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Abstract: Flavor instability of pale lager beer depends decisively on aroma-active aldehydes from the
Maillard reaction, Strecker degradation, and lipid oxidation, which are formed in various oxidative
and non-oxidative reactions. Therein, aldehydes can be formed de novo and be released from bound
states to a free, aroma-active form during aging. During malting and brewing, proteolysis affects
the amount of soluble nitrogen and thus flavor instability in different ways (e.g., precursors for de
novo formation and binding agents for bound states). To isolate nitrogen-related aging processes,
beers from malts (two barley varieties, three proteolytic malt modifications) were produced on a
50 L scale in part 1 of this study. Sensory analysis revealed increased flavor instability for beers
with higher amounts of soluble nitrogen. Especially Strecker aldehydes significantly increased with
malt modification. The release of bound state aldehydes revealed most free aldehydes in fresh beers
and with higher malt modification. During aging, the equilibrium between free and bound state
aldehydes shifted toward the free form. These results reveal a nitrogen-dependent bound pool of
aldehydes that is depleted during aging and is responsible for aged aroma, especially in the early and
medium stages of aging. Therefore, bound state aldehydes are indicators of the early-stage prediction
of flavor instability already in a fresh condition.

Keywords: beer aging; flavor instability; bound state aldehydes

1. Introduction

The aging of lager beer is one of the key challenges brewers face in a globalized world.
During distribution and storage, reactions occur that are detrimental to the quality of beer,
especially its sensory aspects [1,2].

In practice, there are various ways to assess the flavor instability of lager beer, the
most common being forced aging. The sample is shaken (100 rpm, 24 h) and subjected to an
elevated temperature for a certain time (40 ◦C, 4 day) to simulate transport and aging. After
that, its aging status is evaluated using analytical and sensory techniques [3]. However,
there are substantial differences in the sensory and analytical aging behaviors of forced-
aged beers compared with naturally aged ones because of the elevated temperatures [4].
Because of these limitations, it is crucial to have tools to correctly describe and define the
aging status of a beer sample, as well as to simulate its aging potential as early as possible
(in fresh beer) [3].

The highly complex aging of pale lager beer has been thoroughly studied for several
decades. It is affected by exogenous conditions (time, temperature) and endogenous
parameters (pH, O2 concentration, pro- and anti-oxidant activity, number of precursors of
aging compounds) in raw materials, during the brewing process, and in the final product [3].
Beer aging can be considered a combined multi-stage process including all these pathways
and reactions [5,6].

Foods 2021, 10, 2432. https://doi.org/10.3390/foods10102432 https://www.mdpi.com/journal/foods

https://www.mdpi.com/journal/foods
https://www.mdpi.com
https://orcid.org/0000-0002-2898-0878
https://doi.org/10.3390/foods10102432
https://doi.org/10.3390/foods10102432
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/foods10102432
https://www.mdpi.com/journal/foods
https://www.mdpi.com/article/10.3390/foods10102432?type=check_update&version=2


Foods 2021, 10, 2432 2 of 15

The major contributors to aged aroma in beer are aldehydes from the Maillard reaction,
Strecker degradation, and lipid oxidation, which prove to be an appropriate class of
indicators for evaluating the aging status of a beer sample [7,8]. On the one hand, aldehydes
can be formed de novo in the respective reactions or radical oxidation reactions [9]. On the
other hand, aldehydes can also be released from a bound state [3,8].

De novo formation has been thoroughly studied, yet alone, it cannot explain the
observed increases during beer aging. In a finished beer sample, reaction conditions,
such as low ambient temperatures and relatively low pH (4.2–4.5), are insufficient for the
initiation steps of certain reactions, such as imine formation [10].

In contrast to their free state, aldehydes can also exist in a bound state via various
nucleophile additions. In beer, amino groups (amino acids), especially cysteine, and bisul-
fite (HSO3

−) appear to be the most apparent reaction partners. The resulting imines,
2-substituted-1,3-thiazolidine-4-carboxylic acids and α-hydroxysulfonates, are hypothe-
sized to degrade during aging and reveal the masked aldehydes [11]. In contrast, according
to Bustillo Trueba et al., cysteinylated aldehydes are present in detectable concentrations in
the stages from malt to wort, with a maximum at the onset of mashing but not anymore
after fermentation, due to the pH instability of these compounds. Only methional (Meth)
shows relatively high concentrations in a cysteinylated form [12]. The same results were
obtained in worts made from malts with different proteolytic modifications. Therefore,
cysteinylated aldehydes can be considered irrelevant for beer flavor instability [13]. Un-
doubtedly, different aldehydes show different affinities toward amino groups or HSO3

−

because of their molecular structure (inductive and mesomeric effects) and are thus present
in a bound state to different degrees. Up to now, this has not yet been investigated in beer.

Since arguably, bound state aldehydes are the main factors for the flavor instability of
beer and, in theory, are present at the highest concentrations in fresh beer, they can be used
to assess the aging potential of a fresh beer sample. For example, this can be done in the
so-called nonenal potential. Hereby, the capacity of a wort to produce (E)-2-nonenal (T2N)
and, since recently, also hexanal (Hex) is assessed [14,15]. Using 4-vinyl pyridine (4VP),
Baert et al. developed a method to release bound state aldehydes from these bound forms
through a pH shift and trapping of cysteine [16,17]. This approach can also be used to
assess the aging potential of the final wort [13]. The fact that acetaldehyde (ACA) replaces
other (longer-chain) aldehydes from their bound states can, in theory, also be used to
predict the flavor instability of fresh beer [18,19].

All these compounds (free aldehydes, bound state aldehydes, and precursors for de
novo formation) form the so-called aging potential of fresh beer. The totality and distribution
within the aging potential vary with raw materials, especially malts, and also with the
applied technology [13].

A major influence on the aging potential and thus on the formation and occurrence of
aroma-active aldehydes is attributed to amino compounds. They originate mainly from
the malt used in the brewing process. The number of reactants (amino compounds) in
barley depends on the barley variety and crop year [20]. During germination, barley
crude proteins are enzymatically degraded (proteolytic malt modification). The demanded
amount of crude proteins should be in the range of 9.5–11.0% [21]. With the modification
characteristics of the variety and the technological malting parameter steeping degree,
the amount of soluble nitrogen and thus amino acids in the malt can be increased [22]. A
practical measure of the degree of proteolysis during malting is the calculated Kolbach
index, defined as the ratio of soluble protein in the laboratory wort and the total protein
in the malt [21,23]. Lower amounts of soluble nitrogen and a lower Kolbach index (as
long as the raw protein content is on the same level) lead to less Strecker aldehydes in
the final beer [24]. Likewise, a low soluble nitrogen content provides more flavor-stable
beers [25]. The specifications for the soluble nitrogen content vary in the literature. The
recommendation for pale barley malt is 580–680 mg/100 g malt d.m. assessed in an ISO
65 ◦C mashing regime [26].
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If these specifications are not met, foam stability and yeast nutrition are negatively
affected. If they are exceeded, however, flavor instability increases and turbidity stability
decreases [9,21]. Finally, proteolysis can be affected during the mashing procedure. Lund
et al. showed that increased protease activity during mashing results in elevated levels of
amino acids in final beers. During aging, these beers show significantly higher scores in the
fruity aged/vinous attributes but not in papery attribute [27]. Thus, we can hypothesize
that by varying reactants by proteolytic malt modification, the aging potential increases in
different ways. The amount of precursor for de novo formation, followed by the amount of
free aldehydes, and, finally, the amount of bound state aldehydes increase.

Therefore, the goal of this study was to comprehensively investigate the aging poten-
tial (de novo formation and release of aldehydes from bound states) that solely arises from
soluble nitrogen compounds, reaction partners in both of these pathways. Furthermore, ox-
idative and antioxidative effects of O2 and SO2 were excluded in the final beer. Proteolytic
malt modifications were used as a tool to vary the number of reactants (soluble nitrogen),
as described by Nobis and Lehnhardt et al. [13]. The beers produced via a standardized
brewing process without promoting further proteolysis during brewing were subjected to
forced and natural aging. In part 1 of this study, we focused on (1) the sensory qualities of
the respective beers, (2) the influence of soluble nitrogen on the formation of free aldehydes,
and (3) the potential release of bound state aldehydes by two different methods, depending
on the amount of soluble nitrogen during beer aging and their impact on the sensory
qualities of the respective beers. Furthermore, we discussed the application of bound state
aldehydes for the early-stage assessment of aging stability directly in fresh beer.

2. Materials and Methods
2.1. Chemicals

O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride (≥99%), p-fluorobenzaldehyde
(98%), 2-methylpropanal (2 MP) (≥99.5%), 2-methylbutanal (2 MB) (95%), 3-methylbutanal
(3 MB) (97%), 2-phenylacetaldehyde (PA) (≥90%), Meth (≥97%), benzaldehyde (Benz)
(≥99.5%), pentanal (≥97.5%), Hex (98%), heptanal (95%), T2N (97%), ACA (≥99.5%), and
4-vinylpyridine (95%) were obtained from Merck (Darmstadt, Germany). 2-Furfural (Fur)
(≥99.0%) was purchased from Fluka Analytical (Charlotte, NC, USA). Ethanol p.a. was
purchased from VWR (Darmstadt, Germany).

2.2. Malt, Wort, and Beer Production

Malts (pilsner style) and worts were produced, as described by Nobis and Lehn-
hardt [13]. From two barley varieties, B1 (Avalon, Nordsaat Saatzucht GmbH, Langenstein,
Germany) and B2 (Marthe, Saatzucht Josef Breun GmbH & Co. KG, Herzogenaurach,
Germany), with a different genetically determined modification characteristic, six different
malts were produced with different proteolytic modification levels by varying the steeping
degree (P1: low; P2: medium; P3: high) (see Table 1).

The 6 malts were processed in a standardized scheme in duplicate, resulting in
12 worts, as previously described [13]. To avoid further proteolysis during brewing,
a high-mashing-in procedure at comparable pH values and from 60 ◦C (mashing-in tem-
perature) to 78 ◦C was used. Lautering was performed in a preheated (78 ◦C) lauter tun,
with a lauter rest of 10 min. In total, three sparges were performed until a gravity of 10.5 ◦P
was reached. The boiling time was 60 min. The boiled wort was transferred to a whirlpool
for a 15 min rest. The cast wort (60 L, 11.5 ± 0.2 ◦P) was cooled to 10 ◦C using a plate
heat exchanger.

For fermentation, dry yeast (TUM 34/70) (Fermentis, Marcq-en-Barœul, France) was
rehydrated in a diluted wort (6 ◦P) for 6 h. The pitching rate of 15 × 106 living cells/mL was
ensured using a Thoma chamber. Open fermentation was performed in cylindro-conical
tanks at 15 ◦C (SO2 < 2 mg/L in beer). As the extract fell below 3.5 ◦P, the tanks were
closed and maintained at the same temperature for 2 d. The green beers were transferred
to 50 L kegs and maintained at 18 ◦C for 1 d. Lagering was performed at 0 ◦C for 4 weeks.
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Filtration was performed using a Seitz A20Z filter press with Seitz K150 depth filter sheets
(Pall, NY, USA). After filtration, the beers were carbonated in 50 L kegs at 4 ◦C, filled
into 500 mL bottles using a semiautomatic back pressure filler (Fillmatic, FH Maschinen
und Braumanufaktur Werk II GmbH, Germany), and closed using a pneumatic corking
machine (Korkfix, FH Maschinen und Braumanufaktur Werk II GmbH) to guarantee O2
levels below 0.1 mg/L.

Table 1. Malt and brewing specifications: steeping degree, soluble N (target and real), total amino acids, pH, O2, and bound SO2.

Sample Steeping
Degree (%)

Target Soluble N
(ISO 65 ◦C (mg/100

g Malt d.m.)

Soluble N
(mg/100 g
Malt d.m.)

Total Amino
Acids in

Fresh Beer
(mg/L)

pH (Final
Beer) O2 (mg/L) Bound SO2

(mg/L)

B1/P1 38 550 ± 25 573 ± 10 909 4.57 ± 0.02 0.07 ± 0.04 0.84 ± 0.33
B1/P2 41 625 ± 25 601 ± 1 753 4.44 ± 0.05 0.01 ± 0.00 0.52 ± 0.20
B1/P3 44 700 ± 25 660 ± 1 980 4.52 ± 0.07 0.02 ± 0.00 0 ± 0
B2/P1 39 550 ± 25 569 ± 3 666 4.45 ± 0.07 0.07 ± 0.05 0 ± 0
B2/P2 43 625 ± 25 620 ± 14 784 4.39 ± 0.05 0.08 ± 0.01 0.16 ± 0.18
B2/P3 47 700 ± 25 731 ± 1 1121 4.55 ± 0.02 0.02 ± 0.01 3.16 ± 1.43

2.3. Aging and Sample Treatment

Forced aging was performed, as previously described [4]. The bottles were shaken
at 100 rpm for 24 h and then maintained at 40 ◦C for 4 d. Natural aging of samples was
performed in a dark chamber at 20 ◦C until the indicated sample age was reached (1 to
9 months). At each sampling point, beer samples were filtered, aliquoted into 50 mL tubes,
and immediately frozen. Samples for sensory analysis were moved to 0 ◦C after they
reached the respective age and kept there until tasting (maximum—1 week).

2.4. pH, O2, and SO2

Prior to alcohol and pH analysis, beer samples were filtered. At each sampling point,
the alcohol content was measured using an Anton-Paar Alcolyzer Beer ME (Graz, Austria)
and the pH was measured using a pH probe. Oxygen was analyzed using an Anton-Paar
CboxQC device (Graz, Austria). The bound sulfur dioxide content was determined via
the destillative method (MEBAK 2.21.8.2) [28]. The latter two analyses were performed in
duplicate. All other analysis was performed in triplicate.

2.5. Sensory Analysis

All beers were analyzed in a fully randomized setup in a single repetition by, on aver-
age, 10 (ranging from 9 to 13) panelists trained and certified by Deutsche Landwirtschafts–
Gesellschaft e.V. (DLG). The panelists underwent continuous training (once per week).
Three different (two rating and one descriptive) sensory methods were used. In each
session, aging-relevant sniffing samples were provided as an introductory exercise and
a commercial fresh pale lager beer (not older than 4 weeks) was presented as a control
sample. The samples were served in brown glasses at 10 ◦C ± 2 ◦C.

First, quality assessment was performed according to the DLG 5-point scheme. Five
categories (purity of smell, purity of taste, palate fullness, freshness, and quality of bit-
terness) were rated on the following monadic scale: 0 = inadequate (not evaluable);
1 = not satisfactory (strong deviation); 2 = less satisfactory (clear deviation); 3 = satis-
factory (perceptible deviation); 4 = good (slight deviation); and 5 = very good (quality
expectations reached in full). A weighted overall DLG score was calculated as follows:

Weighted overall DLG score = [(2 × purity of smell) + (2 × purity of taste + palate fullness + freshness)
+ (2 × quality of bitterness)]/8



Foods 2021, 10, 2432 5 of 15

Second, the aging-specific quality scheme according to Eichhorn was used. Three
categories (smell, taste, and bitterness) were rated on the following monadic scale with the
possibility of 0.5 steps: 1 = fresh beer, no aging impressions; 2 = slight aging impressions;
3 = strong aging impressions, acceptancy threshold for consumers; and 4 = extreme aging
impressions, such as sherry. Only aging-relevant impressions were judged. Acceptance
according to the Eichhorn scheme was evaluated on a hedonic scale from 0% (no acceptance)
to 100% (full acceptance).

Finally, check all that apply (CATA) was used to describe aging-relevant aromas. The
attributes fruity, berry, sweetish, honey, cardboard, bready, sherry, and cooked vegetables
were checked if present and not checked if absent. Panelists were also able to provide
free comments. The data were obtained as the sum of checks per attribute by the number
of panelists.

To evaluate whether the aging character of the produced beers differs between the
malt modifications, triangle tests with 16 tasters for all combinations per barley variety at
9 months (M9) were performed according to MEBAK Sensorik 3.1.3 [29]. Therefore,
beers from the repeated brews were blended. The samples were presented in a fully
randomized setup.

2.6. Quantitation of Free Aldehydes via HS-SPME-GC-MS

Headspace–solid phase microextraction–gas chromatography–mass spectrometry (HS-
SPME-GC-MS) was carried out according to Lehnhardt et al. with minor modifications [4].
A cooled beer sample (5 mL) was transferred together with 50 µL of an internal standard
(2 mg/L of p-fluorobenzaldehyde in ethanol) to a 20 mL headspace vial and stored in a
cooled autosampler tray (17 ◦C). Extraction was performed using a CAR-PDMS-DVB fiber.
First, the fiber was loaded with o-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine for 10 min
at 40 ◦C. Then, the headspace of the sample was extracted for 30 min at 40 °C. The fiber
was injected with a 1/5 split at 270 ◦C into a gas chromatography (GC) instrument (GC-
Ultra 1300; Thermo Fisher Scientific, Waltham, MA, USA) coupled to a single quad mass
spectrometer (ISQ 7000; Thermo Fisher Scientific). The GC instrument was equipped with a
DB-5 column (length, 60 m; inner diameter, 0.25 mm; film thickness, 0.25 µm; Thermo Fisher
Scientific). The carrier gas was helium (flow rate 1.85 mL/min). The starting temperature
was maintained at 60 ◦C for 4 min, followed by heating at 5 K/min up to a final temperature
of 250 ◦C, which was maintained for 3 min. A full scan mode (m/z 35–350) with a dwell
time of 0.02 s was applied for the analysis. Each sample was analyzed in triplicate. Peak
detection was performed using Xcalibur 3.1.66.10 (Thermo Fisher Scientific). Quantification
was achieved by external calibration. The lowest calibration point was defined as the
limit of quantification (LOQ), which was in accordance with previous studies [30,31]. All
measurements were performed in biological duplicate and technical triplicate.

2.7. Quantitation of Bound State Aldehydes after Release with 4VP vs. Acetaldehyde (ACA)

The procedure was performed as described in Section 2.6, with one exception. Before
adding the internal standard, 50 µL of 4VP solution (1/1 4VP/ethanol, v/v) was added or
in the case of competitive release with ACA, 50 µL of ACA stock solution (50 mg/mL) was
added. The samples were incubated in an autosampler tray at 17 ◦C for at least 6 h in the
case of 4VP and 12 h in the case of ACA. During 4VP elution from the GC column, mass
spectrometric detection was turned off.

The degree of bound state aldehydes was calculated as follows:

c(bound) (%) = (c(released) − c(free))/(c(free)),

where c(released) and c(free) are defined as concentrations of released versus free aldehydes.

2.8. Statistical Analysis

Data analysis was performed using JMP Pro 14 (SAS Institute Inc., Cary, NC, USA).
From technical and biological multiplicates, means and standard deviations were calculated.
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One-way analysis of variance (ANOVA) was performed to determine statistical differences,
where indicated. Post hoc testing for the comparison of all pairs was achieved with the
Tukey–Kramer honestly significant difference (HSD) test. Unless stated otherwise, α = 0.05
was used and each analysis was performed in technical triplicate.

3. Results and Discussion
3.1. Brewing Trials

To comprehensively investigate all aspects of the aging potential, beers were produced
from two different barley varieties (B1: Avalon; B2: Marthe) with variations in the prote-
olytic malt modification level (P1: 550 mg/100 g malt d.m.; P2: 625 mg/100 g malt d.m.;
P3: 700 mg/100 g malt d.m.). Table 1 shows these malt specifications as well as pH, O2,
and bound SO2 amounts of the fresh beers analyzed directly after filling.

Proteolytic malt specifications were achieved through different steeping degrees
during malting and goals set to the extrema of specifications, including a medium amount
to obtain detectable but still realistic differences. The targets of the individual modification
measured as soluble N were satisfactorily reached for all variations. The total amount of
amino acids increased with proteolytic malt modification, thus providing more reactants
and precursors for aging-relevant reactions. The only exception was B1/P2. During
proteolysis, all amino acids increased except for proline. This decrease led to a lower
amount of total amino acids in B1/P2 (Table S1).

In malt, the pH values were similar (Table S1). The fresh beers, in contrast, showed
significant differences in pH within the acceptable range for pale lager beers. P2 showed
the lowest pH in both barley varieties, most likely due to the optimal nutritional value for
yeast provided in the wort and the resulting better pH drop during fermentation.

The O2 levels directly after filling were minimal (<0.1 mg/L) in all samples, as reported
earlier [10]. The bound SO2 target was set to <1 mg/L and was reached for all but one
sample (B2/P3 varied from 1.9 to 4.3 mg/L in duplicate beers). However, the bound SO2
concentration was still low and thus acceptable. The minimal O2 and SO2 concentrations
were optimal to isolate N-related aging processes. On the one hand, direct oxidation
through reactive oxygen species formation is limited, and on the other hand, antioxidative
effects and covalent binding of aldehydes are excluded. Therefore, the beers produced in
this study were ideal for the isolated investigation of the aging potential provided by N
species and were subjected to forced (FO) and natural aging of up to 9 months (M1–M9).
Together with fresh samples (FR), all aging points were tasted using a trained sensory
panel and analyzed by instrumental analytics, as described next.

3.2. Sensory Analysis

An important part of the evaluation of flavor instability is sensory analysis with
ratings (descriptive and discriminative methods). This way, changes in product quality
during aging can be assessed and differences in the aging potential unraveled.

3.2.1. Quality Assessment and Descriptive Analysis by DLG, Eichhorn Scheme, and CATA

First, the sensory quality of the produced beers was investigated during aging. Dif-
ferences in sensory analysis after a certain period of aging indicate an influence of the
proteolytic malt modification.

Aging clearly influenced the analyzed samples. A continuous increase of aging
impression was observed after M3 in several aspects. The rating in different groups
suggested sensory distinguishability. For example, the M1 sample showed the highest DLG
overall scores, followed by FR, FO, M2, M3, M4, M5, M6, and M9 samples. Interestingly,
fresh and forced-aged samples did not show differences in these attributes. For smell,
according to the Eichhorn scheme, the same results were obtained. The M9 sample scored
the highest in this attribute, followed by M6, M5, M4, M3, M2, FR, FO, and M1 samples.
Hedonic acceptance was the highest for the M1 sample and decreased in FR, FO, M2, M3,
M4, M6, M5, and M9 samples. Furthermore, M3–M9 samples showed elevated scores in
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the attribute bready: M6, M4, M9, M5, and M3 samples in contrast to M1, FR, M2, and FO
samples. The older samples, M6 and M9, showed elevated scores in the attribute honey and
the M9 sample also showed elevated scores in the attribute sherry. These results indicate
that aging has a perceivable effect on beer quality after M3 (see Table S2).

Furthermore, we investigated the influence of proteolytic malt modification. Figure 1
shows boxplots of chosen attributes of standardized brewed beers by barley variety and
malt modification level. One boxplot includes all evaluated aging points (fresh, forced
aged, and naturally aged (M1–M9)).

Foods 2021, 10, x FOR PEER REVIEW 7 of 16 
 

 

3.2.1. Quality Assessment and Descriptive Analysis by DLG, Eichhorn Scheme, and 
CATA 

First, the sensory quality of the produced beers was investigated during aging. Dif-
ferences in sensory analysis after a certain period of aging indicate an influence of the 
proteolytic malt modification. 

Aging clearly influenced the analyzed samples. A continuous increase of aging im-
pression was observed after M3 in several aspects. The rating in different groups sug-
gested sensory distinguishability. For example, the M1 sample showed the highest DLG 
overall scores, followed by FR, FO, M2, M3, M4, M5, M6, and M9 samples. Interestingly, 
fresh and forced-aged samples did not show differences in these attributes. For smell, ac-
cording to the Eichhorn scheme, the same results were obtained. The M9 sample scored 
the highest in this attribute, followed by M6, M5, M4, M3, M2, FR, FO, and M1 samples. 
Hedonic acceptance was the highest for the M1 sample and decreased in FR, FO, M2, M3, 
M4, M6, M5, and M9 samples. Furthermore, M3–M9 samples showed elevated scores in 
the attribute bready: M6, M4, M9, M5, and M3 samples in contrast to M1, FR, M2, and FO 
samples. The older samples, M6 and M9, showed elevated scores in the attribute honey 
and the M9 sample also showed elevated scores in the attribute sherry. These results in-
dicate that aging has a perceivable effect on beer quality after M3 (see Table S2). 

Furthermore, we investigated the influence of proteolytic malt modification. Figure 
1 shows boxplots of chosen attributes of standardized brewed beers by barley variety and 
malt modification level. One boxplot includes all evaluated aging points (fresh, forced 
aged, and naturally aged (M1–M9)). 

B1/P1 B1/P2 B1/P3 B2/P1 B2/P2 B2/P3
0

1

2

3

4

5

D
LG

 o
ve

ra
ll 

sc
or

e

*

A B

C D

B1/P1 B1/P2 B1/P3 B2/P1 B2/P2 B2/P3
1.0

1.5

2.0

2.5

3.0

3.5

4.0

sm
el

l (
Ei

ch
ho

rn
)

B1/P1 B1/P2 B1/P3 B2/P1 B2/P2 B2/P3
0

10
20
30
40
50
60
70
80
90

100

ac
ce

pt
an

cy
 [%

]

B1/P1 B1/P2 B1/P3 B2/P1 B2/P2 B2/P3
0.0

0.2

0.4

0.6

0.8

1.0

br
ea

dy
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Figure 1. Sensory analysis of beers: (A) DLG overall score, (B) smell according to the Eichhorn scheme, (C) acceptancy (%),
and (D) attribute bready. Boxplots show values of all aging points (n = 18). Linked boxplots showed a significant difference
(*: p < 0.05). (B1: barley variety 1; B2: barley variety 2; P1: low proteolytic malt modification; P2: medium proteolytic malt
modification; P3: high proteolytic malt modification).

In addition, the malt modification level influenced the aging behavior of the ana-
lyzed beer samples. For B1, we observed a stronger aging impression (lower DLG scores,
higher Eichhorn scores, higher intensities for aging descriptors) and reduced acceptance
with a higher amount of soluble N. Although the results showed no statistical signifi-
cance, we found strong trends (one-way ANOVA at α = 0.05; p = 0.21 (Figure 1A), 0.11
(Figure 1B), 0.07 (Figure 1C), 0.02 (Figure 1D)). The only exception was observed for the
attribute bready. The B1/P2 and B1/P3 pair showed significant differences (Tukey–Kramer
HSD test, p = 0.02). For B2, the same trends were observed but generally on a weaker level
(one-way ANOVA at α = 0.05; p = 0.79 (Figure 1A), 0.59 (Figure 1B), 0.60 (Figure 1C), 0.72
(Figure 1D).

These analyses revealed no significant differences but only trends between proteolytic
malt modification when all sampling dates were considered together. Still, this does
not imply that the aging potential of individual beer samples does not differ between
proteolytic malt modification.
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3.2.2. Triangle Tests

Second, the goal was to determine whether the beers showed differences in a discrim-
inative test (triangle test according to MEBAK Sensorik 3.1.3) after a long-term natural
aging period (M9), as suggested by the aforementioned sensory results. M9 was chosen
because the oldest sample in this study could unfold its aging potential to the highest
degree. Table 2 shows the results of the triangle test. p-Values in bold indicate statistically
significant results (α = 0.05).

Table 2. Triangle tests to determine sensory differences in beer after 9 months of natural aging
(n = 16) (B1: barley variety 1; B2: barley variety 2; P1: low proteolytic malt modification; P2: medium
proteolytic malt modification; P3: high proteolytic malt modification).

Tested Pair Correct Answers Wrong Answers p-Value

B1/P1–B1/P2 8 8 >0.05
B1/P1–B1/P3 12 4 <0.001
B1/P2–B1/P3 13 3 <0.001
B2/P1–B2/P2 10 6 <0.01
B2/P1–B2/P3 14 2 <0.001
B2/P2–B2/P3 14 2 <0.001

After M9, the triangle test did not reveal significant differences for B1/P1 and B1/P2,
because these samples showed the smallest difference in soluble N (28 mg/100 g malt d.m.)
(Table 1). However, for all other pairs, significant differences were observed. Especially, all
pairs with P3, samples with the highest amounts of soluble N, showed clear results. This
was the case even for B2/P3, although this sample showed the highest amount of bound
SO2 in fresh beers (Table 1). The values ranged from 1.9 to 4.4 mg/L in duplicate brews,
indicating that little to medium amounts of SO2 have no positive effect on flavor instability
after M9, independent of the amount of soluble N.

Therefore, sensory analysis of the produced beers revealed differences in the aging
behavior that depended on the amount of soluble N. With increasing proteolytic malt mod-
ification, we observed decreased sensory beer quality and acceptance. After 9 months of
natural aging, almost all pairs showed significant differences in the triangle test, indicating
a varied aging potential in fresh beer.

3.3. Behavior of Free Aldehydes

The clear sensory differences, especially for the attribute bready, in the produced
samples during aging indicated that the amount of soluble N affects the number of aroma-
active compounds. Amino acids, as part of the soluble N in beer, are reactants in various
aldehyde-yielding reactions and direct precursors of Strecker aldehydes. These aldehydes
are used as aging indicators because of the fact that they increase during aging but show
high aroma activity [4]. Next, we discuss the behavior of free aldehydes: 2MP, 2MB, 3MB,
Meth, PA, Benz, Fur, Hex, and T2N.

Figure 2 shows the concentrations of chosen aldehydes that showed statistically
significant differences. Each boxplot contains the data of all aging points (FR, FO, M1–M9).
The behavior of all other investigated aldehydes can be found in Table S3.

In the fresh condition, we observed none to only minor differences in the analyzed
aldehydes between different malt modification levels (Table S3 and part 2). Generally,
all aldehydes increased during aging to different extents, depending on the amount of
soluble N in the samples. This indicated either N-dependent de novo formation or a release
from the bound state. Especially, the concentration of Strecker aldehydes (2MP, 2MB,
3MB, and PA) in beer significantly increased at higher malt modification levels. Again,
higher proteolytic modification (P3) showed a significant increase in the content of these
aldehydes. Meth was mostly present only below its LOQ, and thus the results showed
no dependency on the malt modification level despite Meth being a Strecker aldehyde.
Other aldehydes such as Fur, Benz, Hex, and T2N were not significantly influenced by the
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amount of soluble N. Fur is mostly influenced by the heat load during beer production [8].
Benz, even though being considered a Strecker aldehyde, appears to be more dependent
on oxygen [6]. The formation of Hex and T2N is influenced by the concentration of lipids
(varying by environment and cultivar) and the enzymes involved in their degradation
during malting and brewing. Thus, their concentration is independent of the N species [20].

The observed increases in Strecker aldehydes explain the sensory impressions of aged
beers, since these compounds are important contributors to aged aroma and especially to
bready impressions [32]. A higher proteolytic malt modification lead to a higher aging
potential in fresh beer and thus to increased formation of aldehydes during aging. An
increased number of reactants during beer production results in a higher aging potential in
the wort, which is likely to be transferred to the final beer [13].
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3.4. Release of Bound State Aldehydes

The aging potential comes from reactive precursors, free aldehydes, and bound state
aldehydes. These bound state aldehydes are relevant sources, next to de novo formation,
of free aldehydes [3]. Thus, the behavior of bound state aldehydes during beer aging was
assessed by two different methods.

First, bound state aldehydes can be released by the addition of 4VP prior to analysis.
The released free aldehydes can be determined by HS-SPME. 4VP is a cysteine-trapping
reagent and shows high reactivity toward thiols; thus, it acts as a binding reagent toward
nucleophiles. Furthermore, the addition of 4VP to beer samples leads to a pH shift into the
weak alkaline state. Baert et al. found high recoveries in model systems [11]. They ignored
the observed release of bound state aldehydes from de novo formation of free aldehydes,
observed the release of bound state aldehydes, and found a remarkable variation in release-
able aldehydes between different beer samples [17].

Second, bound state aldehydes can be released by excessive addition of ACA, which
acts as a competitive agent toward other aldehydes that occur in a bound state. Upon
addition, the chemical equilibrium changes and ACA being the most electrophile aldehyde
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subsequently pushes out other aldehydes into their free form. Thus, these compounds can
be determined as free aldehydes by HS-SPME [18].

3.4.1. Release by 4VP

Figure 3 shows the degree of bound state aldehydes after release by 4VP. The degree
is a relative variable calculated as described before. A value of 0 indicates no release of
bound state aldehydes, while values > 0 imply release.
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state aldehydes in comparison to the free form (B1: barley variety 1; B2: barley variety 2; P1:
low proteolytic malt modification; P2: medium proteolytic malt modification; P3: high proteolytic
malt modification).

The degree of bound state aldehydes in the analyzed beers varied by the status of
aging, malt modification level, and type of aldehyde. In most fresh samples, considerable
amounts of aldehydes could be released by 4VP. The degree of releasable aldehydes
decreased during aging. After M9, no more aldehydes could be released in most cases.
This over-time-decreasing amount of bound state aldehydes was statistically significant for
2MP (one-way ANOVA: p = 0.0002), Fur (one-way ANOVA: p = 0.0004), and PA (one-way
ANOVA: p < 0.0001). These compounds appeared to be the most promising aldehydes for
use as early-stage indicators of flavor instability in fresh beer. Furthermore, Benz (one-way
ANOVA: p < 0.0001) and T2N (one-way ANOVA: p = 0.0024) showed significant differences
during aging. However, for these compounds, most aldehydes could be released after
M3 versus M6 and forced aging. Apparently, bound state aldehydes are also released
during forced aging, although to varying extents. In the case of T2N, more aldehydes were
releasable after forced aging.
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3.4.2. Release by ACA

Figure 4 shows the degree of bound state aldehydes after release by ACA.
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malt modification; P2: medium proteolytic malt modification; P3: high proteolytic malt modification).

As observed before, the degree of bound state aldehydes released by ACA varied by
the status of aging, malt modification level, and type of aldehyde. For most samples, the
number of ACA-releasable aldehydes showed a decrease during aging. More aldehydes
could be released from fresh samples compared to natural and forced-aged samples. This
was especially true for 2MP (one-way ANOVA: p < 0.0001), 2MB (one-way ANOVA:
p < 0.0001), 3MB (one-way ANOVA: p < 0.0001), Hex (one-way ANOVA: p = 00073), and
Benz (one-way ANOVA: p ≤ 0.0001). Fur (one-way ANOVA: p = 0.12) and Meth (one-way
ANOVA: p = 0.24) showed the same behavior but not significantly. PA and T2N also
showed a similar behavior, with the exception that the highest concentrations of these
compounds could be released at M9.

3.5. Influence of Aldehyde Structure on Occurrence in a Bound State

The chemical structure of aldehydes influences the degree of binding in various ways.
Generally, steric effects might hinder the binding of Fur, Benz, and PA. Positive inductive
effects (+I) lower electrophilicity and thus the binding affinity (e.g., for 2MB compared
with 3MB). Positive mesomeric effects (+M) hinder the binding of Fur, Benz, and PA due
to a higher electron density at the carbonyl group [33]. Bueno et al. investigated the
equilibrium constants (Ka) of a variety of aldehydes and HSO3

− in model wines. Higher
values indicated that the equilibrium is more on the side of the bound state aldehyde.
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They found that along with ACA (Ka = 485 × 103), Meth (Ka = 50 × 103) and 3MB
(Ka = 29 × 103) showed higher affinity toward HSO3

− compared to PA (Ka = 17 × 103),
2MP (Ka = 2.8 × 103), 2MB (Ka = 2.6 × 103), or Fur (Ka = 0.1 × 103). Higher values indicate
an increased affinity toward nucleophiles [14,15].

In fresh beers, 2MP (up to 1970%), Fur (up to 760%), and PA (up to 290%) showed
the highest relative release rates in the case of 4VP and, at the same time, together with
3MB, the highest absolute concentrations (Table S3). Thus, not only Ka but also process
technology needs to be considered. Although 2MP is the most volatile of these compounds,
it was also present in the free form in the highest quantities and might withstand processes
such as evaporation during boiling at relatively high concentrations compared to other
compounds. Fur and PA, in contrast, have relatively low volatilities and thus are not
evaporated to the same extent but rather remain in the liquid phase. Therefore, these
compounds might react more with nucleophiles in the matrix and thus occur more in a
bound state. The results obtained in this study are in agreement with the literature. Baert
et al. found that T2N, Fur, and 2MP could be released from fresh commercial beers by 4VP,
each at an increase of more than 100% [17].

ACA revealed the presence of 2MP (up to 490%), 2MB (up to 220%), 3MB (up to
120%), Hex (up to 102%), and Benz (up to 620%) in bound states in fresh beers and their
depletion during aging. Fur (except for B1/P3) and Meth did so, too, but to lesser extents.
Interestingly, PA and T2N showed the same behavior, with the exception that after M9,
more aldehydes were again released upon the addition of ACA. The highest absolute
concentrations in the bound state were obtained for 2MP, 3MB, and PA (Table S3). The
same aldehydes were among the ones that could be released by 4VP at high concentrations.

3.6. Final Discussion of Release and Bound State Aldehydes

Based on both these release methods, we finally investigated whether all the aging-
related aldehydes are released during aging. Therefore, the sums of all investigated free
and bound state aldehydes were calculated. Figure 5 shows the equilibrium between the
sum of free aldehydes and the sum of bound state aldehydes assessed by the two applied
release methods. We observed that the equilibrium shifted toward the free form during
aging. After M9 versus M6, the equilibrium was fully toward the free form, indicating
either hydrolysis or a different degradation of an important bound state fraction. Further
possibilities could be the irreversible binding on proteins [10], proline-catalyzed aldol
condensation [34], or further oxidation reactions, which will be discussed in part 2 of
this study.

Furthermore, the equilibrium was influenced by the amount of soluble N in the sample.
In fresh samples, the ratio of bound state and free aldehydes increased with the amount
of soluble N for 4VP, and ~82% of aldehydes were free in P3, ~73% in P2, and 51% in P1
(R = 0.69). The same result was observed for ACA but to a lower extent (~57% in P3, 51%
in P2, and 34% in P1; R = 0.26). A higher proteolytic malt modification level resulted in
elevated concentrations of all amino acids except proline (see part 2). Therefore, amino
acids are important binding agents for aldehydes. It was assumed that cysteinylated
aldehydes have a major influence on beer flavor instability. In fact, they do exist in the beer
matrix but only at negligible concentrations and increase during aging since they are in
equilibrium with free aldehydes [12]. Thus, the N adducts that we observed in this study
are more likely to be in the form of imines, either with amino acids or with larger peptides
and proteins. These compounds would be hydrolyzed slowly during beer aging and thus
would release free aldehydes. The degradation is favored at pH 4.0 because of the presence
of a zwitterionic hemiaminal. Therefore, the targeted analysis of imines after reduction, as
described in the literature, is necessary in future research [35]. Furthermore, untargeted
analysis of protein-bound aldehydes seems highly promising for further elucidation of
bound state species.

In summary, 4VP can release more bound state aldehydes compared with ACA. 4VP
acts via a competitive (for nucleophiles) mechanism and also elevates the pH of the sample.
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ACA only acts competitively. Using ACA is the softer, less invasive way of releasing
bound state aldehydes. Ultimately, beer is a dynamic equilibrium system, and each method
can only shift the equilibrium to a certain extent. Both presented methods, 4VP- and
ACA-induced release, are promising tools for the early-stage assessment of beer flavor
instability regardless of the maximum degree of release. Which method comes closest to
reality is highly influenced by the samples, its way of production, and, ultimately, storage
conditions.

Contrary to the literature, 4VP does not mostly release SO2 adducts, as observed in
beers with up to 10 mg/L of SO2 [17]. 4VP and ACA can also release N-related adducts.
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4. Conclusions

Samples brewed via a standardized brewing process with a high-mashing-in proce-
dure from two different barley varieties at different proteolytic malt modification levels
showed different aging behaviors in sensory analysis, as well as free and bound state
aldehydes. The soluble N in these samples ranged from 569 to 731 mg/100 g malt d.m.
(ISO 65 ◦C mashing procedure), covering both low and high limits of the demanded brew-
ing specifications. The sensory and analytical aging status increased with the amount of
soluble N. The increase in free aldehydes, especially in the early to medium stage of aging
(up to M6 of natural aging) can be explained by the release of bound state aldehydes to a
strong degree. The impact of de novo formation will be discussed in part 2 of this study.

Aldehydes have different affinities with regard to their form of occurrence (free or
bound) due to their chemical structures. The degree of binding is a combined result of
abundance of the aldehyde and its electrophilicity. This equilibrium of free and bound
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state aldehydes shifts toward the free form during aging. After M9 versus M6, depending
on the release method, none or only a negligible impact of bound state aldehydes on the
flavor instability of beer was observed. Therefore, the assessment of bound state aldehydes
after their release is a promising alternative analytical method of forced aging and allows
for early-stage prediction of the aging potential without thermal intake and the related
problems in fresh beer.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/foods10102432/s1, Table S1: malt and beer analysis, Table S2: sensory results, Table S3: free
and bound aldehydes.
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