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Abstract: Preliminary studies have shown the superiority of convolutional neural networks (CNNs)
compared to other network architectures for determining the surface quality of friction stir welds.
In this paper, CNNs were employed to detect cavities inside friction stir welds by evaluating inline
measured process data. The aim was to determine whether CNNs are suitable for identifying surface
defects exclusively, or if the approach is transferable to internal weld defects. For this purpose,
120 welds were produced and examined by ultrasonic testing, which was the basis for labeling the
data as “good” or “defective.” Different types of artificial neural network were tested for predicting
the placement of the welds into the defined classes. It was found that the way of labeling the data is
significant for the accuracy achievable. When the complete welds were uniformly labeled as “good”
or “defective,” an accuracy of 98.5% was achieved by a CNN, which was a significant improvement
compared to the state of the art. When the welds were labeled segment-wise, an accuracy of 79.2%
was obtained by using a CNN, showing that a segment-wise prediction of the cavities is also possible.
The results confirm that CNNs are well suited for process monitoring in friction stir welding and
their application enables the identification of various defect types.

Keywords: friction stir welding; process monitoring; convolutional neural networks

1. Introduction

Friction stir welding (FSW) is a modern joining process in which a weld is produced
through frictional heating and by the mixing of material in the plastic state using a rotating
tool. Since it is a solid-state process well below melting-temperature, the weldability of
aluminum alloys is superior compared to fusion welding technologies. Consequently, FSW
is well suited for a variety of joining tasks, especially in the aerospace industry [1]. A recent
trend is the use of FSW in the production of heat exchangers and battery trays for electric
vehicles [2].

With the increasing application of FSW, demand is growing for non-destructive evalu-
ation methods that are more reliable than those currently available on the market [3]. As
FSW is a highly automated process, the application of sensors for inline process monitoring
is feasible. Inline monitoring methods can be categorized as direct or indirect methods.
While direct methods use technologies such as camera vision or ultrasonic testing, indirect
methods evaluate information such as forces and temperatures. Indirect methods are
usually less accurate but more economical and less sensitive to external influences, such
as light exposure. Consequently, indirect methods are preferable to direct methods for
industrial applications [4].

For indirect methods in particular, the appropriate processing and analysis of sensor
signals are of crucial importance to correctly interpret information about the manufacturing
process [4]. Developments in the field of machine learning in general and deep learning in
particular offer great potential for manufacturers to profitably evaluate production data
and monitor product quality [5].
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Deep learning is based on artificial neural networks (ANNs), which consist of numer-
ous layers that are arranged according to defined architectures [5]. Two types of ANN,
convolutional neural networks (CNNs) and recurrent neural networks (RNNs), have re-
cently received much attention, because they achieve significantly better results in tasks
such as computer vision or time series analysis than the simpler fully connected neural
networks (FCNNs) do. CNNs are widely used for learning from two-dimensional data,
such as images. The complexity of the patterns that can be identified by CNNs increases
with each hidden layer: Simple characteristics are detected in the initial layers, while
specific shapes are recognized in the final layers [6]. RNNs are characterized by cyclic
connections between neurons. In contrast, basic feed-forward networks are acyclic [7].
However, the utilization of CNNs and RNNs in manufacturing is still at an early stage [6,7].

2. Related Work

In the field of FSW, there have been various efforts applying ANNs to identify weld
defects by direct or indirect monitoring. The first research work in this area was published
by Boldsaikhan et al. [8]; the authors recorded the process forces in three spatial directions
and the spindle torque at a sampling rate of 51.2 Hz. The time signals were transformed
into the frequency domain using a discrete Fourier transform. The required signal features
to train and test various FCNNs were extracted in the frequency domain. One FCNN
predicted whether the welds contained metallurgical defects. A total of 205 samples were
available, whereby the split between “good” and “defective” samples was quite unbalanced
in both the test and the training data set, with significantly more “good” than “defective”
samples (the test data set contained 146 “good” and five “defective” samples). The highest
test accuracy of 100% was achieved when evaluating the y-force.

Fleming et al. [9] used a regression neural network to detect an improper positioning of
the welding tool during FSW. For data generation, the tool was displaced in the y-direction
(orthogonal to the welding direction) from −4 mm up to +4 mm relative to the center
position in 30 experiments. The forces in the x- and z-directions were evaluated using
an FCNN. The mean absolute error for the prediction of the tool position relative to the
centerline was 0.42 mm with a standard deviation of 0.51 mm.

Boldsaikhan et al. [10] recorded the occurring process forces in the welding direction
and transverse to the welding direction with a sampling rate of 68.2 Hz and evaluated
the resulting data using an FCNN. One cross section for metallography was taken from
each weld to determine whether the welds actually contained cavities. Whenever the cross
section revealed a cavity with a diameter of more than 0.08 mm, the entire weld was labeled
as “defective”. By this procedure, a prediction accuracy of up to 95% was achieved.

Du et al. [11] tested a total of five different procedures to predict defects in FSW. Two
different machine learning methods (decision trees and FCNNs) and three different kinds
of input data (experimental data, data from an analytical model, and data from a numerical
model) were utilized. The 108 data samples were collected from the literature and labeled
as “good” or “defective”. The best results were obtained employing the data from the
numerical model, whereby a test accuracy of 96.6% was achieved with both the FCNN and
the decision tree algorithm. The analysis of the experimental data by using the FCNN led
to an accuracy of 83.3%.

Hartl et al. [12] implemented a direct monitoring method using a CNN-based object
detection algorithm to recognize friction stir welds on aluminum sheets, and up to 95.0%
of the human performance level was achieved. Subsequently, the surface properties of
the welds were classified by another CNN, whereby various surface defects such as toe
flash or surface galling were identified. Color images recorded with a digital camera and
topography images acquired by a three-dimensional surface profilometer were tested as
input data. The topography images led to the best results, enabling a classification accuracy
of 92.1% (the human repeatability in classifying the topography images corresponded to
93.9%) [12]. Mishra et al. [13] also applied a CNN to classify images into conventional fusion
welds and friction stir welds. For this purpose, 100 images were utilized, which were scaled
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up to a total of 1000 images by using data augmentation. By employing the VGG-19 [14]
network architecture, an accuracy of 85% was achieved for the classification task.

In Hartl et al. [15], the focus was on the indirect monitoring of the surface quality.
Various sensors were employed for the inline acquisition of accelerations, forces, the spindle
torque, and temperatures. To predict whether the weld surface quality will be “good” or
“defective”, three different network architectures were tested: FCNNs, RNNs, and CNNs.
The best results were obtained when evaluating the spindle torque by a CNN, whereby a
prediction accuracy of 87.4% was reached.

In addition to their deployment in FSW, ANNs have also been applied in the field of
friction stir processing (FSP), which is a surface modification technique based on the princi-
ples of FSW [16]. Fahd [17] used an ANN to predict the resulting grain size after performing
FSP. The input variables were the tool rotational speed, the traverse speed, and the chemical
composition of the aluminum alloy. The comparison between the experimental data and
the values generated by the ANN revealed that for more than 90% of the predictions, the
percentage error relative to the actual value was below 10%. Dinharan et al. [18] applied an
ANN to predict the wear rate of copper surface composites that were produced using FSP.
An FCNN with four input neurons, a hidden layer with 10 neurons, and one output neuron
was employed. On the test data set, a correlation coefficient of 0.99 was obtained between
the experimental data and the prediction of the ANN, which qualified the FCNN as an
accurate and powerful tool for determining the wear rate of surface composites in FSP.

The present paper examines the crucial question of whether CNNs are superior to the
other two network types FCNNs and RNNs for predicting internal weld defects such as
cavities. If this were the case, it would strengthen the assumption that CNNs are superior
to FCNNs and RNNs regardless of the defect type to be detected. The most relevant related
work on the prediction of internal weld defects was published by Boldsaikhan et al. [10].
However, their approach of uniformly labeling the entire weld as “good” or “defective”
depending on one cross section per weld was a considerable simplification and should be
extended to a segment-wise assessment of the welds. This would enable a more precise
localization of the cavities inside the welds. Consequently, the present paper explores
two hypotheses:

I. CNNs provide greater accuracy than FCNNs and RNNs do for detecting cavities.
II. A non-destructive, data-based, and segment-wise prediction of cavities is possible.

3. Experimental Procedure
3.1. Welding Experiments

The welding experiments were conducted on a four-axis horizontal milling machine,
MCH 250 from Gebr. Heller Maschinenfabrik GmbH (Nuertingen, Germany), which had
been adapted to perform FSW. To obtain a sufficient amount of data, 120 welds were
produced using the aluminum alloy EN AW-6082-T6. In each experiment, two sheets
with a thickness of 4.0 mm were welded in butt-joint configuration. The welds had a
one-dimensional trajectory with a length of 205 mm. A two-piece tool consisting of a
shoulder and a probe was utilized in the experiments. Figure 1 displays the tool geometry,
and Table 1 lists the tool’s relevant dimensions.

Table 1. Relevant tool dimensions.

Probe Radius rP Shoulder Radius rS Conical Probe Angle β Probe Length hP Concave Shoulder Angle γ

3 mm 7 mm 10◦ 3.7 mm 10◦

To obtain a sufficient number of welds with cavities for appropriately training the
ANN, process parameters resulting in a low welding temperature were deliberately applied.
At low welding temperatures, the likelihood of cavity occurrence is particularly high. All
welds were produced in position-controlled mode employing a tool tilt angle of 2◦ and a
plunge depth of 0.1 mm. The welding speed vs and the tool rotational speed n (RPM) were
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varied according to a full factorial experimental plan: The welding speed vs ranged from
500 mm/min to 1200 mm/min (with steps of 50 mm/min), and the n/vs ratio varied from
1.0 mm−1 to 1.7 mm−1 (with steps of 0.1 mm−1). The tool rotational speed n was adjusted
accordingly. High welding speeds beyond 1000 mm/min are of major importance to meet
the productivity requirements of the automotive industry [2]. Consequently, such high
welding speeds were included in the experimental plan. In order to avoid damage to the
welding machine, the welding tool, or the measuring equipment, the n/vs ratio was at least
1.0 mm−1. A full experimental plan is given in Figure S1 in the supplementary materials to
this article.
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3.2. Data Acquisition and Pre-Processing

The process forces in three spatial directions Fx, Fy, and Fz, and the spindle torque Mz
were recorded with a sampling rate of 9.6 kHz using a dynamometer from HBM GmbH
(Darmstadt, Germany). The temperatures at the tool shoulder TS and the tool probe TP
were measured with a sampling rate of 220 Hz by thermocouples. The accelerations ax,
ay, and az in three spatial directions were determined with a sampling rate of 20 kHz by
an acceleration sensor from Kistler Instrumente GmbH (Winterthur, Switzerland). The
experimental set-up is depicted in Figure 2, whereby the x-direction coincided with the
welding direction. In Table S2 in the supplementary materials to this article, mean values
and root mean square (RMS) values are provided for the nine different process variables
for all 120 welds.

The various recorded process signals were cut to the relevant area where the feed
occurred and were uniformly sampled with a frequency of 5.0 kHz. Outliers and noise in
the signals were removed by employing moving average and interpolation filters. Then, the
signals of each weld were divided into 17 weld segments of 10 mm in length, the so-called
regions of interest (ROI). Further pre-processing of the signals depended on the architecture
of the three different network types. For the FCNN, the mean values were calculated for
each signal in each ROI. For the RNN, the instantaneous frequency [19] and the spectral
entropy, which are also often used as a feature in medicine signal processing [20], were
determined and employed as input. For the CNN, spectrograms were generated, similar to
Hartl et al. [15]. Spectrograms depict the spectral density of a signal depending on the time
and the frequency in a three-dimensional manner [21].
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3.3. Material Testing

It is not possible to take a metallographic sample at every point of the weld to deter-
mine the actual occurrence of cavities. Consequently, ultrasonic testing was used as an
alternative to detect cavities in the entire welds. The tests were performed by Element
Materials Technology Aalen GmbH (Aalen, Germany) via straight-beam scanning in an
immersion technique using the GE USIP40 equipment from GE Sensing and Inspection
Technologies GmbH (Huerth, Germany) and an ISS Alpha 15 MHz 0.25” probe. Water with
an added inhibitor served as a couplant. The tests were conducted according to the ISO
16810 standard [22]. For the calibration, a reference flat bottom hole with a diameter of
1.0 mm was prepared in one of the welds at a depth of 2.0 mm. The amplification during
the calibration was 56 dB. The amplification during testing was 68 dB, corresponding to a
flat bottom hole of approximately 0.5 mm in diameter at 80% screen height (SH). The test
frequency was 15 MHz. Figure 3 displays the C-scan of the weld containing the reference
flat bottom hole and the corresponding A-scan at the position of the reference hole. In the
A-scan, the amplitude enabled a comparison of the size of a natural defect with the size of
the reference defect. The sound path corresponded to the depth of a defect from the surface
of the weld.

To validate the results of the ultrasonic tests, a total of 37 metallographic samples
were prepared. The specimens were embedded in an epoxy system, ground to a fineness
of P1200, and polished with a 3 mm diamond suspension and colloidal silica. Finally, the
samples were etched using Kroll’s etchant [23]. In the supplementary materials to this
article, images of all 37 metallographic specimens are provided in Table S1.
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3.4. Artificial Neural Network (ANN) Modeling, Training, Validation, and Test

The FCNN contained one input neuron, one hidden layer with 10 neurons, and one
classification layer with one output. Varying the number of hidden layers of the FCNN as
well as the neurons in the hidden layers did not lead to any improvement.

The RNN had one sequence input layer with two neurons for the instantaneous
frequency and the spectral entropy, one bi-directional long short-term memory layer with
100 hidden units, one fully connected layer with two outputs, one softmax layer, and finally
one classification layer. Here again, varying the number of hidden units did not result in
any further improvement in accuracy.

The CNN was based on the network architecture AlexNet [24]. Using deeper CNN
architectures (VGG-16, VGG-19 [14], and ResNet-50 [25]) did not increase the obtained
accuracy. Additionally, the computation time was significantly lower when using the
AlexNet-based architecture compared to the other three tested CNN architectures.

The entire data was divided into 70% training data, 15% validation data, and 15% test
data. This division is frequently used in the field of machine learning and has also been
demonstrated to be adequate in previous studies [15]. The allocation of the ROI to the three
data sets and the initialization of the weights of the ANNs were conducted randomly. For
this reason, all computations were performed 10 times, and subsequently the mean value
and the standard deviation of the accuracies were calculated. The training of the ANNs
took place for a maximum of 30 epochs. For the FCNN, the Levenberg–Marquard training
function [26] was used. For the RNN and the CNN, the Adam optimizer [27] was applied.

4. Experimental Results
4.1. Data Set

The data set consisted of 120 welds, each of which was further subdivided into 17 ROI.
This resulted in a total of 2040 ROI that were available for the training, validation, and
testing of the ANNs. In Figure 4, the amplitudes from the ultrasonic testing are depicted
depending on the cavity sizes being measured on the cross sections of the 37 prepared
metallographic samples. It is evident that there is no distinct correlation between the cavity
size and the amplitude. Consequently, it is not possible to determine the exact size of the
cavity from the ultrasonic test.
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Two criteria were considered for the selection of a suitable threshold value to separate
the ROI into the categories “good” and “defective”. First, the available data set of 2040 ROI
should be divided as evenly as possible into the two classes. Second, as many data points
as possible should be located in the I. and III. quadrants of Figure 4, because this indicates
a high consistency of the classes “good” and “defective” between the metallography and
the ultrasonic tests. An amplitude of 65% SH was selected. This value revealed a high
agreement with a cavity size of 0.5 mm: above an amplitude of 65% SH, 18 of 23 cross
sections showed a cavity size above 0.5 mm (the corresponding 18 data points are located
in the I. quadrant in Figure 4); below an amplitude of 65% SH, 12 of 14 cross sections
revealed a cavity size below 0.5 mm (the corresponding 12 data points are located in the III.
quadrant in Figure 4). Furthermore, the ROI were divided sufficiently evenly into the two
classes (1226 good ROI; 814 defective ROI) when defining the threshold at 65% SH.

4.2. Comparison of Different Process Variables

The results of the prediction of the cavities using different process variables and
network architectures are summarized in Figure 5. Here the validation data set was used.
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The mean values received from the 10 computations fluctuated between 54.9% and
80.1% depending on the process variable and the network architecture employed. The
evaluation of the forces in y- and x-directions using the CNN led to the highest accuracies,
namely 80.1% and 78.3%. The presence of cavities inside the weld causes a distinct alter-
ation of the forces in the x- and y-directions [28]. The high classification accuracy shows that
this relation is recognized by the CNN and is the basis for the prediction. Of the 306 ROI
used for validation, an average of 245 were classified correctly and 61 incorrectly when
evaluating the y-force. Of the 61 incorrect predictions, 27 were false positives (i.e., the ROI
was good, but the CNN mistakenly classified it as defective), and 34 were false negatives
(i.e., the ROI was defective, but the CNN mistakenly classified it as good), revealing a
slight trend towards false negative predictions. Positive means that a cavity is indicated,
regardless of whether a cavity is actually present. Since the evaluation of the y-force by the
CNN led to the best results on the validation data set, this configuration was also applied to
the test data set. With that, a mean accuracy of 79.2% was reached, which demonstrates that
a segment-wise prediction of cavities is possible via CNNs. The combination of different
process variables did not lead to an improvement in accuracy.

Furthermore, it is remarkable that when applying FCNNs, which are simple in terms
of network architecture compared to CNNs, similarly high accuracies were achieved for
some process variables (see Figure 5). When evaluating the welding temperatures, the
results using the FCNN were even better than for the CNN. As the formation of cavities
strongly depends on the welding temperature, some crucial information for the prediction
of cavities can already be obtained by evaluating the mean temperature in each ROI by
applying the FCNN. When the RNN was used, the highest accuracies could not be achieved
for any of the process variables.

To compare the performance of the CNN to the performance of the FCNN presented
by Boldsaikhan et al. [10], an additional test was conducted: The 17 ROI of each of the
120 welds were uniformly labeled “good” or “defective”, depending on whether their
mean amplitude from the ultrasonic test was higher or lower than the chosen threshold of
65% SH. In this way, a mean validation accuracy of 98.8% and a mean test accuracy of 98.5%
was achieved when evaluating the Fy signal while applying the CNN. This demonstrates
the difference between a segment-wise labeling and a uniform labeling of the data of
each weld.

4.3. Dependence of the Validation Accuracy on the Sampling Rate and the Amount of Training Data

In a previous study, the dependence of the prediction accuracy on the sampling rate
was investigated [15]. It was determined that the accuracy only increases up to a sampling
rate of approximately 100 Hz. Beyond that, no significant improvement could be detected
up to a frequency of 9000 Hz. This behavior was confirmed for the prediction of the cavities
(see Figure 6): By investigating in more detail the evaluation of the y-force by using the
CNN, it was found that the prediction accuracy tends to increase up to a sampling rate of
500 Hz. However, beyond that no further improvement was observed. This affirms that
a high-frequency acquisition of process data during FSW in the kilohertz range offers no
additional benefit for evaluations through ANNs.

It was also observed in previous work that the accuracy of the prediction only in-
creased significantly until 20% of the available data was used for training [15]. Beyond
that, no significant increase in accuracy could be noted. This result was also confirmed
in the present study (see Figure 7). Until 20% of the available data set was employed for
training, that is, the data from 408 ROI, the accuracy increased considerably. Beyond that,
no significant improvement was observed until 1428 ROI were utilized. This again proves
that the quality of the training data is as important for the performance of the ANN as is
the quantity.
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Figure 7. Validation accuracy depending on the amount of training data for the evaluation of the y-force using a CNN.

5. Discussion

The accomplished accuracies for three different performed studies for process moni-
toring in FSW using CNNs are listed in Table 2.

Direct monitoring methods are usually more accurate than indirect methods (see
Section 1). Therefore, it is plausible that the highest accuracy was achieved by direct
monitoring [12]. The accuracy for the indirect recognition of the internal quality is lower
than for the surface quality, presumably because the determination of the labels for the
data is more complex. The identification of the cavities by ultrasonic testing is associated
with uncertainty (see Section 4.1), whereas the surface characteristics can be determined
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reliably. Two reasons can be mentioned for the limited correlation between the ultrasonic
testing results and the metallographic specimens prepared: first, although ultrasonic testing
makes it possible to determine the location of a defect very reliably, the exact identification
of the defect size is not readily possible and depends on the orientation of the cavity
inside the weld. A better estimate of the dimension of the cavities would be possible by
sonicating them from different angles. Phased array ultrasonic testing probes can provide
this function of different angles of sonication [29]. Second, the exact extraction of the
metallographic specimens and thus the precise assignment of the metallographic cross
sections to the corresponding location from the ultrasonic image posed a problem, resulting
in additional uncertainty. These two circumstances explain the lower accuracy achieved
when monitoring the internal quality compared to the surface quality.

Table 2. Achieved accuracies for process monitoring in friction stir welding (FSW) via CNNs.

Method Input Variable Output Variable Accuracy

Direct Topography images Surface quality 92.1% [12]
Indirect Spindle torques Surface quality 87.4% [15]
Indirect Forces in y-direction Internal quality 79.2%

The conducted study revealed that the way of labeling the data has a significant
impact on the achievable accuracy. When all 17 segments of the individual welds were
uniformly labeled as “good” or “defective” (which is a simplification), the accuracy of
the non-destructive, data-based detection of cavities was increased from 95% to 98.5%
compared to the state of the art [10]. This high accuracy makes the application of CNNs
interesting for industrial purposes. In addition, the state of the art was extended by the
aspect that the welds were also divided into 10-mm-long weld segments, which were
labeled individually (this became possible through the performance of the ultrasonic tests).
In this case, an accuracy of 79.2% was reached on the test data set, which shows that
CNNs also allow for a segment-wise recognition and thus a more precise localization of
the cavities.

The effective application of CNNs for predicting cavities in this work constitutes an
important step towards a more reliable and accurate process monitoring in FSW. Both
hypotheses established in the present study were confirmed:

I. By using the CNN, a higher prediction accuracy was achieved than by using the
FCNN or the RNN.

II. It could be shown that a non-destructive, data-based, and segment-wise prediction
of cavities is possible.

Based on the present work, the following future research is proposed:

• To further increase the prediction accuracy, it is recommended to improve the quality
of the training data in future research work. An identification of the cavities in the
welds used for training the CNNs by means of phased array ultrasonics or computed
tomography scans could significantly increase the accuracy, but will also considerably
raise the cost for the weld inspection.

• Further prospective research should also address the question of whether other weld-
ing imperfections (e.g., internal imperfections such as the hook and root flaws such as
the bonded joint remnant [30]) can be recognized by evaluating the process variables
using CNNs.

• Another future step should be the combination of the presented approach for process
monitoring by means of ANNs with an intelligent process optimization. Promising
modern algorithms for the optimization of the process parameters in FSW are Bayesian
optimization and reinforcement learning [31].

• It is assumed that the presented approach is also applicable in other welding tech-
niques. One example could be the monitoring of optical coherence tomography data
in laser beam welding [32]. This must be verified.
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6. Conclusions

In the present work, 120 friction stir welds were produced with different process
parameters and inspected by ultrasonic testing to identify cavities inside the specimens.
During the welding experiments, nine different process variables were recorded. After-
wards, three different types of ANN were tested to detect the cavities by evaluating the
process variables in a non-destructive and data-based manner. Based on two previous
studies [12,15] and the present work, the following conclusions can be drawn:

• CNNs are well suited for process monitoring in FSW. This applies to both surface
defects and internal defects.

• When evaluating the accuracy achieved when using ANNs, it must be considered
whether the welds were labeled uniformly or segment-wise.

• The prediction accuracy when applying CNNs for process monitoring in FSW initially
increases significantly with an increasing sampling rate and with a growing amount of
training data. However, as the sampling rate and the amount of training data continue
to rise, the rate of improvement of the prediction accuracy drops.

It can be summarized that CNNs are well suited for process monitoring in FSW. This
finding represents a decisive step towards a more reliable monitoring of FSW processes by
using ANNs. It is assumed that CNNs are also appropriate for process monitoring in other
welding technologies.
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