving the AGLP
can be used to evaluate different terminal layouts in terms of their potential to handle as
many of the expected aircraft as possible at contact gates. Our decomposition approach
considerably reduces the time needed to solve the AGLP for a given instance, which allows
us to solve instances that are intractable for CPLEX. Thus, we can solve the AGLP with
increased planning granularity for a particular terminal building, resulting in a better
solution.

To conclude, we outline some possibilities for future research on the AGLP. First, we have
not considered the affiliation of aircraft to airlines so far. Airlines that operate a base at an
airport tend to have their own terminal or terminal areas where all flights of these airlines
are handled. Of course, these terminal areas do not necessarily correspond to the terminal
areas we define in our solution approach. However, different airlines are associated with
different fleet compositions. Therefore, if the affiliation of aircraft to airlines is to be taken
into account, the parking positions in each terminal area must reflect the fleet mix of the
particular airline. Second, to reduce operational complexity on the apron, the AGLP
may be extended by another objective function to minimize the number of lead-in lines,
especially those that are non-orthogonal to the terminal facade, used across all demand
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patterns. Third, it might be useful for decision makers to receive not only one solution,
but several alternative layouts that are equivalent with respect to the given objectives and
constraints, provided there is more than one optimal solution. While different layouts may
be equally optimal from the perspective of our model, one alternative layout might be
easier to realize than others, especially in brownfield situations.

Finally, future work should be concerned with further shortening the runtimes of the
AGLP. In particular, pre-generation of parking patterns and demand decompositions is
computationally expensive for instances with many independent areas, demand patterns,
and/or aircraft classes. To address this problem, our approach could be supplemented
with a column generation mechanism for stepwise generation of parking patterns and
demand decompositions. Furthermore, approaches that reduce the runtime of the relaxed
subproblems could be promising. Ideally, in the long run planners can be equipped with
an interactive optimization tool in which the optimal layout can be manually adjusted
and then re-optimized.
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4 Dynamic Configuration of Aircraft
Stands

We consider the configuration of airport gates with passenger boarding bridges. The set of
aircraft types that can be serviced at a gate depends on the installed boarding bridge(s).
For instance, the Airbus A380 can only be serviced at gates equipped with a passenger
boarding bridge that is able to access its upper level. Given the dynamic development
of both the number of aircraft movements and the fleet mix at airports, the recurring
decision problem is to determine for each gate whether and when the passenger boarding
bridge configuration should be changed. The objective is to minimize investment and
operating costs associated with the bridges as well as penalty costs for aircraft which
cannot be processed because gates that are equipped with adequate gate configurations
are not available. We propose a mixed-integer model formulation for the Dynamic Gate
Configuration Problem and present its underlying network structure. To solve the prob-
lem, we employ a column generation based heuristic approach. We demonstrate the good
performance of the heuristic in a computational study and present a detailed discussion
of the decisions taken as part of a case study.

4.1 Introduction

Airports operate in a highly competitive environment, and the efficient use of infrastruc-
ture is a key driver of success (e.g., Caves 1994, Dorndorf et al. 2007). This chapter
focuses on the infrastructure provided at the gates, which represent the interface between
the terminal complex and the apron and where the aircraft are accommodated during
their service time on the ground. Analogous to Chapter 3, we will use the terms gate and
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parking position synonymously. Passengers need to be conveyed safely, comfortably and
efficiently from the terminal building to the parked aircraft and vice versa. To facilitate
these deplaning and boarding operations, passenger boarding bridges (PBBs) are em-
ployed at the contact gates of most airports, especially large ones. For each gate, airports
have to decide whether and, if so, how many PBBs of each type should be installed. We
denote the resulting options - including the “no PBB” option - as PBB configurations
that a contact gate can be equipped with. The decision of which gate should be equipped
with which PBB configuration depends on the aircraft types to be processed at the gate in
question, as the compatibility between aircraft types and PBB configurations is restricted
by the various aircraft geometries (e.g., Kazda and Caves 2008). Thus, the decision of
which PBB configuration to install at which gate clearly affects the gate capacity of an
airport with respect to each aircraft type.

In addition to the compatibilities between aircraft types and PBB configurations, restric-
tions caused by the adjacent parking of aircraft have to be taken into account. As we
already discussed in Section 3.2, parking an aircraft at a particular position might be
temporarily prohibited due to potential wingtip collisions with other aircraft parked at
adjacent parking positions at the same time (cf. Dorndorf et al. 2017). Also, Multi
Aircraft Ramping Stands (MARS), where up to two aircraft can be accommodated simul-
taneously, must be considered. In the following, we will refer to a parking position that
is configured as a MARS as a MARS gate. Due to their greater operational flexibility,
MARS gates require special PBB configurations.

Decisions regarding the PBB configurations have to be considered in a dynamic context,
as the total number of aircraft present at an airport evolves over time, as does the fleet
mix. Changes in traffic volume and/or fleet mix can occur gradually or abruptly and
may have either temporary or enduring effects. For instance, the average annual growth
in global air traffic volume yields a gradual and enduring increase in traffic at many
airports. One example of a gradual and permanent change in the fleet mix is the current
trend towards employing smaller but more fuel efficient aircraft on long haul flights rather
than large Boeing 747s or Airbus A380s (Boston Consulting Group 2020). It was in the
course of this trend that both Airbus and Boeing recently announced that they would
cease production of their largest aircraft models in the near future (Airbus 2019, Boeing
2020). An example of a sudden and permanent reduction in traffic volume at an airport
is the opening of a new major airport in the vicinity. Finally, the recent global crisis
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caused by the SARS-CoV-2 virus can be classified as an abrupt but temporary decline in
air traffic volume. Adapting the gate capacity too early or too late to a fluctuating traffic
volume and fleet structure inevitably leads to either unused PBBs or aircraft which cannot
be processed at a contact gate due to capacity shortages. Consequently, airports not only
have to decide which PBB configuration should be installed at which parking position
but also when. These decisions can be supported by various long-term forecasts that are
regularly undertaken by important actors in the aviation industry (refer to Airbus 2018
or Eurocontrol 2018, for instance).

Facing a highly uncertain future, airport managers would prefer the most flexible PBB
configurations over others if no further aspects were taken into account. However, higher
flexibility is associated with higher cost, and decisions need to be considered carefully, as
the cost of a single PBB is approximately 450, 000€ (Airport Improvement Magazine 2010,
Travel PR News 2019). For instance, as discussed in Section 3.6, Terminal 1 at Munich
Airport is currently undergoing expansion. Unaware of the aforementioned development
concerning the Airbus A380, decision makers at Munich Airport opted for two additional
parking positions equipped with PBBs with sufficient flexibility for processing the A380
at the new terminal building (Munich Airport 2016). As the airport already possesses
gates at which the A380 can be handled in sufficient number to serve pre-SARS-CoV-2
traffic, it is at least questionable from today’s point of view whether the investment in
additional PBBs will eventually pay off.

The overall question is when to equip which gate with which PBB configuration, balancing
the operational flexibility and total cost with respect to the PBB configurations. We
propose a model to formally describe this problem, which we call the Dynamic Gate
Configuration Problem (DGCP). To increase the tractability of the problem, we apply
Dantzig-Wolfe decomposition, which exploits the inherent network structure. Based on a
column generation methodology, we propose a heuristic solution approach to the problem
and show that it performs well for realistic data instances.

The remainder of this chapter is structured as follows: In Section 4.2, we discuss the
related literature. Section 4.3 introduces the DGCP in detail. A mixed-integer model
is presented in Section 4.4, while Section 4.5 describes our proposed solution approach.
The computational study presented in Section 4.6 investigates the performance of the
proposed procedure. In Section 4.7, we present a case study for Munich Airport Terminal
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2, based on real data. Finally, conclusions and recommendations for future research are
presented in Section 4.8.

4.2 Related literature

The work presented in this chapter is positioned at the interface between the strategic
capacity planning of aprons and the gate assignment problem (i.e., the optimal assign-
ment of aircraft to gates). We will briefly discuss the existing literature from both fields
of research and state the similarities and differences of both streams compared to our
approach.

Strategic capacity planning of aprons The strategic management of apron capac-
ity has been addressed from different perspectives. An elaborate review of the relevant
literature is provided by Mirković and Tošić (2014). Simple formulas for calculating the
capacity of a given apron can be found in Ashford et al. (2011), Horonjeff et al. (2010), and
de Neufville and Odoni (2013). These formulae either assume that each gate can accom-
modate all aircraft types or they take existing compatibility restrictions into account and
calculate apron capacities for different types of aircraft. More elaborate methods provide
advice on the number of gates an apron should have to be able to fulfill certain require-
ments, mostly under stochastic conditions (see Bandara and Wirasinghe 1989, Wirasinghe
and Bandara 1990, Steuart 1974, Hassounah and Steuart 1993, Narciso and Piera 2015).
Furthermore, comparing hub airports to non-hub airports, Mirković and Tošić (2017)
demonstrate how gate capacity depends on the traffic characteristics of the airport.

This chapter relates to the strategic planning of apron capacity, as the choice of PBB
configurations at gates determines how many aircraft of each type can be served simulta-
neously. However, while the above literature provides formulae with which to perform a
one-time calculation of apron capacity for the number of gates available, the objective of
this work is to dynamically reconfigure the gates so as to enable the most cost-efficient use
of the existing infrastructure in the long run1. We therefore investgate not only how much

1This follows the recommendations by Caves 1994 and Narciso and Piera 2015 to improve the efficiency
of existing apron space instead of investing in new infrastructure.
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capacity of which type needs to be provided, but also when it is needed. Furthermore,
existing work determines the number of aircraft that a given apron can process per time
unit considering a continuous time horizon of operational length. In contrast, we aim to
dynamically adjust the number of aircraft which can be processed simultaneously (i.e., at
a given moment in time) over a strategic time horizon. Finally, contrasting the existing
literature, we consider such operational aspects as MARS gates and adjacency restrictions
in our model.

Gate assignment problem The second stream of research that our problem relates to
is the gate assignment problem, where arriving aircraft need to be assigned to available,
compatible gates. Extensive reviews of the literature considering this problem are pro-
vided by Dorndorf et al. (2007), Cheng et al. (2012), Guépet et al. (2015), and recently
by Daş et al. (2020). The main similarity of our approach to existing literature that dis-
cusses the gate assignment problem is that we assign aircraft to gates subject to capacity
and compatibility constraints, while additionally considering aircraft parked at both ad-
jacent gates and MARS gates. However, rather than creating a schedule for the operative
level of decision making, where individual aircraft are assigned to gates, we determine
on a strategic level which type of aircraft each gate accommodates to enable long-term
adaption of PBB configurations and in turn efficiently service the aggregate traffic. Our
objective is thus to minimize the number of aircraft that cannot be accommodated at a
contact gate due to gate unavailability or incompatibility. In contrast, existing literature
on the gate assignment problem considers such objectives as the minimization of the total
walking distance for passengers and the minimization of the number of required towing
procedures or else attempts to find robust schedules that remain stable in the face of
uncertainty. Daş et al. (2020) find that more recent approaches tend to incorporate mul-
tiple objectives. While the gate assignment problem itself has been proven to be NP-hard
(Guépet et al. 2015), we employ a basic version of it embedded into our strategic decision
problem.
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4.3 Problem description

We consider the PBBs at the contact gates of an airport over a strategic time horizon
of up to 10 years. Time is discretized into periods with a length of half a year each, as
this interval matches the seasons over which flight plans generally remain unchanged and
thus the capacity requirements posed to airports remain stable. The objective is to strike
a balance between PBB costs and the probability of not being able to service aircraft at
contact gates. For each gate and time period it needs to be decided whether the PBB
configuration from the previous time period should be retained or exchanged. Selecting
a PBB configuration for a gate implies deciding on (a) the type(s) and (b) the number
of bridges of the selected type(s) that are installed at the gate. Regarding (a), PBBs
can be grouped into stationary and apron-drive bridges, see Figure 4.1. In contrast to
stationary PBBs, apron-drive bridges are equipped with a rotatable connection to the
terminal building and a drive column with wheel bogey. Consequently, they exhibit a
higher operational flexibility but with the downside of higher investment and operational
costs due to their greater technical complexity.

Figure 4.1: Stationary and apron drive loading bridges (source: International Civil Avia-
tion Organization 2005, edited according to National Academies of Sciences,
Engineering, and Medicine 2010).

With respect to (b), either a single PBB or two PBBs of the same type are usually
installed per gate. At gates that accommodate very large aircraft as the Airbus A380, a
third PBB is employed in order to expedite the boarding and deplaning operations. The
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aggregate of all PBB configurations represents all possible states of a gate with respect
to PBBs, including the no-PBB case. The number and the positions of contact gates as
well as the initial PBB configuration of each gate are predefined, enabling both greenfield
and brownfield scenarios to be modeled.

In addition to the diverse PBB configurations, a multitude of commercial aircraft types
exists, each with different specifications. As indicated by Kazda and Caves (2008), the
variation in doorsill height across aircraft of different types causes incompatibilities be-
tween PBB configurations and aircraft types (also see National Academies of Sciences,
Engineering, and Medicine 2010). In addition to these inevitable incompatibilities owing
to aircraft and PBB geometries, it is not practical to serve certain types of aircraft with
certain PBB configurations. For instance, there might be a PBB configuration that is
defined as a single but flexible apron-drive PBB. Although this PBB might reach the
doorsill of all aircraft on the market, boarding and deplaning operations would require an
unacceptable duration for large types of aircraft. Consequently, the compatibility between
PBB configurations and aircraft types is de facto restricted beyond the physical limita-
tions, such that accommodation is physically possible and operations can be conducted
with adequate efficiency. Due to the large variety of aircraft types and to account for
aircraft that will be introduced to the market within the time horizon, we classify aircraft
by wingspan similar to Section 3.2. Consequently, we define the compatibilities between
PBB configurations and aircraft classes rather than individual aircraft types. If a PBB
configuration is compatible with a particular aircraft class, all aircraft of that class can
be accommodated at a parking position equipped with that PBB configuration.

As we consider the problem in a dynamic context, we rely on forecasts that estimate the
demand for accommodation for each aircraft class and time period in the time horizon.
The decisions are taken at the beginning of each time period and configuration changes
are realized instantly, such that any new configurations can be utilized in the respective
time period. The following three cost types are relevant to the DGCP: First, a change
in PBB configuration causes investment cost for dismantling and disposing the previous
PBB configuration, gate unavailability during reconfiguration and the purchase and setup
of the new PBB configuration. The actual amount depends on the PBB configurations
before and after the change. For each period, we consider a constrained budget available
to change PBB configurations. Second, installed PBB configurations cause operating
costs over the course of the respective time period. These include the maintenance costs
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of the installed equipment (including vertical and horizontal drive motors, control systems
and air-conditioning units) and thus depend on the PBB configuration. Third, in each
time period, penalty costs are incurred for each aircraft that cannot be accommodated at
one of the contact gates. Aircraft that cannot be processed at a contact gate need to be
parked at a remote parking position and passengers then have to be conveyed from and to
the aircraft by bus. On the one hand, this has a direct financial impact on the airport, as
airlines pay fees for the use of PBBs at contact gates (for instance, see Aena 2020), which
are not incurred for aircraft processed at remote parking positions. On the other hand, this
diminishes the operational efficiency at the airport, as it leads to longer connecting times
for transfer passengers. Longer connecting times reduce the hub potential of the affected
airport as fewer connections can be offered within a given amount of time. The penalty
costs include the resulting costs accruing due to lost income, deteriorated efficiency and
lost connections, and the amount depends on the class of the relocated aircraft. The
objective is to minimize the total cost, i.e., the sum of the investment, operating and
penalty costs.

Demand patterns Airlines and airports generally issue two flight plans per year, one
for the summer and one for the winter season. As we have chosen a time period length of
half a year, the length of a season matches the length of one time period, and each season
is represented by one time period. Within each season, the flight schedules generally
repeat in a weekly rhythm. Therefore, the flight traffic for each season can be represented
by the flights observed in one representative week of that season. In the course of a
week, the number of aircraft processed simultaneously is not constant but varies over
time. Figure 4.7 in Section 4.7 shows an illustrative example of the number of aircraft
processed simultaneously at Munich Airport Terminal 2 for a typical week.

Analogous to Section 3.3, we only consider those situations where traffic reaches its peaks,
and we represent each traffic peak by one demand pattern in our model. Each demand
pattern defines the number of aircraft per class that must be processed simultaneously.
For example, a demand pattern (3, 4, 5) states that 3, 4, and 5 aircraft of classes 1, 2,
and 3, respectively, need to be processed in parallel. Furthermore, each demand pattern
is assigned a weighting factor for each time period based on the relative frequency of the
pattern in that time period. For example, if there are three different demand patterns
that occur in the representative week of a period with absolute frequencies of two, three,
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and one, respectively, the weights of the demand patterns in that period are 0.33, 0.50,
and 0.17, respectively.

The use of demand patterns has three major benefits. First, the amount of demand data
is drastically reduced, while information relevant for demand fulfillment is retained. If
the demand can be covered at all traffic peaks, a capacity shortage is unlikely to occur at
other moments in time due to unavailable or incompatible PBBs. Second, estimating the
number of aircraft and the fleet mix to be expected at traffic peaks is easier for airports to
implement than forecasting the complete flight plan over the entire time horizon. Third,
to account for forecasting uncertainty, several demand patterns reflecting different possible
future scenarios of one traffic peak can be created without any further changes being made
to the concept.

Neighborhood restrictions The accommodation of an aircraft at a gate might tem-
porarily be prohibited to prevent collisions with other aircraft simultaneously parked at
adjacent parking positions (Dorndorf et al. 2017). This is relevant to our decision prob-
lem, as it induces restrictions to reasonable PBB configurations at the parking positions
depending on the PBB configurations at the adjacent gates. For instance, there is no
point in installing PBB configurations for large aircraft types at two adjacent gates if
only one of the gates can serve one large aircraft at a time due to spatial restrictions.
We consider a nose-in parking orientation of aircraft accommodated at contact gates as
common at most airports (for further reference, see Horonjeff et al. 2010 and Kazda and
Caves 2008). Gates comprise lead-in lines, which guide aircraft from the taxiway on the
apron to their final parking positions. The fuselages of parked aircraft are aligned with
the lead-in lines. To accommodate aircraft of different types and increase operational
flexibility, a single gate may have several lead-in lines. However, in contrast to Chapter
3, we now assume that all lead-in lines are perpendicular to the terminal facade and that
adjacent lead-in lines are parallel to each other.

In order to prevent collisions of aircraft processed simultaneously at adjacent gates, the
sum of the half wingspans of aircraft being processed on any combination of lead-in lines
belonging to the gates must not exceed the lateral distance between the lead-in lines the
aircraft are parked on. Consider the situation at the adjacent gates depicted in Figure 4.2,
for example, where both gates are equipped with two lead-in lines. As we have classified
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Figure 4.2: Lateral distance between adjacent gates and half wingspans

aircraft by wingspan, the wingspan of an aircraft is equal to the maximum wingspan of
its aircraft class.

Multi Aircraft Ramping Stands In order to enhance spatial efficiency, MARS gates
have been introduced at many airports (see National Academies of Sciences, Engineering,
and Medicine 2010). Up to two aircraft can be accommodated simultaneously at a MARS
gate, depending on the size of the aircraft. To be able to process two smaller aircraft
simultaneously, MARS gates must be equipped with two PBBs at least. Furthermore, a
parking position must be equipped with at least three lead-in lines in order to be used
as a MARS gate. These include a central lead-in line for processing a single aircraft and
two outer lead-in lines to enable two aircraft to be accommodated simultaneously. This
is different compared to Chapter 3, where we made no assumptions in this regard and
MARS gates could also be equipped with two lead-in lines only. Figure 4.3 presents the
possible operating modes of a MARS gate and illustrates the three parallel lead-in lines
described.

For each PBB configuration, we define whether it can be employed at a MARS gate. While
normally only one aircraft can be processed at a time at a gate, up to two aircraft can be
handled simultaneously at gates where a PBB configuration is installed that can be used
at MARS gates. Furthermore, the previous considerations of neighborhood restrictions
need to be adjusted to prevent not only collisions between two aircraft parked at adjacent
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Figure 4.3: Modes of operation and lead-in lines of MARS gates

gates simultaneously, but also to prevent collisions between two aircraft parked at the
same MARS gate simultaneously.

4.4 Model

In this section, we present a mathematical model for the DGCP. A summary of the
notation is given in Table C.1 of Appendix C.1. As previously stated, the planning goal
is to determine which PBB configuration should be installed at each gate, and when,
in order to satisfy dynamic demands with minimum total cost. Planning is based on a
discrete horizon T = {0, . . . , T} with T time periods of equal length. The sets of gates
and lead-in lines are denoted as G = {0, . . . , G} and J = {0, . . . , J}, respectively. For
each gate, disjoint sets Jg ⊆ J contain the lead-in lines associated with gates g ∈ G. At
the beginning of each time period t = {0, . . . , T − 1} it needs to be decided for each gate
which PBB configuration of set L = {0, . . . , L} should be installed, where l = 0 represents
a dummy PBB configuration in which no PBB is installed at the respective gate. The
set LMARS ⊆ L contains all PBB configurations which indicate that the respective gate
is equipped as a MARS gate.

Time-space network We model the DGCP as a time space network, in which each
gate is represented by one subnetwork. The example in Figure 4.4 shows two gates, T
periods and three PBB configurations.
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Figure 4.4: Time-space network

The horizontal axis of each subnetwork constitutes the planning horizon, and the vertical
axis the PBB configurations. Each node depicts a possible state of gate g ∈ G with respect
to PBB configuration l ∈ L in time period t ∈ T . The arcs represent feasible transitions
from one node to another. The flow through arcs which connect nodes of different PBB
configurations k, l ∈ L at the beginning of each period t ∈ T is determined by binary
decision variables xgtkl ∈ {0, 1}. Binary decision variables zgtl ∈ {0, 1} determine the
flow through arcs connecting nodes that depict PBB configuration l ∈ L during period
t ∈ T . Variable xgtkl is 1 if the construction of PBB configuration l ∈ L at gate g ∈ G is
performed at the beginning of time period t = 0, . . . , T−1 to substitute PBB configuration
k ∈ L \ {l}, and 0 otherwise. For the PBB configuration l ∈ L which is employed at gate
g ∈ G during time period t ∈ T , the respective variable zgtl equals 1, and 0 otherwise.
At each node, a parameter egtl gives the difference between the sum of all inflows and the
sum of all outflows. At the source node, i.e., the node at t = 0 representing the initial
PBB configuration of the respective gate, inflows are 0 and outflows are 1 (egtl = 1).
Furthermore, at each node in t = 0, . . . , T − 1 which is neither a source nor a sink of the
network, the sum of all inflows must be equal to the sum of all outflows (egtl = 0) in order

91



4 Dynamic Configuration of Aircraft Stands

to ensure that the balance of flow is maintained.

Aircraft types and demand patterns Aircraft are classified by wingspan, as stated
in Section 4.3, and the resulting set of aircraft classes is denoted as A = {1, . . . , A}.
For each aircraft class a ∈ A, the set of PBB configurations that can be employed to
accommodate aircraft of that class is introduced as La ⊆ L.

Future traffic volume is estimated by means of demand patterns as stated in Section 4.3.
The demand patterns are enumerated in the set B = {1, . . . , B}. Parameter Dba gives the
number of aircraft of class a ∈ A in demand pattern b ∈ B. Furthermore, for each time
period t ∈ T , the set Bt ⊆ B contains the demand patterns of time period t. Weight ftb
gives the relative frequency of demand pattern b ∈ Bt in time period t ∈ T . As we assume
that demand patterns and weights for the time horizon are given at the beginning of the
decision process, our model is deterministic.

The degree to which demand (as represented by the demand patterns) can be fulfilled
depends on the PBB configurations of the gates. Binary decision variable ygjtba states
if for demand pattern b ∈ Bt an aircraft of class a ∈ A is assigned to gate g ∈ G in
time period t ∈ T using lead-in line j ∈ Jg. Decision variables y−tba count the number of
ungated aircraft. If for any demand pattern b ∈ Bt in time period t ∈ T an aircraft of
class a ∈ A cannot be accommodated at any of the contact gates, y−tba is increased by one.

Aircraft at adjacent gates For each parking position g ∈ G, set Ng ⊆ G is introduced,
containing gate g and its right side neighbor gate g+12. Furthermore, the lateral distance
between the lead-in lines i ∈ J and j ∈ J is denoted by the parameter dij. We define
the parameter sa as the lateral distance from the center of the fuselage to one of the
wingtips (i.e. half the wingspan) of the aircraft with the largest wingspan in aircraft class
a ∈ A plus an additional minimum separation distance, which must be adhered to. In the
model, constraints will assure for each gate g ∈ G that for no combination of lead-in lines
i ∈ Jh and j ∈ Jh (i 6= j and h ∈ Ng) does the sum of the adjusted aircraft wingspans
sa of the aircraft parked simultaneously at lead-in lines i and j exceed the value of dij.
As lead-in lines i and j might be associated with the same gate, these constraints also

2The left side neighbor gate g − 1 does not need to be considered as the combination of gates g − 1
and g is already considered in the set Ng−1.
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cover the necessary neighborhood relations between two aircraft parked simultaneously
at a MARS gate.

Costs and objective The objective of minimizing the total cost implies minimizing
the sum of three cost types. First, investment costs cikl represent the costs of changing
the PBB configuration at any gate for each combination (k, l ∈ L) of non-identical PBB
configurations. The total investment cost incurred in period t ∈ T is limited by the avail-
able budget rt. Second, operating costs col measure the costs per period for maintenance
and of accommodating aircraft at an aircraft stand where PBB configuration l ∈ L is
installed. Third, penalty costs c− are incurred for each passenger who leaves or boards
an aircraft parked at a remote position. In the objective function, c− is multiplied by the
parameter pa, which gives the average number of passengers on board an aircraft of class
a ∈ A. Thus, the penalty cost incurred depends on the class of the respective aircraft
which cannot be assigned to a contact gate.

Extensive formulation We now present the extensive formulation of the DGCP, which
we denote as Original Problem OP.

min zOP :=
∑
g∈G

∑
l∈L

∑
k∈L\{l}

T−1∑
t=0

ciklxgtkl (4.1a)

+
∑
g∈G

T−1∑
t=0

∑
l∈L

col zgtl

+ c−
∑
a∈A

pa

T−1∑
t=0

∑
b∈Bt

ftby
−
tba

subject to∑
k∈L\{l}

xgtlk + zgtl ∀g ∈ G, t = 0, . . . , T − 1, (4.1b)

−
∑

k∈L\{l}

xgtkl −
∑
t′=t:
t′>0

zg,t′−1,l = egtl l ∈ L
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∑
g∈G

∑
j∈Jg

ygjtba + y−tba ≥ Dba ∀t = 0, . . . , T − 1, (4.1c)

b ∈ Bt, a ∈ A∑
g∈G

∑
l∈L

∑
k∈L\{l}

ciklxgtkl ≤ rt ∀t = 0, . . . , T − 1 (4.1d)

∑
a∈A

ygjtba ≤
∑

l∈L\{0}

zgtl ∀g ∈ G, j ∈ Jg, (4.1e)

t = 0, . . . , T − 1, b ∈ Bt∑
a∈A

∑
j∈Jg

ygjtba ≤ 2−
∑

l∈L\LMARS

zgtl ∀g ∈ G, t = 0, . . . , T − 1, (4.1f)

b ∈ Bt
ygjtba ≤

∑
l∈La

zgtl ∀g ∈ G, j ∈ Jg, t = 0, . . . , T − 1, (4.1g)

b ∈ Bt, a ∈ A∑
a∈A

yhitbasa +
∑
a∈A

yhjtbasa ≤ ∀g ∈ G, i, j ∈ Jh : h ∈ Ng, j > i, (4.1h)

dij +M ·

(
2−

∑
a∈A

yhitba −
∑
a∈A

yhjtba

)
t = 0, . . . , T − 1, b ∈ Bt

xgtkl ∈ {0, 1} ∀g ∈ G, k ∈ L, l ∈ L \ {k} , (4.1i)
t = 0, . . . , T − 1

zgtl ∈ {0, 1} ∀g ∈ G, t = 0, . . . , T − 1, (4.1j)
l ∈ L

y−tba ≥ 0 ∀t = 0, . . . , T − 1, (4.1k)
b ∈ Bt, a ∈ A

ygjtba ∈ {0, 1} ∀g ∈ G, j ∈ Jg, t = 0, . . . , T − 1, (4.1l)
b ∈ Bt, a ∈ A

Objective Function (4.1a) minimizes the sum of the investment, operating and penalty
costs. Constraints (4.1b) are the flow balance equations and Constraints (4.1c) require
that demands are satisfied, otherwise a penalty is incurred. Budget Constraints (4.1d)
make sure that the budget available for PBB configuration changes is not exceeded in any
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time period. Capacity Constraints (4.1e) ensure that no aircraft can be assigned to a lead-
in line which belongs to a gate that does not have any PBB installed. Additional Capacity
Constraints (4.1f) ensure that at gates which are not equipped with a PBB configuration
l ∈ LMARS, no more than one aircraft can be serviced simultaneously, while at gates
where a PBB configuration l ∈ LMARS is installed, at most two aircraft can be accom-
modated at a time. Constraints (4.1g) ensure that only aircraft stands with compatible
PBB configurations are used to serve the demands of each aircraft class. Neighborhood
Constraints (4.1h) ensure that restrictions on aircraft parking simultaneously at adjacent
gates and MARS gates are adhered to. We set the value of the Big-M parameter used
in these constraints to maxa∈Asa. Finally, Constraints (4.1i) – (4.1l) define the variable
domains.

4.5 Solution methodology

In the computational study that follows in Section 4.6, we will show that OP (4.1a)-
(4.1l) cannot be solved within a reasonable amount of time for data instances of realistic
size. When ignoring the gate assignment variables y−tba and ygjtba, the penalty costs in
Objective Function (4.1a) and related Constraints (4.1c)-(4.1h), OP can be reduced to
a multi-commodity flow problem, where for each gate g ∈ G a shortest path problem
has to be solved (see Figure 4.4). Due to this natural decomposition of the problem,
we suggest to reformulate OP by applying Dantzig-Wolfe decomposition and to solve the
reformulated model using a column generation (CG) heuristic. Desrosiers and Lübbecke
(2005) show that the extreme points of the polyhedron defined by a shortest path problem
correspond to paths through the flow network. In our case, the flow network is the one
presented in Figure 4.4 and a path is defined as a sequence of nodes leading from the
source to the sink of the graph associated with one gate. A path thus defines the PBB
configuration of one gate for each time period within the time horizon. In addition to
the notation presented in Table C.1, the terminology provided in Table C.2 will be used
in the following. All paths (of all gates) are contained in the set P = {1, . . . , P}, and
for each gate g ∈ G, a set Pg ⊆ P contains all paths associated with the respective
gate. Furthermore, each path is associated with path cost cp, which equals the sum
of investment and operating costs accumulated through the respective path. Instead of
deciding for each gate and time period whether the current PBB configuration should be
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retained or replaced by a different one by setting binary decision variables xgtkl and zgtl,
the decision now is whether or not to select path p ∈ Pg for gate g ∈ G, represented by
binary decision variables λp. Binary parameters zpgtl indicate whether or not gate g ∈ G is
equipped with PBB configuration l ∈ L in time period t ∈ T and path p ∈ Pg. Similarly,
binary parameters xpgtkl indicate whether or not the PBB configuration l ∈ L is replaced
by PBB configuration k ∈ L at gate g ∈ G in time period t ∈ T .

Master Problem Given our definition of a path and the presented notation, reformu-
lation of OP yields the following Master Problem MP:

min zMP :=
∑
p∈P

cpλp (4.2a)

+ c−
∑
a∈A

pa

T−1∑
t=0

∑
b∈Bt

ftby
−
tba

subject to

∑
g∈G

∑
j∈Jg

ygjtba + y−tba ≥ Dba ∀t = 0, . . . , T − 1, (4.2b)

b ∈ Bt, a ∈ A∑
g∈G

∑
p∈Pg

λp

∑
l∈L

∑
k∈L\{l}

ciklxgtkl

 ≤ rt ∀t = 0, . . . , T − 1 (4.2c)

∑
a∈A

ygjtba ≤
∑
p∈Pg

λp

 ∑
l∈L\{0}

zpgtl

 ∀g ∈ G, j ∈ Jg, (4.2d)

t = 0, . . . , T − 1, b ∈ Bt∑
a∈A

∑
j∈Jg

ygjtba ≤ 2−
∑
p∈Pg

λp

 ∑
l∈L\LMARS

zpgtl

 ∀g ∈ G, t = 0, . . . , T − 1, (4.2e)

b ∈ Bt
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ygjtba ≤
∑
p∈Pg

λp

(∑
l∈La

zpgtl

)
∀g ∈ G, j ∈ Jg, t = 0, . . . , T − 1, (4.2f)

b ∈ Bt, a ∈ A∑
a∈A

yhitbasa +
∑
a∈A

yhjtbasa ≤ ∀g ∈ G, i, j ∈ Jh : h ∈ Ng, j > i, (4.2g)

dij +M ·

(
2−

∑
a∈A

yhitba −
∑
a∈A

yhjtba

)
t = 0, . . . , T − 1, b ∈ Bt∑

p∈Pg

λp = 1 ∀g ∈ G (4.2h)

y−tba ≥ 0 ∀t = 0, . . . , T − 1, b ∈ Bt, a ∈ A (4.2i)
ygjtba ∈ {0, 1} ∀g ∈ G, j ∈ Jg, t = 0, . . . , T − 1, (4.2j)

b ∈ Bt, a ∈ A
λp ∈ {0, 1} ∀p ∈ P (4.2k)

Note that the flow balance constraint is incorporated in the definition of a path and is
therefore not represented in MP. The same holds for Constraints (4.1i) and (4.1j), because
decision variables xgtkl and zgtl have been replaced and xpgtkl and zpgtl are now parameters.
Constraints (4.1d), (4.1e), (4.1f) and (4.1g) are modified to (4.2c), (4.2d), (4.2e) and (4.2f)
according to the altered notation, and Convexity Constraints (4.2h) need to be added as
one path per gate needs to be selected.

Column generation For practical data instances, P will be prohibitively large. Explic-
itly enumerating and evaluating all possible paths in MP therefore becomes intractable.
Hence, we derive the Restricted Master Problem RMP from MP by substituting P with
the subset of paths P ′ ⊆ P . In order to apply the CG approach, we relax the integrality
requirements on decision variables λp and ygjtba and denote the resulting, relaxed version
of RMP as R̃MP. Similarly, the version of MP where integrality requirements on decision
variables λp and ygjtba are relaxed is referred to as M̃P. After the initialization of R̃MP
with a dummy path for each aircraft stand g ∈ G, the CG procedure is commenced by
solving R̃MP to optimality. Then, the dual variable values of Constraints (4.2c), (4.2d),
(4.2e), (4.2f) and (4.2h) are used to determine whether for any aircraft stand a new path
can be found with negative reduced cost. This is done by solving G subproblems - one
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for each gate g ∈ G. If for any gate(s) a path with negative reduced cost can be found,
the latter is/are added to R̃MP and the process is repeated until no path with negative
reduced cost can be found. The resulting solution is optimal to M̃P and the CG process
is terminated.

A CG approach has to define how many subproblems should be solved after each re-
optimization of R̃MP and how many of the found columns should be added to R̃MP in
each iteration (see, e.g., Morabit et al. 2020). While adding only one column per iteration
may lead to a large number of (potentially expensive) R̃MP re-optimizations, columns
which are added to R̃MP in the same iteration are derived from the same dual variable
values and thus are likely to be very similar, possibly inducing undesired symmetries to
the problem. We opt for a balanced approach, which considers both aspects, in which,
before launching the CG procedure, the gates are assigned to groups of size ≥ 1. In
each iteration, the subproblems associated with one group are solved to optimality and
the columns that are found (at most one per gate) are added to R̃MP. The gates are
allocated to the groups, such that the lateral distances between the gates of one group
are maximized. The aim is to mitigate the effect of adding columns responding to the
same dual variable values.

Subproblems Let πbudt , πcap,linejtb , πcap,gatetb , πcomjtba and πcon denote the dual variable values
of Constraints (4.2c), (4.2d), (4.2e), (4.2f) and (4.2h) associated with aircraft stand g ∈ G,
respectively. Then, for this gate the reduced cost of the best path which could be added
to R̃MP is calculated by solving the following Subproblem SP to optimality:

min cg :=
∑
l∈L

∑
k∈L\{l}

T−1∑
t=0

cikl
(
1− πbudt

)
xtkl (4.3a)

+
T−1∑
t=0

∑
l∈L

col +∑
j∈Jg

∑
b∈Bt

∑
l′∈L\{0}:

l′=l

πcap,linejtb

−
∑
b∈Bt

∑
l′∈L\LMARS :

l′=l

πcap,gatetb
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+
∑
j∈Jg

∑
b∈Bt

∑
a∈A

∑
l′∈La:
l′=l

πcomjtba

 ztl − πcon

subject to

∑
k∈L\{l}

xtlk + ztl ∀t = 0, . . . , T − 1, l ∈ L (4.3b)

−
∑

k∈L\{l}

xt′kl −
∑
t′=t:
t′>0

zt′−1,l = etl

xtkl ∈ {0, 1} ∀k ∈ L, l ∈ L \ {k} , (4.3c)
t = 0, . . . , T − 1

ztl ∈ {0, 1} ∀t = 0, . . . , T − 1, l ∈ L (4.3d)

The index g is removed from all parameters and variables, as SP is solved for each aircraft
stand g ∈ G individually. We solve the subproblems efficiently by means of dynamic
programming. That is, we find the shortest path through the (sub-)network corresponding
to the respective gate as shown in Figure 4.4. The initial PBB configuration of the gate
in t = 0 constitutes the source of the network, and in t = T +1, we add a supersink which
is connected with each node of t = T . The weight wklt of the arc connecting the node
representing PBB configuration k ∈ L in time period t ∈ T with the node depicting PBB
configuration l ∈ L in time period (t+ 1) ∈ T is calculated as

wklt =c
o
l + cikl

(
1− πbudt

)
+
∑
j∈Jg

∑
b∈Bt

∑
l′∈L\{0}:

l′=l

πcap,linejtb

−
∑
b∈Bt

∑
l′∈L\LMARS :

l′=l

πcap,gatetb +
∑
j∈Jg

∑
b∈Bt

∑
a∈A

∑
l′∈La:
l′=l

πcomjtba. (4.4)

If k = l the term cikl
(
1− πbudt

)
is omitted. The weight of the arcs connecting the nodes

of t = T with the supersink is set to 0.
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Obtaining integral solutions Solving R̃MP gives us an optimal solution to M̃P, but
this may not necessarily be an integral solution. We therefore employ the following
heuristic approach to obtain an integral solution to OP. As soon as the CG process
is terminated, the integrality constraints on decision variables λp and ygjtba are restored
in R̃MP and the resulting RMP′ is solved by a commercial solver. This approach is a
heuristic, as only the paths added to R̃MP during the CG procedure can be used in the
optimal solution to RMP′. Furthermore, to counteract the slow convergence behavior of
RMP′ when close to the optimal solution, we abort the optimization process of RMP′ when
the duality gap reaches a sufficiently small value. The solution approach is illustrated as
pseudo-code in Algorithm 4.1. The computational study will show that this allows us to
find integral solutions of a given quality more quickly than the commercial solver when
solving OP (4.1a)-(4.1l).
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Algorithm 4.1 Proposed CG heursitic

1: Initialize R̃MP and one SP per gate, create N gate groups
2: columnFound ← true, n← 0
3: while columnFound = true do
4: Solve R̃MP and get dual variable values
5: columnFound ← false
6: if n = N + 1 then
7: n← 0
8: end if
9: for all gates belonging to group n do

10: Solve SP with the dual variable values from R̃MP
11: c← objective function value of SP
12: if c ≤ 0 then
13: Add the respective column to R̃MP
14: columnFound ← true
15: end if
16: end for
17: n← n+ 1
18: if columnFound = false then
19: for all gates do
20: Solve SP with the dual variable values from R̃MP
21: c← objective function value of SP
22: if c ≤ 0 then
23: Add the respective column to R̃MP
24: columnFound ← true
25: end if
26: end for
27: end if
28: end while
29: Add integrality constraints to the path variables of R̃MP to

obtain RMP
30: Solve RMP until the desired duality gap is reached
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4.6 Computational study

The numerical analysis presented in this section investigates the computational perfor-
mance of the proposed CG heuristic and consists of four parts. First, we introduce how
the data instances used in the following experiments were generated. Second, we in-
vestigate the performance obtained when solving OP (4.1a)-(4.1l) to optimality using a
commercial solver. Third, we vary the parameters of the proposed CG heuristic to find a
good setting with respect to both solution quality and runtime. Finally, we demonstrate
the effectiveness of the CG heuristic by comparing its performance to solving OP. All
experiments were conducted on a computer equipped with an octa-core CPU running at
3.8GHz and 32GB of RAM, while Gurobi 9.1 was employed as a commercial solver. The
algorithms were implemented in Java.

4.6.1 Instances

To investigate the performance of the solution methods, we generated problem instances
of different sizes. We model an airport terminal with G ∈ {10, 15, 20} contact gates,
each gate being equipped with four lead-in lines, thus J = 4 · G. The length of the time
horizon is T ∈ {10, 15, 20}. The number of aircraft classes is set to A = 3 (small, medium,
large aircraft with maximum half wingspans sa of 20, 34, and 44 meters, respectively).
There are L = 5 PBB configurations available, where l = 0 denotes the “no PBB” case and
l = 4 represents a PBB configuration for MARS gates. The compatibilies between aircraft
classes and PBB configurations are defined as L1 = {1, 2, 3, 4} ,L2 = {2, 3, 4} , and L3 =

{3, 4}. Figure 4.5 shows the five configurations employed in the computational study,
including the “no PBB” case (configuration 0).

At t = 0, all gates have PBB configuration l = 1 installed and the distance between each
pair of adjacent aircraft stands is set to 60 meters. Each gate is equipped with two inner
lead-in lines located five meters to the left and right of the center of the gate, respectively.
To allow for MARS operations, each aircraft stand is additionally equipped with two outer
lead-in lines, which are placed 25 meters left and right from the center line of the gate,
respectively. Since we cannot disclose real cost data, we use the following cost factors
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Figure 4.5: PBB configurations in the computational study

reflecting the relationship between the different costs: cikl =


0 8 16 24 32

8 0 8 16 24

8 8 0 8 16

8 8 8 0 16

8 8 8 8 0

, col =

( 0.5 1.5 2.5 3.5 4.5 ) and c− = 0.02. The more flexible a PBB configuration l is,
the higher are its investment costs cikl and operating cost col . As for the value of c−, the
case study presented in Section 4.7 will demonstrate that 0.02 is a reasonable value for a
quality oriented airport with respect to the given values of cikl and col . The aircraft classes
are weighted with pa = ( 150 300 400 ), approximately corresponding with the number
of passengers carried by the respective types of aircraft. While we investigate the impact
of different values of rt on the solution in the case study in Section 4.7, we relax Budget
Constraints (4.1d) and (4.2c) within the scope of the computational study in this section.
Regarding the development of air traffic over the time horizon, we model a scenario where
a high traffic volume (i.e., approximately G aircraft per demand pattern) throughout
the time horizon is combined with a shift in the fleet mix towards larger aircraft. In
recent decades, this scenario was frequently observed at airports where the construction
of additional capacities (runways, terminals, etc.) was not possible in the medium term
although passenger volume was increasing (London Heathrow, for instance).

For each combination of G and T we generated 20 instances, which gives 3 · 3 · 20 = 180

instances in total. In the following, we will refer to the instances of one G and T as
instance class. The 20 instances of one instance class differ with respect to the demand
patterns as well as the relative weighting of the patterns:
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• The demand patterns in Bt are selected randomly from a predefined set of demand
patterns B for each time period t ∈ T , such that three demand patterns are allocated
to each time period and the described development of air traffic over the time horizon
is replicated3.

• The weighting factors ftb take random values between ]0; 1[, where for each time
period

∑
b∈Bt

ftb = 1 must hold.

We divided the 180 instances into two batches of 90 instances each, where each batch
contains 10 instances of each instance class.

4.6.2 Performance of commercial solver

We applied the commercial solver to the first batch of instances. Table 4.1 presents the
average computation times of OP for each instance class.

Table 4.1: Average computation times of OP (4.1a)-(4.1l) [min]
T = 10 T = 15 T = 20

G = 10 1.78 5.00 23.81

G = 15 13.59 61.07 129.29

G = 20 24.38 94.29 674.544

Computation times increase considerably when the values of T and G are increased. It is
apparent that the commercial solver cannot efficiently solve OP to optimality for larger
instances. With T = G = 20, the solution process is not completed within 24 hours for
three instances. OP is thus not applicable to data instances of realistic size where G and
T may both take values larger than 20 (e.g., Munich airport has G = 58 contact gates5)
and the number of demand patterns for each time period might be larger than three.

3Further details are provided in Appendix C.2.
4The optimization process of three instances was aborted after 24 hours.
5as of January 2020
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4.6.3 Performance of column generation heuristic

When applying the CG heuristic, the following parameters have to be set:

• The number of gates per group as defined for the iterative optimization process of
R̃MP, denoted as group_size.

• The duality gap that needs to be reached to abort the optimization process of RMP′,
denoted as rmp_gap.

We tested the computational performance of the CG heuristic for all combinations of
group_size ∈ {1, 2, 4, 10} and rmp_gap ∈ {0, 2.5%, 5%, 10%, 12.5%, 15%, 17.5%, 20%}.
Thus, we applied the heuristic 4 · 8 = 32 times to each of the 90 data instances of the first
batch.

To find the best values for group_size and rmp_gap, we investigated the performance of
each value combination of these parameters for every instance class. More precisely, we
calculated for each instance class and value combination of group_size and rmp_gap (a)
the average percentage deviation from the optimum (referred to as optimality gap) and
(b) the average total runtime6. We normalized the values of both (a) and (b) to be in
[0; 1] by vn = v−vmin

vmax−vmin , where normalized values close to zero indicate small optimality
gaps for (a) and short runtimes for (b)7. In the following, we will refer to the normalized
values as quality and runtime scores, respectively. Figures 4.6a and 4.6b provide the
average quality and runtime scores of each parmeter combination over all instance classes.

As expected, the setting of both group_size and rmp_gap parameters has a clear impact
on the performance of the CG heuristic. Increasing rmp_gap leads to a worsening of the
quality score (i.e., an increase in the optimality gaps) and an improvement of the runtime
score (i.e., shorter computation times). We find that the value of group_size only has
a notable impact on the quality score for large values of rmp_gap. However, the best
quality scores are observed when group_size = 1 and rmp_gap is small. With respect to
the runtime score, group_size has a larger impact when the value of rmp_gap is small.

6The optimum objective function values were obtained by solving OP with unlimited runtime.
7For group_size = 10 and rmp_gap = 0, runtimes were significantly higher for all instance classes

compared to other parameter combinations. In order to obtain reasonable values by the normalization,
we excluded this parameter combination from the normalization procedure and set its value to 1 for all
instance classes.
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Figure 4.6: Average quality and runtime scores for different parameter combinations

Again, the best runtime scores were observed for group_size = 1. We conclude that the
disadvantage of solving fewer subproblems per iteration (potentially resulting in many
necessary R̃MP re-optimization cycles, see Section 4.5) is smaller than the negative effect
of adding multiple similar columns to R̃MP per iteration (which results from larger values
of group_size) in our case.

As small optimality gaps and short runtimes are conflicting goals, there is no dominating
parameter setting. For the following experiments, we selected the parameter combination
with the smallest sum of quality and runtime scores, as shown in Figures 4.6a and 4.6b.
This is the case for group_size = 1 and rmp_gap = 0.075. With these parameter values,
the final heuristic solution is found after 2.15 minutes and the optimality gap is 1.99%,
averaged over all instance classes.

Validation To validate the performance of the CG heuristic with the given parameter
values, we applied it to the second batch of instances created in Section 4.6.1.

Tables 4.2a-4.2c present the results when applying the CG heuristic with the parameters
as selected in Section 4.6.3 to these instances. As a valid benchmark for the computation
times of the CG heuristic, we solved each instance with OP (4.1a)-(4.1l) and aborted the
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solution procedure once the objective function value obtained by the CG heuristic was
reached. Furthermore, we solved OP to optimality as presented in Section 4.6.2 in order
to calculate the optimality gaps.

T = 10 T = 15 T = 20

G = 10 0.24 0.92 2.10

G = 15 0.35 1.52 3.61

G = 20 0.60 2.35 6.29

(a) Average computation times of CG heuris-
tic [min]

T = 10 T = 15 T = 20

G = 10 0.87 1.18 0.87

G = 15 0.46 0.51 0.57

G = 20 0.62 0.86 0.62

(b) Average computation times of CG heuris-
tic divided by average computation times
of OP with abortion criterion

T = 10 T = 15 T = 20

G = 10 1.96 2.68 2.35

G = 15 1.54 1.18 2.29

G = 20 2.20 1.93 1.95

(c) Average optimality gaps of CG heuristic
[%]

Table 4.2: Performance measures of CG heuristic

The results demonstrate the efficiency of the proposed CG heuristic. With optimality gaps
between 1.18% and 2.68%, the CG heuristic reaches its final objective function value on
average in less than 73% of the runtime needed by the commercial solver to find a solution
of equal quality. With the exception of one relatively small instance class (G = 10 and
T = 15), where the commercial solver finds the final objective function value provided by
the CG heuristic faster than the CG heuristic and where the optimality gap reaches its
maximum, the CG heuristic thoroughly outperforms the commercial solver.

4.7 Case study

In this case study, we consider Munich Airport Terminal 28. For this purpose, we first
describe how we modeled the contact gates of the terminal, generated demand patterns

8For an introduction to Munich Airport, please refer to Sections 2.5 and 3.6.
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based on real traffic data, and considered the recent crisis caused by the SARS-CoV-2
virus in Section 4.7.19. We provide the data set containing all information that is needed
to reproduce the case study in Hagspihl et al. (2021). In the following two Sections 4.7.2
and 4.7.3, we investigate the impact of different values of penalty cost c− and the available
budget rt on the solution proposed by the CG heuristic.

4.7.1 Data

At Munich Airport, passengers are processed via two terminals, with Terminal 2, including
its satellite building, serving as a hub terminal for Star Alliance airlines and offering about
twice the capacity of Terminal 1. Terminal 2 possesses G = 47 contact gates, each of which
is equipped with one to three lead-in lines. The contact gates are equipped with apron-
drive PBBs, where up to three bridges are installed per gate. Currently four gates are
equipped as MARS gates.

Along the lines of the computational study, we considered L = 5 PBB configurations (0:
No PBB; 1: Single apron-drive PBB; 2: Two apron-drive PBBs; 3: Three apron-drive
PBBs; 4: MARS) and A = 3 aircraft classes with maximum half wingspans sa of 20, 34
and 44 meters, respectively. The compatibilities between PBB configurations and aircraft
classes were defined as in Section 4.6.1, and we set the length of the time horizon to
T = 20 time periods, representing the time span from summer 2019 to summer 2029.

As for the development of demand over time, we modeled the recent situation, which
was heavily impacted by the SARS-CoV-2 virus. That is, we modeled an abrupt but
temporary drop in air traffic volume in 2020, followed by a continuous recovery from
the low point reached. To generate the demand patterns, we analyzed a representative
week of the flight plan of Munich Airport for the summer period of 2019. Of all flights
listed for that week, we only considered those that were processed at a gate (contact or
remote) belonging to Terminal 2. Using the list of the relevant arrivals and departures, we
calculated the number of aircraft which were simultaneously accommodated on the apron
of Terminal 2, with a time granularity of five minutes. Figure 4.7 presents the resulting

9We do not need to consider the entire airport, as Terminal 2 is used exclusively by member airlines
of the Star Alliance and thus the traffic can be forecasted individually for this part of the airport.
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number of aircraft at a gate over time, which demonstrates the aforementioned oscillatory
behavior.

Figure 4.7: Number of aircraft accommodated simultaneously at Munich Airport Terminal
2 over one typical week in summer 2019

To derive the relevant demand patterns, we first determined the number of aircraft of
each class to be accommodated simultaneously for each peak. We then identified those
demand patterns that are not dominated by others, using the same dominance criterion as
introduced in Section 3.3. As a result, we identified four demand patterns to be included
in the model for the period of summer 2019. The demand patterns for the following time
periods were generated based on those we identified for the period of summer 2019, i.e.,
| Bt |= 4 for each t ∈ T . More specifically, the demand patterns for t ∈ {1, 2, 10, 19} were
generated as follows. In periods 1 and 2, the patterns follow the steep decrease in traffic
caused by the SARS-CoV-2 crisis. The demand patterns of t = 10 equal those of period
0, based on the assumption that the demand will have recovered from the crisis by then.
The demand patterns of the last period t = 19 are based on those of t = 10, ensuring
that the demand is stationary with low variance after t = 10; however, based on recent
developments around the Airbus A380 and the Boeing 747, the largest class of aircraft
becomes less frequent. For t ∈ [3, 9], the demand patterns were interpolated between the
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patterns of t = 2 and t = 10, and random but seasonally biased deviations were added10.
For t ∈ [11, 18], the same method was applied using the patterns of t = 10 and t = 19

for the interpolation. Figure 4.8 shows the average number of aircraft per class across all
demand patterns for each time period.

Figure 4.8: Development of the average traffic volume and fleet mix over the time horizon

4.7.2 Variation of penalty costs

In practice, both the costs cikl, col , and the aircraft class weights pa are given exogeneously
by PBB and aircraft manufacturers. In contrast, the penalty cost c− depends on the
desired service quality the airport aims to offer to its customers: Accommodating an
aircraft at a remote parking position leads to a higher penalty cost at a quality oriented
hub airport than at a low cost oriented small airport. For the following analysis, we set
cikl, col , and pa to the values given in Section 4.6.1, whereas we varied the value of c−

within [0; 0.3] with a step size of 0.005, which allows us to analyze the effect of service
quality on the decisions taken and the different cost components. While we investigate
the impact of different budgets in Section 4.7.3, the investigation of different penalty cost
values is based on relaxed Budget Constraints (4.2c), which is also in line with Section
4.6.1. For simplicity reasons, all weights ftb were set to 0.25.

10A random value was added to each value of Dba. If pattern b ∈ B is associated with a winter period,
the value was chosen from [−3,−1], otherwise from [1, 3].
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Averaged over all values of c−, the CG heuristic with group_size = 1 and rmp_gap =

0.075 solves the instance in 2.83 minutes. The objective function value (the total cost)
obtained by the CG heuristic is 1612.35 on average. When solving the CG heuristic
with the additional constraint that the PBB configurations installed in summer 2019

must not be changed, the objective function value is 2006.88 on average. Consequently,
averaged over all values of c− and under the assumption that the future traffic development
represented by the demand patterns indeed materializes in the future, changing the PBB
configurations over time can yield savings of 19.66%.

The solution found by the CG heuristic depends on the value of c−. For small values of
c−, a large share of aircraft is processed at remote parking positions. With increasing
c−, more PBB capacities are installed to reduce the share of aircraft processed at remote
positions. Figure 4.9 shows the relation between the value of c−and the share of aircraft
processed at remote parking positions. Furthermore, the figure presents the total invest-
ment, operating and penalty costs obtained depending on the value of c−. Finally, Table
4.3 presents the number of gates equipped with each PBB configuration at the beginning
of the time horizon and - for each value of c− - the number of gates equipped with each
PBB configuration after the first five time periods.

Figure 4.9: Total investment, operating and penalty costs depending on the value of c−

In their initial state, as presented in Table 4.3, the PBB configurations installed at Munich
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Table 4.3: Distribution of PBB configurations at the beginning of the time horizon and
after five time periods for each value of c−

l t = 0 t = 5

c−

0 0.005 0.010 0.015 0.020 0.025 0.030

0 0 47 26 13 9 7 6 5

1 27 0 21 28 27 27 28 28

2 15 0 0 6 10 12 12 11

3 1 0 0 0 1 1 1 0

4 4 0 0 0 0 0 0 3

Airport Terminal 2 would allow 98.99% of the traffic modelled for summer 2019 to be
accommodated at contact gates. In the light of the given demand scenario, with a strong
decrease in demand at the beginning of the time horizon followed by a slow recovery in
the following years, PBB configurations are more likely to be downgraded or maintained
than upgraded, depending on the ratio of the cost components. As shown in Figure 4.9,
the operating costs are the largest cost item across all values of c−. For c− ∈ [0; 0.02], the
operating costs are increasing in c− and for c− ≥ 0.02 they remain comparably constant.
Consequently, the higher the value of c−, the more operating costs are accepted for larger
PBB configurations in order to avoid increasing penalty costs. In contrast, the investment
costs for changing the configuration are decreasing in c− for c− ∈ [0; 0.015] and remain
constant for c− ≥ 0.015. That is, the larger the value of c−, the fewer gates are downgraded
in order to save on operating costs.

In the SARS-CoV-2 scenario considered, PBB configurations are downgraded for all values
of c− (see Table 4.3). That is, PBB configurations which have the flexibility to accom-
modate larger types of aircraft are substituted by PBB configurations that can only be
used to process smaller types of aircraft. Furthermore, for all values of c−, the PBB con-
figuration is changed to l = 0 at some gates, i.e., the gate is considered a remote parking
position after the change. When c− = 0, there is no incentive to accommodate aircraft
at contact gates, and in order to reduce the operating costs to the minimum, the PBB
configuration is changed to l = 0 at all gates in t = 0. When c− is increased to 0.005,
the number of gates without any PBBs installed in t = 5 decreases to 26. However, no
gate remains with l ≥ 2. The more the value of c− is increased, the smaller the number
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of gates without any PBBs after five time periods and the higher the number of gates
equipped with l ≥ 2. Only when c− = 0.030, we observe gates which are equipped with
l = 4 in t = 5. For smaller values of c−, the high degree of flexibility which justifies the
high operating costs of MARS gates cannot be sufficiently exploited in the given traffic
scenario.

4.7.3 Variation of budget

In the remainder of the case study, we investigate the impact of different investment
budgets available per period on the solution. Assuming that the available budget per
period is constant over the time horizon, we omit the time index of rt in the following.
We added Budget Constraints (4.2c) and run the CG heuristic for budget values r ∈
{0, 8, 16, 32, 64, 1504}, where r = 0 and r = 1, 504 represent two extreme scenarios: When
r = 0, there is no budget available and hence, no PBB configuration changes can be
undertaken. By contrast, when r = 1, 504, the available budget equals the upper bound
of the budget demand G · maxk,l∈Lc

i
kl, and thus, all PBB configuration changes can be

undertaken. Based on the prior analysis of the penalty cost, we set c− to 0.025. Figure
4.10 shows the resulting total investment, operating, and penalty costs as well as the share
of aircraft processed at remote parking positions for each value of r. Furthermore, Table
4.4 provides a detailed overview of the investment costs per time period for each value
of r. As an example, the detailed results of one instance (c− = 0.025 and r = 32) are
provided in Appendix C.3.

Table 4.4: Investment cost per time period for different values of r
t

r 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
∑

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 8 8 8 8 0 8 8 0 0 0 0 0 0 0 0 0 0 0 48

16 16 16 8 16 0 16 0 0 0 8 0 8 0 0 0 0 0 0 0 0 88

32 32 24 16 8 8 0 0 8 0 8 0 0 8 0 0 0 0 0 0 0 112

64 56 24 24 0 0 8 0 0 0 0 8 0 0 0 0 0 0 0 0 0 120

1504 88 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 104

Figure 4.10 demonstrates that the objective function value improves for higher values of
r. The total cost difference between the two extreme scenarios (r = 0 and r = 1, 504)
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Figure 4.10: Total investment, operating and penalty costs depending on the value of r

is 10.5%. As discussed earlier, in the SARS-CoV-2 scenario, PBB configurations should
be downgraded in order to reduce the operating costs. The higher the available budget
for PBB configuration changes is, (1) the more of these changes can be realized, (2) the
earlier the changes can be made, and (3) the higher the resulting reduction of operating
costs is. The last column of Table 4.4 shows that higher values of r are associated with
higher total investment cost, except for r = 1, 504. Furthermore, Table 4.4 shows that the
higher the value of r, the more PBB configuration changes tend to be undertaken in early
periods of the time horizon where the effect of the change is the largest. Regarding the
penalty costs, Figure 4.10 shows a slight variation in the percentage of aircraft processed
at remote parking positions for different values of r. However, this percentage is smaller
than 6.5% in all cases. The maximum is reached for r = 16, where the penalty costs also
reach their maximum.

Whether a higher budget leads to lower total costs depends on the characteristics of the
demand scenario. If the growth in air traffic volume and the change of the fleet mix are
moderate, higher budgets will, in general, not lead to considerable savings. By contrast,
the SARS-CoV-2 scenario is characterized by a drastic drop in air traffic volume in 2020
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and a slow recovery in the following years. Thus, a higher degree of flexibility - especially
at the beginning of the time horizon - leads to substantial reductions of total costs.

Overall, the case clarifies the tradeoffs between investment, operating, and penalty costs
in a dynamic environment, as well as the relevance of the available investment budget, and
demonstrates that our approach provides airports with highly valuable decision support.

4.8 Conclusion

In this chapter, we introduced the Dynamic Gate Configuration Problem (DGCP) and
formulated it as a deterministic mixed-binary problem. By considering neighborhood con-
straints, MARS gates and the concept of demand patterns, the mathematical formulation
incorporates operational constraints in the strategic context of the problem. Our com-
putational results demonstrated the intractability of the extensive formulation for data
instances of realistic size. We presented a CG heuristic to circumvent this problem and
illustrated its good performance with respect to solution quality as well as computation
time for data instances of mutable complexity. Finally, we presented a case study to
demonstrate the implications of the results of the CG heuristic in reality. The results
provide airport operators with important insights into the extent to which the capacities
provided at the gates at present are capable of handling demand in the future. Further-
more, the results indicate at which gate(s) the PBB configuration should be changed in
the event that the solution recommends such change(s). Upgrades are performed such
that they maximize the gain in operational flexibility and downgrades are performed such
that they minimize the loss of operational flexibility.

In future research, the model could be extended to allow for the addition of new gates
within the time horizon, representing terminal extensions or the construction of entirely
new terminals. Furthermore, our model does not take into account that managerial deci-
sions besides the ones considered here, not to mention legal constraints, may pose further
restrictions on the accommodation of aircraft at certain aircraft stands, besides spatial
neighborhood constraints. For example, airports may have mutual agreements with air-
lines for the exclusive use of gates (for instance, see Young and Wells 2011) and airports
may have to provide gates equipped with security equipment of different levels. On the
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one hand, both aspects require a more detailed subdivision of demand as presented in
this work, while on the other, they might allow a decomposition of the problem. For
example, our approach may be applied to a subset of all gates if these gates are used by
one airline only by contract and the traffic development can be estimated separately for
that airline. The concept of the model can also be transferred to other problems, where
limited capacites need to be (re-)configured to meet changing demand over time. For
instance, hospitals have to determine which rooms to allocate to which ward, while the
number of patients treated by the wards fluctuates over time and both investment and
personnel costs need to be considered.
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We addressed three planning problems, all of which involve the question of how partic-
ular elements of airport infrastructure should be designed in order to provide additional
capacities or to adapt existing capacities to changes in traffic volume and/or fleet mix. In
Chapter 2, we considered the introduction of air taxis as a new means of transport that
may provide a more convenient way to reach airports. More specifically, we presented a
framework for determining the optimal locations for vertiports in the area surrounding a
given airport in order to establish a shuttle network for the airport. In Chapters 3 and
4, we turned our attention towards the management of contact gates. We introduced
an approach to find the optimal locations and orientations of aircraft parking positions
when a given terminal is planned to be newly built or renovated in Chapter 3. We then
assumed this layout to be given in Chapter 4, where we investigated which gate should
be equipped with which PBB configuration at which point in time in order to react to
changing traffic characteristics over a strategic time horizon.

From a modeling perspective, the problems presented in Chapters 3 and 4 share several
commonalities. First, we classify aircraft by wingspan in both problems in order to reduce
planning complexity and to take future aircraft types into account. Second, we consider
that gates must be equipped appropriately to handle aircraft of a particular class. While
we use the term equipment in a broader sense in Chapter 3, we focus specifically on
PBB configurations in Chapter 4. Third, we use the precise positions of parked aircraft,
which are determined by the lead-in lines they are assigned to, to prevent collisions of
aircraft parked adjacently in both problems. Fourth, we focus on hub airports where air
traffic arrives and departs in waves, allowing us to consider only the points in time where
traffic volume and/or fleet mix reach their peaks, and enabling us to apply our concept of
demand patterns to both problems. Finally, we explicitly consider MARS gates in both
problems.
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Furthermore, neither model presented in Chapters 3 and 4 can be solved to optimality
by commercial solvers for realistic instances in reasonable amounts of time. We presented
decomposition approaches to solve both problems efficiently. In Chapter 3, we developed a
problem-specific decomposition approach, which exploits our observation that individual
areas of the apron can be planned independently of each other, as soon as a decision
is made for each demand pattern on how many aircraft of each class should be parked
in which area. Furthermore, we used several acceleration techniques, which significantly
reduce computation times. In Chapter 4, we applied Dantzig-Wolfe decomposition in
order to use a column generation based heuristic to solve the original problem. In our
approach, a column specifies for one gate which PBB configuration(s) are installed at
which point in time. We investigated how many columns should ideally be added to the
restricted master problem per iteration and at which duality gap the optimization process
of the restricted master problem with restored integrality constraints should be aborted
in the last step of our heuristic. In contrast to Chapters 3 and 4, the problem presented in
Chapter 2 can be solved to optimality by commercial solvers as long as the set of potential
vertiport locations is small. However, embedding the multinomial logit model in the hub
location problem initially results in a nonlinear model, which we linearized based on the
approach by Haase (2009).

We presented extensive case studies for Munich Airport for all three problems. Our ex-
periments in Chapter 2 indicate that the high ticket prices for air taxi flights predicted for
market launch will initially result in a significant number of passengers choosing to travel
by air taxi only if the distance between the vertiports and Munich Airport is relatively
short. However, since the area around Munich Airport offers a well developed road and
rail network by global standards, the air taxi can only make up for the transfer time at the
vertiport on longer flight routes, and thus shorten the overall journey to Munich Airport.
In consequence, in the short to medium term, the air taxi will not reduce travel times
to Munich Airport for most passengers. However, this could be different for airports in
other regions of the world, as our findings are primarily based on the price sensitivity
of passengers in Bavaria as well as the attractiveness of alternative means of transport
in the catchment area of the airport. Our computational results in Chapter 3 highlight
the benefits of planning flexibility (see Table 3.6) and, with few exceptions, the spatial
efficiency of lead-in lines that are placed perpendicular to the terminal facade. Finally,
our experiments in Chapters 3 and 4 demonstrate how airport planners can maximize
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capacity and best adapt existing infrastructure to meet changing traffic characteristics
without using additional space.

This dissertation paves the way for numerous future research activities. First, in the ver-
tiport location problem in Chapter 2, we currently assume that the number of passengers
traveling to Munich Airport from each origin is given and independent of our location
decisions. However, neighboring airports compete for passengers, and improving the ac-
cessibility of one airport could, ceteris paribus, lead to previously indifferent passengers
choosing that airport. For example, passengers from northern Bavaria currently travel
about the same distance to Munich Airport as to Frankfurt Airport. The introduction of
an air taxi shuttle service to Munich Airport could increase the proportion of passengers
from this region who choose Munich Airport, as long as a similar network to Frankfurt
Airport is not set up in parallel. This in turn could have a significant impact on the
optimal locations for vertiports. Second, our approach to determine the optimal locations
and orientations of aircraft parking positions around a given terminal in Chapter 3 could
be used as a starting point to investigate whether specific terminal shapes are particularly
well suited in general to maximize the number of aircraft that can be handled at contact
gates simultaneously. This information could prove especially valuable for the planning
of future terminals at space-constrained airports. In addition, our solution methodology
can be further improved to achieve even shorter runtimes. For example, machine learning
models could be trained to identify particularly promising demand decompositions, whose
subproblems could then be solved first. Furthermore, with minor adjustments, our ap-
proach could also be applied to seaports to define the positions and orientations of berths
for ships of different sizes in a given harbor basin. This problem shares some features of
our problem, as collisions between ships must be prevented and infrastructure on land,
such as structures for loading and unloading ship cargo or connections for fuel supply,
must be included in the planning of berths. Third, regarding the problem to determine
optimal PBB configurations at gates of a terminal over time as presented in Chapter 4,
we are confident that ideas from the solution methodology in Chapter 3 can be used to
significantly reduce the runtime. For example, analogous to Chapter 3, the terminal could
be divided into independently plannable areas as soon as it is decided for each demand
pattern how many aircraft of which class are to be parked in which area. The existing
solution methodology could then be applied to each area individually. Finally, in this
dissertation only two elements of airport infrastructure were considered: The gates as
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the interface of airside and landside airport infrastructure, and the infrastructure of a
new airport feeder system. As described in Chapter 1, airport infrastructure comprises
numerous other elements, which could be addressed in future work. For instance, the
taxiway layout of an airport could be optimized to minimize expected waiting times of
aircraft due to ground traffic. In addition, future technological developments will lead
to new elements of infrastructure being added to airports, creating new challenges for
airport planners and thus opening up new opportunities for optimization. For example,
the use of hydrogen as aircraft fuel will require the installation of appropriate refueling
infrastructure at airports. In this context, the question will arise as to where on the
apron and to what extent infrastructure needs to be installed in order to meet demand
for hydrogen refueling at minimum overall cost.

The results of this dissertation show how mathematical optimization can significantly
contribute to the effective planning and use of airport infrastructure. In light of the
expected further growth in civil aviation, the importance of this contribution will continue
to increase, especially for space-constrained hub airports. We therefore strongly encourage
further research in this direction.
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A Appendices Vertiport Location

A.1 Notation

Table A.1: Notation for hub location problem
Sets, parameters
O = {1, . . . , O} Set of origins
K = {1, . . . , K} Set of potential vertiport locations
I = {1, . . . , I} Set of itineraries
Ignd ⊂ I Subset of itineraries where passengers only use ground-based

means of transport
Iair ⊂ I Subset of itineraries where passengers also use air taxis
Io ⊂ I Subset of itineraries that is available to passengers at origin

o ∈ O
Igndo ⊂ I Subset of itineraries available to passengers at origin o ∈ O

where only ground-based means of transport are used
Iairo ⊂ I Subset of itineraries available to passengers at origin o ∈ O

where also air taxis are used
Voi Representative utitlity for passengers from origin o ∈ O when

using itinerary i ∈ Io to get to the airport
no Number of passengers (demand) from origin o ∈ O
q Number of vertiports to be opened
roi Probability that passengers from origin o ∈ O use itinerary

i ∈ Io to get to the airport if all vertiports k ∈ K were built,
i.e. roi = eVoi∑

i∈Io
eVoi

îo Itinerary from set Igndo with the largest choice probability for
passengers from origin o ∈ O, i.e. rôio ≥ roi for all i ∈ Igndo
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γ Small value (e.g., 0.0001)
Decision variables
yk ∈ {0, 1} 1, if vertiport k ∈ K is opened; 0, otherwise
poi ∈ R+

0 Probability that passengers from origin o ∈ O use itinerary
i ∈ Io to get to the airport

Table A.2: Notation for discrete choice model
Sets, parameters
Q = {1, . . . , Q} Set of criteria considered by the passengers when evaluating

alternative itineraries
ki Vertiport k ∈ K where passengers transfer from any

ground-based means of transport to air taxi on itinerary i ∈ I
Uoi Utility that passengers from origin o ∈ O obtain from

reaching the airport using itinerary i ∈ I
εoi Difference between true utility Uoi and representative utility

Voi for passengers from origin o ∈ O on itinerary i ∈ I
βasc
i Alternative-specific constant of itinerary i ∈ I
βq
i Weighting parameter for itinerary i ∈ I with respect to

criterion q ∈ Q
ηqoi Performance of itinerary i ∈ Io for passengers from origin

o ∈ O with respect to criterion q ∈ Q

Table A.3: Notation for model application and case study
Sets, parameters
Icar Set of itineraries where passengers reach the airport directly

by car
IPT Set of itineraries where passengers reach the airport directly

by public transport
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Icar_AT Set of itineraries where passengers reach the airport by air
taxi, and the vertiport is reached by car

IPT_AT Set of itineraries where passengers reach the airport by air
taxi, and the vertiport is reached by public transport

Icaro Set of itineraries where passengers reach the airport directly
by car available to passengers at origin o ∈ O

IPTo Set of itineraries where passengers reach the airport directly
by public transport available to passengers at origin o ∈ O

Icar_ATo Set of itineraries where passengers reach the airport by air
taxi, and the vertiport is reached by car available to
passengers at origin o ∈ O

IPT_ATo Set of itineraries where passengers reach the airport by air
taxi, and the vertiport is reached by public transport
available to passengers at origin o ∈ O

βcar,asc Alternative-specific constant of itinerary i ∈ Icar when
determining the representative utility

βPT,asc Alternative-specific constant of itinerary i ∈ IPT when
determining the representative utility

βcar_AT,asc Alternative-specific constant of itinerary i ∈ Icar_AT when
determining the representative utility

βPT_AT,asc Alternative-specific constant of itinerary i ∈ IPT_AT when
determining the representative utility

βcar,tt Weighting factor for travel time of itinerary i ∈ Icar when
determining the representative utility

βPT,tt Weighting factor for travel time of itinerary i ∈ IPT when
determining the representative utility

βcar_AT,tt Weighting factor for travel time of itinerary i ∈ Icar_AT when
determining the representative utility

βPT_AT,tt Weighting factor for travel time of itinerary i ∈ IPT_AT when
determining the representative utility

βcar,tc Weighting factor for travel costs of itinerary i ∈ Icar when
determining the representative utility

βPT,tc Weighting factor for travel costs of itinerary i ∈ IPT when
determining the representative utility
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βcar_AT,tc Weighting factor for travel costs of itinerary i ∈ Icar_AT when
determining the representative utility

βPT_AT,tc Weighting factor for travel costs of itinerary i ∈ IPT_AT when
determining the representative utility

ηttoi Travel time of itinerary i ∈ I for passengers at origin o ∈ O
ηtcoi Travel costs of itinerary i ∈ I for passengers at origin o ∈ O
tcaro,k Travel time from origin o ∈ O to vertiport k ∈ K by car
tcaro,apt Travel time from origin o ∈ O to the airport by car
tPTo,k Travel time from origin o ∈ O to vertiport k ∈ K by public

transport
tPTo,apt Travel time from origin o ∈ O to the airport by public

transport
tATk,apt Travel time from vertiport k ∈ K to the airport by air taxi
tcar+ Time needed to park the car at a vertiport or the airport
tPT+ Waiting time at the departure station of the public transport

service
do,k Ground (i.e., street) distance between origin o ∈ O and

vertiport k ∈ K
do,apt Ground (i.e., street) distance between origin o ∈ O and the

airport
dk,apt Direct (i.e., Euclidean) distance between vertiport k ∈ K and

the airport
vAT Air taxi cruising speed
ccar,fix Fixed cost component of all itineraries where a car is used,

accounting for the parking cost at the vertiport/airport
ccar,var Per-kilometer cost component of all itineraries where a car is

used
cPT,low, cPT,mid, cPT,high Cost levels of public transport
cAT,fix Fixed cost component of all itineraries where an air taxi is

used
cAT,var Per-kilometer cost component of all itineraries where an air

taxi is used
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B.1 Notation

Table B.1: Notation for AGLP
Sets, parameters
A = {1, . . . , A} Set of aircraft classes
L = {1, . . . , L} Set of lead-in lines
G = {1, . . . , G} Set of gates
K = {1, . . . , K} Set of demand patterns
Asmall Subset of A, which includes the aircraft classes from which up

to two aircraft can be processed at one gate simultaneously
Alarge Subset of A, which includes the aircraft classes from which

only one aircraft can be processed at one gate at one point in
time

Cal 1, if an aircraft of class a ∈ A can be parked at lead-in-line
l ∈ L; 0, otherwise

Elmab 1, if aircraft of classes a ∈ A and b ∈ A cannot be parked
simultaneously at lead-in lines l ∈ L and m ∈ L \ {l}; 0,
otherwise

Flg 1, if lead-in line l ∈ L can be assigned to gate g ∈ G; 0,
otherwise

Hga 1, if aircraft of class a ∈ A could be parked at gate g ∈ G in
the past; 0, otherwise

Dak Number of aircraft of class a ∈ A that need to be parked
simultaneously for demand pattern k ∈ K
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Wak Weighting factor for aircraft class a ∈ A and demand pattern
k ∈ K

∆ Distance between adjacent lead-in line starting points
κ Rotation angle between the lead-in lines that share the same

starting point
Decision variables
yl ∈ {0, 1} 1, if lead-in line l ∈ L is used to park an aircraft for at least

one demand pattern; 0, otherwise
xglak ∈ {0, 1} 1, if lead-in line l ∈ L is assigned to gate g ∈ G and is used to

park an aircraft of class a ∈ A for demand pattern k ∈ K; 0,
otherwise

ugl ∈ {0, 1} 1, if lead-in line l ∈ L is assigned to gate g ∈ G; 0, otherwise
qak ≥ 0 Number of aircraft belonging to class a ∈ A that cannot be

parked at any contact gate for demand pattern k ∈ K
vga ∈ {0, 1} 1, if aircraft of class a ∈ A can be parked at gate g ∈ G; 0,

otherwise
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Table B.2: Notation for solution approach
Sets, parameters
S = {1, . . . , S} Set of airport areas that are independent with respect to

Constraints (3.1j)
C = {1, . . . , C} Set of demand decompositions
Ck Set of demand decompositions pretending that demand

pattern k ∈ K is the only demand pattern that exists
Ls Subset of L containing all lead-in lines belonging to area

s ∈ S
Gs Subset of G containing all gates belonging to area s ∈ S
Ps Set of efficient parking patterns associated with area s ∈ S
Pcs Set of parking patterns p ∈ Ps contained in demand

decomposition c ∈ C for area s ∈ S
rap Number of aircraft of class a ∈ A contained in parking

pattern p ∈ Ps

p (c, s, k) Parking pattern from Ps that is contained in demand
decomposition c ∈ C for area s ∈ S and demand pattern
k ∈ K

π A path through the network created to find efficient parking
patterns and to check whether a solution to the relaxed
subproblem is feasible for a parking pattern

z∗1 , z∗2 Optimal values of Objective Functions (3.1a) and (3.1b),
respectively

z∗1k Optimal value of Objective Function (3.1a) that can be
reached for demand pattern k ∈ K

z∗1c, z∗2c Optimal values for Objective Functions (3.1a) and (3.1b)
when aircraft are assigned to areas according to demand
decomposition c ∈ C

z∗2cs Optimal value for Objective Function (3.1b) in area s ∈ S
when aircraft are assigned to areas according to demand
decomposition c ∈ C

Variables

138



B Appendices Apron Layout

LBc Lower bound for the value of Objective Function (3.1a) when
aircraft are assigned to areas according to demand
decomposition c ∈ C

LBcs Lower bound for the value of Objective Function (3.1a) in
area s ∈ S when aircraft are assigned to areas according to
demand decomposition c ∈ C

UB Upper bound for the value of Objective Function (3.1a)
σaπ Number of class a ∈ A aircraft parked in path π

ωcsa Minimum number of gates equipped for class a ∈ A aircraft
required in area s ∈ S to park all aircraft contained in Pcs

ψcsak Number of class a ∈ A aircraft that can be parked at gates
which are equipped for aircraft of a larger class a′ > a in area
s ∈ S for demand pattern k ∈ K when aircraft are assigned to
areas according to demand decomposition c ∈ C

ζcak Number of aircraft belonging to classes {a, . . . , A} that are
parked at all areas for demand pattern k ∈ K when aircraft
are assigned to areas according to demand decomposition
c ∈ C

B.2 Process to compute aircraft safety envelopes

To compute the safety envelope for each aircraft class, we first determine the dimensions
of a so-called critical design aircraft. We then compute the aircraft safety envelope based
on the critical design aircraft.

Critical design aircraft The critical design aircraft represents a fictitious aircraft type,
which in all respects has the maximum dimensions of all real aircraft types included in the
respective ADG. Thus, all real aircraft belonging to a class can be handled at a parking
position if the critical design aircraft corresponding to the class can be parked there.

To determine the dimensions of the critical design aircraft of a class, the following key
figures need to be known for each aircraft type belonging to that class: The width of the
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fuselage, the wingspan, the width of the horizontal stabilizer, the linear positions of the
wingbox, leading and trailing edges of the wingtip, and the overall length of the aircraft.
The critical design aircraft of a class is initialized using the dimensions of the longest
aircraft belonging to the class. Next, the maximum wingspan, the maximum fuselage
width, and the maximum width of the horizontal stabilizer are identified from all aircraft
belonging to the class and transferred to the critical design aircraft. Finally, the critical
design aircraft is compared to each aircraft type belonging to the class and it is checked
whether the outer shape of the respective aircraft is covered entirely by the outer shape
of the critical design aircraft. In case the outer shape of the critical design aircraft does
not entirely cover another aircraft of the class, its geometry is changed accordingly.

Aircraft safety envelopes We can now compute the safety envelope for the critical
design aircraft of each class. Figure B.1a shows the aircraft safety envelope without
minimum safety clearance for one aircraft.

(a) Without safety clearance (b) With safety clearance

Figure B.1: Aircraft safety envelopes (Source of aircraft models: Airbus 2022)

The aircraft safety envelope as shown in Figure B.1a is defined by 6 pairs of points,
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where each pair is located symmetrically to the aircraft center line. As the aircraft is
accommodated at a parking position, the aircraft center line equals the lead-in line of
the parking position. Points (0, 1) are located at the nose of the aircraft, with a lateral
distance of half the fuselage width (A) to the lead-in line. Points (4, 5) and (6, 7) are
located in front of (F) and behind (G) the wingtips, where the lateral distance of each
point from the lead-in line equals half the wingspan (C). The position of points (2, 3) is
chosen such that the distance to the nose of the aircraft (E) is maximized while the edges
(2, 4) and (3, 5) do not interfere with the engines or the wingbox of the aircraft. Points
(8, 9) are located at the tail of the aircraft (H), where the lateral distance to the lead-in
line equals the width of the horizontal stabilizer (B). Finally, the path to the taxiway is
approximated using two additional points (10, 11). These points are positioned at the
intersection of the lead-in line and the taxiway (I), and the lateral distance between the
points and the lead-in line equals half the wingspan of the aircraft (C).

For our purpose, the aircraft safety envelope must be extended to include the minimum
safety clearances, see Figure B.1b, where the safety clearance is added to both coordinates
of each point, so that the points are shifted away from the aircraft.
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B.3 Collisions of aircraft safety envelopes

We consider two types of collisions, illustrated in Figure B.2. Figure B.2a shows the case
where the safety envelopes of two parked aircraft overlap. Figure B.2b demonstrates the
case where the safety envelopes of two aircraft parked adjacently do not overlap when
both aircraft are in their parking positions, but where the pushback of aircraft D would
lead to an infringement of the safety envelope of aircraft C.

(a) Collision when both aircraft are parked (b) Collision when one aircraft is moving

Figure B.2: Collisions of aircraft safety envelopes (Source of aircraft models: Airbus 2022)
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B.4 Subproblems

The subproblem for demand decomposition c ∈ C and area s ∈ S is defined as follows:

min z2cs =
∑
g∈Gs

∑
a∈A

vga (B.1a)

subject to∑
g∈Gs

∑
l∈Ls:Cal=1∩Flg=1

xglak = rap(c,s,k) ∀a ∈ A; k ∈ K (B.1b)

∑
g∈Gs:Flg=1

∑
a∈A:Cal=1

xglak ≤ yl ∀l ∈ Ls; k ∈ K (B.1c)

∑
g∈Gs:Flg=1

ugl = yl ∀l ∈ Ls (B.1d)

xglak ≤ zgl ∀g ∈ Gs; l ∈ Ls; a ∈ A; k ∈ K :

(B.1e)

Flg = 1;Cal = 1

∑
l∈Ls:Flg=1

∑
a∈A:Cal=1

a · xglak ≤
∑
a∈A

vga ∀g ∈ Gs; k ∈ K (B.1f)

vga ≤ vgb ∀g ∈ Gs; a ∈ {2, . . . , A} ;
(B.1g)

b = a− 1

143



B Appendices Apron Layout

∑
l∈Ls:Flg=1

 ∑
a∈Asmall:Cal=1

xglak +
∑

a∈Alarge:Cal=1

2 · xglak

 ≤ 2 ∀g ∈ Gs; k ∈ K (B.1h)

∑
g∈Gs:Flg=1

xglak +
∑

h∈Gs:Fmh=1

xhmbk ≤ 1 ∀l,m ∈ Ls; a, b ∈ A; k ∈ K :

(B.1i)

Elmab = Cal = Cbm = 1; l < m

vga = Hga ∀g ∈ Gs; a ∈ A :
∑
â∈A

Hgâ > 0

(B.1j)

vga ∈ {0, 1} ∀g ∈ Gs; a ∈ A (B.1k)

xglak ∈ {0, 1} ∀g ∈ Gs; l ∈ Ls; a ∈ A; k ∈ K :

(B.1l)

Flg = 1;Cal = 1

yl ∈ {0, 1} ∀l ∈ Ls (B.1m)

ugl ∈ {0, 1} ∀g ∈ Gs; l ∈ Ls : Flg = 1

(B.1n)

In contrast to Model (3.1a)-(3.1o), Dak is substituted by parking patterns Pcs. The qak
variables are eliminated, because the optimal value of z1 has been determined already
and all aircraft contained in parking patterns Pcs have to be parked at contact gates.
Demand Constraints (3.1c) are changed to Constraints (B.1b) accordingly. Sets G and L
are replaced throughout the model by the area-specific subsets Gs and Ls.
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B.5 Algorithm to compute lower bounds for demand
decompositions in brownfield scenarios

Let parameter Ωsa ∈ N denote the number of existing gates in subarea s ∈ S that are
equipped to handle aircraft of class a ∈ A. Algorithm B.1 shows how we match the results
from Algorithm 3.2 with Ωsa and adapt the values of ωcsa accordingly if necessary.

According to Constraints (3.1p), already existing gates must not be changed in a brown-
field scenario. Hence, ωcsa cannot be smaller than Ωsa in any area s ∈ S and any aircraft
class a ∈ A. If ωcsa has to be increased for that reason and a > 1, it follows from the
downward compatibility of gates that ωcsâ can be reduced for a smaller aircraft class
â < a. Again, we explicitly consider the MARS mode. That is, if ωcsa is increased by 1

for an aircraft class a ∈ Alarge, ωcsâ for an aircraft class â ∈ Asmall can be reduced by 2.
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Algorithm B.1 Algorithm to determine the value of LBcs in brownfield scenarios

1: Initialize Ωsa and integer counter variable f
2: Perform Algorithm 3.2, lines 1 to 19
3: for all aircraft classes a ∈ A do
4: Ωsa ←

∑
g∈Gs

Hga

5: end for
6: for all aircraft classes a ∈ A (in descending order) do
7: while Ωsa > ωcsa do
8: ωcsa ← (ωcsa + 1)
9: if a ∈ Asmall : a > 1 then

10: for all a′ ∈ Asmall : a′ < a (in descending order) do
11: if ωcsa′ > 0 then
12: ωcsa′ ← (ωcsa′ − 1)
13: break
14: end if
15: end for
16: else if a ∈ Alarge then
17: f ← 2
18: for all a′ ∈ Alarge : a′ < a (in descending order) do
19: if ωcsa′ > 0 then
20: ωcsa′ ← (ωcsa′ − 1)
21: f ← 0
22: break
23: end if
24: end for
25: for all a′ ∈ Asmall : a′ < a (in descending order) do
26: if f > 0 and ωcsa′ > 1 then
27: ωcsa′ ← (ωcsa′ − 2)
28: f ← 0
29: break
30: else if f > 0 and ωcsa′ > 0 then
31: ωcsa′ ← (ωcsa′ − 1)
32: f ← (f − 1)
33: end if
34: end for
35: end if
36: end while
37: end for
38: LBcs ←

∑
a∈A

a · ωcsa

39: return LBcs

146



B Appendices Apron Layout

B.6 Algorithm to compute consistency of a demand
decomposition

Let na′

sk ∈ N be defined as the aggregated number of aircraft belonging to classes a′, . . . , A ∈
A that must be parked at area s ∈ S for demand pattern k ∈ K when aircraft are as-
signed to areas according to demand decomposition c ∈ C. The procedure we employ to
determine whether a demand decomposition is consistent or not is provided in Algorithm
B.2.

Algorithm B.2 Algorithm to determine whether a demand decomposition is consistent
or not

1: Initialize na
sk

2: for all aircraft classes amin ∈ Alarge do
3: namin

sk ←
∑

a∈Alarge:a≥amin

rap(c,s,k)

4: for all demand patterns k1 ∈ K do
5: for all demand patterns k2 ∈ K : k2 > k1 do
6: if

∑
a∈Alarge:a≥amin

Dak1 ≤
∑

a∈Alarge:a≥amin

Dak2 then

7: if namin
sk1

> namin
sk2

then
8: return false . demand decomposition is not

consistent
9: end if

10: end if
11: end for
12: end for
13: end for
14: return true . demand decomposition is consistent
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B.7 Planning scenarios for Munich Airport Terminal
1

The following figures illustrate the sets of gates G and lead-in lines L for Munich Airport
Terminal 1 in the different planning scenarios, with ∆ = 5m and κ = 22.5◦. Figure B.3a
depicts the greenfield scenario, Figure B.3b shows the soft brownfield case, and Figure
B.3c displays the true brownfield instance. In all figures, physical obstacles that must not
be touched by aircraft at any time are visualized by red lines, taxiways are represented
by yellow lines. Furthermore, existing gates are marked by gray circles, all other gates
are represented by cyan circles. Finally, existing lead-in lines are represented by purple
lines, all other lead-in lines by green lines.

(a) Greenfield (b) Soft brownfield (c) True brownfield

Figure B.3: Lead-in lines and gates at Munich Airport Terminal 1 in different planning
scenarios
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B.8 Optimal layouts for Munich Airport Terminal 1,
demand patterns 1-4

The following figures are analogous to Figure 3.6 and provide the optimal layouts of all
planning scenarios for demand patterns 1 to 4.

(a) Greenfield (b) Soft brownfield (c) True brownfield

Figure B.4: Optimal solutions for different planning scenarios, demand pattern 1
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(a) Greenfield (b) Soft brownfield (c) True brownfield

Figure B.5: Optimal solutions for different planning scenarios, demand pattern 2
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(a) Greenfield (b) Soft brownfield (c) True brownfield

Figure B.6: Optimal solutions for different planning scenarios, demand pattern 3
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(a) Greenfield (b) Soft brownfield (c) True brownfield

Figure B.7: Optimal solutions for different planning scenarios, demand pattern 4

152



C Appendices Gate Configurations

C.1 Notation

Table C.1: Notation for DGCP
Sets, parameter
T = {0, . . . , T} Set of time periods
L = {0, . . . , L} Set of PBB configurations
A = {1, . . . , A} Set of aircraft classes
G = {1, . . . , G} Set of aircraft stands
J = {1, . . . , J} Set of lead-in lines
B = {1, . . . , B} Set of demand patterns
LMARS Subset of L containing all PBB configurations that indicate a

MARS configuration
La Subset of L containing all PBB configurations that can be

used to accommodate aircraft class a ∈ A
Jg Subset of J containing all lead-in lines belonging to gate

g ∈ G
Ng Subset of G containing gate g ∈ G and its dexter neighbor

gate
Bt Subset of Bcontaining all demand patterns of period t ∈ T
cikl Investment cost of PBB configuration l ∈ L, if PBB

configuration k ∈ L is currently installed
col Operating cost of PBB configuration l ∈ L
c− Penalty cost per passenger
rt Available investment budget in period t ∈ T
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egtl 1, if aircraft stand g ∈ G has PBB configuration l ∈ L
installed in period t = 0; 0, otherwise

dij Lateral distance between lead-in lines i ∈ J and j ∈ J
Dba Demand of aircraft class a ∈ A according to demand pattern

b ∈ B
ftb Relative weight of demand pattern b ∈ B in period t ∈ T
pa Average number of passengers on board an aircraft of class

a ∈ A
sa Maximum half wingspan of aircraft belonging to class a ∈ A

including additional space for minimum separation
requirements

M Sufficiently large number
Decision variables
zgtl ∈ {0, 1} 1, if PBB configuration l ∈ L is installed at aircraft stand

g ∈ G in period (t, t+ 1) for t = 0, . . . , T − 1; 0, otherwise
xgtkl ∈ {0, 1} 1, if PBB configuration l ∈ L is built at aircraft stand g ∈ G

starting with PBB configuration k ∈ L \ {l} at time
t = 0, . . . , T − 1; 0, otherwise

ygjtba ∈ {0, 1} 1, if aircraft stand g ∈ G (lead-in line j ∈ J ) is used for
aircraft of class a ∈ A in period (t, t+ 1) for demand pattern
b ∈ Bt; 0, otherwise

y−tba ≥ 0 Uncovered demand in period (t, t+ 1) for t = 0, . . . , T − 1 for
aircraft of class a ∈ A for demand pattern b ∈ Bt
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Table C.2: Notation for solution approach

Sets, parameter
P = {1, . . . , P} Set of paths
Pg Subset of P containing all paths associated with gate g ∈ G
cp Total (investment and operating) cost of path p ∈ P
zpgtl 1, if PBB configuration l ∈ L is installed at aircraft stand

g ∈ G in period (t, t+ 1) for t = 0, . . . , T − 1 in path p ∈ P ; 0
otherwise

πcap,linejtb Dual variable of the respective (lead-in line) capacity
constraint in the master problem

πcap,gatetb Dual variable of the respective (gate) capacity constraint in
the master problem

πcomjtba Dual variable of the respective compatibility constraint in the
master problem

πcon Dual variable of the respective convexity constraint in the
master problem

Decision variables
λp ∈ {0, 1} 1, if path p ∈ P is used; 0, otherwise
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C.2 Allocation of demand patterns to time periods

Depending on the number of gates G, we pre-define a set of B = 10 demand patterns as

Dba =



1.2 ·G 0 0

G 0.1 ·G 0

0.9 ·G 0.05 ·G 0.05 ·G
0.9 ·G 0 0.1 ·G
0.5 ·G 0.4 ·G 0

0.5 ·G 0.25 ·G 0.05 ·G
0.5 ·G 0.2 ·G 0.1 ·G
0.5 ·G 0 0.2 ·G
0.25 ·G 0.25 ·G 0.25 ·G
0.25 ·G 0.15 ·G 0.35 ·G



.

The matrix is defined such that a higher value of b corresponds with a higher share of
large and very large aircraft. We allocate the demand patterns to time periods according
to the following scheme:

• If t ≤ T
3
: Randomly allocate three demand patterns from the subset of demand

patterns in B with index [0; 4] to time period t

• Else if t > T
3

and t ≤ 2·T
3

: Randomly allocate three demand patterns from the
subset of demand patterns in B with index [3; 7] to time period t

• Otherwise: Randomly allocate three demand patterns from the subset of demand
patterns in B with index [6; 9] to time period t

C.3 Detailed results for case study

In the following we present detailed results for c− = 0.025 and r = 32. Table C.3
provides the PBB configurations for each gate g ∈ G and time period t ∈ T . PBB
configuration changes are highlighted for visibility. When the PBB configuration of a
gate is downgraded, the respective cell is dyed gray. When it is upgraded, the cell is
enframed.
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Table C.3: Resulting PBB configurations at Munich Airport for c− = 0.025 and r = 32
t

g 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
9 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
11 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
13 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
15 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
17 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
21 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
23 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
26 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
27 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
28 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
29 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
30 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
31 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
32 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
33 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
34 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
35 2 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
36 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
37 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
38 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
39 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
40 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
41 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
42 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
43 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
44 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
45 4 4 4 4 4 4 4 4 4 4 2 2 2 2 2 2 2 2 2 2 2
46 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
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