
applied  
sciences

Article

Stability Analysis of Rotor-Bearing Systems under the
Influence of Misalignment and Parameter Uncertainty

Xiaodong Sun * , Kian K. Sepahvand and Steffen Marburg

����������
�������

Citation: Sun, X.; Sepahvand, K.K.;

Marburg, S. Stability Analysis of

Rotor-Bearing Systems under the

Influence of Misalignment and

Parameter Uncertainty. Appl. Sci.

2021, 11, 7918. https://doi.org/

10.3390/app11177918

Academic Editors: Athanasios

Chasalevris and Fadi Dohnal

Received: 3 August 2021

Accepted: 26 August 2021

Published: 27 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Chair of Vibro-Acoustics of Vehicles and Machines, Department of Mechanical Engineering,
Technical University of Munich, 85748 Garching, Germany; k.sepahvand@tum.de (K.K.S.);
steffen.marburg@tum.de (S.M.)
* Correspondence: xiaodong.sun@tum.de

Abstract: Stability is a well-known challenge for rotating systems supported by hydrodynamic
bearings (HDBs), particularly for the condition where the misalignment effect and the paramet-
ric uncertainty are considered. This study investigates the impact of misalignment and inherent
uncertainties in bearings on the stability of a rotor-bearing system. The misalignment effect is ap-
proximately described by introducing two misaligned angles. The characteristics of an HDB, such as
pressure distribution and dynamic coefficients, are calculated by the finite difference method (FDM).
The stability threshold is evaluated as the intersection of run-up curve and borderline. Viscosity
and clearance are considered as uncertain parameters. The generalized polynomial chaos (gPC)
expansion is adopted to quantify the uncertainty in parameters by evaluating unknown coefficients.
The unknown gPC coefficients are obtained by using the collocation method. The results obtained
by the gPC expansion are compared with those of the Monte Carlo (MC) simulation. The results
show that the characteristics of the HDB and the stability threshold are affected by misalignment
and parameter uncertainties. As the uncertainty analysis using the gPC expansion is performed on a
relatively small number of predefined collocation points compared with the large number of MC
samples, the method is very efficient in terms of computation time.

Keywords: stability analysis; hydrodynamic bearing; misalignment effect; generalized polynomial
chaos expansion

1. Introduction

With the development of rotating machines, the hydrodynamic bearing (HDB) has
attracted increasing attention as a critical component in some rotating systems. The HDB
provides elastic support to the rotor and reduces wear between journal and bearing shell.
However, it can also be a cause of instability in the system. Instabilities induced by an HDB
are generally referred to oil whirl and oil whip [1–3]. These phenomena are self-excited
vibrations, which often result in severe damage to the rotating system. Stability analysis is
therefore crucial for maintaining safe operation of the rotor-bearing system.

Since the concept of stability threshold was realized, several studies have been con-
ducted to determine the stability threshold speed of a rotating system. The most direct
method is to observe the trajectory of the journal at different rotation speeds by experiment,
whereby the stability threshold is the speed at which the trajectory starts to diverge [4,5].
Many theoretical methods have been developed on the basis of this realization. For instance,
the Routh–Hurwitz criterion has been introduced to evaluate the stability threshold [6].
With this method, oil-film forces are linearized as functions of eight dynamic coefficients
and coupled into the motion equation of the rotor. The stability of the system is then
evaluated according to the Routh–Hurwitz stability array by considering coefficients of the
characteristic equation. Abdel and Nasar [6] analyzed the whirl stability of a rotor-bearing
system by using the Routh–Hurwitz criterion. They calculated the stability threshold by
solving the eigenvalue problem of the rotating system. Since the real part of the eigenvalue
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represents the growth or decay of vibration, the stability threshold is determined when
the real part of the eigenvalue is equal to zero. Based on this approach, Rho and Kim [7]
predicted the stability threshold for an actively controlled HDB. Dyk et al. [8] discussed
different HDB models in detail, including the Infinite Short (IS) model, the Infinite Long
(IL) model, and the general finite length model, and then compared the stability threshold
based on these models. Using a similar strategy, Huang et al. [9] studied the stability
threshold by way of the dynamic coefficients with no coordinate transformation. Another
commonly used approach is known as time series analysis, often also referred to as tran-
sient simulation [10–12]. As with the experimental method, in time series analysis, the
stability threshold is generally estimated as the rotation speed at which the shaft leaves the
steady equilibrium position. Castro et al. [3] numerically calculated the dynamic response
of a rotor-bearing system during the run-up and run-down. The stability issue is deter-
mined according to the dynamic response, in which the HDB is assumed as short bearing
and the bearing forces are considered as nonlinear. Smolík et al. [13] investigated both
the stability threshold for a rigid rotor-bearing system using a numerical formulation and
the impact of different HDB models. Furthermore, other nonlinear-theory-based methods
have been employed to investigate the stability problem [14]. For instance,the numer-
ical continuation method has been used to predict the stable and unstable limit cycles
and Hopf bifurcation points [15,16]. The Liapunov direct method [17,18] or the Floquet
and Bifurcation theories [19] have also been applied to analyze the stability threshold of
a rotor-bearing system.

In previous studies, researchers have assumed that the center line of the journal is
parallel to that of the bearing and that the rotor can be considered rigid [8,13]. Under
these simplified conditions, the misalignment effect is neglected. However, in practical
situations, the misalignment phenomenon is unavoidable for a number of reasons, such
as deflection of the shaft, manufacturing error, or improper installation. Further, it is
observed from the governing equation of the lubricated oil-film pressure that the pressure
is determined by the thickness of the oil-film, while the thickness changes in the presence
of the misalignment effect. Under this recognition, the misalignment effect is gradually
taken into consideration. Sun and Changlin [20] studied the steady characteristics of an
HDB considering the misalignment caused by deflection of the shaft. Herein, the misalign-
ment effect is described by introducing two misaligned angles. The results show that the
maximum pressure and the oil-film forces apparently vary with the misaligned angles.
Zhang et al. [21] investigated the relationship between the load-carrying capacity and
the misalignment angle for a misaligned water-lubricated HBD under different bearing
parameters. Ebrat et al. [22] and Xu et al. [23] studied the influence of misalignment on
the dynamic characteristics of an HDB. It can be concluded from these explorations that
the characteristics of an HDB and the stability of the rotor-bearing system are affected by
misalignment. Therefore, it is essential to consider the misalignment effect in a stability
analysis of a rotor-bearing system. When the effect of misalignment is considered, there
exist additional moments in the rotor-bearing system. In order to describe these moments,
some researchers introduced the moments coefficients for a misaligned system [24,25].
However, after evaluating the moments’ coefficients, Mukherjee [26] and Rao [27] pointed
out that the moments’ coefficients are generally insignificant and have little impact on the
dynamic behavior of journal bearings. Further, the research of Ahmend and El-Shafei [28]
demonstrated that the moments’ coefficients are much smaller than the force coefficients.
Based on this evaluation, the moments’ coefficients are neglected in the following re-
search [29]. Therefore, the stability analysis for a misaligned rotor-bearing system in this
study only considers the conventional eight dynamic coefficients.

In addition, most previous research focused on deterministic analysis and ignored the
inherent uncertainties in rotor-bearing systems caused by such factors as variations in wear
and operating conditions. In such situations, the characteristics of the HDB, the dynamics
response, and the stability of the rotor-bearing system all become uncertain due to the ran-
dom nature of the input parameters. Hence, the effect of random parameters should also be



Appl. Sci. 2021, 11, 7918 3 of 19

taken into account to ensure the reliability of the system. In recent years, some uncertain
quantification methods are introduced to evaluate the uncertainty in the rotor systems,
such as interval methods [30,31], fuzzy models [32], probabilistic techniques [33,34], and
hybrid approaches [35]. The selection of these methods depends on the available informa-
tion of the uncertain system. In this study, it is assumed that the statistical information
of the system has been obtained, which corresponds to the probabilistic approach and
assumes aleatoric uncertainties. In this condition, several approaches have been devel-
oped to quantify the uncertainty, including sampling- and non-sampling-based methods.
Monte-Carlo (MC) simulation is a conventional sampling-based method that addresses
the stochastic problem. Generally, MC simulation can quantify the effect of uncertainty
on dynamic response with considerable accuracy. However, this method converges only
slowly and is thus rather inefficient, particularly for complex dynamic systems. In stability
analysis, the computational costs of uncertainty quantification using MC simulation are
acceptable when adopting simplified HDB models, such as IS and IL. Since these simplified
models allow the analytical solution to be obtained for the characteristics of HDB, they
can compensate for the high computational cost of MC simulation. Some related studies
can be found in [36,37]. The behavior of the general finite-length HDB is governed by the
Reynolds equation and is usually solved numerically. Uncertainty quantification using
MC simulation would, in this case, become computationally very expensive. To achieve
better computational efficiency, various non-sampling-based methods, such as generalized
polynomial chaos (gPC) expansion, have received much attention in recent years [38–40].
In the gPC expansion method, the uncertain parameters are represented by a series of
orthogonal polynomials with unknown coefficients [41,42]. Recently, Garoli et al. [43]
demonstrated the application of the gPC expansion in a stochastic dynamic response anal-
ysis of a nonlinear rotor-bearing system, in which the nonlinear bearing forces are obtained
using the IS model.

The literature review reveals that researchers have, for the most part, conducted
deterministic stability analyses of rotor-bearing systems. However, a few studies are
available that investigate the issue of uncertain stability on the basis of a simplified HDB
model using a sampling-based method, such as MC simulation, but without considering
the misalignment effect. This study reports an uncertain stability analysis for a rotor
system supported by finite-length HDBs while taking into account the misalignment effect.
We develop a stability analysis framework guided by the Routh–Hurwitz criterion. The
characteristics of the HDB used for stability analysis are evaluated by solving the Reynolds
equation numerically. Collocation-based gPC expansion is employed to determine the
impact of uncertainties.

The paper is organized as follows: The next section introduces the theoretical back-
ground on characteristics of the general finite-length HDB. The process of determining the
stability threshold is presented in Section 3, and the uncertain stability analysis based on
the gPC expansion is presented in Section 4. Section 5 presents the numerical results of
a rotor-bearing system under uncertainty. The paper’s conclusion then follows.

2. Governing Equations and Dynamic Coefficients
2.1. Reynolds Equation

The general HDB under consideration and the associated terminology are presented
in Figure 1. A thin oil-film is sandwiched between the bearing shell and the rotating journal.
Due to the relative motion of the two parts, pressure is generated in the oil-film that allows
the HDB to provide support to the journal. Here, the support is commonly referred to as
the bearing force. Due to the bearing forces and applied external load, the journal center Oj
displays an eccentricity e with respect to the bearing center Ob. The position of the journal
is usually determined by two coordinate systems, (ζ, η) and (x, y), of which the former
describes the journal center in terms of its eccentricity displacement and angle, and and
the latter are the fixed horizontal and vertical coordinates.
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Figure 1. General HDB and associated terminology.

The pressure of the oil-film is governed by the Reynolds equation derived from
the Navier–Stokes equations [44], in which the lubricant oil is assumed to be a laminar,
isothermal, and incompressible flow. The Reynolds equation is stated as in [45]

1
R2

∂

∂Φ

(
h3

12µ

∂p
∂Φ

)
+

∂

∂z

(
h3

12µ

∂p
∂z

)
=

1
2

Ω
∂h
∂Φ

+ ẏ cos Φ + ẋ sin Φ, (1)

where p represents the oil-film pressure; R stands for the radius of the bearing; µ is the
viscosity of the lubricant oil; Φ and z represent the coordinates in circumferential and
axial directions, respectively; Ω is the rotation speed of the rotor; ẋ and ẏ are the velocity
components of the rotating journal; and h denotes the thickness of the oil-film. According
to the generally accepted Reynolds boundary conditions [46], the boundary of the oil-film
begins approximately at the maximum film thickness and ends at the position where
the pressure equals zero. In general, the thickness of the oil-film in a bearing without
considering the misalignment effect is expressed approximately as [20]

h = c + e cos(Φ−Φ0), (2)

in which c stands for the clearance; e represents the eccentricity; and Φ0 denotes the attitude
angle, which is used to depict the angle between the direction of the static load and the
eccentricity line at equilibrium position. When the misalignment effect is considered,
Equation (2) is no longer appropriate for describing the thickness of the oil-film since the
thickness in axial direction has changed. The thickness is then given by introducing two
misaligned angles as [20,23,47–49]

h = c + e0cos(Φ−Φ0) + tanγ

(
y− L

2

)
cos(Φ− α−Φ0), (3)

where e0 is the eccentricity at mid-plane, and α and γ are misaligned angles of rotor in the
x-y plane and y-z planes, respectively, as shown in Figure 2.

The following dimensionless parameters are introduced to simplify computation

H =
h
c

, ε =
e
c

, Z =
z
R

, P =
p

6µΩ

( c
R

)2
, Ẏ =

ẏ
cΩ

, Ẋ =
ẋ

cΩ
, (4)

where ε is named as the eccentricity ratio. The reformulated Reynolds equation is rewritten
by considering the dimensionless parameters as

∂

∂Φ

(
H3 ∂P

∂Φ

)
+

∂

∂Z

(
H3 ∂P

∂Z

)
=

∂H
∂Φ

+ 2
(
ẎcosΦ + ẊsinΦ

)
. (5)
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Figure 2. Schematic diagram of a misaligned HDB.

The finite difference method (FDM) is adopted to solve the pressure of the lubricant
oil. An over-relaxation iteration technique is employed to achieve good convergence of
the solution [46]. Once the pressure has been computed, the bearing forces in the x- and
y-directions are obtained by integrating the pressure over the whole area of the oil-film{

Fx

Fy

}
= −Cb

∫ L
2R

− L
2R

∫ 2π

0
P(Φ, Z)

{
cos Φ

sin Φ

}
dΦdZ, (6)

where Cb = 6µΩR4/c2 is the coefficient containing the parameters of the bearing. Theo-
retically, the vertical oil-film force Fy should equal the static load W with the horizontal
force Fx equal to zero at the equilibrium position for the horizontal rotor. Accordingly, the
following condition should be satisfied [46]

tan−1 Fx

Fy
= 0. (7)

However, Fx is not usually equal to zero, since the attitude angle Φ0 is unknown
before calculation. To reach the equilibrium position and to calculate the bearing forces
accurately, the following procedures are adopted to determine the attitude angle. First, a
predefined value Φ0

0 is assumed as the initial attitude angle to calculate the initial bearing
forces. Then, an error function is defined as

∆Φk
0 = tan−1 Fk

x
Fk

y
, (8)

where k represents the kth iteration. The attitude angle Φ0 is updated by a Newton–Raphson
iteration such as

Φk+1
0 = Φk

0 − ∆Φk
0

Φk
0 −Φk−1

0

∆Φk
0 − ∆Φk−1

0

. (9)

Eventually, the attitude angle is determined by using Equations (8) and (9) alternately,
until Equation (7) is satisfied. The stopping criterion of the Newton–Raphson iteration is
based on the error at the kth iteration. The attitude angle is determined if |∆Φk

0| ≤ δΦ is
satisfied, where δΦ is a prescribed error tolerance. The pressure distribution and the oil-film
forces at equilibrium position are obtained. The Sommerfeld number representing the
relationship of the major variables in the hydrodynamic lubrication analysis is calculated by

S =
µΩRL

πW

(
R
c

)2
. (10)
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2.2. Dynamic Coefficients

According to Lund [45], the bearing forces are described by eight dynamic coefficients
referring to the displacement and velocity. To calculate the dynamic coefficients, the bearing
forces are characterized by reserving the first-order terms of a Taylor series expansion
around the equilibrium position, i.e., [8,50]

Fx = Fx0 +

(
∂Fx

∂x

)
0
x +

(
∂Fx

∂y

)
0
y +

(
∂Fx

∂ẋ

)
0
ẋ +

(
∂Fx

∂ẏ

)
0
ẏ,

Fy = Fy0 +

(
∂Fy

∂x

)
0
x +

(
∂Fy

∂y

)
0
y +

(
∂Fy

∂ẋ

)
0
ẋ +

(
∂Fy

∂ẏ

)
0
ẏ,

(11)

in which Fx0 and Fy0 represent the bearing forces at the equilibrium position. The coeffi-
cients of displacement and velocity components are defined as dynamic coefficients in the
form of

kxx =

(
∂Fx

∂x

)
, kxy =

(
∂Fx

∂y

)
, kyx =

(
∂Fy

∂x

)
, kyy =

(
∂Fy

∂y

)
,

dxx =

(
∂Fx

∂ẋ

)
, dxy =

(
∂Fx

∂ẏ

)
, dyx =

(
∂Fy

∂ẋ

)
, dyy =

(
∂Fy

∂ẏ

)
, respectively.

(12)

Conventionally, the following dimensionless form is adopted in the stability analysis
[Kxx Kxy Kyx Kyy] =

c
W

[kxx kxy kyx kyy],

[Dxx Dxy Dyx Dyy] =
cΩ
W

[dxx dxy dyx dyy].
(13)

Similar to the bearing forces, the pressure of the oil-film under dynamic conditions is
expanded as

P = P0 + ∆P = P0 + PXX + PYY + PẊẊ + PẎẎ, (14)

where P0 represents the pressure at the equilibrium position; ∆P indicates the increment of
pressure caused by displacement and velocity under dynamic conditions; and PX , PY, PẊ ,
and PẎ are the corresponding perturbation pressures with respect to the displacement and
velocity vectors {X, Y, Ẋ, Ẏ}. Further, the thickness of the oil-film is written as

H = H0 + ∆H = H0 + ẎcosΦ + ẊsinΦ. (15)

By substituting Equations (14) and (15) into the Reynolds equation, five dimensionless
equations are obtained as

∂

∂Φ

(
H3 ∂P∗

∂Φ

)
+

∂

∂Z

(
H3 ∂P∗

∂Z

)

=



∂H
∂Φ

for P∗ = P0,

cosΦ− 3
∂

∂Φ

(
H2sinΦ

∂P0

∂Φ

)
− 3

∂

∂Z

(
H2sinΦ

∂P0

∂Z

)
for P∗ = PX ,

− sinΦ− 3
∂

∂Φ

(
H2cosΦ

∂P0

∂Φ

)
− 3

∂

∂Z

(
H2cosΦ

∂P0

∂Z

)
for P∗ = PY,

2sinΦ for P∗ = PẊ , and

2cosΦ for P∗ = PẎ.

(16)

The dynamic coefficients are estimated by integrating the perturbation pressures as
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kxx kyx

kxy kyy

dxx dyx

dxy dyy

 = −Cb

∫ L
2R

− L
2R

∫ 2π

0


PX sin Φ PX cos Φ

PY sin Φ PY cos Φ

PẊ sin Φ PẊ cos Φ

PẎ sin Φ PẎ cos Φ

dΦdZ. (17)

It is observed from Equations (3), (5), and (12) that the dynamic coefficients depend
implicitly on the eccentricity ratio ε.

3. Stability Analysis

According to Krämer [51], the stability threshold for a specific rotor-bearing system
is described by the intersection of the run-up curve and borderline. The run-up curve
characterizes the eccentricity ratio at equilibrium position for different rotation speeds. The
borderline indicates the rotation speed on the boundary of stability for different eccentricity
ratios in dynamic conditions.

3.1. Run-Up Curve

For a symmetrical and horizontal rotor supported by two identical HDBs, it is known
that the bearing forces equal the static load at equilibrium position (i.e., Fx = 0 and
2Fy = W) [8,46]. Meanwhile, it can be seen from Equation (6) that the bearing forces are
functions of rotation speed and eccentricity ratio. It is thus possible to plot the run-up
curve depicting the relationship between rotation speed and eccentricity ratio. The rotation
speed thus obtained is denoted by Ωst and expressed as

Ωst =
W

2F̄y0
=

W
12µ

c2

R4
1
z , (18)

where F̄y0 and z are bearing forces in the y direction of different dimensionless forms, and

F̄y0 = 6µ
R4

c2 z, z =
∫ L

2R

− L
2R

∫ 2π

0
P(Φ, Z)sinΦdΦdZ. (19)

Moreover, it can be noted from Equations (18) and (19) that the shape of the run-up
curve depends on the parameters of the bearing and the static load. The static load equals
the gravity load when no additional load is applied [36].

3.2. Borderline and Stability Threshold

This paper considers a rotor-bearing system, as shown in Figure 3.

Rotor

Bearing

Fx

Fy

Fx

Fy

Disk

W

Bearing

Os

x

y

Ob

Oj

Os

yd

yb

xb

xd

Figure 3. Diagram of a rotor-bearing system and coordinates in the x-y plane.

Taking into account the flexibility of the rotor and referring to the coordinates shown
in Figure 3, the motion is expressed as [51,52]{

mẍd + ks(xd − xb) = memΩ2sinΩt,

mÿd + ks(yd − yb) = memΩ2cosΩt + W,
(20)
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where m represents the mass of the rotor and disk; em denotes the eccentricity of the unbal-
ance mass; ks is the parameter used to describe the flexibility of the rotor; {xb, yb} and {xd, yd}
represent the displacement components of the journal and disk center, respectively; and
{ẍd, ÿd} stands for the acceleration components of the disk center. In addition, combining
with the linear bearing forces gives us [51]{

ks(xd − xb)− 2(Fx0 + kxxxb + kxyyb + dxx ẋb + dxyẏb) = 0,

ks(yd − yb)− 2(Fy0 + kyxxb + kyyyb + dyx ẋb + dyyẏb) = 0.
(21)

The solutions of the homogeneous Equation (20) can be written in the form of

xd = Xseλt, yd = Yseλt, xb = Xbeλt, yb = Ybeλt. (22)

The characteristic equation for the system described by Equation (20) together with
Equation (21) is then obtained by referring to Equation (22), as

α6λ6 + α5λ5 + α4λ4 + α3λ3 + α2λ2 + α1λ + α0 = 0, (23)

in which αi(i = 0, 1, . . . , 6) are polynomials, as shown in Appendix A. The eigenvalue
comprises the real part a and imaginary part ω as

λ = a± jω. (24)

At stability boundary, λ is purely imaginary, i.e., λ = jω and a = 0. Thus, the rotation
speed on the borderline denoted by Ωb is determined by [51]

Ωb = ωn

√
β1β2β2

3
(β2

1 − β1β3β4 + β0β2
3)(β1 + νβ3)

, (25)

where ωn =
√

ks/m stands for the natural frequency of the flexible shaft, βi (i = 0, 1, . . . , 4)
represent polynomials as shown in Appendix A, and βi (i = 0, 1, . . . , 4) are functions of the
dimensionless dynamic coefficients shown in Equation (13). Meanwhile, it is known from
Section 2 that dynamic coefficients are functions of the eccentricity ratio ε. It is therefore
possible to conclude that Ωb is a function of ε by combining with Equation (25). Using this
approach, it is possible to determine the borderline.

Finally, the deterministic stability analysis procedure is summarized as Algorithm 1.

Algorithm 1 Deterministic stability analysis of rotor-bearing system

1: Define the parameters of the rotor-bearing system for initialization;
2: Give an eccentricity ratio ε0 to determine the thickness distribution;
3: Solve Equation (16) to obtain the static pressure P0 and perturbation pressures
{PX , PY, PẊ , PẎ};

4: Obtain the dimensionless oil-film force z using Equation (19) to determine Ωst as
Equation (18);

5: Calculate the dimensionless dynamic coefficients using Equations (17) and (13) to
determine Ωb based on Equation (25);

6: Develop the run-up curve and borderline by repeating steps (2-5) under different
eccentricity ratios;

7: Obtain the stability threshold Ωth from the intersection of the run-up curve
and borderline.

4. Uncertainty Quantification

It was shown in the previous section that the stability threshold is affected by the
parameters of the rotor-bearing system. The stability threshold is uncertain owing to the
existence of inherent random parameters. In this situation, the uncertain stability threshold
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needs to be quantified to ensure that the rotating system is operating reliably. In view of
the high computational costs of solving the characteristics of the finite-length HDB, the
gPC expansion is employed to quantify uncertainty. The basic idea of a gPC expansion
is to project a random variable onto a stochastic space, such that uncertain variables are
represented by a series of orthogonal polynomials with unknown deterministic coefficients.
Here, an uncertain variable Y defined in the random space Γ is represented as

Y(ξ) =
∞

∑
i=0

yiψi(ξ) ≈
N

∑
i=0

yiψi(ξ), (26)

where yi denotes the unknown coefficients, ψi(ξ) represents the polynomials that are
functions of the standard random variable vector ξ, and N represents the finite number of
truncated terms in the gPC expansion. This is identified from the expansion order m and
the dimensionality n of the random vectors as

N =
(n + m)!

n!m!
− 1. (27)

In general, the unknown deterministic coefficients are determined by a Galerkin projection

yi =
1

〈ψ2
i (ξ)〉

∫
Γ

Y(ξ)ψi(ξ)ρ(ξ)dξ, (28)

where 〈ψ2
i (ξ)〉 stands for the inner product of the polynomials and ρ(ξ) represents the joint

probability density function (PDF) of the vectors of random variables.

4.1. Determination of Orthogonal Polynomial Basis

If there is only one random variable (i.e., n = 1), the gPC expansion for the random
output can be directly constructed using Equation (26), where the orthogonal basis is the
same as for the random input variable. However, the orthogonal basis for a multidimen-
sional random vector results in tensor products of different polynomials representing
each uncertain variable. For instance, let the random input variable ξ1 follow the normal
distribution with corresponding Hermite polynomials as H(ξ1), and let ξ2 follow a uniform
distribution represented by Legendre polynomials denoted as L(ξ2). Then, the polynomials
of the random output are obtained by (cf. [41] for more details)

ψ(ξ1, ξ2) = H(ξ1)⊗ L(ξ2). (29)

When the above random two-dimensional system (i.e., n = 2) is used for a second-
order gPC expansion (i.e., m = 2), the orthogonal polynomials are represented as

ψ0(ξ1, ξ2) = H0L0 = 1, ψ3(ξ1, ξ2) = H2L0 = ξ2
1 − 1,

ψ1(ξ1, ξ2) = H1L0 = ξ1, ψ4(ξ1, ξ2) = H1L1 = ξ1ξ2,

ψ2(ξ1, ξ2) = H0L1 = ξ2, ψ5(ξ1, ξ2) = H0L2 = 1
2 (3ξ2

2 − 1)

(30)

The uncertain parameter Y is then approximated as

Y(ξ1, ξ2) = y0 + y1ξ1 + y2ξ2 + y3(ξ
2
1 − 1) + y4ξ1ξ2 +

1
2

y5(3ξ2
2 − 1). (31)

4.2. Calculation of Unknown Coefficients Using the Collocation Method

The collocation method is adopted [42] to determine the unknown coefficients yi
in Equation (31). In this method, the numerical model is considered a black box. The
responses at the collocation points are evaluated using the deterministic numerical model.
The coefficients of the gPC expansion are then determined from these samples using a least
squares minimization technique. The selection of the collocation points is critical for the
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accurate evaluation of the unknown coefficients. Once the order of the gPC expansion is
known, the collocation points are generated as all combinations of roots of the next-higher-
order polynomial basis. The origin (i.e., ξ = 0) is added if it is not already included in the
roots [42]. It is assumed that a set of response samples Y = {Y1, Y2, . . . , Yq}T is generated
at the collocation points {ξ1, ξ2, · · · , ξq}. Substituting these in the gPC expansion of Y
yields the following system of linear equations for calculating the coefficient vector y as

[Ψ][y] = [Y ], (32)

where

[Ψ] =


ψ0(ξ1) ψ1(ξ1) ψ2(ξ1) · · · ψN(ξ1)

ψ0(ξ2) ψ1(ξ2) ψ2(ξ2) · · · ψN(ξ2)

...
...

...
. . .

...

ψ0(ξq) ψ1(ξq) ψ2(ξq) · · · ψN(ξq)

, [y] =


y0

y1

...

yN

. (33)

The number of collocation points, q, is greater than the number of unknown coefficients
yi for n ≥ 2. The vector of coefficients, y, is calculated using a least squares minimization
technique as

[Ψ]T [Ψ][y] = [Ψ]T [Y ]. (34)

4.3. Uncertain Stability Analysis

In this study, the viscosity µ and clearance c are considered random input parameters
and represented by truncated gPC expansions as

µ(ξ1) =
Nµ

∑
i=1

µiψi(ξ1), c(ξ2) =
Nc

∑
i=1

ciψi(ξ2). (35)

Under the influence of the random input parameters, the static and dynamic charac-
teristics of HDB become uncertain, as does the stability threshold of the coupled rotating
system. On this basis, the uncertain characteristics of HDB, such as pmax and Kxx, and the
uncertain stability threshold are approximated by truncated gPC expansions as

pmax(ε, ξ) =
Np

∑
i=1

pi(ε)ψi(ξ), Kxx(ε, ξ) =
Nk

∑
i=1

ki(ε)ψi(ξ), Ωth(ξ) =
NΩ

∑
i=1

Ωiψi(ξ), (36)

where (ε, ·) represents the eccentricity ratio dependency. The step-by-step procedure for
analyzing the stability of the rotor-bearing system under uncertainty is then summarized
as Algorithm 2.

Algorithm 2 Stability analysis of rotor-bearing system under uncertainty

1: Define the rotor-bearing system and identify the random input parameters;
2: Establish the polynomial basis functions for uncertain output parameters based on the

distribution of the random variables;
3: Generate the collocation points by combining the roots of higher-order polynomials

and also check if the origin is included;
4: Calculate the responses at the generated collocation points using the deterministic

stability analysis solver;
5: Evaluate the coefficients of the gPC expansion for each uncertain output parameter

using the least squares minimization technique;
6: Estimate the statistical properties of the uncertain output parameters—mean, standard

deviation, and corresponding PDF.
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5. Numerical Study

The numerical study consists of two parts. In the first part, the characteristics of HDB
are calculated and compared with published papers for validation. The results calculated
are then used to conduct a stability analysis. In the second part, the influence of uncertainty
on stability is investigated by applying gPC expansion. The accuracy of the gPC expansion
is confirmed by comparing the results with those of a MC simulation.

The numerical study adopts the rotor-bearing systems, as shown in Figure 3. Table 1
shows the parameters of the rotor-bearing system. For the random input parameters,
considering that the viscosity varies with variations in ambient temperature, it is assumed
that viscosity is normally distributed. Clearance is considered to have uniform distribution
due to the wear and deformation of the bearing shell and the journal. The statistical details
of the random parameters are presented in Table 2.

Table 1. Parameters of rotor-bearing system.

Description Value Description Value

Bearing radius (m) 0.1 Shaft radius (m) 0.1
Bearing length (m) 0.2 Shaft length (m) 1.2

Clearance (m) 0.15× 10−3 Young’s modulus (Pa) 2× 1011

Viscosity (Ns/m2) 8.45× 10−3 Static load (N) 1.02× 104

Table 2. Details of distribution of random parameters.

Parameter Type of Distribution PDF

Viscosity (1× 10−3 Ns/m2) Normal µ ∼ N(8.45, 0.2)
Clearance (1× 10−3 m) Uniform c ∼ U(0.12, 0.18)

5.1. Deterministic Analysis and Validation
5.1.1. Validation without Considering the Misalignment Effect

Using the present formulation, the static and dynamic characteristics of an HDB are
calculated at a constant rotation speed of 3000 rpm. To verify the present implementation,
the results available from papers [45,46] are presented for comparison. The attitude angle
Φ0 and the Sommerfeld number S in terms of the eccentricity ratio ε are presented in
Figure 4. The maximum pressures pmax under various eccentricity ratios are listed in
Table 3. These results show that the attitude angle and Sommerfeld number decrease as the
eccentricity ratio increases, at a constant rotation speed, whereas the maximum pressure
displays the opposite behavior.

The dimensionless dynamic coefficients are shown in Figure 5. The results are in good
agreement with those of the references. This indicates that the present implementation
produces reliable results, validating it for further use in this investigation.
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Figure 4. Attitude angle and Sommerfeld number compared with references [45,46].
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Table 3. Maximum pressure for various eccentricity ratios.

Eccentricity Ratio ε 0.2 0.4 0.6 0.8

pmax (bar) Qiu [46] 5.25 14.1 35.6 128
Present study 5.4 14.39 36.01 127.16
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Figure 5. Dimensionless stiffness and damping coefficients and comparison with references [45,46].

5.1.2. Validation for the Misalignment Effect

The above results are calculated while disregarding the misalignment effect. To clarify
the impact of the misalignment effect, the parameters of the HDB provided by Sun and
Changlin [20] are adopted for calculation. The parameter details are displayed in Table 4.

Table 4. Parameters of HDB provided by Sun and Changlin [20].

Description Value Description Value

Bearing radius (m) 0.03 Viscosity (Ns/m2) 9× 10−3

Bearing length (m) 0.066 rotation speed (RPM) 3000
Clearance (m) 0.03× 10−3 Eccentricity ratio 0.8

Accordingly, the maximum pressures are calculated under various misaligned angles
and shown in Table 5; they demonstrate that misalignment has a significant effect on maxi-
mum pressure. The results are compared with those presented by Sun and Changlin [20].
The comparison shows good agreement.

Table 5. Maximum pressure taking into consideration the misalignment effect.

Description α = Φ0 = 0◦ α = Φ0 = 90◦

γ/◦ 0 0.004 0.007 0 0.01 0.02

pmax (Mpa) Sun and Changlin [20] 33.06 39.6 63.58 33.06 32.95 34.95
Present study 32.73 39.29 62.2 32.78 29.41 30.48

5.1.3. Stability Analysis

Next, the stability threshold is determined using the new implementation verified
above. The parameters of the rotor-bearing system are adopted from Table 1. The mis-
aligned angles are set as α = 0◦, γ = 0.004◦. Figure 6 shows the run-up curve and
borderline calculated for both misaligned and aligned situations. These curves are used to
determine the stability threshold of the rotor-bearing system. The run-up curves in both
situations show that the eccentricity ratio ε decreases as the rotation speed Ω increases.
This implies that the journal center Oj moves towards the bearing center Ob (Figure 1) as
the rotation speed increases.
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Figure 6. The influence of the misalignment effect on run-up curve and borderline.

In the case of the borderline, the rotation speed increases as the eccentricity ratio
increases. Moreover, it is observed that the gradient (dΩ/dε) increases with the increment
of the eccentricity ratio.

By comparing the results from the misaligned and aligned conditions, it is observed
that misalignment has an obvious influence on the run-up curve. The impact of misalign-
ment varies over different parts of the borderline. It is observed that the impact is negligible
when the eccentricity ratio remains small (approximately ε < 0.4), whereas it is evident
for larger eccentricity ratios (approximately 0.4 < ε < 0.7). Furthermore, the intersections
between the respective run-up curves and borderlines, i.e., the stability thresholds, are
212.51 rad/s and 212.38 rad/s under misaligned and aligned situations, respectively. To
investigate the influence of the misaligned angle on the threshold, the thresholds are calcu-
lated under various misaligned angles, as listed in Table 6. It is found that the thresholds
in the misaligned situation are greater than those in the aligned situation. In addition, the
threshold increases as the misaligned angle increases. This implies that the misalignment
improves the stability of the rotor-bearing system, which results in the same conclusion as
that given by Qiu [46].

Table 6. Threshold for various misaligned angles.

Description α = 0◦ α = 90◦

γ/◦ 0 0.004 0.005 0.006 0.004 0.005 0.006

Threshold (rad/s) 212.38 212.51 212.56 212.62 213.54 214.27 215.12

5.2. Uncertainty Analysis

A third-order gPC expansion is employed to represent the uncertain output, in
which N = 9. Since the random parameters follow a normal and uniform distribu-
tion, the orthogonal polynomials of the system output are determined as the tensor
products of Hermite and Legendre polynomials. The roots of the fourth-order Her-
mite polynomial are {−2.3,−0.74, 0.74, 2.3}, while those of the Legendre polynomial are
{−0.86,−0.34, 0.34, 0.86}. By adding zero to the roots, 25 collocation points are produced
with which to calculate the responses. These responses are used to determine the ten
unknown coefficients by the least squares method. For uncertain parameters varying
with the eccentricity ratios, such as the maximum pressure and dynamic coefficients, the
responses and coefficients of the gPC expansion are calculated at different eccentricity
ratios. To validate the accuracy of the constructed gPC expansion, the uncertainty analysis
is also carried out by way of an MC simulation with 1000 samples. The convergence of the
MC simulation is shown in Figure 7.

It can be seen that the mean value and the variance of the stability threshold are well
converged after adopting 500 samples, which shows that these results are suitable for
validation use.
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Figure 7. Convergence of MC simulation.

5.2.1. Characteristics of HDB under Uncertainty

As the characteristics of HDB vary with the eccentricity ratio, the probability dis-
tribution and mean values of static characteristics {pmax, Ψ0, S} at ε = {0.2, 0.4, 0.6, 0.8}
are evaluated by the gPC expansion, as shown in Figure 8. The results obtained by the
MC simulation are plotted in the same graph. It is observed that the distributions vary
with the eccentricity ratio. The values corresponding to the maximum probability for each
variable differ from their mean values. Some results show a limited agreement with the
MC simulation, such as the PDF of pmax at ε = 0.2 and Φ0 at ε = 0.8. This phenomenon
results from the numerical iteration [53]. For a random system with an analytic expression
avoiding the iterative approach, the consistency will be better. Generally, the PDF and
mean values obtained by gPC expansion display good accordance with those obtained
by the MC simulation. This indicates that the constructed third-order gPC expansion is
accurate enough to approximate the random outputs. Furthermore, it is clearly known
that the number of collocation points required for gPC expansion is much smaller than the
number of sampling points required for MC simulation of similar accuracy.

Figure 9 shows the mean values of each variable with different eccentricity ratios, for
the dimensionless dynamic coefficients. To illustrate the influence of random parameters,
the values corresponding to the 95% confidence interval are also plotted. It is revealed, for
small eccentricity ratios, that the confidence intervals have a wider band for Kyx, Dyy and
large ratios for Kyy. This is because the sharp change in these dynamic coefficients for these
regions makes them more sensitive to the eccentricity ratio.
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5.2.2. Stability Threshold under Uncertainty

The mean values and the 95% confidence intervals of the run-up curve and the
borderline are shown in Figure 10. It is observed that the run-up curve is more sensitive
to the random parameters than the borderline. It is also found that an intersection of the
run-up curve and borderline may occur at any point within the region bounded by their
95% confidence intervals. The bounded region is surrounded by black and red dashed
lines, respectively. This represents the possible zone within which the stability threshold
can fall.
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Figure 10. Mean values of run-up curve and borderline by gPC expansion and their 95% confidence
intervals plotted with dashed lines as the boundary.

The PDF, mean value, and 95% confidence interval of the stability threshold are
evaluated using the gPC expansion, as presented in Figure 11. The PDF matches well
with that of the MC simulation. The mean values of the stability threshold obtained by
the gPC expansion and by MC simulation are 212.46 rad/s and 212.53 rad/s, respectively.
These values are close to the deterministic result. However, the mean value of the stability
threshold lies outside the maximum probability region. The 95% confidence interval of
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the stability threshold is from 210.69 rad/s to 215.96 rad/s, which means that the system
should avoid this region during operation.
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Figure 11. PDF of stability threshold by gPC expansion and MC simulation.

6. Conclusions

This paper has presented a stability analysis of a rotor-bearing system taking into con-
sideration the misalignment effect and uncertainty in a finite-length HDB. Determination of
the stability threshold is guided by the Routh–Hurwitz method. The gPC expansion is used
to quantify the impact of uncertainty. The characteristics of the HDB used to determine
the stability threshold are calculated by numerical solving of the governing equations.
The accuracy of the results is verified by comparison with those published in previous
papers. The misalignment effect is investigated by introducing two misaligned angles
in the expression of thickness of the oil-film. The results show that misalignment has a
remarkable effect on the characteristics of the HDB and the run-up curve. The impact of
misalignment on the borderline is negligible for a small eccentricity ratio, but evident for
a larger eccentricity ratio. Moreover, the stability threshold increases as the misaligned
angles increase. To study the influence of uncertainties on the stability threshold, clearance
and viscosity are assumed as random parameters with predefined distribution. Using the
collocation method, the gPC expansion is constructed by solving the responses at a series
of specific collocation points using the deterministic code. MC simulation is implemented
as a validation. The results show that the stability threshold becomes uncertain since the
random input parameters can affect the static and dynamic characteristics of the system.
By comparing the evaluated statistical properties of random outputs, it is apparent that
gPC expansion is able to approximate the random parameters with reasonable accuracy.
The results also illustrate that gPC expansion is more efficient, since it requires far fewer
sample realizations.

In this study, the bearing force is considered linear and an analytical rotor is employed
for the stability analysis. These are the main limitations of this study, which might limit its
significance for direct industrial application. However, according to the previous studies, it
is suggested that the developed framework is suitable to understand the performance of
the rotor-bearing system. In addition, the interdisciplinary approach of combining stability
analysis, misalignment effect, and uncertainty analysis using a gPC approach builds a
bridge between these subjects. In the future, the nonlinear behavior of physical quantities
and a complex rotor model will be simulated and investigated experimentally to close the
gap between the purely numerical approach and a real physical model.
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Appendix A

Coefficients αi(i = 0, 1, . . . , 6) in Equation (23),

α0 = β0Ω̄2,

α1 = β1Ω̄,

α2 = β2 + (2β0 + νβ4)Ω̄2,

α3 = (2β1 + νβ3)Ω̄,

α4 = 2β2 + (ν2 + β0 + νβ4)Ω̄2,

α5 = (β1 + νβ3)Ω̄,

α6 = β2,

(A1)

where Ω̄ =
Ω
ωn

, ν =
c

W/ks
. Coefficients βi (i = 0, 1, . . . , 4) in Equation (25),



β0 = KxxKyy − KxyKyx,

β1 = KxxKyy − KxyDyx + KyyDxx − KyxDxy,

β2 = DxxDyy − DxyDyx,

β3 = Dxx + Dyy,

β4 = Kxx + Kyy.

(A2)
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