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Abstract: Radial basis function generated finite differences (RBF-FD) represent the latest discretiza-
tion approach for solving partial differential equations. Their benefits include high geometric
flexibility, simple implementation, and opportunity for large-scale parallel computing. Compared to
other meshfree methods, typically based upon moving least squares (MLS), the RBF-FD method is
able to recover a high order of algebraic accuracy while remaining better conditioned. These features
make RBF-FD a promising candidate for kinetic-based fluid simulations such as lattice Boltzmann
methods (LB). Pursuant to this approach, we propose a characteristic-based off-lattice Boltzmann
method (OLBM) using the strong form of the discrete Boltzmann equation and radial basis function
generated finite differences (RBF-FD) for the approximation of spatial derivatives. Decoupling the
discretizations of momentum and space enables the use of irregular point cloud, local refinement,
and various symmetric velocity sets with higher order isotropy. The accuracy and computational
efficiency of the proposed method are studied using the test cases of Taylor–Green vortex flow,
lid-driven cavity, and periodic flow over a square array of cylinders. For scattered grids, we find
the polyharmonic spline + poly RBF-FD method provides better accuracy compared to MLS. For
Cartesian node layouts, the results are the opposite, with MLS offering better accuracy. Altogether,
our results suggest that the RBF-FD paradigm can be applied successfully also for kinetic-based fluid
simulation with lattice Boltzmann methods.

Keywords: radial basis functions; off-lattice Boltzmann method; discrete Boltzmann equation

1. Introduction

In the last three decades the lattice Boltzmann method (LBM) has grown into a suc-
cessful tool for computational fluid dynamics including single- and multi-phase flows [1,2],
flows in porous media [3,4], heat and mass transfer [5–7], and other complex flows [8,9].
The main properties underlying this success include the algorithmic simplicity of the
method with its particle-like nature, a high parallel efficiency due to the large degree of
local operations, and the simple handling of boundary conditions via bounce-back type
methods [10,11], among others. These properties are a result of the ingenious coupling
between the velocity and spatial discretizations in such a way that the spatial grid corre-
sponds to the characteristics of the discrete velocity space [12]. On the computational level
this gives the stream-collide algorithm, where collision is a set of local arithmetic operations,
and the streaming of particles occurs via a simple shift of values in the memory [13].

Simultaneously, the coupling between momentum space and physical space restricts
the method to uniform Cartesian grids, which are often disadvantageous for the study
of flow in complex geometries [12]. Moreover, the standard lattice symmetric stencils
in 2-d and 3-d, that is, those including only the neighbors from the first Brillouin zone,
such as D2Q9 and D3Q19, do not guarantee sufficient degrees of freedom and lead to
the loss of Galilean invariance at finite Mach numbers. This limits LBM’s domain of
applicability to weakly-compressible athermal flows [14,15]. Specifically, it is the lack of
a cubic term in velocity due to the second order truncation of equilibrium, which leads
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to an error in the viscous momentum flux at Navier-Stokes level. Due to the aliasing of
velocity moments, this error can only be corrected partially [14]. While several existing
integer-based multi-speed lattices can overcome this issue and simultaneously extend
LBM’s applicability into the compressible flow regime, these lattices usually contain more
velocities than needed based upon symmetry requirements. Due to insufficient isotropy,
these extra lattice degrees of freedom are then tied-up in tensorial isotropy constraints,
leaving little room for stability [16]. Moreover, the large stencil sizes lead to a decrease in
computational efficiency and complications in the prescription of boundary conditions [17].

Aside from the cubic error term, the low isotropy of the standard lattices is also a
source of anisotropic non-linear truncation errors [18]. The spatio-temporal coupling also
limits the method to second order accuracy in time and space. Recently, the spatial and
temporal errors have been identified as the culprit for numerical instability via a mecha-
nism involving the collision of eigenvalues [19]. These findings justify the previous and
more recent inquiries into stabilization strategies that can be divided into three mutually
non-exclusive approaches: advanced collision operators [15,20–22], multiscale refinement
methods [23–26], and finally—alternative time-stepping/streaming methods [12,27–29].

The most straightforward approaches are advanced collision operators. For a com-
prehensive comparison and discussion of the many available collision operators we refer
the reader to the recent works [30,31]. Although these advanced collision operators are
able to drastically improve the stability of the LBM in the low viscosity limit, they do
not fundamentally change the behavior at the macroscopic level per se. This is in fact
determined only by the choice of discrete velocity set and shape of the equilibrium distri-
bution function [18,32] (historically, differences were observed because the equilibrium
distributions were truncated at second-order).

The second approach to removing the destabilizing errors from insufficiently resolved
wavelengths is temporal and spatial refinement. For the classic streaming LBM, the strong
lattice coupling limits this approach to block-structured grids (i.e., quadtrees in 2-d, octrees
in 3-d), where the ratios between cells and time-step sizes on different grid levels are
integer values. The challenge in this approach is the correct transfer of values between
different grid and time levels leading to several different reconstruction techniques. Unless
designed carefully, these operations risk creating new instabilities and present formidable
challenges in terms of coding and parallel performance [33]. Due to the exponential growth
in computation dictated by the second order spatial and time step scaling, the multiscale
refinement can be considered a necessity for performing engineering computations of
practical interest. A fixed upper limit exists for this strategy in terms of the available
hardware resources and computation time.

Both strategies outlined above are primarily aimed at preserving the exactness of
the streaming step; contrarily, the third approach does away with it. Instead, streaming
is performed via Eulerian or semi-Lagrangian methods, giving rise to the family of off-
lattice Boltzmann methods (OLBM). The immediate reward is a large gain in geometric
flexibility, allowing the usage of smoothly varying non-uniform grids or point clouds, and
the possibility of adopting several advantageous symmetric velocity sets with higher order
isotropy [34]. These lattices are able to capture non-equilibrium effects in the rarefied and
compressible regimes with fewer velocities than their integer-based counter-parts [35]. In
multi-component flows, the off-lattice approach allows particles with different molecular
weights to propagate at different speeds [36,37] in a kinetically consistent manner. The price
to pay is an increase in computational cost, since the exact memory shift of the streaming
step is now replaced by a series of floating point operations. Unless designed carefully,
the off-lattice streaming step can also increase the dissipation and dispersion errors of
the numerical scheme [38]. To a certain extent, the losses in computational efficiency
and accuracy can be countered by the increased order of spatial accuracy [39], which
becomes possible once the lattice-based streaming is left behind. A recent effort to also
increase the temporal accuracy can be found in [40]. In addition, the possibility of using
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irregularly distributed points adapted to the specific geometry can help reduce the amount
of computation for a given level of accuracy [41].

Previous efforts in this direction have mostly relied on classical PDE discretization
techniques [42–44]. Due to the stiffness of the collision operator, most early OLBMs
suffered from a stringent time-step condition, limiting them to low Reynolds number
(isothermal) flows. This limitation was later overcome in [12] by combining the classic
variable transformation technique from [43,45] with a discretization of the advective term
along characteristics [28]. The collision term is then integrated implicitly at explicit cost.
An alternative explanation for this special feature of LBM was later provided in terms of
Strang splitting [46]. Since the splitting procedure brings significant gains in time-stepping
efficiency, most of the (Eulerian) off-Lattice Boltzmann methods developed in the past
decade have aimed to preserve this feature.

Among kinetic-based simulation methods, the Taylor least-squares interpolation sup-
plemented LBM (TLS-LBM) by Shu et al. [47] is the first example of a meshfree LBM. It
relies upon a semi-Lagrangian streaming step in combination with least-squares for the
spatial approximation. While applied successfully for the simulation to several flow bench-
marks, the method was only demonstrated using structured grids. As indicated by Bayona
(2019) [48], the least squares approach remains viable only for low-order approximations,
limiting further improvements of the TLS-LBM. More recently, several weak-form mesh-
free LBM methods have been developed by Musavi et al. [49,50] and Tanwar (2018) [51].
Similar to grid-based weak-form discretizations methods like FEM, these meshfree LBMs
require an additional quadrature step (typically involving an additional background grid),
increasing the complexity of the method and resulting in an implicit system of equations.
Given the shortcoming of the weak-form meshfree LBMs, it is natural to wonder whether
or not their strong-form cousins are more suitable candidates for computational kinetic
simulations with discrete velocity models such as LBM.

In this paper, we demonstrate this notion by developing a strong-form OLBM (SF-
OLBM) for irregular point clouds. The basic version of our SF-OLBM combines an RBF-FD
discretization in space with the Lax–Wendroff method in time, resulting in an intuitive
and finite-difference-like numerical scheme. While considerably simpler than the weak-
form meshfree LBM methods, the SF-OLBM is able to achieve comparable accuracy and
computational efficiency. We demonstrate and compare these methods using a small set of
numerical benchmarks including the Taylor–Green vortex flow, the lid-driven cavity, and
the periodic flow in a square array of cylinders.

The rest of the paper is structured as follows. The SF-OLBM will be explained in
Section 2, with details of the governing lattice Boltzmann equations, the spatial and tempo-
ral discretization methods, and the boundary conditions. A brief explanation of the point
generation process concludes the section. In Section 3, the verification and validation of the
proposed method is performed using the above-mentioned benchmark flow cases. This
includes the evaluation of the spatial convergence rates, a demonstration of the ability to
use geometry-adapted point clouds, and the effect of boundary conditions.

2. Method

This section presents the governing equations, the numerical formulation of the SF-
OLBM, the boundary conditions, and the point cloud generation procedure.

2.1. Governing Equations

Our starting point is the discrete velocity Boltzmann equation (DVBE),

∂ fi
∂t

+ ci · ∇ fi = Ci(f), (1)

for the single-particle distribution function fi(x, t) (PDF) which is a continuous function
of space and time. The subscript i refers to the set of microscopic velocities ci, where
i = 1, . . . , q. In the classical kinetic theory of gases, the particle velocity is a continuous
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variable, but in the DVBE it is limited to a finite set of velocities [46], also known as
the lattice. The left-hand side of (1) describes the flight of particles along straight lines
dictated by the velocities ci, while the right-hand side is the collision operator Ci(f) that
couples the dynamics of the individual equations through its dependence on all of the
PDFs, f = ( f1, . . . , fq)T . Without loss of generality we limit ourselves to the famous D2Q9
lattice, where the ci are given as:

ci =


(0, 0) i = 0

(cos θi, sin θi), θi = (i− 1)π/4, i = 1, 3, 5, 7
√

2(cos θi, sin θi), θi = (i− 1)π/4, i = 2, 4, 6, 8.

(2)

The low isotropy of this lattice makes it suitable only for incompressible and weakly-
compressible flows. Since the focus of this paper is on spatio-temporal discretization, we
limit ourselves to the lattice BGK collision operator:

CBGK
i (f) = − 1

τ

Ä
fi − f (0)

i (δρ, u)
ä

, (3)

with a single relaxation time τ. The equilibrium distribution function is given by:

f (0)
i = ti

Ç
δρ + ρ0

Ç
ci · u

c2
s

+
(ci · u)2

2c4
s
− u · u

2c2
s

åå
, (4)

where the value, δρ = ρ− ρ0, is the density fluctuation around a mean density ρ0. The
values ti are the set of lattice weights and cs = 1/

√
3 is the lattice speed of sound. The

equilibrium above is in the incompressible form [52], meaning for steady flows it leads
to results in agreement with the incompressible Navier–Stokes equation. The density
fluctuation and macroscopic velocity are calculated from the particle distribution functions
as the zeroth and first order moments with respect to the particle velocity,

δρ =
q

∑
i=1

fi, u =
1
ρ0

q

∑
i=1

ci fi. (5)

The pressure can be calculated from the state equation p = ρc2
s . The viscosity of the

fluid is ν = τc2
s .

2.2. Numerical Solution Procedure

The success of (standard) LBM can be, in part, attributed to the unique spatio-temporal
discretization based upon Strang splitting [46]. This way, the collision dynamics are
integrated implicitly, at the cost of an explicit method. Solution of (1) is performed in two
steps, collision:

f̃i(x, t) = fi(x, t)− ∆t
τ + ∆t/2

Ä
fi(x, t)− f (0)

i (x, t)
ä

, (6)

and streaming:
∂ f̃i
∂t

+ ci · ∇ f̃i = 0. (7)

To achieve good bandwidth and limit computation costs it is crucial to design the
discretization of (7) in a way that satisfies the hyperbolic character of advection. A survey
of other OLBMs including FDM, FVM, and others, shows that almost all methods rely upon
some form of hyper-viscosity, most typically through upwinding. In this work, we apply
the standard Lax–Wendroff method for temporal discretization of the advection equation.
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2.2.1. Temporal Discretization

We use the Lax–Wendroff scheme for temporal discretization. First, the particle
distribution function is expanded in a Taylor series with respect to time:

f̃ n+1
i = f̃ n

i + ∆t
∂ f̃i
∂t

∣∣∣∣∣
n

+
∆t2

2
∂2 f̃i
∂t2

∣∣∣∣∣
n

+ O(∆t3). (8)

The superscript n refers to a discrete time instance, that is, tn = n∆t. By using the
advection Equation (7) we can replace the temporal derivatives with derivatives in space,

∂ f̃i
∂t

∣∣∣∣∣
n

= −ciα
∂ f̃ n

i
∂xα

,

∂2 f̃i
∂t2

∣∣∣∣∣
n

= ciαciβ
∂2 f̃ n

i
∂xα∂xβ

.

Substituting these into the Taylor series (8) and neglecting the third-order terms we
arrive at the following time-stepping relation:

f̃ n+1
i = f̃ n

i − ∆tciα
∂ f̃ n

i
∂xα

+
∆t2

2
ciαciβ

∂2 f̃ n
i

∂xα∂xβ
. (9)

The same time discretization has been used previously in the general characteristic-
based OLBM [12], as well as the weak-form meshless OLBM variants [49,53].

2.2.2. Spatial Discretization

We perform the spatial discretization using a meshfree local strong-form method [54],
which can be seen as a generalization of several meshfree methods including the moving
least squares approximation method (MLS), radial basis function-generated finite difference
method (RBF-FD), generalized finite difference method (GFDM), diffuse approximate
method (DAM), local radial basis function collocation method (LRBFCM), collocated
discrete least squares method (CLSM) and many others.

The basic principle of these methods is to approximate the differentials operator as
a weighted sum of function values over a local support domain, {xk}n

k=1. For a linear
differential operator L acting on a field u(x) the approximation is written as:

(Lu)(xc) ≈
n

∑
k=1

wkuk, (10)

where uk = u(xk) and xc = x1 is known as the center of the approximation. For the
Lax–Wendroff method in 2-d, the operators required are the advection operator,

ciα
∂

∂xα
= cix

∂

∂x
+ ciy

∂

∂y
, (11)

and the second order operator,

ciαciβ
∂2

∂xα∂xβ
= c2

ix
∂2

∂x2 + 2cixciy
∂2

∂x∂y
+ c2

iy
∂2

∂y2.
(12)

The sub-methods listed above differ in the way the weights wk are generated, using
different underlying trial functions for the construction of the approximation. The detailed
procedures for generating the weights can be found in the literature. Herein, we only
studied the MLS [54] and RBF-FD [55] approximations. Computational routines for both
types of approximation are available in specialized libraries [56]. Compared to weak-
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form OLBM methods, the strong-form methods obviate the need for an integration step,
rendering an explicit system of equations (the mass matrix is equal to the identity matrix).

The weights for each stencil are calculated by solving a small system of linear equations
at each node. For a chosen approximation method, assembly of the linear system only
requires knowledge of the stencil coordinates. The weight computation is only performed
once before the simulation begins (as long as the nodes are static). For the computer
implementation, we assemble the weights into set of sparse matrices for each velocity
direction ci. The sparsity pattern of the matrices equals the graph of nodal connectivity.
After assembly and selection of the time step size ∆t, the time-update (9) is performed by
repeated sparse matrix-vector product (SpMV) operations.

2.3. Boundary Conditions

For flows around objects or in bounded domains, correctly capturing the boundary
conditions is a crucial part of the calculation. Typically, the boundary conditions are
prescribed only in terms of the macroscopic variables and act as a constraint upon the
underlying particle distribution functions. Since the strong-form OLBM assumes that the
distribution functions reside at the nodes we adapt a regularized procedure [57], where the
boundary populations are reconstructed according to:

fi(xw, t + ∆t) = f (0)
i (ρw, uw) + f (1)

i (ρw, S), (13)

where xw is a wall node and uw is the prescribed wall velocity. The equilibrium part
depends only on the macroscopic boundary conditions. The density ρw can be computed
using lattice symmetries, or extrapolated from the previous time step. The non-equilibrium
correction f (1)

i [11] is computed from the strain-rate tensor S using:

f (1)
i (ρ, S) ≈ −2wi

τρ

c2
s

Qi : S, (14)

where Qi = Qiαβ = ciαciβ − c2
s δαβ and the symbol : means tensor contraction. The

strain-rate tensor is evaluated either from the velocity field u(x, t) using the definition
S = 1

2
(
∇u + (∇u)T). Here, the discrete differentiation operators (10) can be used. Al-

ternatively, the strain-rate tensor can be evaluated from the non-equilibrium part of the
distribution function using the regularization technique [57]. This was the strategy we
adopted here.

2.4. Point Cloud Generation

One of the advantages of meshfree methods is they can avoid the difficulties associated
with traditional polygonal mesh generation techniques. Instead, several heuristic sampling
techniques that can generate well-conditioned points sets have been developed in recent
years [58,59]. An overview of different point cloud generators can be found in the work of
Slak and Kosec [60].

In this work we have used two kinds of point-cloud generators. For the periodic flow
benchmarks we have relied on a periodic Poisson disk sampling algorithm with a fixed
background grid for fast neighbor searching and distance calculations. At the periodic
boundaries we use modulo arithmetic to find the indexes of the neighbor cells. In two
dimensions, the 24 neighbor cells are searched. If there are objects in the domain, we first
place equally spaced nodes on the object boundary. Any sampled points that are outside
of the domain are rejected. For non-periodic flow cases we have relied on the point cloud
generator described in Ref. [60]. This generator provides node sampling according to a
target density function, for example, for placing nodes more densely near boundaries. For
simple domains (e.g., rectangles) we can use the classic stretching functions such as the sine
and inverse tangent ones. Herein, we have decided to use a signed distance function (SDF)
approach adapted from the distmesh generator. The signed distance function returns the
shortest distance from any given point to the boundary of the object at a given point. For
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geometric shapes such as squares, rectangles, circles, and ellipses, the SDFs are known
analytically and can be combined using the operators from constructive solid geometry to
build complex shape domains. The inside and outside regions of the domain differ in sign,
while the boundary is located precisely on the zero level set curve (in 2-d). Using a given
SDF we can prescribe a nodal density function according to:

δr(x) = rmin +
(rmax − rmin)

2L
sdf (x), (15)

where rmin is the minimal allowable distance between nodes (e.g., the spacing at the
boundaries), and rmax is the maximal allowed spacing, for a domain with characteristic
dimension L.

Afterwards, the generated points are organized into a k-d tree for fast spatial searching.
For two-dimensional periodic domains, the points can be mapped to the surface of a torus
and the neighbor searches are then performed in three-dimensional space [55]. Since the
torus mapping is only locally distance preserving, the resulting support sets are different
from what we would expect if the neighbor searches were performed in 2-d. The partial
differential equations should then also be mapped to the surface and solved using the
three-dimensional mapped operators. Instead, we have decided to apply a 2-d tiling
strategy. First, we create a tiling of the initial periodic point set that is translated in the
axis-directions (in 2-d we need three tiles if a single axis is periodic and nine tiles if the
domain is periodic in both). Spatial neighbor searches are performed only for the center
tile. We recover the nodal indexes in the center tile by taking the remainder in the division
of the tiled index with the number of nodes in the center tile. Bear in mind that when
inter-nodal distances are calculated using only the node positions in the original (center)
tile, a correction is needed due to the periodicity.

Finally, to improve the conditioning of the generated node sets we apply an annealing
process based upon a repulsive force between nodes similar to the ones described in [60,61].
An example point cloud generated by the periodic Poisson disk sampling and the following
annealing procedure are shown in Figure 1.

Figure 1. Scattered point set produced by Poisson disk sampling followed by an annealing process.
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3. Results

For the verification and validation of the SF-OLBM we have used three flow bench-
marks: the Taylor–Green vortex flow, lid-driven cavity flow, and the flow over a periodic
square array of cylinders. These benchmarks were selected to demonstrate the beneficial
properties of our approach including the adjustable spatial accuracy and the ability to use
irregular point clouds.

Unless stated otherwise, the constant part of density was set to ρ0 = 1, the min-
imal spacing between points was h = 1, and the time step was chosen according to
δt = h CFL/|ci|max, where CFL = 0.1. The ratio of ∆t/τ was then free to vary, depend-
ing on the viscosity ν = τ/c2

s . For stationary flows we used the following convergence
criterion:  

∑x |u(x, t)− u(x, t− 1000 δt)|2
∑x |u(x, t− 1000 δt)|2 < 10−7, (16)

where the sum is taken over the nodes in the simulation domain.

3.1. Taylor–Green Vortex Flow

To test the accuracy of the proposed OLBM in the absence of boundary effects, we first
apply it to Taylor–Green vortex flow in two dimensions. The analytic solution for this fully
periodic flow is given by:

ua(x, t) = −u0

»
ky/kx cos(kxx) sin(kyy) exp (−t/tc)

va(x, t) = u0

»
kx/ky sin(kxx) cos(kyy) exp (−t/tc)

, (17)

for velocity, and

pa(x, t) = p0 − ρ
u2

0
4

ñ
kx

ky
cos(2kxx) +

kx

ky
cos(2kyy)

ô
exp

(
−2t/tc

)
, (18)

for pressure. Here, u0 is the initial velocity amplitude, k = (kx, ky) is the wave vector, p0 is

a reference pressure value, ν is the shear viscosity, and tc =
Ä

ν(k2
x + k2

y)
ä−1

is the vortex
decay time.

Using the macroscopic values from the formulas (17) and (18), the initial values of the dis-
tribution function at t = 0 are set to their equilibrium values fi(x, 0) = f (0)

i (ρa(x, 0), ua(x, 0)).

3.1.1. Spatial Errors on Scattered and Cartesian Point Clouds

We evaluate the spatial convergence on scattered (S) and Cartesian (C) point clouds
for three stencil sizes (9, 13, and 21). Details of the approximations, along with their
abbreviations, are provided in Table 1. For the RBF-FD stencils we use polyharmonic
splines (PHS) augmented with polynomials (also known as PHS + poly). The MLS-based
stencils use a polynomial basis and a Gaussian weight function. The scattered point clouds
(see Figure 2b) were generated according to the procedure described in Section 2.4. Due to
the irregular packing the scattered node sets contain fewer nodes than the Cartesian ones
for the same domain size.
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Table 1. Details of the approximations functions used for the spatial convergence evaluation. For the
MLS approximants, the weight functions were scaled to the nearest neighbor.

Abbreviation Weight RBF Monomials Stencil Size

RBF-FD s9 r3 1, x, y, x2, xy, y2 9
RBF-FD s13 r3 1, x, y, x2, xy, y2 13
RBF-FD s21 r3 1, x, y, x2, xy, y2 21

MLS s9 Gaussian 1, x, y, x2, xy, y2 9
MLS s13 Gaussian 1, x, y, x2, xy, y2 13
MLS s21 Gaussian 1, x, y, x2, xy, y2 21

(a) Cartesian (b) Scattered

Figure 2. Cartesian (a) and scattered (b) node distributions (L = L0 = 32) used in the spatial convergence studies of the
Taylor–Green vortex flow benchmark. The (target) inter-nodal spacing is h = 1. Example stencils of the 21 nearest neighbors
(including the point itself) are marked with orange circles. (For colors please see online publication).

The computational domain is set to 0 < x, y < L for the domain sizes
L ∈ {L0, 2L0, 4L0, 8L0} where L0 = 32. We consider only the case with unity aspect
ratio kx = ky = 2π/L. The kinematic viscosity is set to ν = 0.01 and the initial velocity
on the coarsest grid is chosen as u0 = 0.01 in order to limit the effect of compressibility
errors. The simulations are run until t = − ln (0.01) tc, when the initial wave amplitude has
decayed by two orders of magnitude. Measurements of the error norms (see Equation (19))
and maximum velocity (wave amplitude) are performed every 100(L/L0)2/CFL time steps
for times t > − ln (0.1) tc. The delay before starting measurements is to allow any re-
maining inconsistency in the initial condition that could lead to oscillatory behavior of
the solution to die out. Following the procedure outlined in [22] (cf. Section 5.1, p. 518),
we measure the viscosity of the fluid νm by fitting a linear function to the logarithm of
amplitude values, ln (|u|max). The slope of the fit corresponds to the viscosity coefficient.

Using the set viscosity ν, we determine the relative error in viscosity, ERν = |νm− ν|/ν,
as a function of the number of nodes N. The results are plotted in Figures 3 and 4 for the
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Cartesian and scattered node sets, respectively. Additionally, we show the L2-norm of
velocity at the final time t = − ln (0.01) tc calculated as:

L2
u =

√
∑x(u(x, t)− ua(x, t))2

∑x(ua(x, t))2 . (19)

Figure 3. Error with respect to N for Cartesian point cloud (C), (left) viscosity error, (right) velocity error. Dashed line
indicates slope proportional to 1/N.

Figure 4. Error with respect to N for scattered point cloud (S), (left) viscosity error, (right) velocity error. Dashed line
indicates slope proportional to 1/N.

For Cartesian node layouts, in Figure 3 we observe second order convergence behavior
for both the MLS and RBF-FD discretizations. Interestingly, the viscosity and velocity
errors of the MLS discretization are one order of magnitude lower than the RBF-FD ones. A
modified equation analysis of the discrete Lax–Wendroff operators to identify the leading
error terms could shed more light on this result. For the PHS + poly RBF-FD method, larger
stencil sizes lead to smaller errors in agreement with previous findings [61,62]. At a fixed
polynomial degree of the RBF-FD, the polynomial terms take over the initial terms in the
Taylor expansion of the approximated function, while the additional RBF terms act on the
remaining error, thereby slowly decreasing the error with an increase in stencil size. For the
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MLS approximation, the effect of stencil size is less dramatic, although a more definitive
study would also need to consider the weight function influence [48].

For scattered point clouds the spatial convergence results are shown in Figure 4.
Compared to the calculations on Cartesian grids, the results are here markedly different.
The residual errors of the MLS and RBF-FD approximation now display similar magni-
tudes. With large N the residuals of RBF-FD decrease faster than the MLS ones, giving an
advantage to the PHS + poly RBF-FD when used on irregular point clouds.

3.1.2. Comparison with Other Methods

In Figure 5, we compare the spatial and temporal accuracy of the SF-OLBM with other
off-lattice approaches, including the general characteristic-based algorithm of Bardow [12]
and the DUGKS method [63]. Values of the L2-norm (19) were extracted from [63] (see
Table 1 and Figure 4 therein). The settings used in their Taylor–Green benchmark were
Ma = 0.01, Re = 100, and kx = ky = 2π/L. The error values were measured at the vortex
half-life time t = ln (2) tc.

Figure 5. Comparison of SF-OLBM with the methods of Bardow and DUGKS. (left) Spatial accuracy for grids of size 162,
322, 642, and 1282; dashed line indicates slope proportional to 1/N. (right) Temporal accuracy for varying ∆t/τ; dashed line
indicates slope proportional to ∆t. Due to error incurred during extraction from the original figure, the Bardow and DUGKS
values near the abscissae ∆t/τ = 1 and ∆t/τ = 2 should be taken with caution.

The spatial accuracy measurements were performed at four increasing grid sizes
with a fixed time-step ∆t = 2τ to keep the temporal errors small. For fair comparison, in
Figure 5 (left) we have only included the measurements of MLS and RBF-FD with a stencil
size of nine points, equal to the finite volume stencils used in the original source [63]. The
MLS accuracy on the Cartesian node layout compares favorably with the DUGKS method,
given that the latter is twice as expensive. As already found earlier, the RBF-FD set-up
leads to poor results on regular grids.

For temporal accuracy, a grid of size 64× 64 was used while the ratio ∆t/τ was varied
at fixed τ. As can be seen from Figure 5 (right), the accuracy of MLS is close to that of the
method of Bardow, while the errors of the RBF-FD stencil with nine nodes are again larger.
For the highest measurement point ∆t = 50τ the RBF-FD diverged (also for larger stencil
sizes) indicating insufficient dissipation at large ratios of ∆t/τ. Interestingly, the MLS error
shows non-monotone behavior with a local minimum appearing close to ∆t ≈ 2.2τ. A
cancellation of leading error terms (including those from the collision step) is a possible
explanation. Similar minima might also occur for the DUGKS and Bardow methods but
are missed by the coarse sampling used in [63].

As a rough performance estimate, we also give the computation times needed for
10,000 evolution steps measured on a single core of an Intel(R) Core(TM) i7-7700K CPU
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@ 4.20 GHz processor. All computations were performed using 64-bit double precision
floating point numbers. The results for different mesh and stencil sizes are summarized in
Table 2. We find the performance of the SF-OLBM to be comparable to or slightly better
than other available reports [41,63]. Due to different hardware, amount of optimization
effort, compiler flags, data structure memory layout and other computational issues, the
timings should be approached with caution.

Table 2. Computation time in seconds for 10,000 time steps. Each value represents the average of
five runs.

Grid Size\Stencil Size 9 13 21

64× 64 2.9 3.5 5.0
128× 128 13.8 17.0 24.9

3.2. Lid-Driven Cavity Flow

The lid-driven cavity flow is a classic benchmark problem for numerical schemes
in CFD. The popularity of this benchmark problem is due to its simple setup, consisting
of a square cavity with side length L. The lid of the cavity moves with constant velocity
Uw, while the remaining walls are kept stationary. The Reynolds number of the flow is
Re = Uw L/ν with ν being the viscosity of the fluid. Although geometrically simple, the
flow in the cavity is non-trivial, with the existence of thin boundary layers, and secondary
vortices in the corners, that develop as the Reynolds number is increased. Moreover, a
numerical singularity exists at the top corners of the cavity that can trigger the instability
of the numerical scheme. Here, we use the lid-driven cavity flow to evaluate the spatial
accuracy of the proposed OLBM at steady state and also to demonstrate the advantages of
using irregular point clouds.

3.2.1. Spatial Accuracy on Regular Cartesian Grids

Here, we look at the spatial convergence of the SF-OLBM on a regular Cartesian grid.
We use MLS including polynomials up to second order on 12-node nearest neighbor stencils.
The settings are justified by the low error observed in the Taylor–Green benchmark (see
Figure 4b). We fix the cavity length to L = 1, CFL number to 0.1 and the ratio ∆t/τ =≈ 5.1.
Calculations are performed for regular grids of size 65× 65, 129× 129, and 257× 257. The
Reynolds number is set to Re = 400, with the lid velocity fixed at Uw = 1, and viscosity
ν = 0.025. On the coarsest grid we set Ma = 0.05 and halve it with each increase in grid
size by modifying the speed of sound cs. Although the Mach number varies, the set up
corresponds to an acoustic scaling Ma ∼ ∆t/∆x.

Figure 6 shows the steady-state horizontal velocity profile along the vertical line
through the center of the cavity for different grid sizes. The results are compared to the
benchmark solutions of Ghia et al. [64] obtained by solving the Navier–Stokes equations.
The OLBM results from the 129× 129 grid are already in close agreement with the bench-
mark solutions. Analogously, the vertical velocity profiles along the horizontal center line
are shown in Figure 7. Again, we observe good agreement with the benchmark results as
the grid size is increased.
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Figure 6. Horizontal velocity profiles along the vertical center line of the cavity at Re = 400.

Figure 7. Vertical velocity profiles along the horizontal center line of the cavity at Re = 400.

The flow pattern in the cavity can be visualized with the help of streamlines, that is,
contours of the stream-function ψ. These can be obtained as the solution to the Poisson
problem:

∆ψ = −ω, (20)

where ∆ is the Laplace operator and ω = ∇× u is the vorticity. The stream-function must
also satisfy the homogeneous boundary conditions ψ = 0 at the four walls. Upon reaching
steady-state, we use the pre-calculated derivative coefficients to set up a linear system of
equations for the unknown stream-function values at the nodes, and calculate the vorticity
values appearing on the right-hand side. The sparse system of equations is solved using
the BiCGSTAB method available in the Eigen library.

The calculated stream functions for three different Reynolds number are displayed in
Figure 8 and agree visually with previous results [28,63–65]. The calculations are performed
using MLS approximation with second order polynomials on a 80× 80 grid and a fixed
CFL value of 0.8 (for Re = 1000 we use a CFL value of 0.4).
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Figure 8. Streamlines of the lid-driven cavity flow at Reynolds numbers. From left to right are Re = 100, 400, and 1000. The
contour values of the stream function ψ are the same as those in [64].

3.2.2. Irregular Point Cloud Calculation

One of the main benefits of the proposed OLBM is the opportunity to vary the density
of the nodes in space. This means nodes can be placed in areas where they are needed,
for example, boundary or internal layers. In standard LBM the grid spacing is constant,
and determined by the smallest existing flow structures, meaning that the calculations
are often over-resolved elsewhere. By varying the node density, we can achieve similar
global accuracy with a smaller number of nodes. Unlike the multi-scale LBM, which uses
a hierarchy of successively refined grids that demand specialized data structures, in the
mesh-free setting we are able to use smoothly-varying nodes with practically no changes
to the computational algorithm.

The actual point generation is performed using the fast point cloud generator of Slak
and Kosec [60], followed by 100 steps of a relaxation procedure. The resulting point cloud
with N = 16,298 nodes is shown in Figure 9. Each edge was discretized with 200 nodes;
if a regular grid were used this would give a total of over 40,000 nodes, meaning a more
than two-fold reduction was achieved. The RBF-FD stencil used the 21 nearest neighbors,
quintic polyharmonic splines (r5) and polynomials up to second order. Calculations
were performed for Re = 400. The remaining parameters are chosen as Ma ≈ 0.04 and
CFL = 0.1.

The remaining mismatch between velocity cross-sections and benchmark results
in Figure 9 (right) being attributed to the higher dissipation of irregular grids. This is
obvious when compared with the Cartesian results from the N = 1292 = 16,641 grid (see
Figures 6 and 7). A reduction in the amount of dissipation could be achieved with tuning of
the RBF-FD (or MLS) approximations by including higher-order polynomials or changing
the RBF (or weight function in MLS).
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Figure 9. Lid-driven cavity flow with irregular point cloud at Re = 400. (left) Streamlines and underlying point cloud;
(right) vertical (orange) and horizontal (blue) velocity along the mid-axes and their comparison to the benchmark results of
Ghia et al. [64]. (For reference to color, please see online publication).

3.3. Flow over a Periodic Square Array of Cylinders

In this section, we study the boundary condition convergence behavior for Stokes flow
through a periodic square array of cylinders. Similar benchmark computations have been
used previously in [30,66,67] on lattice Boltzmann boundary conditions and the behavior
of numerical error with bounce-back methods.

The set-up for this benchmark follows the descriptions in Refs. [67,68] and consists of
a single cylinder of radius R in a square unit cell of length L. For the case of linear flow,
analytic expressions are available for the dimensionless permeability k∗, defined such that
the force per unit length of cylinder in the flowing medium is:

F =
4πµŪ

k∗
, (21)

where Ū is the average flow rate through the unit cell, and µ is the dynamic viscosity of the
fluid. The dimensionless permeability k∗ = k∗(χ) depends on the solid volume fraction
χ = πR2/L2. Note that, at intermediate values of χ (e.g., between 0.2 and 0.5) away from
the dilute (χ� 1) and lubrication-type (χ→ χmax = π/4) regimes, a small change in χ (or
equivalently the radius of the cylinder) can lead to a ten-fold increase in hydrodynamic
force, making this a sensitive test for the correctness of the implementation.

For simplicity, the average flow rate in Equation (21) is calculated as the volume
average of velocity values in x-direction, that is,

Ū =
1
L2 ∑

x
ux(x). (22)

Note that the sum above is only a crude integration rule; better results can likely be
obtained with more purposefully placed integration points. The force in Equation (21)
contains contributions from a pure frictional force FD and a buoyancy force FB due to a
pressure gradient. In the computations, the flow is driven instead by an external force
b = (bx, 0) and the buoyancy force is given by FB = πR2bx [30,69]. The drag and lift forces
are obtainable from the the surface integral of traction along the cylinder boundary,



Symmetry 2021, 13, 1802 16 of 21

(FD, FL) =
∫ 2π

0
σ(θ) · n dθ, (23)

where σ(θ) is the stress tensor and n = (cos θ, sin θ) is the unit normal vector pointing from
the surface into the fluid.

The stress tensor is a combination of the viscous stresses and an isotropic pressure part,

σ = σ′ + Iρc2
s . (24)

In LBM, the viscous part of stress tensor σ′ = σ′αβ can be recovered from the non-
equilibrium part of the distribution functions (up to third order) according to:

σ′αβ =
1

1 + ∆t/2τ ∑
i

Ä
f̃i − f (0)

i

ä
ciαciβ. (25)

Alternatively, the differentiation stencils can be used to compute σ′ = νρ0(∇u +
(∇u)T) from the macroscopic velocity field. However, the use of Equation (25) is preferred
due to the locality of the expression [70]. Together, Equations (21)–(24) can be reorganized
to compute the dimensionless permeability explicitly as:

k∗ =
4πµŪ

FD + FB
. (26)

Unlike in regular LBM methods, where periodicity is enforced by simply reintroducing
values exiting the domain on the opposite side, in the off-lattice method we enforce
periodicity already during the construction of the derivative stencils and the calculation
of weight coefficients. The point clouds are generated according to the method described
in Section 2.4, starting from an initial set of nodes placed equidistantly on the cylinder’s
surface. We use the TRT collision model [20] with τ = 4/5 and Λ = 1/4. The body force
is set to bx = 7.7× 10−7 and lowered if necessary to assure creeping flow. Upon reaching
steady state, the Reynolds number based upon the average velocity in x-direction, that is,
Re = 2R〈ux〉/ν and 〈ux〉 = ∑x ux(x)/N, is checked to satisfy Re < 0.005.

First, we increase the resolution of the cylinder at fixed values of the solid fraction
χ ∈ {0.3, 0.4} and measure the convergence of the dimensionless permeability k∗ in terms
of the relative error:

E(k∗) =

∣∣∣∣∣ k∗

k∗ref
− 1

∣∣∣∣∣, (27)

with respect to a reference value k∗ref. The convergence of the dimensionless permeability
with respect to the cylinder’s radius is displayed in Figure 10 and can be seen to approach
a terminal value. Figure 11. shows the relative error (with respect to the value on the finest
point cloud) as a function of the cylinder’s radius with logarithmic axes. The convergence
rate is slightly below second order. The results for unit cells of size 332, 992, 2972, and 3522

lattice units are given in Table 3. From these results we can see that, while the dimensionless
permeability values are converged to the accuracy of three significant digits, a small error
remains in comparison to the reference semi-analytical solution [68]. Part of this error
is likely attributable to the integration errors when calculating the mean flow rate using
the point sum over the irregularly distributed points. By interpolating the results onto a
Cartesian grid akin to a standard LBM one we have calculated a second set of voxelized
error values, where this effect is expected to be reduced. A cubic interpolation method
was used in order to prevent interpolation errors from interfering with the LBM ones. The
permeability values measured from the voxelized solution are in close agreement with the
reference values obtained with standard LBM and the bounce-back boundary condition
(see Table 3).

Further work is necessary to evaluate the other families of LBM boundary conditions
in the off-lattice setting including least-squares and moment based approaches that are also
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applicable to higher order lattices. Advanced nodal integration methods should be sought
to reduce the errors in averaged quantities such as permeability.

Table 3. Comparison of dimensionless permeability values for a square array of cylinders and the proposed OLBM on
332,992, 2972, and 3522 sized domains discretized with scattered points. The results are compared to the solution in Ref. [68]
(Table 1, p. 196) and values from Ref. [67] (Table VI, p. 13) obtained with standard LBM and half-way bounceback boundary
conditions on a 992 grid.

332 Grid 992 Grid 2972 Grid 3522 Grid Semi-Analytic [68] LBM [67]

χ Ūx k∗ Ūx k∗ Ūx k∗ Ūx k∗ k∗ k∗

Nodal average

0.3 5.1561
(−8) 0.12277 4.8166

(−7) 0.11793 4.3671
(−6) 0.11593 6.1393

(−6) 0.11579

0.4 2.8141
(−8) 0.05907 2.6303

(−7) 0.05550 2.4004
(−6) 0.05456 3.3797

(−6) 0.05458

Voxelized

0.3 3.8299
(−8) 0.12261 3.4311

(−7) 0.12115 3.0800
(−6) 0.12080 4.3259

(−6) 0.12079 0.12210 0.12121

0.4 1.8533
(−8) 0.05930 1.6220

(−7) 0.05732 1.4544
(−6) 0.05686 2.0427

(−6) 0.05676 0.05767 0.05684

Figure 10. Convergence of the dimensionless permeability with respect to the cylinder radius for
domains of size 332, 442, 662, 882, 992, 1329, 1762, 2642, 2972, and 3522.
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Figure 11. Convergence of the relative error in dimensionless permeability with respect to the
cylinder radius for domains of size 332, 442, 662, 882, 992, 1329, 1762, 2642, and 2972. The reference
value k∗ref was as the value from obtained on the finest point cloud (domain size 3522).

4. Conclusions

In this work, we have introduced a strong-form off-lattice Boltzmann method (SF-
OLBM) based upon the Lax–Wendroff discretization in time and an RBF-FD or MLS
discretization of the spatial terms. For static grids, the discretization weights only need
to be computed once at the beginning of the calculation and stored as a sparse matrix for
use in time-stepping. The second order accuracy of this approach when using PHS + poly
RBF-FD on various stencils has been shown for the Taylor–Green vortex flow. Higher
accuracy can be achieved by increasing the polynomial order of the approximations with a
related increase in stencil size. The moving least squares approximations delivered good
accuracy on Cartesian grids. For irregular points, the existence of a turn-over point was
found where RBF-FD was able to perform better.

The ability to employ local point cloud refinement was demonstrated for the lid-driven
cavity flow and could increase the global accuracy with little extra computational effort.
For coarse grids in the presence of boundaries we found some errors in mass conservation,
which however, disappear with increasing node density and high order approximations.
The flow around a periodic square array of cylinders was used to probe the accuracy of the
method in the presence of curved boundaries and raised the issue of computing accurate
averaged quantities.

A downside of the proposed SF-OLBM, shared with other Eulerian lattice Boltzmann
methods, is the loss of locality and large computational cost associated with the derivation
evaluation in the streaming step. This decrease in efficiency can, however, be off-set
using higher order approximations and local point cloud refinement. The opportunity to
employ a high-level coordinate-free programming style is an additional benefit that saves
on development time. A comparison of the current Lax–Wendroff streaming versus other
streaming methods, including the semi-Lagrangian LBM [71] and the popular DUGKS
scheme [29], remains a topic of future interest.
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DVBE discrete velocity Boltzmann equation
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DUGKS discrete unified gas-kinetic method
FDM finite difference method
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LBM lattice Boltzmann method
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MRT multiple-relaxation-time
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