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Abstract: Chemiluminescence assays have shown great advantages compared with other optical
techniques. Gold nanoparticles have drawn much attention in chemiluminescence analysis systems
as an enzyme-free catalyst. The catalytic activity of gold nanoparticles for chemiluminescence sensing
depends on size, shape and the surface charge property, which is hard to characterize in batches. As
there is no positive or negative correlation between chemiluminescence signals and sizes of gold
nanoparticles, the best way to get optimal gold nanoparticles is to control the reaction conditions
via online chemiluminescence sensing systems. Therefore, a new method was developed for on-
line synthesis of gold nanoparticles with a three-dimension hydrodynamic focusing microreactor,
directly coupled with a microfluidic chemiluminescence sensing chip, which was coupled to a charge-
coupled device camera for direct catalytical characterization of gold nanoparticles. All operations
were performed in an automatic way with a program controlled by Matlab. Gold nanoparticles were
synthesized through a single-phase reaction using glucose as a reducing agent and stabilizer at room
temperature. The property of gold nanoparticles was easily controlled with the three-dimension
microreactor during synthesis. The catalyst property of synthesized gold nanoparticles was character-
ized in a luminol–NaOCl chemiluminescence system. After optimizing parameters of synthesis, the
chemiluminescence signal was enhanced to a factor of 171. The gold nanoparticles synthesized under
optimal conditions for the luminol–NaOCl system were stable for at least one month. To further
investigate the catalytic activity of synthesized gold nanoparticles in various situations, two methods
were used to change the property of gold nanoparticles. After adding a certain amount of salt (NaCl),
gold nanoparticles aggregated with a changed surface charge property and the catalytic activity was
greatly enhanced. Glutathione was used as an example of molecules with thiol groups which interact
with gold nanoparticles and reduce the catalytic activity. The chemiluminescence intensity was re-
duced by 98.9%. Therefore, we could show that using a microreactor for gold nanoparticles synthesis
and direct coupling with microfluidic chemiluminescence sensing offers a promising monitoring
method to find the best synthesis condition of gold nanoparticles for catalytic activity.

Keywords: gold nanoparticles; online; chemiluminescence; catalyst characterization; microflu-
idic chip

1. Introduction

Chemiluminescence (CL) is a phenomenon in which a specific molecule gets energy
from a redox reaction and is excited. The molecule emits light when it returns to a ground
state. As there is no need of an excitation source and optical filters, it shows great advan-
tages compared with other optical techniques, such as low cost, simple instrumentation and
easy automation [1]. Moreover, the high sensitivity, and wide linear range make CL-based
assays applicable in different scientific and industrial areas [2]. Enzymes are used in most
CL methods as a catalyst, such as horseradish peroxidase and alkaline phosphatase [3].
However, enzymes have the disadvantages of short lifetime and low stability, which means
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they are easily denaturalized. Moreover, enzymes are usually expensive with a complex
labeling procedure [4]. Recently, precious metal nanomaterials have participated in the
CL reaction, which improved performance of the CL system [5]. Among these nanoma-
terials, gold nanoparticles (AuNPs) have attractive properties, such as easy preparation
and modification, stability, large surface area to volume ratio, and good biocompatibility,
which have attracted researchers’ attention [6]. Some researchers have applied AuNPs
as a catalyst in a CL system [7–9]. The catalytic activity of AuNPs with different sizes
was systematically investigated in luminol–H2O2 CL reactions by Cui’s group [10]. It
was found that AuNPs with different sizes had different enhancement of the CL signals.
However, there is no positive or negative correlation between CL signals and sizes of
AuNPs. In other CL systems, studies have also shown that there was no direct relationship
between the size of AuNPs and signal intensity [7,8,10–14]. Additionally, the optimal size
of AuNPs depends on different CL systems [7,8,10–14]. For example, in the luminol–H2O2
system, the 38 nm AuNPs showed best catalytic performance among the tested AuNPs [10].
However, in luminol–ferricyanide and luminol–hydrazine CL systems, the most intensive
CL signal was obtained by using 25 and 15 nm AuNPs, respectively [7,11]. Due to the
limited number of AuNPs tested and various CL systems, it is impossible to determine
the best AuNPs with a specific size. In addition, the morphology of AuNPs affects their
catalytic performance in CL reactions. Aggregated AuNPs were found to induce a higher
signal in CL reactions with luminol than dispersed ones [15–17]. Besides their size and
shape, AuNPs with different surface charge properties also display various functions in CL
reactions [16]. Cationic AuNPs or AuNPs with lower negative charge density have been
proven to exhibit higher catalytic activity [16–18]. Due to all these variables, it is difficult to
confirm the optimal AuNPs for a certain CL reaction. Although the most effective AuNPs
for a specific CL reaction have not been determined, AuNPs have been successfully used
in many practical applications, as shown in Table 1. Even though 38 nm AuNPs have been
proven to show better catalytic activity in the luminol–H2O2 CL system [10], they were
not used in any of these applications. According to our knowledge, researchers only buy
commercial AuNPs or produce them batch-wise. On the one hand, no one can determine
which AuNPs exhibit the best catalytic activity. On the other hand, there is no simple
way to control the size of AuNPs during the synthesis process. Therefore, it is crucial to
develop an online monitoring system which can easily control the property of AuNPs
during synthesis and immediately inspect the catalytic CL activity.

Table 1. Practical applications of gold nanoparticles (AuNPs) in different chemiluminescence (CL) systems.

CL System Size of AuNPs Application Ref

Luminol–H2O2 13 nm Detection of L-cysteine in pharmaceutical samples [19]
Luminol–H2O2 12 nm Detection of fibrillar fibrin in plasma samples [20]

Luminol–H2O2
31 ± 3 nm
27 ± 2 nm Detection of C-reactive protein in serum samples. [18]

Luminol–H2O2 13 nm Detection of single-strand DNA in plasma samples [15]
Lucigenin–H2O2 13 ± 3.0 nm Detection of histone in serum samples [21]
Luminol–IO4

− 4 nm Determination of polyphenols in tap water. [14]

Luminol–hydrazine 15 nm Determination of hydrazine in boiler feed
water samples. [11]

Luminol–AgNO3 13 nm Detection of antigen with antibody functionalized
AuNPs in serum samples [22]

Microreactors have been exploited by many research groups to achieve rapid and
tunable synthesis of nanoparticles [23–26], fulfilling the promise of automated systems
for reaction optimization [27]. Microfluidic reactors were shown to synthesize products
with narrower size distributions and faster reaction rates compared to conventional batch
synthesis [23]. Extremely short mixing times can be achieved in microfluidic reactors due to
the thin fluid layer thickness [28]. Moreover, decreased amounts of reagents are used and
limited by-products are generated. Microreactors can even be applied for automated multi-
step synthesis [29]. A continuous flow microreactor was used for the synthesis of AuNPs by
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Wagner et al. [23]. Significant fouling of the micro-channels was observed due to deposition
of nanoparticles on the reactor walls. Fouling can be relieved by using focusing flow in
which sheath streams can insulate nanoparticles from channel walls. Moreover, focusing
the reaction flow allows formation of more monodispersed particles due to the uniformity
of concentration, residence time and fluid velocity in the center [30]. Recently, our group
invented a flow-focused microreactor for synthesis of magnetic nanoparticles [31]. The
laminated three-dimension (3D) flow-focused microreactor was further developed for
synthesis of AuNPs without fouling [32]. This continuous synthesis method has the
potential to couple online with analytical instruments like inductively coupled plasma
mass spectrometry (ICP-MS), flow-based UV–Vis spectrometers or sensors. For CL sensing,
continuous flow injection improves mixing between the luminol and oxidant, which
can result in a higher intensity of CL signal than in a cuvette [9]. Flow-based methods
allow a continuous light emission if luminol; oxidants and catalyst are pumped into the
microfluidic chip constantly. The CL signal in microchannels can be imaged by a CCD
camera for sensing applications.

The principle of online synthesis using a 3D hydrodynamic focused microreactor
combined with microfluidic CL sensing was shown for the first time in this work. The cat-
alytical characterization of AuNPs produced continuously through a single-phase reaction
were directly measured by CL reactions of luminol and NaOCl in microfluid channels by a
CCD camera. NaOCl was one of the first reagents used to demonstrate luminol CL with
brilliant blue emission, and is a convenient choice in the classroom [33]. The method can be
applied to other CL systems in the same way. AuNPs were synthesized by the reduction
of tetrachloroaurate (III) ions with glucose as reducing agent and stabilizer and sodium
hydroxide (NaOH) adjusting pH [34]. Synthesizing AuNPs with glucose has never been
tried in a 3D microreactor before. Glucose has the advantage that AuNPs can be synthe-
sized at room temperature, unlike with citrate solutions where heating is required [35].
Moreover, compared with the strong reducing agent sodium borohydride (NaBH4), glucose
is non-toxic and cannot react with water. The pH value and concentration of glucose has
an important effect on the size distribution and stability of the nanoparticles [36]. There-
fore, the sizes and properties of AuNPs were modulated by varying the concentration
of reagents to obtain optimal catalytic activity in enhanced CL detection by luminol and
NaOCl. The stability of AuNPs synthesized under optimal conditions was checked for one
month. The effect of aggregation and the surface property of AuNPs on catalytic activity
were also monitored by CL imaging after adding salt and molecules with thiol groups.
A possible mechanism for luminol–NaOCl–AuNPs is shown in Scheme 1. AuNPs show
catalytic activity with facilitating radical generation and electron transfer processes on the
surface of the AuNPs [10]. AuNPs were stable with negative charged repulsion. When salt
was added, the repulsion was screened with decreased density of negative charge which
resulted in the aggregation of AuNPs. Therefore, anions can easily interact with the surface
of AuNPs and the aggregated AuNPs show better catalytic performance than the dispersed
ones [17]. Some organic compounds with -SH groups could strongly interact with AuNPs,
and the amount of radical absorbed on the surface of AuNPs might be reduced, which
might result in the inhibitive phenomenon [37].
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2. Materials and Methods
2.1. Materials

Gold (III) chloride trihydrate (HAuCl4 · 3H2O, ≥99.9% trace metal basis, Sigma-
Aldrich, Munich, Germany) was used as a gold precursor and D-glucose (Sigma-Aldrich,
Munich, Germany) was used as a reductant with the aid of sodium hydroxide (NaOH,
reagent grade, ≥98%, pellets, Sigma-Aldrich, Munich, Germany). Luminol stock solu-
tion (4 × 10−2 M) was prepared by dissolving 3-aminophthalhydrazide (luminol, Sigma-
Aldrich, Munich, Germany) in 0.10 M NaOH and stored in a fridge for one week before
use. The stock solution was diluted with ultrapure water to get the specific concentration.
Sodium hypochlorite (NaOCl, 12% Cl) supplied by Carl Roth (Karlsruhe, Germany) was
diluted for the working solution. Hydrochloric acid (HCl, Sigma-Aldrich, Munich, Ger-
many, ACS reagent) was used to clean the microreactor after synthesis. Stock solution
of glutathione (0.01 M) was prepared by dissolving glutathione (Sigma-Aldrich, Munich,
Germany) in ultrapure water, and it was diluted by ultrapure water to make a working
solution. Ultrapure water was used to prepare all aqueous solutions. The poly (methyl
methacrylate) (PMMA) sheets with a thickness of 0.2 mm were supplied by the company
Modulor Material Total (Berlin, Germany). The double-sided pressure-sensitive adhesive
(PSA) tape (ARcare 90106) was supplied by Adhesive Research (Glen Rock, PA, USA). The
carrier sheet with a thickness of 10 mm was fabricated by our in-house workshop. The
fabricated PMMA carrier contained threads (1/4”—28 UNF) to allow the connection with
PTFE tubing.

2.2. Synthesis of AuNPs in 3D Microreactor

A laminated 3D hydrodynamic flow-focused microreactor was constructed with PSA
tape and PMMA. The method eliminated cleanroom requirements due to the absence of
lithographic process. The difficulty in designing and fabricating a 3D microreactor was
solved by the simple assembly process of layering precut sheets. This 3D microreactor has
been proven to synthesize reproducible AuNPs without fouling [32]. The microreactor
applied for synthesis of AuNPs was constructed of seven layers of PMMA sheet and
PSA tape with 3 inlets for HAuCl4, glucose and NaOH, and one outlet for AuNPs as
shown in Figure 1. A series of different concentrations of NaOH (10−3–1 M) and glucose
(3 × 10−4–3 × 10−1 M) was tested to see at which concentration AuNPs were generated.
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Figure 1. Scheme of 3D microreactor for synthesis of AuNPs. The microreactor was constructed of
seven layers of alternating PMMA sheets and PSA tapes. The fabricated PMMA carrier contained
threads (1/4”—28 UNF) to allow the connection with PTFE tubing for inlets of HAuCl4, glucose and
NaOH, and one outlet for AuNPs.

2.3. Procedures for CL Measurements

The CL measurements were conducted on CCD camera (16-bit) with a microchip
insert for direct online CL imaging as depicted in Figure 2. The microchip was composed
of a transparent glass sheet for coving, one PSA layer and one black plastic sheet with holes
for inlets and outlet. The PSA layer with channel offers a place for reagents mixing and CL
generation. The glass allows generated light emissions to pass through, and the light is
recorded by a sensitive CCD camera with an image. CL intensity is described as the gray
intensity of each pixel, ranging from 0 to 65,536 au. The background from the dark signal
of the CCD was recorded before the measurement, and the background was subtracted
from each image before evaluation. ImageJ was used to integrate the signal intensity over
the pixels.
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Figure 2. Microchip in CCD camera for CL was composed of glass, PSA tape and black plastic with
holes for inlets and outlet. Images are taken by CCD camera when reaction occurs in microchip.

2.4. Automated Synthesis and Online CL

The luminol–NaOCl system was coupled with online synthesized AuNPs for catalyst
characterization. All operations, including synthesis of AuNPs and CL generation in
the coupled CCD camera, were performed in an automatic way. All components were
connected using PTFE tube (inner diameter 0.8 mm). The combined setup is shown in
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Figure 3. Reagents were supplied to the microreactor with three glass syringes (Innovative
Laboratory Systems GmbH, Stutzerbach, Germany) connected to a 6-port valve (Cavro
Smart Valve, Tecan Group Ltd., Männedorf, Switzerland). The first ports of each valve
were used for intake of glucose, NaOH and HAuCl4, which were reagents for synthesis of
AuNPs. Then they were transferred to the 5th ports, which were connected to the inlet of
the microreactor. The second ports were for injection of water to clean syringes. The 6th
ports were for outlet of waste during or after synthesis. The 3rd port of the first valve was
for cleaning solution after synthesis. The glass syringes were operated by three custom-
made pumps (GWK Precision Technology, Munich, Germany) which were controlled with
Matlab (The MathWorks, Inc., Natick, MA 01760, USA) by a host computer connected via
an Ethernet cable. The synthesized gold nanoparticles could be directly pumped into a
microfluidic CL sensing chip. Another pump was used to deliver reagents for changing the
property of AuNPs, luminol and NaOCl, and the flow rates were the same at 1 µL/s. In this
paper, NaCl and glutathione were used as two kinds of property-changing reagents. When
they were not applied, the syringes for them were blocked. The property-changing reagents
were mixed with AuNPs through a three-way valve. The solution from the three-way valve
was then mixed with luminol by another three-way valve. NaOCl was then mixed with
the mixture in the microchip inserted in the CCD camera to generate a CL signal. With all
reagents pumped into the microchip simultaneously, the signal could be recorded with the
CCD camera online.
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Reagents were supplied to the microreactor via three glass syringes connected to a 6-port valve. Synthesized AuNPs were
mixed with property-changing reagents, luminol and NaOCl in a microchip to generate a CL signal which was recorded by
CCD camera.

2.5. Offline Characterization of AuNPs

UV–Vis absorbance spectra for gold nanoparticle suspensions were recorded using
a SPECORD 250 PLUS UV–Vis spectrometer (Analytik Jena, Jena, Germany). The spec-
trometer uses deuterium and halogen lamps to produce UV light and a visible range of
electromagnetic wavelengths. A beam of light with a wavelength ranging from 400 to
900 nm was used for measurement. Disposable polystyrene cuvettes (UV cuvette semi-
micro, 1.5–3.0 mL, Brand GmbH, Hamburg, Germany) were used for containing samples
and reference. Ultrapure water was used as a reference sample as all solutions were pre-
pared in ultrapure water. Scanning electron microscopy (SEM) images were acquired on a
model Sigma 300 VP microscope (Zeiss Gemini, Graz, Austria). The samples were analyzed
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with an InLens detector using an acceleration voltage of 10 kV, a 30 µm aperture and a
working distance of about 1.4 mm.

3. Results and Discussion
3.1. Effects of the Reagent Concentrations on AuNPs Synthesis

The concentration of reagents is an important factor in synthesis of AuNPs. Neither
high nor low concentration of NaOH was suitable for synthesis of AuNPs, as shown in
Figure 4a. When the pH was low with 10−3 M NaOH, there were no surface plasmon
resonance (SPR) absorption bands from 400 to 900 nm, which indicated that no AuNPs
were generated [38]. Since OH− participates in the reduction reaction, the pH environment
has a significant impact on the synthesis of AuNPs, and glucose can only act as an effective
reducing agent in the presence of OH− [34]. With high concentration (10−1 M and 1 M),
there were inconspicuous broad peaks. This implied that AuNPs were aggregated. AuNPs
were stabilized with glucose via electrostatic repulsions. High concentration of ions from
NaOH may break the electrostatic balance, which can cause aggregation of AuNPs [39].
When the concentration of NaOH rose to 10−2 M, the absorbance peak with small full-
width at half maximum (FWHM) of the SPR band and high intensity appeared, which
indicated narrower size distribution and higher concentration of AuNPs. Therefore, the
concentration of NaOH should be around 10−2 M. The effect of glucose concentration
on the UV–Vis absorption spectra of AuNPs synthesized with 10−2 M NaOH is shown
in Figure 4b. For very low concentration of glucose (3 × 10−4 M), limited AuNPs were
produced as there was only a small peak around 550 nm. In this case, the amount of glucose
was not enough to reduce all Au3+ ions in the solution. With higher glucose concentrations
from 3 × 10−3 M to 3 × 10−1 M, more AuNPs were produced. The surface-plasmon
maximum absorption wavelength (λmax) of AuNPs shifted to a lower value (from 578 to
529 nm) with decreasing size of AuNPs. Therefore, it is easy to infer that the higher the
glucose concentration, the more effective the reduction function of glucose. There would be
more nucleation sites which result in smaller AuNPs and higher number density. To make
sure all Au ions can be reduced, concentration of glucose should be higher than 10−2 M.
The concentration of glucose can be tuned to obtain various sizes of AuNPs.
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3.2. Effect of Synthesis Parameters on Catalytic Property of AuNPs

The concentration of glucose and NaOH can affect the size distribution of AuNPs [36].
AuNPs with different sizes can further affect the CL signals with different catalytic activ-
ity [10]. As there is no positive or negative correlation between CL signals and sizes of
AuNPs, the best way to get optimal AuNPs is to control the reaction conditions via online
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CL sensing. The properties of AuNPs were easily controlled with the 3D microreactor
during synthesis. The parameters for synthesis were optimized for the luminol–NaOCl–
AuNPs system to obtain the highest CL signal. To test the catalytic activity of AuNPs, the
tube for property-changing reagents was removed and AuNPs were mixed directly with
luminol. The effect of NaOH concentration was tested in the range of 0.5 to 10 mM with
0.01% HAuCl4 and 0.3 M glucose (Figure 5a). As shown in the figure, the intensity of CL
increased with the increase of NaOH concentration in the range of 0.5–2 mM. The CL inten-
sity decreased after concentration of NaOH reached 2 mM. After that, the CL signal reach
another maximum and then decreased again. There was no linear relationship between
NaOH concentration and CL signal; 2 mM NaOH was chosen for further application as
it can offer the highest CL signal at these conditions. The effect of glucose concentration
on intensity of CL was studied, ranging from 0.2–1 M (Figure 5b). There was a steady
increase of CL intensity as concentration of glucose increased. As glucose solution is almost
saturated when the concentration is 1 M, 1 M glucose was used for further application.
The effect of HAuCl4 concentration was also investigated as shown in Figure 5c. When
the concentration of HAuCl4 solution was lower than 0.05%, the intensity of CL increased
with the increase of HAuCl4 concentration. The reason could be that more AuNPs were
generated with higher concentration of HAuCl4 solution. When the concentration of
HAuCl4 solution was higher than 0.05%, the CL intensity decreased because the properties
of AuNPs changed. Considering the CL intensity, the ideal conditions for synthesis were
as follows: 2 mM NaOH, 1M glucose and 0.05% HAuCl4. Under the optimal conditions,
the synthesized AuNPs were quasi-spherical with a diameter of 15.32 ± 1.09 nm, as shown
in Figure S1 (Supplementary Materials).
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1.0 M; (c) 2 mM NaOH, 1 M glucose and different concentrations of HAuCl4, 0.02%, 0.04%, 0.05%, 0.06%, 0.08%, 0.1%.

After getting the optimized conditions for synthesis of AuNPs, it was still not clear if
the synthesized AuNPs or the reagents for synthesis acted as catalysts. The comparison
of CL signals from background and all blanks were done as shown in Figure 6. The back-
ground was from the totally dark signal without luminol–NaOCl. Since the background
signal was subtracted from each image before the evaluation, the signal for background was
0 (Figure 6a). When luminol and NaOCl were mixed in the chip and only water was added
instead of AuNPs, a gray line was shown in the image with a signal of 235 ± 2, as shown in
Figure 6b. The most intensive CL signal was obtained for synthesized AuNPs with a signal
of 40,378 ± 367 and there was a bright line as shown in Figure 6c. The enhancement was
171 times. Blank experiments were also carried out, including with NaOH, glucose and
HAuCl4 solutions with the same concentrations for synthesis. As shown in Figure 6, there
was no significant enhancement of CL signal when HAuCl4 was used and the signal reach
245 ± 10 as the concentration was too low, whereas NaOH and glucose could enhance the
luminol CL signal slightly to 575 ± 7 as pH was changed. This effect is described elsewhere,
too [10]. The concentration of unreacted NaOH and glucose in gold colloids was too low to
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make a contribution to the enhancement of CL intensity. Thus, the catalytic activity of gold
colloid was attributed to AuNPs rather than due to NaOH, glucose or HAuCl4.

Sensors 2021, 21, x FOR PEER REVIEW 9 of 13 
 

 

could enhance the luminol CL signal slightly to 575 ± 7 as pH was changed. This effect is 
described elsewhere, too [10]. The concentration of unreacted NaOH and glucose in gold 
colloids was too low to make a contribution to the enhancement of CL intensity. Thus, the 
catalytic activity of gold colloid was attributed to AuNPs rather than due to NaOH, glu-
cose or HAuCl4. 

 
Figure 6. Comparison of CL signals generated from background and luminol–NaOCl mixed with 
four blank solutions: water, 2 mM NaOH, 1M glucose and 0.05% HAuCl4, and synthesized 
AuNPs. Inset (a–c) were images recorded by CCD camera of background, water blank and 
AuNPs, respectively. 

3.3. Stability of Synthesized AuNPs 
The stability of AuNPs can be estimated by observing the color of colloid solution, 

which did not change with time. The stability of the synthesized AuNPs was carefully 
investigated over one month by UV−Vis spectroscopy. Figure 7 shows the UV–Vis spectra 
of AuNPs on day 1 (right after the synthesis), day 3, day 6 and day 31. There was only a 
slight shift of the SPR band (from 552 to 554 nm) from day 1 to day 3 with a decreased 
absorbance from 0.95 to 0.93. After that, the SPR band did not change until day 31. The 
size of AuNPs was maintained and aggregation did not take place. 

 
Figure 7. UV−Vis spectra of synthesized AuNPs recorded on day1, day 3, day 6 and day 31. 

Figure 6. Comparison of CL signals generated from background and luminol–NaOCl mixed with four
blank solutions: water, 2 mM NaOH, 1M glucose and 0.05% HAuCl4, and synthesized AuNPs. Inset
(a–c) were images recorded by CCD camera of background, water blank and AuNPs, respectively.

3.3. Stability of Synthesized AuNPs

The stability of AuNPs can be estimated by observing the color of colloid solution,
which did not change with time. The stability of the synthesized AuNPs was carefully
investigated over one month by UV−Vis spectroscopy. Figure 7 shows the UV–Vis spectra
of AuNPs on day 1 (right after the synthesis), day 3, day 6 and day 31. There was only
a slight shift of the SPR band (from 552 to 554 nm) from day 1 to day 3 with a decreased
absorbance from 0.95 to 0.93. After that, the SPR band did not change until day 31. The
size of AuNPs was maintained and aggregation did not take place.
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3.4. Effect of Property-Changing Reagents on Catalytic Property of AuNPs

Although the synthesized AuNPs were stable, aggregation could be caused by adding
salt. The aggregation of AuNPs can change the CL intensity in a luminol system and many
analytical methods were developed according to this principle [17,20,40,41]. Here, different
concentrations of NaCl were added to AuNPs to change the property and CL signals
were recorded to monitor the catalytic activity as shown in Figure 8a. With increased
concentration of NaCl, the CL signal was enhanced significantly. UV–Vis absorption
spectra analysis was carried out to inspect the property change after adding salt. As shown
in Figure 8b, without salt addition, the absorption was high and SPR band of AuNPs was
narrow, indicating the AuNPs were highly dispersed. As the salt concentration increased,
the intensity of SPR decreased with a lower number concentration of AuNPs. Moreover,
the absorption spectra were broader and shifted to a high value, indicating a bigger size of
AuNPs caused by aggregation. With enough salt, the negative charged repulsion between
AuNPs was screened and AuNPs aggregated [17]. Luminol–NaOCl CL reaction occurred in
alkaline solution and the main molecules in the reaction were hypochlorite ion (OCl−) and
luminol anion. The anionic molecules would not easily interact with the AuNPs because
of a negative charge on the surface. The aggregated AuNPs with lower negative charge
density caused by adding salt would be favorable for adsorption and electron transfer.
Therefore, the catalytic activity of aggregated AuNPs caused by salt is better than that of
dispersed AuNPs.
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There are some organic compounds containing -OH, -NH2 or -SH groups which were
reported to easily interact with AuNPs and change the surface property [42]. Glutathione
was used as one example of a property-changing reagent with -SH groups. The CL signal
was significantly inhibited with glutathione, indicating the decreased catalytic activity of
AuNPs, and the degree of inhibition was related to the concentration of glutathione, as
shown in Figure 9. With a concentration of 1 mM, glutathione can inhibit 98.9% of the CL
signal, from 19,977 to 211. In the luminol–NaOCl–AuNPs system, there are some oxygen
intermediates. A decrease of CL intensity can be caused by the competition between
reducing groups of -SH and luminol for active intermediate radicals [17]. The surface
of AuNPs was occupied by the compounds and this interrupts reactions occurring on
the surface of AuNPs [37]. Therefore, the catalytic activity was decreased when organic
molecules bound on the surface of AuNPs.
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4. Conclusions

A new online CL sensing method was proposed for online synthesis of AuNPs with
a 3D hydrodynamic focusing microreactor and direct characterization of the catalytic
activity in the flow. AuNPs were synthesized through a single-phase reaction using
glucose as reducing agent and stabilizer at room temperature. The property of AuNPs
was easily controlled by tuning concentration of reagents in a 3D microreactor during
synthesis. The catalyst property of synthesized AuNPs was characterized by microfluidic
CL sensing of luminol and NaOCl. With optimized parameters of synthesis, the CL signal
was enhanced 171 times. Without adding another stabilizer, AuNPs were stable for more
than one month. Two kinds of reagents were used to change the property of AuNPs and to
investigate their effect on catalytic activity. The addition of salt could cause aggregation
of synthesized AuNPs and the CL signal for the luminol–NaOCl–AuNPs sensing system
was greatly enhanced because of the change of surface charge property. Glutathione
was applied as an example of a molecule which binds on the surface of AuNPs. The
catalytic activity of AuNPs was decreased and the extent of inhibition was related to the
concentration of glutathione. This method offers a good way to confirm optimal synthesis
condition of AuNPs for a certain CL sensing application. Researchers can use their own
synthesis methods and CL systems according to specific applications. The synthesized
AuNPs with good catalyst property can be applied in flow-based CL microarrays instead
of enzymes [43,44]. Another potential application is labeling AuNPs with luminol for
ultrasensitive CL-based chemical analyses [45]. The quenching effect can also be utilized to
detect molecules with special functional groups [46]. For specific detection, AuNPs can
bind with antibodies or aptamers [47,48].
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