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Abstract: This study presents an approach to collect and classify usage data of public charging
infrastructure in order to predict usage based on socio-demographic data within a city. The approach
comprises data acquisition and a two-step machine learning approach, classifying and predicting
usage behavior. Data is acquired by gathering information on charging points from publicly available
sources. The first machine learning step identifies four relevant usage patterns from the gathered data
using an agglomerative clustering approach. The second step utilizes a Random Forest Classification
to predict usage patterns from socio-demographic factors in a spatial context. This approach allows
to predict usage behavior at locations for potential new charging points. Applying the presented
approach to Munich, a large city in Germany, results confirm the adaptability in complex urban envi-
ronments. Visualizing the spatial distribution of the predicted usage patterns shows the prevalence
of different patterns throughout the city. The presented approach helps municipalities and charging
infrastructure operators to identify areas with certain usage patterns and, hence different technical
requirements, to optimize the charging infrastructure in order to help meeting the increasing demand
of electric mobility.

Keywords: charging infrastructure; electric mobility; usage types; analysis; automated retrieval;
clustering; machine learning; socio-demographic data; usage prediction

1. Introduction

With the rise of electric mobility, the task to provide charging infrastructure (CI)
has gained importance over the last few years. Whereas in the beginning, CI had to be
deployed without a priori knowledge about potential utilization, today, a growing network
of CI allows for data-based decisions concerning the amount and type of CI to be built.
However, the quality of decisions depends on the availability of data. As most operators of
CI keep (at least parts of) the information on charging events (CEs) private, a big challenge
is the scarcity of information. Hence, the paper at hand deals with the information that
can be retrieved from publicly available sources on the utilization of CI. Therefore, we
follow a multi-step approach, including data gathering, usage behavior classification,
and usage prediction:

1. We present a steady approach to gather data from a public website about CEs.
2. Using the data, we calculate the utilization per charging point (CP).
3. Based on the utilization, we employ an agglomerative clustering in order to identify

usage patterns.
4. In a final step, we use a machine learning approach to predict a CP’s usage pattern

based on socio-demographic data of its environment.

By implementing the presented approach, operators of CI, as well as city administra-
tions, can be supported in their decisions about the type and amount of CI to be built up in
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the future. Due to the availability of socio-demographic data, we chose the city of Munich,
Germany, to present our approach.

The remainder of this paper is structured as follows: Section 2 discusses relevant liter-
ature and highlights the research gap. The collected data is described in Section 3. Section 4
describes the calculation of utilization, as well as the first part of our machine learning
approach that derives usage patterns. The second part of our machine learning approach
is presented in Section 5 and predicts usage patterns from available socio-demographic
information. Section 6 discusses the results, and Section 7 concludes the paper.

2. State of the Art and Related Work

The following section reviews the relevant literature from which a research gap can
be derived. This study addresses this gap in the research for CIs. The charging behavior
of Plug-In Electric Vehicles (PEVs) has already been the subject of several studies and has
been investigated using various data sources and methodological approaches. For a better
understanding, the following review is structured into three parts, with the data basis and
the methodological approach used as the sorting criterion. The first part looks at studies
that analyze the mobility and charging behavior of PEVs based on vehicle and User data.
The second part evaluates publications that deal with user behavior at public charging
stations (CS) based on charging infrastructure data. The first two parts, thus, describe the
usage and charging behavior of PEVs based on real trips and CEs. The last part deals
with relevant literature where charging behavior of PEVs has been researched based on
simulation models.

Table 1 provides an overview of the relevant literature. In addition to the Authors,
the table contains further information about the Data Classification Criteria in the review
(EV = vehicle data, Survey, CID = charging infrastructure data, and SM = simulation
model), the time Period over which the data of the study was collected, the Number of
Charging Points/Vehicles collected, and whether the Access to the Data set is public or not.
In addition, the main results of the investigations are summarized.

Table 1. Overview of related literature.

Authors Data Period No. CP/EV Data Public Results

Kessler and
Bogenberger [1]

EV 2015 40 - • Analysis of the mobility and charging behavior of
first-generation PEVs
• Derivation of three user types

Krause et al. [2] Survey 2015–2016 117 - • Empirical charging behavior, thresholds for
residual SOC, detour acceptance
• Estimates of energy consumption at CE

Philipsen et al. [3] Survey 2017–2018 1021 - • Charging behavior, influence of personal traits
• Comparison of in refueling/recharging behavior
PEV and conventional

van den Hoed et al.
[4]

CID 2012–2013 >500 - • Numerical evaluation of usage behavior of public
CS
• Transmitted energy, utilization and idle duration

Wolbertus et al. [5] CID 2014–2015 >5600 - • Comparison of usage behavior of public CS for
different areas

Wolbertus and Van
den Hoed [6]

CI 2013–2016 158 - • Analyze effects of use parking spots at CS
overnight by all vehicle types
• Evaluation of the effects by means of a natural
experiment

Wolbertus and van
den Hoed [7]

CID 2016 >5600 - • Quantification of idle connection duration

Wolbertus et al. [8] CID 2014–2016 >5600 - • Classification of CEs according to connection
duration
• Multinomial regression analysis with the classes
formed
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Table 1. Cont.

Authors Data Period No. CP/EV Data Public Results

Gerritsma et al. [9] CID 2017–2018 42 - • Quantification of the potential for shifting CEs

Almaghrebi et al. [10] CID 2013–2018 90 - • Classification of CEs according to connection
duration
• Multinomial regression analysis with the classes
formed

Olk et al. [11] CID 2016–2018 - X • Numerical evaluation of usage behavior of public
CS
• Quantification of usage probabilities

Almaghrebi et al. [12] CID 2013–2019 97 - • Evaluation and classification of transferred energy
• Multinomial regression analysis with the classes
formed

Almaghrebi et al. [13] CID 2013–2019 97 - • Prediction of energy demand due to CEs

van der Kam et al.
[14]

CID 2016–2018 24,955 - • Roll-Out strategy for charging infrastructure
• Decision tree for structuring recommendations for
actions

Hecht et al. [15] CID 2019–2020 26,951 X • Numerical evaluation of usage behavior of public
CS
• Classification of the results according to CP power
rating

Fischer et al. [16] CID 2020 1156 - • Quantification of idle connection duration
• Correlation analysis share of idle duration with
location factors

Anderson et al. [17] SM 2008 - X • Quantification of the required number of charging
points for PEVs in Germany
• Agent-based simulation based on German
National Travel Survey

Adenaw and
Lienkamp [18]

SM - - - • Prediction of PEVs charging behavior and
charging locations
• Agent-based simulation

2.1. Vehicle

Research concerning electric mobility always reflected the development within the
sector. Early research in the field focused on usage and user adoption of new vehicles,
with a switch in later analyses towards usage types and comparisons to users of internal
combustion engine (ICE) vehicles. In Reference [1], usage data from 40 BMW i3 vehicles
over one year starting in 2015 is analyzed. This vehicle fleet also served as the data basis in
the study of Reference [19] for the investigation of energy-efficient routing algorithms, in
Reference [20] as the basis for estimating the potential for vehicle-to-grid concepts and in
Reference [21] for evaluating public charging concepts for curb parking. As can be seen,
vehicles were not utilized as a household’s primary vehicle, as the lack of commuting
patterns suggests. Especially the length and duration of seized trips hint towards a cautious
usage of PEVs. Hence, the presented charging patterns and thresholds are a first rough
estimation about future usage for PEVs, where CEs predominantly started in the afternoon
at home with an average state-of-charge (SOC) of 54% and a traveled average distance
of 50 km since the last CE, solely a fraction of the available range of the utilized vehicles.
After all, such results highlight two problems: (1) early PEVs available were not perceived
as a full substitute for ICE vehicles, and (2) pilot programs considering the topic only had
data from early-adopters available, that did not necessarily reflect later usage of vehicles
and infrastructure properly.

A small survey conducted among PEV users in 2015/2016 and concerning charging
behavior is presented in Reference [2]. Users here, as well, stated to perform on average
around 40% of CEs at public CI, while residual SOC when starting to look for a charging
point (CP) averaged at 28% in rural areas and 19% in urban areas. These results indicate
that users project between 30 to 40 km as a reserve to keep moving with their vehicles.
Based on calculated values for SOC at CP arrival, realistic fast-charging CP usage was
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stated around 63% of battery capacity, narrowing down the energy quantities necessary to
be available. After all, the work gives insights into early EV usage. Comparing the results
to Reference [1], it becomes clear that users tend to keep a safety threshold in terms of
battery capacity to reach their next CP, reducing the available battery capacity. Comparing
rural and urban area behavior, a continuously available network of CPs seems to reduce the
safety threshold kept by users, allowing for more effective range to utilize. A later study,
based on a survey of 1021 respondents in 2017/2018 with users of ICE and PEV [3], reflects
parts of the charging patterns, already seen in Reference [1,2]. The main findings include
differences, as well as similarities, in vehicle usage. PEV users tend to charge vehicles more
often with smaller quantities of energy in a more habitual charging pattern at known CPs,
especially when comparing to battery sizes. The share of CEs carried out at public CI is
found to be around 40%, a result also found in other literature [2]. Furthermore, it is found
that personality traits are an influential factor in refuel/recharge patterns for both types
of vehicles.

Focusing on differences in the choice of CPs, a survey among 3201 users of PEV/Plug-
In Hybrid Electric Vehicles (PHEVs) is utilized to build a Discrete Choice Model in Refer-
ence [22]. Results show that choosing between public charging, home charging, and work
charging is predominantly related to housing situation, electricity prices, and vehicle range.
While users living in single detached homes chose home charging in 37% of all cases, this
number drops to 12% for all users living in apartments. PEV users with free charging at
work choose this option in 44% of all cases, compared to 15% when it is not free. Finally,
users with longer ranges show the tendency to charge solely at home or at work, while
public CI is neglected. Alternative approaches utilizing in-vehicle data can be found in
Reference [23], where data from on-board units of ICE vehicles are utilized to find initial lo-
cations for CPs, and Reference [24] where such data was incorporated to simulate demand
for CPs in context of commercial vehicle usage.

2.2. Charging Infrastructure

In parallel, research was conducted on usage data from CI, especially usage data of
CPs, allowing for insights of utilization patterns of the particular infrastructure and in
the context of its spatial and demographic environment. By utilizing such data, it was
possible to gain a more detailed understanding in terms of optimization, infrastructure
requirements, and policy application in order to foster the distribution of PEVs.

The usage behavior of electric vehicle drivers at public CSs was investigated for the
first time based on a comprehensive data set in Reference [4] and was followed up by
Reference [5–8]. The research is based on several million CEs recorded and processed as
part of the Intelligent Data driven Optimization of CI (IDO-Laad) research project at public CSs
in the Amsterdam metropolitan region and the cities of Amsterdam, Rotterdam, The Hague,
and Utrecht. In Reference [4], the usage behavior of PEVs at public CPs in Amsterdam
was investigated from April 2012 to April 2013, thus being at an early stage of electric
mobility. The data of the CEs was analyzed numerically to describe the usage behavior
based on the number of CEs, the amount of energy transferred and the utilization of CSs
on the level of different main districts, as well as for different user groups. Based on
this, the usage behavior of public CSs in the Amsterdam metropolitan region and for the
same four Dutch cities as before was analyzed in Reference [5] and compared within the
framework of a benchmark analysis. The evaluations take place comparatively on the
level of the investigated cities and regions, and represent a reference to different roll-out
strategies for charging infrastructure. In Reference [6], the results of a natural experiment
were documented in which CSs in areas with comparable parking pressure were equipped
with and without a parking time regulation. Here, access to parking spaces at CSs was
allowed exclusively for PEVs during the day from 10 a.m. to 7 p.m. and in a second period
from 10 a.m. to 10 p.m. Outside this period and, thus when parking overnight, the parking
spaces were accessible to all vehicle types. The results show the high influence of parking
regulations on the occupancy behavior of the CSs. Thus, CSs in regions without parking
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time regulations were occupied significantly less by charging PEVs in the evening than
charging stations in regions with a corresponding regulation. In Reference [7], the focus
was on quantifying the idle connection time of CEs. Here, the term charging station hogging
was introduced, which describes an occupation of the CP by PEVs even after the charging
phase has been completed. The CPs occupied by fully charged PEVs are no longer available
for other vehicles. Hogging or idle time, thus, influences the potential energy sales of public
CPs and should, therefore, be minimized. In Reference [8], CEs were divided into five
different categories depending on the connection duration and analyzed in a multinomial
regression analysis. Among other factors, four characteristics of the city were also taken into
account. Overall, the investigations are based on a qualitatively and quantitatively high
quality data set, which, however, is not freely available. The data was primarily processed
by numerical evaluations and partly enriched with socio-demographic data of the cities.
However, no reference was made to locations at the level of city districts or city quarters or
the derivation of specific connection patterns at CSs of the same performance class.

Analyses based on comparatively smaller data sets were carried out in
References [9,10,12,13,25]. The study presented in Reference [9] is based on CI data from 42
public CPs collected over a one-year period between 2017 and 2018. The high-quality data
set contains information on the amount of energy transferred, as well as a customer and
vehicle identification, in addition to the connection time. The data was used to investigate
the potential to time-shift CEs with the aim of relieving the local distribution network
during periods of increased power demand. Other studies are based on CI data collected
from approximately 100 public CPs between 2013 and 2019 [10,12,13]. In Reference [10],
charging behavior is divided into five different categories depending on the connection
duration, comparable to Reference [8], and analyzed with a multinomial regression analysis.
As location categories, the charging locations were divided into four groups (education,
workspace, shopping center, and other public parking lots). In addition, four times of day
were defined as temporal categories (morning, afternoon, evening, and night). The results
show, for example, that short CEs between 0 and 2 h mainly took place in the afternoon
and evening at shopping centers. In Reference [12], the same methodology was applied
with four categories depending on the amount of energy transferred, and, in Reference [13],
the existing data set was used to assess the prediction of energy demand by CEs at the
recorded public CPs through different approaches. Based on the data of 711 CPs in Ireland
from 2013–2015, in Reference [25], differences between fast-charging and standard CPs
are distinguished, showing differences in CI sites can have an impact on usage. In partic-
ular, chargers were aggregated by five different location characteristics. Still, the largest
differences in usage characteristics were found between fast-charging and standard CPs.
Furthermore, the general distribution of CE-starts is presented for the data, resembling the
general distributions found in this work, as well as in Reference [7,15,18,26].

In Reference [14,16], distinct recommendations for decision-makers were derived
based on the evaluation of CI data. Central parameter in both studies was the proportion
of idle connection time. In Reference [14], a decision tree was developed in order to be able
to directly derive political measures for the control and optimization of public charging
concepts on the basis of recorded charging behavior. For example, it is recommended
to improve the cost efficiency of public CPs by integrating them more closely into the
energy grid if there is a high proportion of idle connection time. Approaches to reduce
energy costs and the load on the distribution network are discussed as specific measures.
In Reference [16], a methodology is presented to quantify the idle connection time at public
CPs on the basis of a qualitatively limited data set. For this purpose, the CEs at public
CSs were analyzed with information on the amount of energy transferred and connection
time within the framework of a scenario-based evaluation, and the results were linked to
a structural data set of the charging locations. The results showed a moderately positive
correlation between the share of idle connection time and the share of dense housing, which
can be attributed to the frequent overnight charging of PHEVs in residential areas without
private parking slots.
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The studies listed above were based on data sets provided by operators or cities as part
of research projects and are generally not freely accessible to third parties. References [11,15]
are based on occupancy data of public CPs collected via public websites of several roaming
platforms. Although the data is publicly accessible in this case, it only contains data on
connection time and is, thus, qualitatively more limited compared to the data sets in the
previously listed studies. In Reference [11], data was gathered from a website of the Irish
Board of Electricity between 2016 and 2018 and peak periods in the use of public CSs in the
study area were derived. A more detailed analysis for Germany was carried out by the
same authors in Reference [15]. For this purpose, data from public websites were again
collected over a period of 3 months between the years 2019 and 2020 and analyzed with five
location types (urban, suburban, industrial, uninhabited, and non-fitting), among others,
as part of a linear regression analysis. Results indicate usage of chargers in the data set is
rather low with rarely above 20% occupation. Furthermore, differences in usage between
chargers in industrial, urban, and suburban areas are detected with urban chargers adding
a further peak in the early evening. Finally, the utilized regression model revealed that the
most relevant factors in analyzing the usage of CPs is given by spatio-demographic data,
while factors concerning specific hours or weekdays perform rather weak.

2.3. Simulative Approaches

A third approach introduced in literature is the application of simulations towards
estimates of future CI requirements and potential usage. Based on survey data and basic
assumptions of parking behavior and fleet composition, in Reference [17], an agent-based
simulation is utilized to find an estimate for the number of CPs needed in Germany. Results
show notable influences of on-street charging, home charging, and the share of PHEVs in
the fleet towards the number of CPs needed. A more detailed analysis based on an agent-
based simulation is presented in Reference [18], where charging behavior and location
choice for charging are explicit inputs based on realistic assumptions. As a result of the
conducted case study of Munich, Germany, usage-patterns, as well as occupancy patterns,
of public chargers are generated and analyzed and further compared to patterns from Ref-
erence [7,15], showing only slight differences to real data. Such simulative approaches
allow for evaluations of CI requirements in large scale networks, as well as expected usage
for local CI, giving insights for further expansion by operators. Based on such approaches,
even implications of operative measures can be estimated. Still, relevant inputs and correct
causalities are vital for this method; therefore, the results presented in this paper can help
to meet these needs for correct simulations.

2.4. Research Gap

The studies listed in the review have investigated the charging behavior of PEVs on
the basis of various data sources. The accessibility of the data set presents a major hurdle
for verification and further investigation by third parties. Among the studies listed, only
References [11,15,17] are based on publicly accessible data sets. Furthermore, the charging
behavior was mostly based on classifications of connection duration, charging duration,
idle duration, power rating, or the amount of energy transferred. Furthermore, only in a
few cases were the derived usage behavior and the land use of the CSs linked for further
insights. However, this link represents an important basis for decision-making for the
construction and operation of public CSs.

The work presented here closes this gap. For the first time, different connection
patterns for CSs of the same power rating are formed and compared with criteria of
charging locations by means of a two-step machine learning approach. The usage behavior
is based on charging infrastructure data from a freely accessible website and can, thus,
be reconstructed and transferred to other areas. The methodology for extracting and
processing the connection data is explained in Section 3. The results enable a better
understanding of the usage behavior of public CSs by electric vehicle drivers, as expected
usage patterns for CSs of the same power rating can be determined and assigned to
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objective location criteria in urban areas. Overall, this results in an improved decision-
making basis for the selection, installation, and operation of public charging concepts in
urban areas.

3. Gathering Publicly Available Data

Having highlighted the research gap in the previous section, this section introduces
the first step of the proposed approach. We explain how data was gathered and prepared
for the next step, which is presented in Section 4.

The data analyzed in this paper was collected from an online charging infrastructure
status map (ISM) of an e-mobility service provider and comprises 2409 charging points
in and around Munich between 6 May 2021 and 6 October 2021. Within the observation
period, two outages occurred, leading to a loss of three days worth of data. Figure 1 shows
the observed area and gathered CPs.

Figure 1. Observed charge points. Blue circles denote AC-only parks, red squares DC-only charge
points. Black Box marks observation area with corners south-west at EPSG:4326 coordinates
47.90614, 11.05211 and north-east at 48.36607, 12.03568. Background tile credit: OpenStreetMap con-
tributors.

3.1. Terminology

The Open Charge Point Protocol [27], which standardizes the communication between
PEV and CPs, introduces a 3-tier model for classifying CI components. Figure 2 visualizes
this model.

A Charging Station refers to a physical system used to charge EVs and potentially
contains multiple Electric Vehicle Supply Equipments (EVSEs). An EVSE is defined as
“a part of the CS that can deliver energy to one EV” [27]. An EVSE is usually associated
with one CP, also referred to as connector, i.e., the physical outlet. An EVSE may comprise
multiple CPs, for example, two electrical outlet types to support multiple plugs; however,
only one CP of an EVSE may be actively used at any one time. An EVSE is associated with
an EVSE identifier (EVSE-ID), which uniquely identifies the comprising CP(s). This paper
operates on the layer of CPs, identified by their EVSE-ID.
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EVSE

Charging Station

Charge Point

EVSE

Charge Point

Charge Point

Charge Point

Figure 2. Three-tier model as defined by the Open Charge Point Protocol.

3.2. Retrieval

Data from the ISM was retrieved every 15 min and comprises the status per CP,
the associated EVSE ID, and the timestamp since the observed status went into effect. The
CP may be in status available, occupied, defect, or unknown. Status ’occupied’ indicates
a connected but not necessarily charging vehicle. Information on the charging time and
transmitted power is not available. Table 2 describes the gathered data.

Table 2. Schema of gathered data points.

Name Description Unit

EVSE-ID EVSE Identifier, identifies one CP string
status CP Status (available, occupied, defect, or unknown) string

status timestamp Timestamp since the status went into effect timestamp

A Python system was developed, which repeatedly fetches the status information for
each CS displayed on the ISM. Data gathering consists of two phases: First, an overview
data-set is gathered in a singular request, which contains the fused status of each CS. A CS
is assigned the fused status ’occupied’ if at least one of the contained CPs is occupied;
otherwise, it is assigned the status ’available’. Second, the detailed status information per
CS is requested, which yields status information on the CP level. Figure 3 visualizes the
two-phase data gathering.

Gatherer Data Source

 Phase 1 - Overview 

 Phase 2 - Detail 

fetch overview data 
for  stations𝑁

fetch detail data
for station 𝑖

∀𝑖 ∈ 𝑁
′

remove redundant
stations 𝑁 ′

Figure 3. Overview of two-phase gathering sequence. Phase 1 fetches overview data for all stations
in one request, and Phase 2 iterates through all stations and fetches detail data.

Since the detailed status information in Phase 2 has to be requested for each individual
CS, several hundred requests have to be sent for a complete gathering run. In order to
reduce the network and server load, the overview data gathered in Phase 1 is used to filter
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the CSs requested in Phase 2. A request is considered redundant if both the previously
recorded and currently gathered CS status is ’available’. Then, it is concluded that either
no charge events have happened in between, or potential CEs have been missed. In either
case, no new information may be gathered, and the Phase 2 request is filtered.

Depending on the time of day, this filtering approach reduces the number of requests
per gathering run by 30% to 50%. In addition, the gathering system is rate-limiting the
requests to further reduce network and server load.

3.3. Transformation

Using the provided status timestamp, the complete event intervals are reconstructed:
The event start of, for example, a CE is set to the timestamp since the observed ’occupied’
status went into effect. The event end is set to the status timestamp of the subsequent event.
Assuming no events are missed, then, every event interval is accurately reconstructed. This
transformation also captures events shorter than 15 min, assuming that the status was
gathered during occupation. Events shorter than 15 min occurring entirely between two
gathering runs, however, cannot be recorded.

In the event of a brief ’available’ event shorter than 15 min, which separates two
CEs, then, the separating ’available’ event is not recorded. However, the two CEs are still
distinguished, since their respective start timestamps differ. The first CE is set to end at the
start of the second CE, and the separating ’available’ event is, thus, considered as a part of
the first CE. CE intervals are reconstructed with no error if the separating event is recorded,
or with an error of, at most, 15 min, if the separating event is not recorded.

Table 3 shows the schema of the transformed data points.

Table 3. Schema of transformed data points.

Name Description Unit

EVSE-ID EVSE Identifier, identifies one CP string
status CP Status (available, occupied, defect, or unknown) string

status start Timestamp marking status start timestamp
status end Timestamp marking status end timestamp

4. Deriving Usage Patterns of Charge Points

Based on the data gathered according to Section 3, this section gives an overview of
characteristics of the charging data and the calculation of utilization, as well as the first
part of our machine learning-approach: identifying utilization patterns of public CI.

4.1. Charge Event Lengths

In a first step, the gathered data from public CI is described. Figure 4 shows a
histogram of the gathered CEs by duration and power-type with a bin size of 10 min. Based
on this depiction, several observations can be made:

Figure 4a displays a visible decrease at the four-hour mark. The gathered data com-
prises CPs in and around the city of Munich, and 51% of all AC CPs are operated by
the Stadtwerke München (SWM). At several AC CPs, SWM enforces a maximum charge
duration of four hours between 8 a.m. and 8 p.m.

In addition, about 20% of all AC CEs are between 6 and 18 h long, which primarily
originate from over-night charging. Figure 5 shows a histogram of CE starts and compares
the duration groups 0 to 6 h (blue) and 6 to 18 h (orange). The latter group peaks in the
evening hours, which represent overnight CEs.

Figure 4b displays the histogram of DC CPs and shows a peak at the 30 min mark.
The variance is significantly lower as compared to Figure 4a, and over 90% of all DC CEs
are, at most, 2 h long.
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Figure 4. Histogram and cumulative charge interval lengths per power type with bin size 10 min,
(a) shows AC CPs, and (b) shows DC CPs. Data from 6 May 2021 to 6 October 2021.
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Figure 5. Histogram of AC CE starts for events shorter than 6 h and between 6 h and 18h, bin size one
hour. CEs 6 to 18 h long primarily start in the evening hours. Data from 6 May 2021 to 6 October 2021.

4.2. Charge Event Anomaly

Figure 6 shows a histogram of CEs by length for AC CPs with a bin size of 30 s and
truncated to, at most, 6 h in charge length for readability. In comparison to Figure 4a, which
displays the same data but with a bin size of 10 min, three additional observations can
be made.

First, a spike in the number of CEs at 30 min is visible. Of all 4576 CEs in this bin,
2620 originate from 20 CPs from one operator. All 20 CPs exhibit CEs with precisely 30 min
in length, although not all CEs from these CPs display this behavior. This suggests that
either some customers of this operator are permitted to charge, at most, for 30 min, or the
operator automatically stops CEs after 30 min.
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Figure 6. Histogram and cumulative charge interval lengths for AC CPs with bin size 30 s, truncated
to, at most, 6 h. Data from 6 May 2021 to 6 October 2021.

Second, the histogram does not show a continuous distribution of CEs. Instead, a
discretization pattern is visible with a frequency of two minutes, although not all events
follow this pattern. It is speculated that some component in the CI polls data with a
two-minute frequency. The section J. MeterValues in the Open Charge Point Protocol
introduces the Transaction Meter Values, which describe “frequent (e.g., 1–5 min interval)
meter readings taken and transmitted (usually in ‘real time’ to the CSMS [Charging Station
Management System]) [...]” [27]. The frequency is controlled by two parameters denoting
the “time (in seconds) between sampling of metering (or other) data”. This suggests that
some operators have set these parameters to 2 min, resulting in the visible pattern.

Third, three distributions are visible, which display an interference-like pattern at
around 1 h, 45 min and again at 3 h, 30 min. Figure 7 shows a close-up of the first
interference in Figure 6.
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Figure 7. Close-up of charge interval lengths for AC CPs with bin size 30 s. Data from 6 May 2021 to
6 October 2021.

Assuming CPs dispatch status information every two minutes, then, the CE length
will be a multiple of 2 min. Choosing a bin size of 30 s leads to a histogram with every
fourth bin containing the majority of events. These bins can be described with the set
B = { f ∗ x | x ∈ N+

0 }, with f as the polling interval in minutes. Elements b ∈ B represent
the left bin edge.

The observed interference pattern may be explained by a continuous drift in the charge
station clock. This drift then causes delayed transaction meter readings: readings which
should be taken at 1 h, 58 min may instead be taken at 1 h, 58 min, 30 s after starting the
CE, which will subsequently be assigned the next-larger bin. For a dispatch frequency f of
2 min and a bin size b of 30 s, the bins with the majority of events can be described with the
set Bα = { f ∗ x + αb | x ∈ N+

0 }, with α ∈ N+
0 determining the phase shift or the number of

bins a meter reading is shifted rightwards. For the given bin size and dispatch frequency,
a packet can, at most, drift three bins before it is ’in-phase’ again.
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Figure A1a displays the complete histogram for AC CPs and shows additional inter-
fering groups with larger α values. Figure A1b shows the 30-s histogram for DC CPs and
displays a similar discretization pattern. Due to the limited length, however, interference
patterns do not appear.

The source of this phase drift remains to be speculated. However, the observed
interference patterns do not contain information with regards to the CP usage. Instead,
they are a consequence of the observed two-minute discretization, assumed clock drift,
and the employed visualization method. The smallest bin size that does not lead to
interference patterns is two minutes, which will be used in the subsequent analyses.

4.3. Occupancy Analysis

In this paper, we define “occupancy” as the number of CEs relative to the total number
of possible CEs, per time interval and per CP. An occupancy of 40% between 11:00 and
11:10 denotes that between 11:00 and 11:10 on any day, on average 40% of all CPs have
been observed to be occupied. Calculating the occupancy for CEs, which comprise the start
and end timestamp, is similar to a histogram raster approach, which is described below.

4.3.1. Calculating Occupancy

For a time interval f of ten minutes, a raster R is generated, containing 144 bins,
each representing the number of CEs for one ten-minute slice. Next, all bins which are
overlapped by a CE, denoted e, are determined and the counter at each bin is incremented
by one. This process is repeated for all CEs.

We define raster R as a sorted, zero-initialized array, with length N = d 60∗24
f e denoting

the number of f -sized bins in R, assuming R spans one day. Each element stores the counter
of the associated bin. For a resolution f of 10 min, this gives an array R of length 144 with
bins [00:00,00:10),[00:10,00:20),..,[23:50,00:00).

In order to determine the bins overlapped by event e, the first and last bin is deter-
mined by considering the time-of-day component of the event start and end timestamps
estart and eend. Each bin b ∈ R can be addressed by its index in R, starting at 0. Using
timestamps estart and eend, the bin indices istart

e and iend
e are calculated, which denote the

bin containing the CE start and end, respectively. Assuming that event e does not exceed a
length of 24 h, it can then be concluded that all bins between istart

e and iend
e are overlapped

by event e. In case of an event crossing midnight, index iend
e will be smaller than istart

e .
In this case, the bins after istart

e and before iend
e are considered. Indices istart

e and iend
e for

timestamps estart and eend are calculated via the formula:

istart/end
e = bh(estart/end) ∗ 60 + min(estart/end) + sec(estart/end)÷ 60c ÷ f .

The functions h(), min(), and sec() denote the hour, minute, and second component
of estart/end, f again denotes the time interval. Algorithm 1 shows the pseudo-code for the
transformation approach.

The returned raster R is an array with length N, where each element denotes the
number of CEs overlapping the associated bin. These values are then normalized with
respect to the total number of possible CEs. The resulting fraction denotes the occupancy
as initially defined.

Note that this approach requires CEs to be, at most, 24 h− 2 ∗ f long. As described
in Section 4.2, the smallest time interval f not leading to interference patterns is 2 min.
The following analyses, therefore, filter for CEs shorter than 23 h and 56 min. This filter
excludes less than 1% of all recorded CEs.

4.3.2. Occupancy Analysis Results

Figure 8 shows the occupancy for all CPs per power type.
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Algorithm 1: Create a histogram raster for a given list of charge events.

Function IntervalToRaster( f , events):
Data: f : time interval in minutes, events: list of charge events with start and

end timestamp
R← Array[0, d 60∗24

f e]
for estart, eend ∈ events do

istart
e ← bh(estart) ∗ 60 + min(estart) + sec(estart)÷ 60c ÷ f

iend
e ← bh(eend) ∗ 60 + min(eend) + sec(eend)÷ 60c ÷ f

if istart
e < iend

e then
R[istart

e : iend
e ]← R[istart

e : iend
e ] + 1

/* R[a : b] denotes all elements with index a ≤ i < b */
else

/* event e crosses midnight */
R[istart

e :]← R[istart
e :] + 1

R[: iend
e ]← R[: iend

e ] + 1
end
return R
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Figure 8. Occupancy of all observed CPs, bin size 2 min. Data from 6 May 2021 to 6 October 2021.

Several insights are provided by this analysis. DC CPs are overall less occupied and
primarily used throughout the day. AC CPs display occupancy peaks at 08:00 to 10:00 UTC
and 17:00 to 19:00 UTC. In addition, AC CPs are primarily used throughout the day but
display a larger occupancy at night compared to DC CPs. Within the observation time
frame, local time in Munich is given in CEST, which is UTC+2.

Figure 9 shows the occupancy for all CPs per power type and per weekday. Columns
represent the weekdays, and occupancy is indicated by color brightness. The color is
normalized by the minimum and maximum of AC and DC occupancy, respectively. Pure
black indicates minimum occupancy rather than zero occupancy, while pure white indicates
maximum occupancy rather than full occupancy.

This analysis provides further insight into differing occupancy per day of week. DC
CPs display minor deviations and a low occupation in general of, at most, 9%. AC CPs
display visible deviations in both time-of-day and weekday. Occupancy peaks in the
morning and late afternoon, as observed in Figure 8 are visible throughout the week,
but are most pronounced on Tuesday and Friday. Sunday displays the least occupancy,
and Tuesday, Friday, and Saturday display the most. CEs throughout the night are minimal
on Monday and Sunday mornings and maximal on Wednesday and Friday mornings.
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(a) Weekday occupancy for AC CPs.

(b) Weekday occupancy for DC CPs.

Figure 9. Occupancy of all observed stations per weekday: (a) shows AC CPs, and (b) shows DC CPs.
Bin size is 2 min, and color brightness indicates occupation. Color bar is normalized by minimum
and maximum of AC and DC occupancy, respectively. Data from 6 May 2021 to 6 October 2021.

4.4. Extracting Usage Patterns

Based on the occupancy algorithm introduced above, we utilize the occupancy gener-
ated for all CPs and extract usage patterns using an agglomerative clustering approach.

4.4.1. Agglomerative Clustering

Agglomerative clustering is an unsupervised, bottom-up clustering algorithm [28].
Initially, each datum is assigned a singleton cluster. In this paper, the occupancy curve
from one CP represents one datum. The algorithm then successively merges two clusters
with maximum similarity until a termination condition is met.

We measure the similarity of two occupancy curves X and Y using the correlation
Corr(X, Y), which is defined as follows:

Corr(X,Y) =
Cov(X, Y)
σ(X)σ(Y)

.

Cov(X, Y) denotes the co-variance between X and Y, and σ(X) denotes the standard
deviation of X. Occupancy curves are represented as vectors, leading to the following
definition

Corr(X,Y) =
(X− X̄) · (Y− Ȳ)

||(X− X̄)||2 ∗ ||(Y− Ȳ)||2
.

For vector A, Ā denotes the vector mean, A · B denotes the vector dot product, and
||A||2 denotes the L2 vector norm.
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Two occupancy vectors are merged via a weighted average, where the individual
cluster weight considers the number of CEs. The clustering algorithm terminates if the
maximum correlation falls short of a threshold.

As a result, a list of clusters is yielded, where each cluster comprises the averaged oc-
cupancy vectors and a list of all containing CPs. Each cluster represents one usage pattern.

Note that the occupancy vectors used for clustering are normalized by the vector sum
instead of the maximum number of possible CEs. The resulting normalized vector can be
interpreted as the occupancy density per CP. Normalizing by the maximum number of
possible CEs is infeasible for clustering, as it would discriminate between two CPs with
identical usage pattern but differing amounts of CEs.

4.4.2. Clustering Results

Figure 10 shows the four largest clusters for AC CPs, clustered with a correlation
threshold of 0.8. Several thresholds have been tested, and a threshold of 0.8 was found to
yield clusters with highest distinctiveness. The occupancy curves have a resolution of two
minutes. Only CPs with at least 10 observed CEs in total are considered, which results in
1909 out of 2210 AC CPs. The four largest clusters contain 1430 out of 1909 (74.9%) AC
CPs, for which 242,691 CEs have been recorded. Figure A3 shows each cluster and the
individual CP occupancy curves. The remaining clusters which were not merged with the
four largest clusters are primarily singleton-clusters and are considered outliers.

Figure 10. Occupation Density of four largest occupancy clusters for AC CPs. Contains CPs with
at least 10 CEs. Similarity threshold is set to 0.8. Occupancy resolution of two minutes. Similarity
threshold is set to 0.8. Data from 6 May 2021 to 6 October 2021.

Cluster 1 (blue, 445 CPs) can be interpreted as representing ’night time’ CP usage,
with rising occupancy in the evening hours and roughly constant occupancy over the whole
night until 06:00 UTC. Occupancy during the day is low. This utilization pattern requires
PEVs to be parked over the night and, hence, could indicate usage of CPs at locations
where users spend their night, or where vehicles are parked over the night. While private
vehicles tend to be parked near the home location, commercial vehicles are parked either
near the home location of the user or near the location of the company, therefore generating
such an occupancy curve.

Cluster 2 (orange, 312 CPs) represents ’day time’ usage, where occupancy is largest
between 08:00 UTC and 18:00 UTC. This utilization pattern is the inverse of Cluster 1;
hence, PEVs are required to be parked at one spot throughout the day and could, thus,
indicate charging during working-hours. Such occupancy curves could emerge in areas
with larger amounts of workplaces, such as inner-city areas, business areas, or commercial
zones, where employees approach a CP in the morning, attend their job and return to the
vehicle after 6–10 h to leave the area.

Cluster 3 (green, 238 CPs) contains CPs primarily used in the evening between 16:00
UTC and 20:00 UTC, whereas utilization over night is low but increases throughout the day.
Such areas may comprise locations of evening or night-time activities, such as shopping
facilities, restaurants, fitness studios, cinemas, or other recreational facilities.
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Finally, Cluster 4 (red, 435 CPs) represents CP usage throughout the day with empha-
sized usage in the late morning. In comparison to the other clusters, occupancy visibly
decreases after 09:00 UTC. Hence, traveling to these CPs is rooted in use cases which occur
mostly in the morning but in sum all over the day. Such areas could represent various
commercial service locations, where customers travel to over the day and those, where
employees have flexible working hours. Further usage of CPs in such areas is expected to
arise from business related movements from and towards the areas.

DC CPs are not included in this analysis as there are not enough available CPs, leading
to insufficient data for analysis.

5. Usage Patterns and Socio-Demographic Structures

This section extends the occupation analyses and cluster-based usage patterns in-
troduced in Section 4 and analyzes whether the extracted usage patterns are reflected in
socio-demographic structures.

5.1. Socio-Demographic Data

The socio-demographic data set used in this paper comprises 32 data points per
geographic cell. Figure A2 gives an overview of the cell distribution for the city of Munich
and the surrounding suburbs. Table 4 lists the data set schema.

Based on this data set, we use a weighted average approach for deriving socio-
demographic data on a CP level. Each CP is assigned a buffer with a radius of 500 m in
order to reflect willingness to walk [29] and, therefore, the catchment area of a CP. Next, all
geographic cells which are overlapped by the buffer are determined, including the relative
overlap area. The socio-demographic data for the CP is determined by the average of all
overlapped cells, weighted by the relative overlap area. Figure 11 visualizes this approach.
Three cells overlap the 500 m buffer around the CP. The weight of cell 1 (blue) is 50%, and
cells 2 (green) and 3 (orange) are assigned weight 25%.

Figure 11. Example of weighted average approach. The center CP is encircled by a 500 m buffer,
and cells 1, 2, and 3 are overlapped with a relative overlap area of 50%, 25%, and 25%, respectively
(lightened areas).

Each CP is assigned a cluster as discussed in Section 4.4, which represents one of four
usage patterns, and the above derived socio-demographic data. Next, we use a random
forest classifier to predict the usage patterns based on socio-demographic data.

5.2. Random Forest Classification

Random Forest Classification is an ensemble machine learning technique which com-
bines the classification result of multiple decision trees into a single classification [30]. Each
decision tree is trained to a subset of the training data. The results of each decision tree in
the ensemble is then merged using a majority vote. Random Forest Classification was cho-
sen as it poses less risks of over-fitting and has reached the highest accuracy as compared
to other classification methods, such as Support Vector Machines. The hyper-parameters of
the classification model were tuned to yield the highest test accuracy.



Sustainability 2021, 13, 13046 17 of 26

Table 4. Schema of socio-demographic data set. Data set comprises data points for geographic cells
each comprising residential blocks in urban and suburban areas and larger areas in rural regions.
HH refers to households.

Name Description Unit

hh_e HH owning count
hh_m HH renting count
hh_1 single HH count
hh_2 HH with two inhabitants count

hh_3m HH with three or more inhabitants count
lcgchar_priv detached or row house count

lcgchar_priv_mult multi-story buildings count
lcgchar_comm commercial buildings count
lcgchar_sum total buildings count

ew total population count
ew_0014 population between 0 and 14 years count
ew_1524 population between 15 and 24 years count
ew_2549 population between 25 and 49 years count
ew_5064 population between 50 and 64 years count

ew_65 population older than 64 years count
hh_0029 HH with householder between 0 and 29 years count
hh_3044 HH with householder between 30 and 44 years count
hh_4559 HH with householder between 45 and 59 years count
hh_60m HH with householder bolder than 59 years count
hh_tit HH with titulars count

hh_ek900 HH with monthly net income < 900 EUR count
hh_ek1500 HH with monthly net income from 900 EUR to 1.500 EUR count
hh_ek2600 HH with monthly net income from 1.500 EUR to 2.600 EUR count
hh_ek3600 HH with monthly net income from 2.600 EUR to 3.600 EUR count
hh_ek5000 HH with monthly net income from 3.600 EUR to 5.000 EUR count

hh_ek5000m HH with monthly net income ≥ 5.000 EUR count
kfz_ges total motor vehicles count

pkw_ges total automobiles count
pkw_gew commercial automobiles count
pkw_priv private automobiles count
kk_mio buying power EUR
kk_ew buying power per inhabitant EUR

5.3. Classification Results

Using the 32 features listed in Table 4 as input and the usage pattern, represented by
the cluster ID, as output data, the classification model explains the usage patterns with an
overall accuracy of 0.897, although the test accuracy is lower with a score of 0.76.

Out of the 32 data points, we determined 5 features which primarily explain the usage
patterns: lcgchar_priv representing the number of detached or row houses, lcgchar_
comm representing the number of commercial buildings, lcgchar_sum representing the
number of all buildings, hh_ek900 representing the number of households with a monthly
net income of, at most, 900 EUR, and kk_ew representing the buying power per inhabitant.
Based on these four features, the trained model predicts usage patterns with an overall
accuracy of 0.889 and a test accuracy of 0.735.

Both classification models trained on all 32 features, and the 5 primary features have a
test precision and recall of ±0.07.

5.4. Spatial Distribution of Usage Pattern Predictions

Figure 12 visualizes the spatial distribution of the predicted usage patterns and was
created using the following approach: First, a grid of sample points with a spacing of 100 m
around the center of Munich was created. For all sample points, socio-demographic data
points have been extracted using the above described weighted average approach. Next,
the trained model using all 32 features was applied to all sample points to infer the primary
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usage pattern and the probability of all four usage patterns. The probabilities for each usage
pattern were then interpolated using Triangular Irregular Network (TIN) interpolation.
Each usage pattern is displayed as a separate raster layer and colored according to the
prediction probability: Intense colors indicate high prediction probability, and vice versa.
To avoid overlay effects of the four layers, the color opacity scales linearly from 0% to
100%, starting at the prediction probability of 0.25; interpolated values with a prediction
probability of ≤0.25 are not displayed.

Several observations can be made. First, the usage pattern ’night-time charging’
(Pattern 1, blue) primarily occurs in residential areas, whereas the usage pattern ’day-time
charging’ (Pattern 2, orange) primarily occurs in the city center. The usage patterns ’evening
charging’ (Pattern 3, green) and ’morning charging’ (Pattern 4, red) occur less frequently
and are primarily located between residential and commercial areas.

Second, the probability for all four clusters in general is largest in the city center and
decreases towards the outskirts. We expect that this is a reflection of the CP density, which
is highest in the city center, leading to more accurate predictions. Figure A4 additionally
shows the distribution of CPs and their true usage pattern.

Third, the top right shows a patch with high probability for usage pattern 4, ’morning
charging’. This location contains a large charging park with 48 CPs, which is located near a
commercial area. All CPs are clustered to usage pattern 4, leading to the observed high
probability patch.

Figure 12. Spatial distribution of predicted usage patterns. Based on interpolation of grid with
100 m spacing. Probabilities of all four clusters at all sample points have been interpolated using
TIN interpolation. color intensity indicates prediction probability. Map Projection: EPSG:25832.
Background tile credit: OpenStreetMap contributors.

6. Discussion

In this work, we gathered data from a publicly available data on CI status information.
This data was gathered with a frequency of 15 min, while precise timestamps of occupancy
start and end were derived. The gathered data captures the occupation duration of CPs;
the charging duration and transmitted energy are not publicly available and could not be
gathered. Applying a data set containing the charging duration and transmitted energy to
the analyses presented in this work may yield further insights into CI usage.

From this data, we extracted the occupancy on a CP level and observed an anomalous
distribution of CE lengths. We expect this pattern to originate from CPs sampling data every
two minutes. Based on this finding, we conclude that the maximum possible resolution for
occupancy analysis of the gathered data set is two minutes.
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Using the extracted CP occupancy, we then presented a two-step machine
learning approach.

First, we employed an agglomerative clustering of the CP occupancy using correlation
as a similarity metric. This approach extracts occupancy patterns shared by multiple CPs.
While this clustering approach yields reasonable results, it may be valuable to employ
other similarity metrics to further reduce outliers. Different clustering approaches may
also yield more accurate usage patterns.

Second, we used a random forest classifier to predict usage patterns derived from the
clustering from socio-demographic structures. The data set used in this work provides
socio-demographic structures per geographic cell. In order to assign this structure data to
CPs, we used a weighted averaging approach based on the relative overlap area. In compar-
ison to assigning data from the cell containing a CP, this approach more accurately captures
socio-demographic structures in heterogeneous areas with many small cells, such as sub-
urban or urban cites, as neighboring cells are considered. However, further refinements
on sampling structural data for CPs, such as different buffer sizes or a different, e.g., non-
linear, averaging approach, may lead to further improvements in data accuracy. Using
the weighted socio-demographic structures on a CP level, we applied a random forest
classification model to predict usage patterns. The train and overall accuracy is reasonable.
The test accuracy is a subject for further improvements. A longer observation time frame
or observing a larger area may be beneficial for the test performance. The trained model
only considers data for CPs in and around Munich, which may not reflect the link between
socio-demographic structures and CI usage patterns in other regions. Adding further
data of other areas may improve the predictive performance of the model in other regions.
Additionally, further attributes concerning the offered charging service agreements at CPs
are expected to enhance the performance of the random forest classifier, e.g., by means of
tariffs or amount of available offers. Choosing the four largest clusters as a basis for the
classification model leads to an exclusion of 25.1% of all AC CPs. Reducing the number of
outliers may increase the model accuracy.

Last, we used the trained model to visualize the spatial distribution of predicted usage
patterns in and around the center of Munich. This visualization gives insights into the link
between local socio-demographic structures and CP usage. However, it also visualizes the
link between model accuracy and CP density.

7. Conclusions

With the rise of electric mobility in recent years, the urgent need for reliable infor-
mation about demand for and usage of CI became apparent. Since there is only a sparse
number of publicly available data, researchers have to refrain to data collection techniques
to gain an understanding of CI usage. The approach presented here includes such a data
gathering, allowing for analysis and further interpretation of such CI. While early research
focused on general understanding and adoption of electric vehicles, today, municipalities
require more fine-grained data on usage behavior and possible locations for CPs to foster
electric mobility in order to achieve emission targets. At the same time, CI operators try
to find profitable locations to build and conduct CI, on the one hand, and optimize and
encourage usage of existing CI, on the other hand. For a deeper understanding of CI
usage, this work gathered and further analyzed data, utilizing the presented two-step
approach. In the first step, clusters of four usage patterns were retrieved, allowing for an
estimate of usage types. The second step uses a random forest classification based on socio-
demographic data to predict the aforementioned usage patterns. Based on these results,
it is possible for municipalities, as well as for operators, to estimate the requirements for
CI in terms of dimensioning and detailing. Using the presented approach, municipalities
have a tool at hand for further development of CI, while operators, on the one hand, can
better assess different locations in the cities for further expansion and, on the other hand,
adapt their business towards the prevalent usage in the respective area. A third actor
to be interested in these results are operators of electric fleets in cities, e.g., carsharing,
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ridesharing, or public transport operators, adapting their operational measures or pricing
policies towards the optimal usage of public CI, improving usage of such infrastructure.
By including the results presented here into the applied pricing policies [31], general fleet
utilization can be enhanced, and charging of fleet vehicles can be done in a more economic
way [32]. After all, the approach presented here opens the path for further integration of
electric mobility and CI towards an optimized utilization and, therefore, less investments
in CI needed.
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Figure A1. Histogram and cumulative charge interval lengths per power type with bin size 30 s;
(a) shows AC charge points, and (b) shows DC charge points. Data from 6 May 2021 to 6 October 2021.
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Figure A2. Geographic cells of socio-demographic data set. Background tile credit: OpenStreetMap contributors.
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(a)

(b)

(c)

(d)

Figure A3. Occupation clusters with merged occupancy curves. Occupancy curves have a resolution
of two minutes. Similarity threshold is set to 0.8. Data from 6 May 2021 to 6 October 2021. (a) Cluster 1
containing 445 charge points (23.3%), 92,924 charge events (29.9%); (b) Cluster 2 containing 312
charge points (16.3%), 64,961 charge events (20.9%); (c) Cluster 3 containing 238 charge points (12.5%),
47,897 charge events (15.4%); (d) Cluster 4 containing 435 charge points (22.8%), 36,909 charge events
(11.9%).
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Figure A4. Spatial distribution of predicted usage patterns with true usage pattern per charge points. Based on interpolation of grid with 100 m spacing. Probabilities of all four clusters at
all sample points have been interpolated using TIN interpolation. Color intensity indicates prediction probability. Charge point marking indicates true usage pattern. Map Projection:
EPSG:25832. Background tile credit: OpenStreetMap contributors



Sustainability 2021, 13, 13046 25 of 26

References
1. Kessler, L.; Bogenberger, K. Mobility patterns and charging behavior of BMW i3 customers. In Proceedings of the IEEE

Conference on Intelligent Transportation Systems, Proceedings, ITSC, Rio de Janeiro, Brazil, 1–4 November 2016; pp. 1994–1999.
[CrossRef]

2. Krause, J.; Ladwig, S.; Schwalm, M. Better (Not) charge in your garage! perceived benefits and optimal positioning of public fast
charging infrastructure for electrical vehicles from user’s perspective. Adv. Intell. Syst. Comput. 2018, 600, 261–269._25. [CrossRef]

3. Philipsen, R.; Brell, T.; Brost, W.; Eickels, T.; Ziefle, M. Running on empty—Users’ charging behavior of electric vehicles versus
traditional refueling. Transp. Res. Part Traffic Psychol. Behav. 2018, 59, 475–492. [CrossRef]

4. van den Hoed, R.; Helmus, J.R.; de Vries, R.; Bardok, D. Data analysis on the public charge infrastructure in the city of Amsterdam.
In Proceedings of the 2013 World Electric Vehicle Symposium and Exhibition (EVS27), Barcelona, Spain, 17–20 November 2013;
pp. 1–10. [CrossRef]

5. Wolbertus, R.; van den Hoed, R.; Maase, S. Benchmarking Charging Infrastructure Utilization. World Electr. Veh. J. 2016,
8, 754–771. [CrossRef]

6. Wolbertus, R.; Van den Hoed, R. Managing parking pressure concerns related to charging stations for electric vehicles: Data
analysis on the case of daytime charging in The Hague. In Proceedings of the European Battery, Hybrid & Fuel Cell Electric
Vehicle Congress, Geneva, Switzerland, 14–16 March 2017.

7. Wolbertus, R.; van den Hoed, R. Charging station hogging: A data-driven analysis. In Proceedings of the Electric Vehicle
Symposium EVS30, Stuttgart, Germany, 9–11 October 2017.

8. Wolbertus, R.; Kroesen, M.; van den Hoed, R.; Chorus, C. Fully charged: An empirical study into the factors that influence
connection times at EV-charging stations. Energy Policy 2018, 123, 1–7. [CrossRef]

9. Gerritsma, M.K.; AlSkaif, T.A.; Fidder, H.A.; van Sark, W.G. Flexibility of Electric Vehicle Demand: Analysis of Measured
Charging Data and Simulation for the Future. World Electr. Veh. J. 2019, 10, 14. [CrossRef]

10. Almaghrebi, A.; Shom, S.; Al Juheshi, F.; James, K.; Alahmad, M. Analysis of User Charging Behavior at Public Charging Stations.
In Proceedings of the 2019 IEEE Transportation Electrification Conference and Expo (ITEC), Detroit, MI, USA, 19–21 June 2019;
pp. 1–6. [CrossRef]

11. Olk, C.; Trunschke, M.; Bussar, C.; Sauer, D.U. Empirical Study of Electric Vehicle Charging Infrastructure Usage in Ireland. In
Proceedings of the 2019 4th IEEE Workshop on the Electronic Grid (eGRID), Xiamen, China, 11–14 November 2019; pp. 1–8.
[CrossRef]

12. Almaghrebi, A.; Juheshi, F.A.; Nekl, J.; James, K.; Alahmad, M. Analysis of Energy Consumption at Public Charging Stations, a
Nebraska Case Study. In Proceedings of the 2020 IEEE Transportation Electrification Conference & Expo (ITEC), Chicago, IL,
USA, 23–26 June 2020; pp. 1–6. [CrossRef]

13. Almaghrebi, A.; Aljuheshi, F.; Rafaie, M.; James, K.; Alahmad, M. Data-Driven Charging Demand Prediction at Public Charging
Stations Using Supervised Machine Learning Regression Methods. Energies 2020, 13, 4231. [CrossRef]

14. van der Kam, M.; van Sark, W.; Alkemade, F. Multiple roads ahead: How charging behavior can guide charging infrastructure
roll-out policy. Transp. Res. Part Transp. Environ. 2020, 85, 102452. [CrossRef]

15. Hecht, C.; Das, S.; Bussar, C.; Sauer, D.U. Representative, empirical, real-world charging station usage characteristics and data in
Germany. eTransportation 2020, 6, 100079. [CrossRef]

16. Fischer, M.; Hardt, C.; Michalk, W.; Bogenberger, K. Charging or Idling: Method for quantifying the Charging and the Idle Time
of public Charging Stations. In TRB 101st Annual Meeting Compendium of Papers; Transportation Research Board: Washington, DC,
USA, 2022.

17. Anderson, J.E.; Böttcher, N.; Kuhnimhof, T. An Approach To Determine Charging Infrastructure for One Million Electric Vehicles
in Germany. In TRB 95th Annual Meeting Compendium of Papers; Transportation Research Board: Washington, DC, USA, 2016;
pp. 1–22.

18. Adenaw, L.; Lienkamp, M. Multi-Criteria, Co-Evolutionary Charging Behavior: An Agent-Based Simulation of Urban Electromo-
bility. World Electr. Veh. J. 2021, 12, 18. [CrossRef]

19. Kessler, L.; Bogenberger, K. Dynamic traffic information for electric vehicles as a basis for energy-efficient routing. Transp. Res.
Procedia 2019, 37, 457–464. [CrossRef]

20. Fischer, M.; Elias, J.; Bogenberger, K.; Schramm, S. Quantification of transmitted energy and power for system services by battery
electric vehicles based on real mobility and charging profiles. In Proceedings of the CIRED Berlin 2020 Workshop How to
Implement Flexibility in the Distribution System? Online Conference, 22–23 September 2020. [CrossRef]

21. Fischer, M.; Bogenberger, K.; Elias, J.; Schramm, S. Evaluation of charging concepts for high density urban areas based on
real mobility and charging profiles of BEV. In Proceedings of the CIRED Geneva 2021 Conference, Online Conference, 20–23
September 2021.

22. Chakraborty, D.; Bunch, D.S.; Lee, J.H.; Tal, G. Demand drivers for charging infrastructure-charging behavior of plug-in electric
vehicle commuters. Transp. Res. Part D Transp. Environ. 2019, 76, 255–272. [CrossRef]

23. Andrenacci, N.; Ragona, R.; Valenti, G. A demand-side approach to the optimal deployment of electric vehicle charging stations
in metropolitan areas. Appl. Energy 2016, 182, 39–46. [CrossRef]

http://doi.org/10.1109/ITSC.2016.7795878
http://dx.doi.org/10.1007/978-3-319-60450-3_25
http://dx.doi.org/10.1016/j.trf.2018.09.024
http://dx.doi.org/10.1109/EVS.2013.6915009
http://dx.doi.org/10.3390/wevj8040754
http://dx.doi.org/10.1016/j.enpol.2018.08.030
http://dx.doi.org/10.3390/wevj10010014
http://dx.doi.org/10.1109/ITEC.2019.8790534
http://dx.doi.org/10.1109/eGRID48402.2019.9092672
http://dx.doi.org/10.1109/ITEC48692.2020.9161456
http://dx.doi.org/10.3390/en13164231
http://dx.doi.org/10.1016/j.trd.2020.102452
http://dx.doi.org/10.1016/j.etran.2020.100079
http://dx.doi.org/10.3390/wevj12010018
http://dx.doi.org/10.1016/j.trpro.2018.12.218
http://dx.doi.org/10.1049/oap-cired.2021.0258
http://dx.doi.org/10.1016/j.trd.2019.09.015
http://dx.doi.org/10.1016/j.apenergy.2016.07.137


Sustainability 2021, 13, 13046 26 of 26

24. Betz, J.; Walther, L.; Lienkamp, M. Analysis of the charging infrastructure for battery electric vehicles in commercial companies.
In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 1643–1649.
[CrossRef]

25. Morrissey, P.; Weldon, P.; O’Mahony, M. Future standard and fast charging infrastructure planning: An analysis of electric vehicle
charging behaviour. Energy Policy 2016, 89, 257–270. [CrossRef]

26. Flammini, M.G.; Prettico, G.; Julea, A.; Fulli, G.; Mazza, A.; Chicco, G. Statistical characterisation of the real transaction data
gathered from electric vehicle charging stations. Electr. Power Syst. Res. 2019, 166, 136–150. [CrossRef]

27. Open Charge Alliance. Open Charge Point Protocol, 2.0.1 ed.; Open Charge Alliance: Arnhem, The Netherlands, 2020.
28. Maimon, O.; Rokach, L. (Eds.). Data Mining and Knowledge Discovery Handbook; Springer: New York, NY, USA, 2010. [CrossRef]
29. Herrmann, S.; Schulte, F.; Voß, S. Increasing Acceptance of Free-Floating Car Sharing Systems Using Smart Relocation Strategies: A

Survey Based Study of car2go Hamburg. In Computational Logistics; González-Ramírez, R.G., Schulte, F., Voß, S., Ceroni Díaz, J.A.,
Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2014; Volume 8760, pp. 151–162.
doi:10.1007/978-3-319-11421-7_10. [CrossRef]

30. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
31. Hardt, C.; Bogenberger, K. Dynamic Pricing in Free-Floating Carsharing Systems—A Model Predictive Control Approach. In

TRB 100th Annual Meeting Compendium of Papers; Transportation Research Board: Washington, DC, USA, 2021; p. 19.
32. Dandl, F.; Fehn, F.; Bogenberger, K.; Busch, F. Pre-Day Scheduling of Charging Processes in Mobility-on-Demand Systems

Considering Electricity Price and Vehicle Utilization Forecasts. In Proceedings of the 2020 Forum on Integrated and Sustainable
Transportation Systems (FISTS), Delft, The Netherlands, 3–5 November 2020; pp. 127–134.

http://dx.doi.org/10.1109/IVS.2017.7995945
http://dx.doi.org/10.1016/j.enpol.2015.12.001
http://dx.doi.org/10.1016/j.epsr.2018.09.022
http://dx.doi.org/10.1007/978-0-387-09823-4
http://dx.doi.org/10.1007/978-3-319-11421-7_10
http://dx.doi.org/10.1023/A:1010933404324

	Introduction
	State of the Art and Related Work
	Vehicle
	Charging Infrastructure
	Simulative Approaches
	Research Gap

	Gathering Publicly Available Data
	Terminology
	Retrieval
	Transformation

	Deriving Usage Patterns of Charge Points
	Charge Event Lengths
	Charge Event Anomaly
	Occupancy Analysis
	Calculating Occupancy
	Occupancy Analysis Results

	Extracting Usage Patterns
	Agglomerative Clustering
	Clustering Results


	Usage Patterns and Socio-Demographic Structures
	Socio-Demographic Data
	Random Forest Classification
	Classification Results
	Spatial Distribution of Usage Pattern Predictions

	Discussion
	Conclusions
	
	References

