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Abstract: Topology optimization is a powerful numerical tool in the synthesis of lightweight
structures and compliant mechanisms. Compliant mechanisms present challenges for topology
optimization, as they typically exhibit large displacements and rotations. Path-generation mechanisms
are a class of mechanisms that are designed to follow an exact path. The characteristics of compliant
mechanisms therefore exclude the validity of linear finite-element analysis to ensure the proper
modeling of deformation and stresses. As stresses can exceed the limit when neglected, stress
constraints are needed in the synthesis of compliant mechanisms. Both nonlinear finite-element
analysis as well as the consideration of stress constraints significantly increase computational cost
of topology optimization. Multiresolution topology optimization, which employs different levels
of discretization for the finite-element analysis and the representation of the material distribution,
allows an important reduction of computational effort. A multiresolution topology optimization
methodology is proposed integrating stress constraints based on nonlinear finite-element analysis
for path-generation mechanisms. Two objective formulations are used to motivate and validate
this methodology: maximum-displacement mechanisms and path-generation mechanisms. The
formulation of the stress constraints and their sensitivities within nonlinear finite-element analysis
and multiresolution topology optimization are explained. We introduce two academic benchmark
examples to demonstrate the results for each of the objective formulations. To show the practical,
large-scale application of this method, results for the compliant mechanism structure of a droop-nose
morphing wing concept are shown.

Keywords: topology optimization; compliant mechanisms; nonlinear finite-element analysis; path
generation; stress constraints; multiresolution; sensitivity analysis

1. Introduction

Engineers are constantly pursuing the design of lighter, faster and more efficient struc-
tures and mechanisms. Here, we use structural design optimization—and more specifically
topology optimization—to design optimal lightweight compliant mechanisms. These flexi-
ble structures have the same design goals as more traditional mechanisms, though without
joints. Instead, the motion of the mechanism is achieved by elastic deformation. This
characteristic presents a number of advantages including no frictional loss, scalability and
precision due to lack of backlash [1]. Further, the energy required for movement can be
saved as elastic energy, which can be used to move the mechanism back to its original
position or to be harvested in the form of electricity, e.g., Rojas et al. [2]. The optimal
designs achieved via topology optimization have traditionally undergone toilsome deriva-
tion of geometries to ensure manufacturability. This can be now (partially) avoided with
additive manufacturing techniques in which the optimal results are directly fabricated.
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As compliant mechanisms are then of one material without joints, it can be seen as being a
monolithic design, which reduces manufacturing expense as no assembly is necessary.

As compliant mechanisms typically exhibit large displacements and rotations, the stan-
dard method of topology optimization with linear elastostatic finite-element analysis (FEA)
is deemed to be inadequate in such cases. Further, trajectories of path-generation mecha-
nisms typically do not correlate to linear deformation, which also necessitates nonlinear
FEA. Stress must be included as a constraint in the design optimization problem as its
values can exceed physical limits, if neglected. In the following, we propose a method for
the synthesis of both maximum-displacement and path-generating compliant mechanisms
with multilevel stress-constrained topology optimization based on geometrically nonlinear
finite-element analysis.

Topology optimization is the optimal placement of material, which can trace its
origins to the analytical work of [3]. As the design problem is inherently discrete, i.e.,
material is present or not, the algorithmic handling of this problem is a challenge. Topology
optimization in its modern form stems from the homogenization method of Bendsoe and
Kikuchi [4] and the Solid Isotropic Material with Penalization (SIMP) by Bendsoe [5].
SIMP “continualizes” the design space by allowing for intermediate states of material
between full and void, typically controlled via density. Although the continualization of
the design space is an efficient solution for the discrete problem, it comes with a number of
further problems, including checkerboarding, possible local minima and mesh-dependent
results [6].

Further methods have been devised to handle the topology optimization problems,
outlined by Sigmund [7]. Non-gradient-based methods include the Soft Kill Option (SKO)
by Baumgartner et al. [8] and the use of hybrid cellular automata (HCA) by Tovar [9]. Due
to the large number of design variables in topology optimization, first-order algorithms
have proven their efficiency, especially in terms of avoiding the forming of the Hessian,
as is the case with second-order algorithms. Therefore, the concentration here is on the
use of first-order optimization algorithms to ensure efficiency. The first-order optimization
algorithm, method of moving asymptotes (MMA), first introduced by Svanberg [10], is the
specific algorithm used here.

In contrast to the “standard” topology optimization objective of minimum compliance
(i.e., minimum strain energy and therefore maximum stiffness), compliant structures are
designed for flexibility of one or more degrees of freedom. The first topology optimization
approach for the synthesis of compliant mechanisms was introduced by Ananthasuresh
et al. [11], which was followed by Sigmund [12]. The topology optimization approach for
such compliant structures is reviewed by Zhu et al. [13]. This review highlights the lack
of literature in the field of topology optimization for compliant mechanisms with large
deformation and stress constraints, which we address here.

In the present work, two types of this design problem are considered, both introduced
by Pedersen et al. [14]:

Problem type I: The design of maximum-displacement mechanisms finds the topology
for the largest displacement of predefined degrees of freedoms for a given load.

Problem type II: The design of path-generation mechanisms finds the topology in which
certain degrees of freedom are designed to go through predefined points (also known
as way points or precision points), which describe a trajectory or path.

As large deformations—and therefore nonlinear strains—are desired in compliant
mechanisms, nonlinear finite-element analysis is required for their design [14]. The nonlin-
ear structural–mechanical analysis, which serves as the basis of the topology optimization,
can be split into two general categories: static (including quasi-static) and transient analysis.
A proposal for the categorization of the methods of topology optimization was introduced
by Wehrle et al. [15]. This categorization includes the replacement of the nonlinear behavior
with a series of linear calculations via the update method from Park [16] or a single replace-
ment load introduced by Volz [17], Duddeck and Volz [18]. Other methods utilize efficient
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gradient-free rule-based methods, e.g., hybrid cellular automata by Duddeck et al. [19],
avoiding the challenge of deriving and implementing sensitivity analysis for nonlinear
finite-element analysis. The behavior of compliant mechanisms in this work is considered
quasi-static. Studies on path-generation compliant mechanisms by Dirksen et al. [20] and
Chen et al. [21] include large deformations, yet neglect stress constraints. As compliant
mechanisms are designed to avoid plastic behavior, the authors find the application of
stress constrains necessary and therefore extend this study to include them in this work.
The material may also exhibit nonlinear elasticity, though this will not be considered.
Therefore, we will restrict our examples to topology optimization for stress-constrained
compliant mechanisms using nonlinear quasi-static analysis considering linear-elastic
material models and its sensitivity analysis.

In order to obtain high-resolution topologies with the classical topology optimization
approach, a high number of finite elements is required and with it a high computational
cost. Nonlinear finite-element analysis exacerbates the high computational effort, as the
case in this work. Standard topology optimization assigns a material density to each finite
element and hence the element size defines the minimum length scale for the topology
to be found. Multiple approaches were proposed to reduce computational effort in topol-
ogy optimization e.g., adaptive mesh refinement [22,23] or domain decomposition [24].
Nguyen et al. [25,26] introduced a multiresolution topology optimization (MTOP) scheme,
which decouples the degree of detail of the topology from the finite-element size. Therefore,
different discretizations for displacements, densities and design variables are used. By this
means, it is possible to obtain detailed designs on a relatively coarse FE mesh. In this work,
multiresolution topology optimization is extended with stress constraints and used for the
synthesis of large-deformation path-generating compliant mechanisms.

There are several challenges when considering stress constraints in topology opti-
mization. Low density elements can show singular behavior resulting in exaggerated
stresses, which then dominate the progression of the topology optimization. Duysinx and
Sigmund [27] introduced a relaxed stress scheme to avoid this problem. De Leon et al. [28]
as well as Conlan-Smith [29] implemented stress constraints in the synthesis of compliant
mechanisms with topology optimization, albeit only for linear finite-element analysis.
This was then expanded in the work by De Leon et al. [30] for nonlinear finite-element
analysis and was applied to the maximum displacement objective. A further problem
is that stress is a field variable varying for each element and hence necessitating for a
large number of constraints. A common approach avoids a large number of constraint
functions by use of function aggregation methods. Global stress measures approximat-
ing the maximum stress include the Kreisselmeier–Steinhauser function and the p-norm
(cf. Duysinx and Sigmund [27], Kreisselmeier and Steinhauser [31], Yang and Chen [32],
Martins and Poon [33], Le et al. [34], Verbart et al. [35]). The present work will utilize the
latter, which will include the elements stress fields. These are approximated by the stress
value averaged at the element centroids.

Building upon the works described above, the present work extends topology op-
timization to achieve the design of path-generation mechanisms while constraining the
maximum stress. The methodology will be described with the synthesis of maximum-
displacement and path-generation compliant mechanisms. Further novelty of this work
includes the multiresolution topology optimization under stress constraints with geo-
metrically nonlinear finite-element analysis. Benchmark examples are followed by an
engineering example, which shows the design of the mechanism driving a morphing
wing. This engineering example demonstrates the large-scale practicality of the method
developed. Finally, we conclude with a summary and outlook.

2. Topology Optimization for the Synthesis of Compliant Mechanisms

In the following, the proposed stress-constrained multiresolution topology optimiza-
tion methodology for the synthesis of compliant mechanisms (Problem types I and II) will
be introduced.
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2.1. Nonlinear Finite-Element Analysis

The central part of topology optimization is structural–mechanical analysis, which
is the basis of the values for the optimization functions (objective and constraints) of
each optimization iteration. This analysis is carried out discretizing the solution space
of the governing equations. The equations describing the nonlinear structural analysis
are briefly introduced here. A geometrically nonlinear finite-element method using plane
stress and a total Lagrangian formulation [36,37] is utilized, which was implemented by
Reinisch [38,39] and further developed by Grosse [40].

Equilibrium is defined as
R = Pint − Pext = 0, (1)

where R is the vector of residuals, Pext is the external force vector and Pint is the internal
force vector. The internal force vector is defined element-wise, given here for the ith
element by

Pint,i =
∫

Ωi

BT
L,iFiσ2PK,idV. (2)

The notation here denotes vectors as underlined symbols, matrices as double under-
lined symbols and scalars as symbols without an underline. It should be noted that we will
use Voigt notation unless otherwise denoted.

For he deformation gradient tensor, we will use both tensor and Voigt notations,
the matrix F and the vector F̃,

F =




F11 0 F12
0 F22 F21
0 F12 F11

F21 0 F22


, F̃ =




F11
F22
F12
F21


. (3)

The operator matrix BL,i in Equation (2) corresponds to the derivative of F̃i with
respect to the element nodal displacement vector ui. The second Piola–Kirchhoff stress
vector σ2PK,i is defined in Equation (5). As geometric nonlinearity is considered, nonlinear
Green–Lagrange strains are calculated for the ith element,

εGL,i =
1
2


FT

i F̃i −



1
1
0




, (4)

and the second Piola–Kirchhoff stresses, which are conjugate to Green–Lagrange strains, are

σ2PK,i = CVKεGL,i, (5)

where CVK is the linear-elastic Saint Venant–Kirchhoff constitutive matrix for plane stress.
The nonlinear equilibrium Equation (1) is solved using the iterative Newton–Raphson

approach by sequential linearization. Therefore, in each iteration j, we solve the linear system

∂R
∂u︸︷︷︸
KT

4u(j+1) = −R(u(j)), (6)

where KT is the tangent stiffness matrix equal to ∂R
∂u . We then update the displacement

vector of the jth iteration u(j) by the resulting displacement increment 4u(j+1). This
process is continued until reaching convergence at the equilibrium state R ≈ 0 within a
set tolerance.
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As the second Piola–Kirchhoff stress lacks physical meaning, it is transformed into
Cauchy stress σC after obtaining the equilibrium deformation state. This transformation is
shown for simplicity purposes with the use of matrix notation to describe the stress tensors,

σC,i =
1
Ji

Fiσ2PK,iF
T
i , (7)

where J is the determinant of the deformation gradient F and is a measure for the volumetric
change. It should be noted that due to plane stress, the component F33 governed by
the Poisson effect must also be considered for the derivation of the determinant of the
deformation gradient. If it is not considered, the plain strain assumption would be applied.

In this study, bilinear quadrilateral finite elements are used and the integrals are
approximated by four Gauss integration points. The stress fields of interest are obtained by
evaluation of the element Cauchy stresses σC,i at the element centroid.

2.2. Formulation of Topology Optimization

In the formulation of numerical optimization, the objective function f is minimized,
while maintaining that the constraint functions gi are not violated. The optimization
is carried out here with the first-order algorithm method of moving asymptotes (MMA)
Svanberg [10].

2.2.1. Design Variables and Their Stabilization

In density-based topology optimization, as is the case in this work, the design variables
xi represent the element densities, which are scaled between zero for a void and unity for
full material,

xi ∈ [0, 1]. (8)

The design variables are mapped to the Young’s modulus of each element using the
value for the base material E0 via the modified SIMP formulation [41],

Ei = Emin + (E0 − Emin)xθ
i . (9)

The inclusion of a minimum value for the Young’s modulus Emin avoids numerical
singularities in the finite-element analysis that occur when elements have numerically zero
stiffness. The value θ penalizes the design space of intermediate densities between solid
and void is θ = 3 as commonly used in the literature (cf. Sigmund [12], Pedersen et al. [14],
De Leon et al. [28]).

To avoid mesh-dependent results and checkerboarding, the design variables are
further filtered using the density filtering method introduced by Bruns and Tortorelli [42].
This filtering approach is defined according to Sigmund [41] by

x̃i =
∑j∈Ni

HijVjxj

∑j∈Ni
HijVj

, (10)

where Vj is the volume of the jth element and Hij is a cone-shaped weighting function of
the form

Hij = max{0, rmin − ∆(i, j)}. (11)

The filter radius is denoted by rmin and ∆(i, j) represents the distance between the
centroids of the ith and the jth element. In addition to the filter, we apply a Heaviside
projection scheme according to Guest et al. [43], using the following step approximation:

¯̃xi =
tanh(βη) + tanh(β(x̃i − η)

tanh(βη) + tanh(β(1− η)
. (12)

This is applied in order to avoid so-called intermediate “gray solutions”, i.e., interme-
diate density elements in-between solid and void regions. The projection parameters β and
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η define the degree of discreteness of the step between solid, void and its threshold value.
For the results presented below, η = 0.2 is chosen and the parameter β is sequentially
increased over the number of optimization iterations j from an initial value of β0 = 1 to the
final value of βmax = 150,

β j = β02
j−1
30 . (13)

The resulting modified design variables ¯̃xi of Equation (12) replace the original design
variables xi in Equation (9) and, hence, determine the finite-elements stiffness properties.

Another difficulty regarding topology optimization using nonlinear finite-element
analysis is the numerical instability of low-density elements. With linear FEA, singularity
of the stiffness matrix is avoided by introducing Emin in to the SIMP approach. In nonlinear
analysis, this approach only stabilizes the first equilibrium iterations. For the following load
steps, large deformations of the low stiffness elements cause negative element volumes and
the singularity problems still occur. As a consequence, convergence is heavily disturbed.

Several approaches to resolve this issue are reported in literature. Bruns and Tortorelli [42]
and De Leon et al. [30] suggested to use hyperelastic material laws with increased stiffness at
high deformations instead of the Saint Venant–Kirchhoff law. Pedersen et al. [14] reported, that
the approach of Bruns and Tortorelli was unsuccessful resolving the issues for their numerical
examples. They instead excluded low density elements from the convergence checks of
the Newton–Raphson iteration. Bruns and Tortorelli [44] introduced an element deletion
and reintroduction scheme for low density elements. Yoon and Kim [45] approached the
issues by introducing linear springs, which provide an interconnection between the elements.
The spring stiffnesses are used as design variables and the elements kept solid and can be
thus either nonlinear or linear element formulation.

Wang et al. [46] proposed to exclude the nonlinear strain energy terms in low density
regions and further developed this approach in Wang et al. [47]. A modified version of the
method introduced by Wang et al. [47] is used in this study originating from Reinisch [38].
For low density elements, linear strain energy terms WL are used. These are then interpo-
lated towards a full nonlinear strain energy term WNL in the solid regions,

Wi = WNL(γiui)−WL(γiui) + WL(ui). (14)

The interpolation term γi ∈ [0, 1] is defined similarly to the projection method in
Equation (12) as a Heaviside function approximation,

γi =
tanh(β1η1) + tanh(β1(( ¯̃xi − xoff)

θ − η1)

tanh(β1η1) + tanh(β1(1− η1)
, (15)

where β1 and η1 are step parameters, xoff is an additional offset parameter introduced
and θ is the penalization exponent term. The term xoff shifts the cutoff further toward
x̃ = 0 in order to limit the number of elements in which linear strain energy is used.
The results presented in this work are obtained using the parameters β1 = 500, η1 = 0.01
and xoff = 0.2.

2.2.2. Maximum Displacement Objective Function

The first objective under consideration is the maximum displacement objective fu in
which the displacement of one or more degrees of freedom is maximized (problem type I).
This is defined as Pedersen et al. [14]

fu = −uout = −LTu (16)

where u is the column vector of the global displacements and L is a column vector with the
entry equal to unity at the degree of freedom of interest and elsewhere zero. This results in
the scalar value fu, which equals to the negative of the displacement of interest uout.
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2.2.3. Path Generation Objective Function

The second objective formulation presented is the path-generation objective fpath
(problem type II) introduced by Pedersen et al. [14]. Here, m precision points u∗ are chosen,
through which a predefined output node shall pass for given input displacement values
uin,j at input node j. Therefore, the objective function fpath is defined by

fpath =
n

∑
i=0

αi

m

∑
j=1

l

∑
k=1

(LT
k ui,j − u∗k,j)

2. (17)

As with the maximum displacement objective function, L also has all zero entries
except for a single entry that is equal to unity. By this means, the output displacement
of interest is obtained from the global displacement vector by uout = LTu. As described
by Pedersen et al. [14], in order to achieve load-carrying black-and-white solutions, n
additional load cases with counter loads acting at the output node are applied. These load
cases are considered by the first summation term i in Equation (17), with α being a weighting
factor. For i = 0, the original load case with no counter loads is considered. The innermost
sum over k takes into account that at the output node the output displacements u∗k,j are
prescribed for l different degrees of freedom and for each precision point (the sum over j).
Hence, the objective function represents the weighted sum of squared errors of position of
the control points under all specified load cases. A topology is therefore sought in which
the output node displacement most closely approximates the prescribed path for the given
input displacement sequence.

2.2.4. Volume Constraint

The maximum amount of material to be used is given via volume fraction ϕ with
respect to the volume of full material of the design domain Vtot,

ϕ =
¯̃xTV
Vtot

=
Vutil
Vtot

, (18)

where V is the vector of element volumes. The volume constraint function is normalized
and takes the form

gV =
ϕ

ϕallow
− 1, (19)

where ϕallow is the allowable volume fraction.

2.2.5. Stress Constraint

Although large displacements, deformations and rotations are present and even
desired, permanent, i.e., plastic deformation is to be avoided. Compliant mechanisms
are often designed for cases that induce cyclic loading that may require consideration
of the fatigue strength (though outside the scope of the present work). Therefore, stress
constraints must be considered in topology optimization to guarantee the integrity of a
compliant device.

As shown by De Leon et al. [28], stress constraints also prevent—in part—so-called
one-node joints (or hinges). This is a common problem in topology optimization for
compliant structures as one-node joints allow for large displacements in the simulation,
but are not feasible in real world continuous (hingeless) structures. One can say that one-
node joints are analogous to checkerboarding in more traditional topology optimization for
minimum compliance. Stress constraints hinder the topology optimization from moving in
this direction. They can prevent the appearance of one-node hinges by limiting the stresses
in two neighboring low-density elements evolving next to the center node. A complete
elimination of one-node hinges solely by the use of the stress constraint formulation
introduced below is, though, not possible as these elements can show deformation without
notable resulting stress (cf. Equation (20)).
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If stress constraints are applied, the design problem limits the stress in the entire
design domain, including those of voids. To avoid having exaggerated and nonphysical
high stresses in elements of low element density, which then dominate the optimization
problem, we define the relaxed stress of the von Mises equivalent stress σM for each element
i as introduced by Duysinx and Sigmund [27], Le et al. [34],

σ̃i = ¯̃xq
i σM,i, (20)

which uses a relaxation constant q. In contrast to De Leon et al. [28], in which best
convergence is achieved using a constant parameter of q = 0.5, the most stable convergence
behavior for the examples presented here was obtained starting with q = 1 and reducing
this parameter gradually to its final value of q = 0.5 early in the optimization. This is done
starting from the 20th iteration from which q is reduced by 0.05 at every 10th iteration.
The von Mises stresses σM are obtained from the elemental Cauchy stress vectors σC
(evaluated at the element centroids) by

σM,i =
√

σT
C,i A σC,i, (21)

where the expression A is the auxiliary matrix of the form

A =




1 −0.5 0
−0.5 1 0

0 0 3


. (22)

As a low number of stress constraints is needed for algorithm efficiency, the maximum
stress is constrained globally in a single aggregated constraint function. The aggregation is
carried out via a continuous approximation of the maximum operator, the so-called p-norm
Yang and Chen [32], Le et al. [34], defined by

σmax ≈ σp =

(
∑

i
Viσ̃

p
i

) 1
p

, (23)

where σp is the p-norm of the stress, Vi is the volume of each element and p is the constant
p-norm parameter. For p = ∞, the function takes the maximum, and here it is chosen
as p = 12. We further use a normalization scheme proposed by Le et al. [34], allowing a
correction of the global stress measure in accordance to the quality of its estimate in the
prior iteration.

σ̂p = ckσp. (24)

We obtain the normalization parameter c in the kth iteration by solving

ck =
1
2

(
σmax,(k−1)

σp,(k−1)
+ ck−1

)
, (25)

where σmax,(k−1) is the maximum von Mises equivalent stress in the previous iteration
and c0 = 1 is the starting value. The complete equation for the normalized p-norm of the
relaxed equivalent stress in the kth iteration is

σ̂p,k = ck

(
∑

i
Vi

(
¯̃xq
i σM,i

)p
) 1

p

, (26)

from which we formulate the stress constraint used in the topology optimization,

gσ(x) =
σ̂p,k

σallow
− 1. (27)
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2.2.6. Multiresolution Topology Optimization

The multiresolution topology optimization (MTOP) formulation was introduced by
Nguyen et al. [25] and reduces the computational cost necessary for the calculation of high
resolution topologies. Since the most significant part of the computational cost of topology
optimization is finite-element analysis, [25] applies different discretization levels for the
displacements (FE analysis), the densities (material representation) and the design variables
(optimization). In general, the FE analysis is performed on a coarser mesh, whereas the
densities and the design variables are mapped on to finer meshes. By means of this
uncoupling of FE displacement elements, densities and design variables, higher resolution
results can be obtained with a computational effort comparable to the original solution.

Based on the work of Nguyen et al. [25,26], a new multiresolution topology opti-
mization scheme is proposed, extending to the consideration of stress constraints. In this
work the design variable mesh is chosen to be coincident to the density mesh. The key
to multiresolution topology optimization is to find a functional relationship between the
displacement element’s internal force vector and stiffness matrix for structural analysis and
the single densities of the density elements. This relationship can be found in the summa-
tion terms of the Gauss integration approximation by assigning a density element to each
Gauss integration point. By this means, e.g., the internal force vector is approximated as

Pint,i =
∫

Ωi

BT
L,iFiCVKεGL,idV ≈

ngp

∑
j=1

Pint,i,j (28)

where Pint,i,j is the integrand for the internal force vector (see Equation (2)) of the dis-
placement element i at the Gauss point j assigned to the corresponding density element.
For the derivation of Pint,i,j, the constitutive matrix CVK,j of each summation term uses
the specific Young’s modulus E for the corresponding density element, obtained by the
SIMP approach. In Figure 1, an exemplary subdivision of a displacement element (a)
in four density elements and its corresponding Gauss integration points (b) are given.
The isoparametric element is divided in four equally sized density subelements, each of
which influences the summation term of the internal force vector and the tangent stiffness
matrix corresponding to the Gauss point within the density elements domain. The number
of subelements must be equal to the number of integration points used. For material
representation, all the density elements with density values ¯̃xi,j are assembled to a global
density mesh. The global density vector ¯̃x and hence the design variable vector x in this
approach are of the size nel × ngp.

The definition of the displacement elements and the global displacement vector u for
multiresolution topology optimization does not change compared to standard topology
optimization. Therefore, the objective function definitions in Equations (16) and (17) remain
unchanged also for the multiresoultion topology optimization approach.

The utilized volume Vutil for the calculation of the volume fraction ϕ defining the
volume constraint in Equation (19) is changed for multiresolution topology optimization.
It can be expressed by the following summation term:

Vutil = ∑
i=1

∑
j=1

¯̃xi,jVi,j, (29)

where ¯̃xi,j and Vi,j respectively are the density and the volume of the subelement j of the
displacement element i.



Appl. Sci. 2021, 11, 2479 10 of 27

Version February 3, 2021 submitted to Appl. Sci. 10 of 29

(a) Displacement element (b) Subdivision in density elements

Figure 1. Example of displacement element and density elements for multiresolution topology
optimization with four Gauss integration points

σmax ≈ σp =

(
∑

i
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of the derivatives of the function of interest with respect to the state variable. Below, we show the
adjoint sensitivity analysis for an arbitrary functional f used in topology optimization with nonlinear
finite-element analysis, which is needed for the specific functionals in the following sections. We define
the general functional as

f (u(x), x) (31)

and its total sensitivity as
d f
dx

=
∂ f
∂x

+
∂ f
∂u

du
dx

. (32)

The adjoint sensitivity analysis based on the Lagrangian equation for a calculation at the kth iteration,

L (x, uk, λk) = f (x, uk(x)) + λT
k Rk (uk(x), x) , (33)

Figure 1. Example of displacement element and density elements for multiresolution topology optimization with four
Gauss integration points.

The stress values σC,i for the stress constraint formulation of the multiresolution
topology optimization are evaluated at the Gauss integration points. The resulting stress
values σC,i,j at the integration points j are then assigned to the corresponding density
element with density ¯̃xi,j. By this means, looking at the example shown in Figure 1 to each
density subelement j of the displacement element i, its specific stress value σC,i,j is assigned
and the aggregated stress measure in Equation (23) is calculated as sum over all the density
elements defining the design space.

σmax ≈ σp =

(
∑

i
∑

j
Vi,jσ̃

p
i,j

) 1
p

, (30)

2.3. Design Sensitivity Analysis via Adjoint Methodology

In topology optimization, the problem is typically formulated with constraint ag-
gregation so that the number of design variables is magnitudes greater than the sum of
the number of objectives and constraints. Therefore, an adjoint sensitivity methodology
has higher efficiency than direct sensitivity analysis. A thorough reference to sensitivity
analysis within the framework of structural design optimization was put forth by Martins
and Hwang [48].

The adjoint equations, based on early works by Bliss [49], Goodman and Lance [50], Kel-
ley [51] and further elaborated upon by Michaleris et al. [52], Tortorelli and Michaleris [53],
can be derived via Lagrangian multipliers. The Lagrangian multipliers are solved for by
taking advantage of the derivatives of the function of interest with respect to the state
variable. Below, we show the adjoint sensitivity analysis for an arbitrary functional f used
in topology optimization with nonlinear finite-element analysis, which is needed for the
specific functionals in the following sections. We define the general functional as

f (u(x), x) (31)
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and its total sensitivity as
d f
dx

=
∂ f
∂x

+
∂ f
∂u

du
dx

. (32)

The adjoint sensitivity analysis based on the Lagrangian equation for a calculation at
the kth iteration,

L(x, uk, λk) = f (x, uk(x)) + λT
k Rk(uk(x), x), (33)

to which the functional is added to the vector of Lagrangian multipliers λ multiplied by
the vector of residuals Rk, which is equal to zero when perfectly converged. The total
derivative is

d f
dx
≡ dL

dx
=

∂ f
∂x

+
∂ f
∂uk

duk
dx

+ λT
k

(
∂Rk
∂x

+
∂Rk
∂uk

duk
dx

)
. (34)

After substituting ∂Rk
∂uk

= K
T

(see Equation (6)) and reorganizing to give

d f
dx

=
∂ f
∂x

+

(
∂ f
∂uk

+ λT
k KT,k

)
duk
dx

+ λT
k

∂Rk
∂x

, (35)

the Lagrangian multipliers λT
k are now chosen to eliminate the implicit sensitivity of the

second term (and specifically duk
dx ), by solving the so-called adjoint equation

λT
k KT,k = −

∂ f
∂uk

, (36)

where KT,k can be extracted from the finite-element analysis so that we can solve for λ if

we have ∂ f
∂uk

.
We can then simplify the terms of sensitivities in Equation (35), revealing the general

sensitivity formulation
d f
dx

=
∂ f
∂x

+ λT
k

∂Rk
∂x

, (37)

where the partial derivative of the residual forces with respect to the design variables ∂Rk
∂x

is calculated analytically in the implemented FE code.
It should be further noted that filter and projection methods as well as the energy

interpolation approach are used for topology optimization in this work. Therefore, to
obtain sensitivities with respect to the design variables x, a chain rule approach has to be
applied to the general sensitivity Equation (37) in order to account for Equations (10)–(15)
Wang et al. [47]. This is giving the terms

∂ f
∂x

=

(
∂ f
∂ ¯̃x

+
∂ f
∂γ

∂γ

∂ ¯̃x

)
∂ ¯̃x
∂x̃

∂x̃
∂x

, (38)

∂Rk
∂x

=

(
∂Rk
∂ ¯̃x

+
∂Rk
∂γ

∂γ

∂ ¯̃x

)
∂ ¯̃x
∂x̃

∂x̃
∂x

, (39)

where ∂ f
∂γ is zero, but ∂Rk

∂γ is nonzero (cf. Equation (14)).

In the following, we concentrate on the specific values and develop ∂ f
∂x̃ as well as the

Lagrangian multipliers λT
k (via ∂ f

∂u ) for each of the functionals of the optimization problems.

2.3.1. Maximum Displacement Objective Sensitivity

The function of interest is the maximum displacement objective fu, given in Equation (16).
The partial derivative with respect to the element densities is

∂ fu

∂ ¯̃x
= 0T. (40)
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The Lagrangian multipliers are solved in this case via Equation (36) with the relation

∂ fu

∂u
= −LT. (41)

We then solve the following equation for λ:

KTλ = L. (42)

Plugging in the respective values in Equation (37) gives the derivative of the maximum
displacement objective

d fu

d ¯̃x
= λT ∂Rk

∂ ¯̃x
. (43)

2.3.2. Path Generation Objective Sensitivity

Using the results from above, we can derive the sensitivities for the path-generation
objective function in Equation (17). Therefore, we take the total derivative

d fpath

d ¯̃x
=

n

∑
i=0

αi

m

∑
j=1

l

∑
k=1

2

(
d(Lk

Tui,j)

d ¯̃x

)

︸ ︷︷ ︸
=̂− d fu

d ¯̃x

(
Lk

Tui,j − u∗k,j

)
, (44)

recognizing from above that the sensitivity d fu
dx̃ can be expressed by Equation (43). Using

this relation in Equation (44), we derive the following expression

d fpath

d ¯̃x
=

n

∑
i=0

αi

m

∑
j=1

l

∑
k=1
−2λT

k,i,j
∂Ri,j

∂ ¯̃x

(
LT

k ui,j − u∗k,j

)
. (45)

In order to obtain the sensitivity for each precision point j and load case i, the corre-
sponding tangent stiffness matrix KT,i,j and residual vector Ri,j are stored in memory.
The Lagrange multipliers λk,i,j are solved for inserting the corresponding values KT,i,j and
Lk into Equation (42).

2.3.3. Volume Constraint Sensitivity

For the sensitivity of the volume constraint function in Equation (19), a direct deriva-
tion is used. This is defined as

dgV
d ¯̃xi

=
Vi

ϕallowVtot
. (46)

2.3.4. Stress Constraint Sensitivity

The sensitivities of the stress constraint function defined in Equation (27) are also
derived by the same approach as in Section 2.3.1. Starting with the partial derivative of the
stress constraint function

∂gσ

∂ ¯̃x
=

1
σallow

∂σ̂p

∂ ¯̃x
, (47)

where

∂σ̂p

∂ ¯̃xl
= c

(
∑

i
Viσ̃i

p

) 1−p
p

Vl σ̃
p−1
l q ¯̃xq−1

l σM,l , (48)

with element index l. The partial derivative with respect to the state variables u is

∂gσ

∂u
=

1
σallow

∂σ̂p

∂u
. (49)
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Using this relation we write the linear adjoint system according to Equation (36) as

KTλ = −∂gσ

∂u

T

. (50)

For solving this equation for the Lagrange multipliers, we need ∂σ̂p
∂u , which is defined

by element via

∂σ̂p

∂ul
= c

(
∑

i
Viσ̃i

p

) 1−p
p

Vl σ̃
p−1
l

¯̃xq
l

1
σM,l

σT
C,l A

∂σC,l

∂ul
. (51)

The derivation of the sensitivities of the Cauchy stresses ∂σC,l
∂ul

is carried out by applying
the product rule on Equation (7). The sensitivity with respect to the ith component of the
lth elements nodal displacement vector ul is obtained as

∂σC,l

∂ui,l
= − 1

J2
l

∂Jl
∂ui,l

Fl σ2PK,lF
T
l

︸ ︷︷ ︸
(i)

+
1
Jl

Fl

∂σ2PK,l

∂ui,l
FT

l
︸ ︷︷ ︸

(ii)

+
1
Jl

(
∂Fl
∂ui,l

σ2PK,lF
T
l + Flσ2PK,l

(
∂Fl
∂ui,l

)T
)

︸ ︷︷ ︸
(iii)

. (52)

Now generalizing Equation (52) for the entire element displacement vector ul and
transferring it to Voigt notation, three core terms T1, T2 and T3 can be distinguished,
corresponding to (i), (ii) and (iii), respectively,

∂σC
∂ul

= T1 + T2 + T3. (53)

For the derivation of the term T1, the only unknown is ∂Jl
∂ul

. It is obtained using the

Voigt notation Ĉ of the inverse of the right Cauchy–Green tensor,

Ĉ =̂C−1
l = (FT

l Fl)
−1, (54)

which results in
∂Jl
∂ul

= Jl(Ĉl)
TFT

l BL,l . (55)

Moreover, the transformation to Voigt notation of the form

Fl σ2PK,lF
T
l =̂




F2
11 F2

12 2F11F12
F2

21 F2
22 2F21F22

F11F21 F12F22 F11F22 + F12F21




︸ ︷︷ ︸
Yl

σ2PK,l, (56)

is used, leading to

T1 = − 1
Jl

Ylσ2PK,l(Ĉl)
TFT

l BL,l . (57)

The Voigt expression in Equation (56) is also used to derive the second term T2

T2 =
1
Jl

Yl

∂σ2PK,l

∂εGL,l

∂εGL,l

∂ul
=

1
Jl

Yl CVKFT

l BL,l . (58)

After further defining the matrix X,

Xl =

[
X11 X12
X21 X22

]
= Fl σ2PK,l, (59)
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the missing term T3 can be calculated from the components of X as

T3 =
1
Jl




2X11 0 2X12 0
0 2X22 0 2X21

X21 X12 X22 X11


BL,l . (60)

We finally obtain the total derivative of the stress constraint function with respect to
the design variables by plugging in the values into the following equation:

dgσ

d ¯̃x
=

∂gσ

∂ ¯̃x
+ λT ∂R

∂ ¯̃x
. (61)

2.3.5. Sensitivity Analysis for Multiresolution Topology Optimization

The sensitivity equations derived in the prior sections for the objective functions can
be used analogously for multiresolution topology optimization. The only difference is that
more design variables than finite-elements are used. This has an impact on the calculation
of the terms ∂Rk

∂ ¯̃x (see Equation (37)), because ¯̃x is of higher dimension. The adjoint
Equation (36) for the objective function sensitivities remains unchanged.

In addition, the sensitivities of the volume constraint function in Equation (46) remain
unchanged.

The sensitivity functions of the stress constraint Equation (27) are changed if
multiresolution topology optimization is used. Due to the use of the stress values σC,i,j
at each integration point (or subelement) j, the p-norm function changes to Equation (30).
This affects the partial derivative of the normalized p-norm which for the MTOP approach
is written as

∂σ̂p

∂ ¯̃xl
= c

(
∑

i
∑

j
Vi,jσ̃i,j

p

) 1−p
p

Vl σ̃
p−1
l q ¯̃xq−1

l σM,l . (62)

The partial derivative of the p-norm with respect to the element displacement vector u
previously introduced in Equation (51) must be adapted to the MTOP approach. Whereas
the displacement vector u is defined for the displacement elements and hence remains
the same, the stress of each individual density subelement σC,i,j must be considered.
The sensitivity function for stress in MTOP is

∂σ̂p

∂ul
= ∑

j
c

(
∑

i
∑

j
Vi,jσ̃i,j

p

) 1−p
p

Vl,jσ̃
p−1
l,j

¯̃xq
l,j

1
σM,l,j

σT
C,l,j A

∂σC,l,j

∂ul
. (63)

3. Numerical Examples

In the following, results for the two different objective functions are presented. First,
the importance of nonlinear analysis and the effect of the introduced stress-constrained
formulation are shown. The results of a maximum-displacement gripper example are
compared. After giving this motivation for nonlinear analysis, we show the effect of stress
constraints on a path-generating mechanism. Multiresolution topology optimization results
are shown in comparison to the standard topology optimization solutions. The ability of
the proposed methodology for use in large-scale examples is shown with the optimization
of a compliant mechanism rib structure for a droop-nose morphing wing concept. The same
material properties, parameters for the structural–mechanical analysis and optimization
settings are used throughout.

3.1. Material and Constitutive Law

In the following studies, we use a generic thermoplastic polymer of the type polyether
ether ketone (PEEK). PEEK can be used in both more traditional, subtractive manufacturing
techniques as well as with additive manufacturing via fused filament fabrication (FFF) and
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selective laser sintering (SLS). The latter two methods, also known as three-dimensional
printing, allow for the full utilization of the geometries found via topology optimization.

For the following design problems, we use a linear-elastic material model for PEEK.
The material properties used can be found in Table 1. As compliant mechanisms are
intended to be cyclic loaded, a knockdown factor of two from limit stress has been used for
determining the allowable stress for the stress constraint optimization.

Table 1. Material parameters for a generic polyether ether ketone (PEEK).

Parameter Symbol Value Units

Young’s modulus E 4232 MPa
Poisson’s ratio ν 0.36 −

Limit stress σlimit 100 MPa
Max allowable stress σallow 50 MPa

3.2. Numerical Example—Maximum Displacement Mechanism Design

We define the optimization problem for the maximization of a mechanism’s output
displacement uout (problem type I) as

min
x
{ fu}

where fu(x) = −LTu(x)

subject to gV(x) =
ϕ(x)

ϕallow
− 1 ≤ 0

gσ(x) =
σ̂p,k(x)
σallow

− 1 ≤ 0

0 ≤ xi ≤ 1

governed by R = Pint − Pext = 0

, (64)

where the output displacement function is defined by Equation (16). The example for this
optimization problem is a gripping mechanism illustrated in Figure 2. Within a rectangular
domain, a topology is sought that transfers an input displacement caused by the input
force Pin into a maximum output displacement uout at the right-hand side of the domain.
Springs kin and kout are added to simulate the stiffness of the input mechanism and output
workpiece and hence to pose a minimum load transferring requirement on the mechanism.
The gray area represents the designable domain, whereas black and white areas represent
non-designable solid and void, respectively. All non-designable solid regions have a height
of 0.05 h. The corresponding parameter values for the optimization problem defined by
Equation (64) and Figure 2 are listed in Tables 1 and 2. In order to solve the optimization
problem, the design space is discretized with bilinear quadrilateral finite elements and the
symmetry of the design problem is exploited. The integrals for the residuum and stiffness
are approximated by Gauss integration using four Gauss points per element.

Results for linear and nonlinear FEA, both with and without stress constraints are
shown in Figure 3. Four different topologies can be observed. It should be noted that the
results shown are the results of the topology optimization without smoothing. To the left,
solutions with volume constraints are illustrated and to the right, stress constraints are
additionally applied. For all the results, the volume constraint is satisfied. For the problem
formulation with only a volume constraint, the maximum stresses exceed the limit stress,
which would lead to failure of this mechanisms at its first actuation. This, as well as the
occurrence of nonphysical one node connected hinges in those solutions, excludes practical
realization of the mechanisms. The stress constraints successfully alleviate both of the
mentioned problems, by eliminating high stress localized hinge regions from the topologies
and substituting them with so-called distributed compliance hinges. Hence, the maximum
occurring stress level can be lowered to the prescribed limit.
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Figure 2. Example definition scheme for maximum output displacement gripper (gray: design space,
black: non-design space of solid material, white: non-design space of voids)

Table 2. Parameters specific for maximum displacement example

Parameter Symbol Value Units

Minimum Young’s modulus Emin 4.232 ×10−6 MPa
Input force Pin 50 N

Length ` 200 mm
Height h 80 mm

Thickness t 5 mm
Input stiffness kin 1.5 N/mm

Output stiffness kout 4 N/mm
Filter radius rmin 4.7 mm

Volume fraction ϕallow 0.3 −
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Figure 2. Example definition scheme for maximum output displacement gripper (gray: design space, black: non-design
space of solid material, white: non-design space of voids).

Table 2. Parameters specific for maximum displacement example.

Parameter Symbol Value Units

Minimum Young’s modulus Emin 4.232 ×10−6 MPa
Input force Pin 50 N

Length ` 200 mm
Height h 80 mm

Thickness t 5 mm
Input stiffness kin 1.5 N/mm

Output stiffness kout 4 N/mm
Filter radius rmin 4.7 mm

Volume fraction ϕallow 0.3 −

Comparing the linear to the nonlinear results, also notable differences in the topology
can be observed. Commonality is seen though in the large rigid regions, which are dosed
based on the value of the volume fraction constraint. The differences become especially
evident by looking at the mechanisms performance in terms of output displacement and
maximum stress level. Those result values are listed for the different solution topologies in
Table 3, where also a nonlinear analysis is performed on the linear optimization results. As
shown by [14] it can be seen that, due to the neglected nonlinear effects the performance
of the linearly obtained mechanism topologies is drastically overestimated. This means
not only that overly high values are obtained for the output displacements, but also that at
the same time the actual stress level is underestimated. Looking at topology in Table 3b
this important impact of nonlinear effects on the results becomes evident. Here, for linear
theory, the stress constraint could successfully limit the stresses, but taking nonlinear
effects into account stress levels still exceed by far the prescribed limit of σallow. In contrast,
topologies in Table 3c,d were found considering the nonlinearities during optimization
and therefore lead to a better mechanism performance.

As prior to manufacturing, the results are commonly smoothed, e.g., in order to
eliminate jagged edges from the mechanisms, slight changes in the stress field and objective
function values will be the consequence. The effect of smoothing the results obtained
here is investigated in Figure 4, where the stress field of the smoothed topology for the
nonlinear stress constrained solution in Figure 3d is shown. A Laplacian filter was used to
generate the smoothed result, which then was remeshed resulting in a nonregular FE mesh.
It can be seen that no significant changes in the stress field occur. In Table 3, the maximum
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stress and the objective function value for the smoothed solution are shown. Due to slight
geometrical changes and the lack of low stiffness void elements the objective function was
improved by 5%, meanwhile the maximum stress increased by 4%. It can be stated that
as long as geometrical changes due to smoothing of the results topologies are marginal,
sufficiently accurate values are obtained by the introduced method.

Version February 3, 2021 submitted to Appl. Sci. 17 of 29

(a) Linear FEA (b) Linear FEA with stress constraint

(c) Nonlinear FEA (d) Nonlinear FEA with stress constraint

Figure 3. Comparison of topology optimization results for the maximum output displacement gripper
example (400×80 elements)

Figure 3. Comparison of topology optimization results for the maximum output displacement
gripper example (400 × 80 elements).
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Figure 4. Stress field for gripper result based on figure 3 (d) with smoothed boundary (12451 solid
elements and 0 void elements)

Table 3. Output displacement and maximum stress values for the gripper mechanism topologies in
Figures 3 and 4

Solution Topology Validation analysis type uout [mm] max σ̃ [MPa]

Figure 3(a) linear 9.76 528.28
nonlinear 7.23 624.65

Figure 3(b) linear 7.55 49.37
nonlinear 5.53 173.74

Figure 3(c) nonlinear 7.84 571.28

Figure 3(d) nonlinear 4.27 49.95

Figure 4 nonlinear 4.50 51.99

In Table 3 the maximum stress and the objective function value for the smoothed solution are shown.354

Due to slight geometrical changes and the lack of low stiffness void elements the objective function355

was improved by 5% meanwhile the maximum stress increases by 4%. It can be stated that as long356

as geometrical changes due to smoothing of the results topologies are marginal, sufficiently accurate357

values are obtained by the introduced method.358

3.3. Numerical example – Path-generation mechanism design359

We introduce the novel case of the addition of stress constraints to the topology optimization of
path-generating compliant mechanisms and show results for a generic example mechanism. Moreover,
we apply the introduced extension of multiresolution topology optimization to stress constrained

Figure 4. Stress field for gripper result based on Figure 3d with smoothed boundary (12,451 solid
elements and 0 void elements).
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Table 3. Output displacement and maximum stress values for the gripper mechanism topologies in
Figures 3 and 4.

Solution Topology Validation Analysis Type uout [mm] max σ̃ [MPa]

a (Figure 3a) linear 9.76 528.28
nonlinear 7.23 624.65

b (Figure 3b) linear 7.55 49.37
nonlinear 5.53 173.74

c (Figure 3c) nonlinear 7.84 571.28

d (Figure 3d) nonlinear 4.27 49.95

e (Figure 4) nonlinear 4.50 51.99

3.3. Numerical Example—Path-Generation Mechanism Design

We introduce the novel case of the addition of stress constraints to the topology
optimization of path-generating compliant mechanisms and show results for a generic
example mechanism. Moreover, we apply the introduced extension of multiresolution
topology optimization to stress constrained problems to this example and compare the
results (problem type II). The complete optimization problem is formulated as

min
x

{
fpath

}

where fpath(x) =
n

∑
i=0

αi

m

∑
j=1

l

∑
k=1

(LT
k ui,j − u∗k,j)

2

subject to gV(x) =
ϕ(x)

ϕallow
− 1 ≤ 0

gσ(x) =
σ̂p,k(x)
σallow

− 1 ≤ 0

0 ≤ xi ≤ 1

governed by R = Pint − Pext = 0.

(65)

Due to multiple load cases and deformation states considered in the path-generation
approach, stress constraints can be considered for each case. The focus in this work
is the general applicability of the stress constrained formulation to this problem type.
Therefore, only the stress state in the last precision point for the zero counter load case
j = 3 is constrained.

An example for a path-generation mechanism problem is defined in Figure 5, where
the gray area again represents the available design space and the black areas represent
prescribed solid regions. A mechanism is to be found that most closely transforms an
input motion uin in positive x-direction into a circular output motion uout as prescribed
in Table 4. This prescribed output path must be followed under each of the load cases
specified in Table 5. For this example the input node is allowed to deform freely in y-
direction. The parameters t, Emin and the filter radius rmin are selected according to Table 2
equal to the prior example. The domain length is l = 100 mm and a volume fraction
constraint of ϕallow = 0.2 is selected. Bilinear quadrilateral finite elements including four
Gauss integration points and the linear elastic material defined by Table 1 are used for the
structural analysis (same as previous example).
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problems to this example and compare the results (problem type II). The complete optimization
problem is formulated as

min
x

{
fpath

}

where fpath (x) =
n

∑
i=0

αi

m

∑
j=1

l

∑
k=1

(LT
k ui,j − u∗k,j)

2

subject to gV (x) =
ϕ (x)
ϕallow

− 1 ≤ 0

gσ (x) =
σ̂p,k (x)
σallow

− 1 ≤ 0

0 ≤ xi ≤ 1

governed by R = Pint − Pext = 0.

(65)

Due to multiple load cases and deformation states considered in the path-generation approach, stress360

constraints can be considered for each case. The focus in this work is the general applicability of the361

stress constrained formulation to this problem type. Therefore, only the stress state in the last precision362

point for the zero counter load case j = 3 is constrained.363

An example for a path-generation mechanism problem is defined in Figure 5, where the gray area364

again represents the available design space and the black areas represent prescribed solid regions. A365

mechanism is to be found that under each of the load cases specified in Table 5 most closely transforms366

an input motion uin in positive x-direction into a circular output motion uout as prescribed in Table 4.367

For this example the input node is allowed to deform freely in y-direction. The parameters t, Emin and368

the filter radius rmin are selected according to Table 2 equal to the prior example. The domain length is369

l = 100 mm and a volume fraction constraint of ϕallow = 0.2 is selected. Bilinear quadrilateral finite370

elements including four Gauss integration points and the linear elastic material defined by Table 1 are371

used for the structural analysis (same as previous example).
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Figure 5. Example definition scheme for an output path generating compliant mechanism (gray: design
space, black: non-design space of solid material)

Figure 5. Example definition scheme for an output path generating compliant mechanism (gray:
design space, black: non-design space of solid material).

Table 4. Precision points for the path-generation example.

Precision Point j uin [mm] u∗
out,x [mm] u∗

out,y [mm]

1 1.5 3 −0.18
2 3 6 −0.73
3 4.5 9 −1.67

Table 5. Load cases for the path generation example.

Load Case i α [-] PCL,x [N] PCL,y [N]

0 1 0 0
1 0.1 40 40
2 0.1 -40 40

Figure 6 shows the results for the output path-generation mechanism example. Above,
the solution was obtained by volume constrained topology optimization. Below, a stress
constraint was additionally applied. From top to bottom, the solutions’ deformation states
and stress distributions for the different precision points j are shown. The corresponding
load case is the case of no counter load. For the depicted case, both results approximate
the prescribed path closely. Moreover, it is observed that the stress constraints again
successfully reduce the maximum stress level. This is achieved at the cost of a slightly
higher objective function value of f = 0.224 mm2 compared to f = 0.155 mm2 for the
volume constrained solution. Looking closer to the stress fields, it can be further seen that
the maximum stress in the volume constrained topology exceeds the material strength
for each precision point. In contrast, the maximum stress of the stress constraint reaches
the prescribed threshold value only in the last precision point, where also the largest
deformations occur.

The example is also demonstrated with the stress field of a smoothed solution topology.
Therefore, the stress constrained solution in Figure 6 is smoothed by Laplacian smoothing
and remeshed. Figure 7 shows the stress field on the deformed geometry for the 3rd
precision point. The maximum stress of the smoothed geometry increases by 4% compared
to the solution in Figure 6f. Again also slight changes in the output displacements
are observed.
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(a) Precision point 1: uout,x = 2.85 mm,
uout,y = −0.284 mm, max(σ̃) =

161.0 MPa

(b) Precision point 1: uout,x = 2.81 mm,
uout,y = −0.314 mm, max(σ̃) = 14.9 MPa

(c) Precision point 2: uout,x = 5.93 mm,
uout,y = −0.823 mm, max(σ̃) =

368.0 MPa

(d) Precision point 2: uout,x = 5.86 mm,
uout,y = −0.831 mm, max(σ̃) = 31.6 MPa

(e) Precision point 3: uout,x = 9.10 mm,
uout,y = −1.60 mm, max(σ̃) = 613.0 MPa

(f) Precision point 3: uout,x = 9.11 mm,
uout,y = −1.58 mm, max(σ̃) = 50.0 MPa

Figure 6. Comparison of the path generating example mechanism results for the three precision points
in the load case i = 0 with 150×150 elements, volume constrained on the left, stress and volume
constrained on the right)

Figure 6. Comparison of the path generating example mechanism results for the three precision
points in the load case i = 0 with 150 × 150 elements, volume constrained on the left, stress and
volume constrained on the right.
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Figure 7. Path generating example mechanism topology with smoothed boundary based on Figure 6f:
uout,x = 9.09 mm, uout,y = −1.65 mm, max(σ̃) = 53.7 MPa (5283 solid elements/0 void elements).

In Figure 8, results obtained by the multiresolution topology optimization method
on a coarser 75 × 75 FE mesh are shown and compared to the results of Figure 6. The
density meshes are equally sized (150 × 150) for both methods used. The coarser FE
mesh is chosen in order to demonstrate the ability of the MTOP approach to find high
resolution results based on relatively low resolution FE discretization. Results for the
volume constrained as well as for the additionally stress constrained problem solutions
could be successfully generated by the MTOP method. Comparing the volume constrained
solutions in Figure 8a,c it can be seen that for the multiresolution topology optimization
lower stress values occur. The reason for this is a less-precise stress modeling due to
the larger size of the FE-elements. Due to the different FE discretization, also a different
local minimum is found for the multiresolution topology optimization in Figure 8c. In
Figure 8b,d, the stress and volume constrained results are compared. For both results
the stress constraint successfully reduced the maximum stress to the threshold value.
The MTOP result in Figure 8d is influenced by the underestimation of the stress field, hence
thicker flexible joint regions are allowed. Computational time could be reduced by the
MTOP method on the same desktop PC (Intel Core i7-7500U CPU @ 2.70GHz, 16GB DDR4)
by approx. 75% for both examples.

The results in Figure 8 show that the introduced formulation of the multiresolution
topology optimization method can be effectively used for stress constrained problems.
Nevertheless, it has to be considered that the minimum size of the FE mesh has to be chosen
sufficiently small in order to ensure a correct stress modeling.

The output paths and the prescribed precision points for the various results of
the path generation mechanism example are plotted in Figure 9. It can be seen that
the output path of each result is a clearly nonlinear curve, which approximates the
precision points. The impact of the smoothing on the output path can be clearly observed,
leading to a higher discrepancy between output path and precision points. This shows
that results for path-generation examples are more sensitive to geometrical deviations.
Therefore, the introduction of manufacturing constraints to this type of problems would be
a natural extension.

3.4. Engineering Example—Morphing Wing Design

The numerical results culminate with a practical example for the application of the
introduced methods. In this case, the internal structure (compliant mechanism) for the
deformation of the morphing leading edge of a sailplane wing is designed. The airfoil
and wing planform for the morphing wing concept is designed by [54,55] and its elastic
wing shell is described by [56]. As sailplanes have a large operation envelope, the ability
to morph the wing results in drastic performance gains. Figure 10 shows a schematic
problem definition for a compliant mechanism rib to be used in a droop-nose morphing
wing concept. A compliant mechanism that displaces an output node on the outer leading
edge contour in a predefined position uout (problem type II) is sought. Combining multiple
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mechanisms of this type along the leading edge contour allows the wing to be morphed
accurately to a target airfoil. The mechanisms defining an airfoil are stacked together in
span direction and connected by a belt along the leading edge contour. By this means, a
single rib is formed, which can be bonded to the wings shell. In span direction of the wing
multiple of these stacked ribs are used, considering the changing airfoils along the wing.
The optimization problem defined in Equation (65) is used to synthesize such mechanisms.
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Figure 7. Path generating example mechanism topology with smoothed boundary based on Figure 6
(f): uout,x = 9.09 mm, uout,y = −1.65 mm, max(σ̃) = 53.7 MPa (5283 solid elements / 0 void elements)

(a) Volume constrained solution obtained
with standard topology optimization
(150×150 FE elements): f = 0.155 mm2,
max(σ̃) = 613.0 MPa

(b) Volume and stress constrained
solution obtained with standard topology
optimization (150×150 FE elements):
f = 0.224 mm2, max(σ̃) = 50.0 MPa

(c) Volume constrained solution
obtained with MTOP (75×75 FE
elements and 150×150 density elements):
f = 0.097 mm2, max(σ̃) = 323.5 MPa

(d) Volume and stress constrained solution
obtained with MTOP (75×75 FE elements
and 150×150 density elements): f =

0.201 mm2, max(σ̃) = 50.0 MPa

Figure 8. Path generating example solutions with and without multiresolution topology optimization
Figure 8. Path generating example solutions with and without multiresolution topology optimization.
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Figure 10. Problem definition for a compliant mechanism rib structure

Table 6. Precision points for the rib example

Precision point j uin [mm] u∗out,x [mm] u∗out,y [mm]

1 4 5.53 -14.18

a good approximation of the target displacement. On the other hand, a practical application of the441

mechanism is excluded due to the high stresses in the flexible hinges connecting the mechanism to442

the support. These stresses would lead to failure of the mechanism. In Figure 11(b) stress constraints443

were also considered. The stresses are reduced to the admissible level at the cost of a slightly higher444

deviation from the exact target displacement. A mechanism suitable for practical application could be445

obtained.446

Figures 11(c) and (d) show respectively the results for the volume-constrained as well as the447

volume- and stress-constrained rib mechanism obtained by the MTOP method. Therefore, the same448

FE mesh is used as in (a) and (b) but with a four times higher resolution of the density mesh. By449
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but at a higher resolution. The obtained results are hence less discrete, smoother and hence closer451

to the manufactured geometry. In Figure 12, a 3D printed demonstrator of a combination of various452

compliant mechanism ribs obtained by the introduced method is shown.453
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The results of this work clearly demonstrate the necessity of both nonlinear finite-element455

analysis and stress constraints in the topology optimization of compliant mechanisms. To achieve456

this, multiresolution stress-constrained topology optimization with nonlinear finite-element analysis457

has been implemented for maximum displacement and path-generation mechanisms. Without stress458

constraints, the resulting topologies of the introduced problems exhibit stresses well beyond the limits,459

especially because of the formation of one-node hinges. Through proper choice of stress limits in460

concert with filtering parameters, designs were found that can function without violation of strength461

limits. As large displacements and rotations are actually desired with this design problem, nonlinear462

finite-element analysis is necessary to properly represent deformations, strains and stresses.463

These two aspects represent a challenge to its implementation, not only for the primal analysis but464

also in the calculation of the sensitivities. Based on a total Lagrangian formulation, we have derived465

the sensitivities of the objective and constraint functions via an adjoint methodology.466

Figure 10. Problem definition for a compliant mechanism rib structure.

Table 6. Precision points for the rib example.

Precision Point j uin [mm] u∗
out,x [mm] u∗

out,y [mm]

1 4 5.53 -14.18

Table 7. Load cases for the rib example.

Load Case i α [-] PCL,x [N] PCL,y [N]

0 1 0 0
1 0.1 14.2 32.8

In Figure 10, the gray area represents the designable domain, whereas black and
white areas represents non-designable solid or void, respectively. To the upper right, fixed
supports represent an adhesive fixation of the mechanism to the wings spar. The mechanism
is activated by the application of a positive x-displacement uin at the input node, which is
guided by a support in the y-direction (shown in yellow). The design space is discretized
by bilinear quadrilateral finite elements with four Gauss integration points. Material and
optimization parameters are used according to the path generation example shown in
advance. Only one precision point prescribes the target position of the output node in
the activated, i.e., morphed state (see Table 6). The counter load cases are set according
to Table 7 simulating aerodynamic loads on the mechanism acting against the direction
of deformation.

In Figure 11, the deformed results for the compliant mechanism rib are compared for
the various optimization methods used. In Figure 11a, the problem was solved without
consideration of stress constraints. It can be observed that a low objective function value is
reached as this design provides a good approximation of the target displacement. On the
other hand, a practical application of the mechanism is excluded due to the high stresses
in the flexible hinges connecting the mechanism to the support. These stresses would
lead to failure of the mechanism. In Figure 11b, stress constraints were also considered.
The stresses are reduced to the admissible level at the cost of a slightly higher deviation
from the exact target displacement. A mechanism suitable for practical application could
be obtained.

Figure 11c,d show respectively the results for the volume-constrained as well as the
volume- and stress-constrained rib mechanism obtained by the MTOP method. Therefore,
the same FE mesh is used as in Figure 11a,b but with a four times higher resolution of the
density mesh. By this means, similar topologies are obtained as for the standard topology
optimization in Figure 11a,b but at a higher resolution. The obtained results are hence
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less discrete, smoother and hence closer to the manufactured geometry. In Figure 12, a 3D
printed demonstrator of a combination of various compliant mechanism ribs obtained by
the introduced method is shown.
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(a) Volume constrained solution obtained
with (non-multiresolution) topology
optimization (13017 FE elements):
f = 0.011 mm2, max(σ̃) = 3131.6 MPa

(b) Stress and volume constrained
solution obtained with standard topology
optimization (13017 FE elements):
f = 0.012 mm2, max(σ̃) = 49.9 MPa

(c) Volume constrained solution obtained
with MTOP (13017 FE elements and
52068 density elements): f = 0.010 mm2,
max(σ̃) = 2301.9 MPa

(d) Stress and volume constrained solution
obtained with MTOP (13017 FE elements
and 52068 density elements): f =

0.018 mm2, max(σ̃) = 49.8 MPa

Figure 11. Comparison of solutions for the compliant mechanism rib example

Figure 12. Morphing wing demonstrator based on topology optimization results showing undeformed
and deformed states

Figure 11. Comparison of solutions for the compliant mechanism rib example.

Figure 12. Morphing wing demonstrator based on topology optimization results showing unde-
formed and deformed states.

4. Conclusions

The results of this work clearly demonstrate the necessity of both nonlinear finite-
element analysis and stress constraints in the topology optimization of compliant mech-
anisms. To achieve this, multiresolution stress-constrained topology optimization with
nonlinear finite-element analysis has been implemented for maximum displacement and
path-generation mechanisms. Without stress constraints, the resulting topologies of the
introduced problems exhibit stresses well beyond the limits, especially because of the
formation of one-node hinges. Through proper choice of stress limits in concert with
filtering parameters, designs were found that can function without violation of strength
limits. As large displacements and rotations are actually desired with this design problem,
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nonlinear finite-element analysis is necessary to properly represent deformations, strains
and stresses.

These two aspects represent a challenge to its implementation, not only for the primal
analysis but also in the calculation of the sensitivities. Based on a total Lagrangian formu-
lation, we have derived the sensitivities of the objective and constraint functions via an
adjoint methodology.

The introduced topology optimization methodology is applied to two numerical
examples with different objective functions: maximum displacement and path-following
designs. For the former, we clearly show the different resulting optimal topologies from

• linear finite-element analysis with volume constraint;
• linear finite-element analysis with volume and stress constraints;
• nonlinear finite-element analysis with volume constraint;
• nonlinear finite-element analysis with volume and stress constraints.

Nonlinear analysis is necessary for the path-following design as linear analysis will
not follow a curved path. By applying stress constraints to the path-generation design
problem, an approach for the synthesis of fatigue resistant prescribed path following
mechanisms is shown. Moreover, a novel methodology for the consideration of stress
constraints in multiresolution topology optimization is introduced and applied to the
examples for the path-generation mechanisms. As a conclusion, an engineering example of
a mechanism designed for a morphing wing application is discussed, showing a possible
practical application of the introduced methods.

Future work will explore the reduction in the large amount of iterations (ca. 250) to
increase computational efficiency, the extension of the path generation problem formulation
to multiple output nodes as well as the expansion to a geometrically robust formulation.
Other challenges include the high number of parameter values in the optimization formu-
lation that have a large influence on the resulting topology and convergence. More specific
knowledge about the influence and mutual interference of these parameters must be gained.
Furthermore, the issue of unstable behavior in void elements and resulting ill-convergence
is still not fully resolved for all types of problems. Although the interpolation scheme
based on Wang et al. [47] and applied in this work significantly improved the stability
of the finite-element analysis, instabilities still occur in intermediate density elements.
This problem could be resolved by a thorough study of the interpolation parameters of
Equation (15). However, there are also promising recent approaches based on contact
modeling theory, as shown by Bluhm et al. [57], where the material strain energy function
has been augmented with an energy associated with higher order strains. This approach
penalizes only mesh bending and warping distortion in high strained low density elements
and not homogeneous deformation states. It also introduces self-contact modeling with low
additional computational cost, paving the way for the synthesis of compliant mechanisms
making use of self-contact. However, as this is very recent research, this was not imple-
mented into the current work yet. Despite these challenges, we have shown promising
results for compliant structures using nonlinear finite-element analysis.
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