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Background: Optical coherence tomography is a powerful modality to assess

atherosclerotic lesions, but detecting lesions in high-resolution OCT is challenging and

requires expert knowledge. Deep-learning algorithms can be used to automatically

identify atherosclerotic lesions, facilitating identification of patients at risk. We trained

a deep-learning algorithm (DeepAD) with co-registered, annotated histopathology to

predict atherosclerotic lesions in optical coherence tomography (OCT).

Methods: Two datasets were used for training DeepAD: (i) a histopathology data set

from 7 autopsy cases with 62 OCT frames and co-registered histopathology for high

quality manual annotation and (ii) a clinical data set from 51 patients with 222 OCT

frames in which manual annotations were based on clinical expertise only. A U-net based

deep convolutional neural network (CNN) ensemble was employed as an atherosclerotic

lesion prediction algorithm. Results were analyzed using intersection over union (IOU)

for segmentation.

Results: DeepAD showed good performance regarding the prediction of atherosclerotic

lesions, with a median IOU of 0.68 ± 0.18 for segmentation of atherosclerotic lesions.

Detection of calcified lesions yielded an IOU = 0.34. When training the algorithm without

histopathology-based annotations, a performance drop of >0.25 IOU was observed.

The practical application of DeepAD was evaluated retrospectively in a clinical cohort (n

= 11 cases), showing high sensitivity as well as specificity and similar performance when

compared to manual expert analysis.

Conclusion: Automated detection of atherosclerotic lesions in OCT is improved using

a histopathology-based deep-learning algorithm, allowing accurate detection in the

clinical setting. An automated decision-support tool based on DeepAD could help in

risk prediction and guide interventional treatment decisions.

Keywords: deep learning, artificial intelligence, intravascular imaging, atherosclerosis, histopathology, optical

coherence tomography
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INTRODUCTION

Coronary artery disease is the leading cause of death worldwide,
accounting for the majority of acute coronary syndromes and
sudden cardiac deaths. Identification of atherosclerotic tissue
might allow stratification of patients at risk for future coronary
events (1–3). Invasive assessment of the coronary arteries
using high-resolution intravascular imaging has emerged as
an important tool for identifying atherosclerotic lesions (4),
as the close proximity of the imaging catheter allows a more
precise and high-resolution visualization of the vascular tissue
compared to non-invasive modalities (5). The main advantage
of optical coherence tomography (OCT) in comparison to other
imaging modalities such as intravascular ultrasound (IVUS) is
its superb resolution of 10–20µm with a tissue penetration
of approximately 2–3mm, which enables clear visualization of
atherosclerotic components such as lipid tissue with foam cell
infiltration or calcifications (5, 6). However, assessment and
evaluation of OCT is currently based on clinical expertise from
skilled interventionalists and pitfalls in plaque characterization
can lead to misclassification (7, 8). Additionally, each volume
of OCT images obtained in one measurement, also called a
pullback, generates a vast amount of data, precluding from
analog assessment of single frames. Due to the high clinical
relevance and the cumbersome manual review, automated or
semi-automated approaches for preliminary evaluation of OCT
images is of great interest for the interventional community
(9–11). For intravascular imaging, several groups demonstrated
the possibility of automated plaque characterization using semi-
automated approaches such as quantification of various optical
signal properties (e.g. light attenuation) (12–15). The feasibility
of using deep-learning algorithms for detection and visualization
of atherosclerotic plaque components was also demonstrated
recently (9, 11, 16–19). In this work, we developed DeepAD, a
deep-learning algorithm trained on data with histopathology-
based annotations from autopsy specimens as well as clinical
OCTs for prediction of atherosclerotic lesions, and evaluated it
in dedicated real-world cases (Figure 1).

METHODS

Histopathology and ex vivo OCT Imaging
Autopsy samples of coronary arteries were acquired from
the department of pathology at Klinikum Rechts der Isar in
accordance with federal state law and after approval from
relatives (ethical approval number: 291/18 S). Coronary arteries
were then cut by an experienced pathologist according to
the standard AHA classification. OCT imaging of the single
segments was then performed as previously described (15):
After careful preparation, vessels were wired with a 0.014-inch

Abbreviations: CAD, Coronary artery disease; CNN, Convolutional neural

network; CVRF, Cardiovascular risk factors; DES, drug-eluting stent; H.E.,

Hematoxylin and eosin; IDDM, insulin-dependent diabetes mellitus; IOU,

intersection over union; IVUS, intravascular ultrasound; LAD, Left anterior

descending artery; LCA, Left coronary artery; LCX, Left circumflex artery;

M.P., Movat-pentachrome; NIRS, near-infrared spectroscopy; OCT, Optical

coherence tomography; PCI, Percutaneous coronary intervention; RCA, Right

coronary artery.

guidewire over which the OCT catheter (2.7-F, St. Jude Medical,
St. Paul, Minnesota) was advanced. An imaging pullback was
performed from the distal to the proximal arterial segments
while simultaneously flushing the vessel with contrast to improve
imaging quality (pullback speed 5 mm/s = 120 frames/s).
Afterwards, arteries were cut at 3mm intervals and stained
with haematoxylin-eosin (H.E.) and Movat-Pentachrome. The
presence of different atherosclerotic plaque types and plaque
components was evaluated by an expert in cardiovascular
pathology (MJ) according to the classification by Virmani
et al. (20), (see Table 1). Co-registration of OCT frames and
histological sections of human autopsy samples was achieved as
previously described (21) by first, considering only the proximal,
middle or distal part of the OCT pullback for the respective
slide and second, visual alignment of anatomical landmarks
(calcifications, side branches, lumen contour) within each part of
the segment.

Clinical Data Set
OCT pullbacks from the OCT database at the German Heart
Center Munich (including all patients undergoing intravascular
imaging with clinical indication for OCT during coronary
angiography) were screened. OCT imaging was performed
according to current recommendations (22) with commercially
available OCT systems (Dragonfly DF-OCT-catheter combined
with the C7-XRTM imaging system; LightLab Imaging Inc.,
Westford MA, USA). Pullbacks were assessed for the presence
of atherosclerotic plaque features as previously described
(23) and included fibrous, lipid and calcified plaques (see
Table 2). A total of 222 frames from 51 patients were used
for analysis. In case of stented vessels, proximal and distal
regions outside the stent were used. For baseline characteristics,
(see Table 3).

Manual Annotation of OCT Frames
OCT images were transferred to an offline working station and
transformed into 8bit RGB images. Labeling of OCT frames was
achieved using the freeware tool LabelMe (24). In each frame, the
suspected plaque area was identified. Plaque area was measured
based on histopathology and by tracing the leading edge in OCT
images using a polygonal line tool, respectively. Plaque area was
defined as the presence of lipid accumulation, necrotic core with
or without foam cell infiltration and/or calcification (Figure 2).
To avoid pitfalls as reported in (7), we included the guidewire
artifact into the label “background”.

DeepAD
DeepAD is an ensemble of semantic segmentation networks
performing pixelwise classification with respect to atherosclerotic
lesions. In addition to histopathology-based OCT annotations,
we employed so-called weakly supervised training by using OCT
images annotated without histopathology.While histopathology-
based annotations represent the gold standard, annotations
based on OCT images contain valuable information for learning
to segment atherosclerotic lesions, however, remain limited in
resolution and diagnosis, hence providing a weak supervisory
signal to the training (25).We trained and selected several models
in so-called ensembles, an effective method to avoid overfitting
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FIGURE 1 | DeepAD for prediction of atherosclerotic lesions from OCT. (A) Two data sets were used for training DeepAD: 222 OCT frames from 51 patients with

manual annotations based on clinical expertise, and 62 OCT frames from 7 patients with annotations based on co-registered histopathology. (B) DeepAD learned to

accurately predict atherosclerotic lesions from OCT images and was evaluated on patients with histopathology-based annotations.

TABLE 1 | Histopathological data set (n = 62 histopathology images).

Histopathological

data set

N = 62

Plaque type

Pathological

intimal thickening

(PIT)

Fibroatheroma

(FA)

Thin-cap fibroatheroma

(TCFA)

6/62

(9.7)

45/62

(72.6)

11/62

(17.7)

Early FA Late FA

6/45

(13.3)

16/45

(35.6)

Plaque components Foam cells 0/6

(0.0)

15/45

(33.3)

8/11

(72.7)

Calcification 0/6

(0.0)

27/45

(60.0)

4/11

(36.4)

Necrotic core 0/6

(0.0)

24/45

(53.3)

11/11

(100.0)

Main characteristics of the histopathological data set regarding presence of different plaque types (PIT, FA and TCFA) and plaque components (Foam cells, calcifications and necrotic

core). Values are numbers of frames (percentage).

on small data sets (26). All the models in the ensemble were
created with the same network architecture. The differences
in the models were the weight initializations of the networks,

training batch sampling as well as optimization parameters. As
no random seeds were set when training the models, these
parameters were assigned different values at the start of each
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TABLE 2 | Clinical data set (n = 222 OCT frames).

Clinical data set

N = 222

Plaque type

Fibrous

plaque

Lipid plaque Calcified

plaque

88/222

(39.6)

81/222

(36.5)

53/222

(23.9)

Plaque

components

Foam cells 3/88

(3.4)

81/81

(100.0)

28/53

(52.8)

Calcification 4/88

(4.5)

4/81

(4.9)

53/53

(100.0)

Lipid pool 2/88

(2.3)

25/81

(30.9)

16/53

(30.2)

Main characteristics of the clinical data set regarding presence of different plaque types

(fibrous plaque, lipid plaque and calcified plaque) and plaque components (Foam cells,

calcifications and lipid pool). Values are numbers of frames (percentage).

TABLE 3 | Baseline characteristics of clinical data set.

N 51 (100.0)

Age (years) 66.2 (±14.7)

Gender Male 35/51 (68.6)

Female 16/51 (31.4)

CVRF Arterial hypertension 43/51 (84.3)

Hypercholesterolemia 42/51 (82.4)

Diabetes mellitus II 25/51 /49.0)

Smoker 25/41 (49.0)

CAD 1V-CAD 5/51 (9.8)

2V-CAD 12/51 (23.5)

3V-CAD 34/51 (66.7)

Vessel imaged by OCT LCA 7/51 (13.7)

LAD 20/51 (39.2)

LCx 12/51 (23.5)

RCA 12/51 (23.5)

Indication for OCT imaging Unclear angiographic findings 2/51 (3.9)

Guidance of PCI 43/51 (84.3)

Follow-up after PCI 6/51 (11.8)

Clinical presentation Silent ischemia 8/51 (15.7)

Stable AP 31/51 (60.8)

Unstable AP 4 /51 (7.8)

ACS 6/51 (11.8)

Asymptomatic follow-up 2/51 (3.9)

Values are mean ± SD or n/N (%).

training round. This is a commonly used strategy to achieve
different models as the network training of Deep Learning
algorithms is stochastic and typically converges to different local
minima (27). At inference time, all model predictions were
averaged to obtain the final prediction for a given pixel. For
further details on network architecture, hyperparameters, exact
ensembling, (see Supplementary Material).

Evaluation on Unseen Patients
To leverage all the available data, DeepAD was trained several
times using “leave one patient out” cross-validation. Specifically,

for each training round, all histopathology-annotated OCT
images from one patient were held out for testing. The remaining
data was divided into a 80 % training and 20 % validation
split, with no patient overlap between groups. The model was
then trained with the training set and tested on the validation
set. For each model in the ensemble, the model weights that
performed best on the validation set were then tested on the
held-out patient. This process was then repeated until each
histopathology-annotated patient had been held out for testing
once. The OCT images annotated without histopathology were
never included in the test set.

Segmentation
Segmentation describes the task of linking certain regions or
pixels within an image to a specific class label (here: lumen,
lesion, other). We evaluated the segmentation performance using
the intersection over union (IOU, also called Jaccard index), a
common metric for evaluation of the quality of segmentation
algorithms (28). The IOU is calculated as the overlap between the
manual annotation (i.e. the “ground truth”) with the prediction
from the algorithm divided by the union (see Figure 2A):

IOU = Area of overlap/Area of union.

IOU can range from 0 (no overlap between ground truth and
prediction) to 1 (complete overlap between ground truth and
prediction; Figure 2A).

a-Line Classification
In contrast to segmentation (i.e. the pixel-wise classification),
a-line classification computes a binary output regarding the
presence of a certain manually annotated class or label in an a-
line (e.g. a lesion). In our work, one a-line was defined as one
angular direction originating from the center of the lumen. For
each OCT frame, 360 a-lines represented the whole 360 ◦ vessel
circumference. Classification was evaluated on a binary level,
with a-line being positive if >3 pixels along the a-line contained
atherosclerotic lesion and negative if no pixels along the a-line
contained atherosclerotic tissue, as defined in previous works
(11). Positive a-line signal (indicating presence of atherosclerotic
lesion) was visualized by a green line (arch) in the respective
vessel circumference. For results of a-line classification, please see
Supplementary Material and Supplementary Figure 1.

RESULTS

Histopathology and Clinical Data set
Characteristics
In the histopathology data set, a total of 62 lesions from 7
patients were identified according to the classification by Virmani
et al. (20) and manually co-registered with OCT (see Table 1

for details regarding the different plaque types) as previously
described (21). For the clinical data set, a total of 222 OCT frames
were identified as suitable for analysis (see Table 2 for details
on the different plaque types). For examples from both datasets
(see Figure 3). The histopathology-based annotations as well as
the clinical annotations were annotated independently by two

Frontiers in Cardiovascular Medicine | www.frontiersin.org 4 December 2021 | Volume 8 | Article 779807

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Holmberg et al. Deep Learning Predicts Atherosclerotic Lesions

FIGURE 2 | Lesion segmentation vs. a-line classification. (A) Lesion segmentation: Atherosclerotic lesions are annotated in OCT frames with or without

histopathological information (blue = lumen, gray= vessel wall). Performance of the segmentation approach is evaluated via IOU, measuring the overlap between the

labeled “ground truth” and the “prediction” of the algorithm. IOU ranges between 0 and 1 (B) a-line classification. Based on the manual annotation, 360 a-line

predictions are evaluated per OCT frame regarding the presence or absence of atherosclerotic lesions and can be summarized in a confusion matrix.

clinical and histopathology experts. The estimated interobserver
variability for manual annotation of OCT frames with and
without histopathology-based annotations was measured as
the IOU between two independent expert observers. The
median interobserver variability was 0.58 without and 0.71 with
histopathology. Thus, the agreement was considerably higher
when histopathology-based annotations were available. We also
measured the alignment between annotations on the same scans
with and without histopathology, being 0.61 across the two
annotators. This showed that a difference in results was observed
when annotating with or without histopathology.

DeepAD Accurately Predicts
Atherosclerotic Tissue in Unseen Patients
DeepAD predicted atherosclerotic lesions with a median IOU
of 0.68 ± 0.18 across all test patients (Figure 4A). Good and
moderate performing examples (Figure 4B) illustrate that the
DeepADs is highly accurate in the localization of atherosclerotic
lesions across the lumen circumference as well as the difficulty
of correctly estimating the extent of this lesion beyond the
lumen border (see e.g. Figure 4B, moderate example). Figure 4B
(lower row) illustrates a low performing prediction from
DeepAD. Here DeepAD falsely predicts a lesion below the
lumen which is not supported by the manual histopathology-
based annotation. Overall, DeepAD predicts lesions with

an IOU of 0.03 lower than the median IOU agreement
between two observers, showing close to on par segmentations
with expert annotators. To evaluate the importance of using
histopathology-based OCT annotations, all OCT images in the
histopathology data set were additionally annotated without
histopathology by two independent observers. The algorithm
was then trained with a dataset of the exact same size,
but without histopathology-based annotations. The influence
and importance of using histopathology-based annotation in
the creation of the DeepAD algorithm was measured as the
discrepancy of these models’ performance with respect to the
histopathology-based annotations. When the algorithm was
trained using only annotations without histopathology, the
median performance on the test set dropped by more than
0.25 IOU from 0.68 ± 0.18 to 0.42 ± 0.18 when predicting
atherosclerotic lesion tissue (Figure 4A). This corresponds to
a performance drop of around 33 %. In Figure 4B the
predictions from DeepADs good, moderate and low performing
cases are also shown for the algorithm trained without
histopathology. In this case the segmentation algorithm yields
false positive predictions (Figure 4B good performing example)
and less extensive segmentation beyond the lumen border
(Figure 4B median example). In the low performing example
in Figure 4B both algorithms output similar false positive
tissue prediction.
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FIGURE 3 | Examples from the histopathology data set and the clinical data set. (A) Histopathology of two atherosclerotic lesions (fibroatheroma with necrotic core

covered by fibrous cap) with manual annotation (marked by red dashed line) and co-registered OCT frames. (B) Three examples of atherosclerotic lesions in clinical

OCT images (marked by red dashed line), based on clinical judgement without underlying histopathology. Left: fibrotic plaque, middle: lipid plaque, right: calcified

plaque.

FIGURE 4 | DeepAD predicts atherosclerotic lesion tissue on unseen test patients with good performance. (A) Intersection over union (IOU) scores across test sets

for atherosclerotic tissue predictions from the OCT only and histopathology-based algorithm (DeepAD), here visualized for every test sample as a dot in the violin plot.

(B) Examples of predicted atherosclerotic lesions from OCT and histopathology based algorithm: good performance prediction (top, 0.75 IOU, almost all of the region

annotated in “ground truth” is predicted by DeepAD), moderate performance (middle, 0.66 IOU, most of the region annotated in “ground truth” is predicted by

DeepAD) and low performance (bottom, 0.29 IOU, false-positive prediction of a region from 6-9 o’clock which was not annotated in “ground truth”).
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FIGURE 5 | Prediction of calcification by DeepAD. Examples for “good” (upper row), “intermediate” (middle row), and “low” (lower row) prediction of calcification

using DeepAD (dark blue = lesion, green=calcification, light blue = lumen). Note that with an average IOU = 0.34, most calcification is localized correctly, however

with incomplete detection.

Prediction of Calcification by DeepAD
Prediction of calcifications in our data set yielded an average
IOU = 0.34. Figure 5 shows representative examples of good,
intermediate and low performance. In most cases calcification
was correctly localized by DeepAD but incompletely predicted
(i.e. not all of the calcification was predicted by DeepAD).

Application of DeepAD in Clinical Cohort
To illustrate the use of the DeepAD in real-world clinical
practice, atherosclerotic lesion prediction was demonstrated in
11 cases of patients who presented to the German Heart Center
and underwent coronary angiography and intravascular imaging
with OCT. Performance of the algorithm was retrospectively
compared against manual analysis of each pullback by an expert
regarding the presence or absence of atherosclerotic lesions as
well as correct spatial prediction of the DeepAD on a frame-
level. 3D-rendering of the complete pullback allowed quick and
intuitive visualization of regions with atherosclerotic lesions in
red, (see Figure 6A). A total of 3284 frames were analyzed
and high agreement was seen between automated prediction
by DeepAD and manual analysis (mean agreement 88%, 2898
of 3284 frames), with good sensitivity, specificity and accuracy
(86.8, 82.9 and 85.8%, see Table 4). DeepAD tended to slightly

underestimate the presence of atherosclerotic lesions (66 vs.
71% by manual analysis). Representative frames of false-positive
predictions are shown in Supplementary Figure 2. For examples
on detection of calcification, (see Figure 6B).

DISCUSSION

The goal of our study was the development of a fully-automated,
deep-learning algorithm trained on histopathology and clinical
data for the prediction of atherosclerotic lesions in intravascular
OCT. The main findings of our work are:

I DeepAD is able to predict atherosclerotic lesions in
intravascular OCT images when trained on data from
histopathology and clinical imaging, with an IOU =

0.68 (±0.18).
II Although prediction of calcification was lower (IOU =

0.34), calcified lesions were localized correctly in most cases
(circumferential and spotty).

III Using histopathology-based annotations helped in training
the algorithm over using only clinical annotations.

IV Clinical applicability of DeepADwas demonstrated in a small
clinical cohort of 11 cases.
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FIGURE 6 | (A) Application of DeepAD for lesion detection in clinical cases. 3D reconstruction of OCT pullback visualizes algorithm-based lesions detection (red).

Representative cross-sections of healthy (green) and diseased (red lines) areas are shown with respective lesion detection by the DeepAD. (B) Subdifferentiation of

calcified lesions by DeepAD. Representative OCT frames and corresponding predictions by DeepAD of 3 clinical cases from the clinical cohort (see Table 4). Case 9

mostly has fibrolipidic lesions without any calcifications while case 10 shows heavily calcified lesions (note that DeepAD is able to detect and differentiate

circumferential and spotty calcifications). Case 11 shows almost no atherosclerotic lesions.
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TABLE 4 | Application of DeepAD in clinical cohort (n=11 cases) and comparison with manual analysis.

Case No lesion

% (n/N frames)

Lesion present

% (n/N frames)

Agreement

%

(n/N frames)

Sensitivity

%

Specificity

%

Accuracy

%

DeepAD Manual

analysis

DeepAD Manual

analysis

1 60

(165/275)

68

(187/275)

40

(110/275)

32

(88/275)

88

(241/275)

90.9 83.9 86.2

2 44

(239/538)

38

(206/538)

56

(299/538)

62

(332/538)

93

(501/538)

88.0 96.6 91.3

3 20

(24/118)

5

(6/118)

80

(94/118)

95

(112/118)

83

(98/118)

83.0 83.3 83.1

4 1

(7/477)

0

(0/477)

99

(470/477)

100

(477/477)

91

(470/477)

98.5 n.a. 98.5

5 52

(135/262)

42

(110/262)

48

(127/262)

58

(152/262)

69

(181/262)

65.1 74.5 69.1

6 20

(48/243)

9

(22/243)

80

(195/243)

91

(221/243)

86

(209/243)

86.4 81.8 86.0

7 46

(156/338)

46

(154/338)

54

(182/338)

54

(184/338)

93

(314/338)

92.9 92.9 92.9

8 18

(37/202)

20

(40/202)

82

(165/202)

80

(162/202)

89

(179/202)

93.8 67.5 88.6

9 18

(28/156)

8

(12/156)

82

(128/156)

92

(144/156)

87

(136/156)

87.5 83.3 87.2

10 21

(88/424)

0

(0/424)

79

(336/242)

100

(424/424)

79

(336/424)

79.2 n.a. 79.2

11 75

(189/251)

87

(228/251)

25

(62/251)

13

(23/251)

82

(206/251)

87.0 81.6 82.1

Total/ mean 34

(1116/3284)

29

(965/3284)

66

(2168/3284)

71

(2319/3248)

88

(2898/3284)

86.6

(±8.9)

82.9

(±8.7)

85.8

(±7.7)

Application of deep-learning technology has the ability to
transform the biomedical field in the 21th century. Due to
significant advancements in access and storage of big data, and
the availability of adequate processing power, use of algorithms
embedded in artificial intelligence is likely to have a considerable
impact on clinical practice toward more standardized and
personalized patient care (29). The need for promoting artificial
intelligence in the field of intravascular imaging is supported
by the fact that the consequenes of advanced and undetected
coronary artery disease are still detrimental, with cardiovascular
disease being the leading cause of death worldwide and
acute coronary syndromes or stroke accounting for 85% of
these deaths (30). This hypothesis is supported by two large-
scale studies: using virtual-histopathology IVUS (VH-IVUS) in
697 patients presenting with ACS, Stone et al. showed that
lesions characterized as thin-cap fibroatheroma, although being
angiographically mild, were responsible for the majority of non-
culprit coronary events after 3 years (4). Similar, Prati et al. found
that the presence of four high-risk plaque features identified
by OCT (minimal lumen area <3.5 mm2 fibrous cap thickness
<75mm, lipid arc circumferential ex- tension >180◦ and
infiltration with macrophages) was associated with a higher risk
of coronary events in 1,003 patients (31). Although all clinically
used intracoronary imaging modalities (IVUS, OCT and NIRS)
possess inherent limitations, the availability and application of

high-resolution intracoronary imaging will likely increase with
time (8). Most recently, NIRS (using near-infrared spectroscopy
to visualize lipid-rich plaques) has been shown to detect patients
at a higher risk for subsequent coronary events (32), being the
first intracoronary imaging modality with the ability to provide
predictive assessment of atherosclerotic coronary lesions. In our
work, DeepAD predicted atherosclerotic lesions in general with
high accuracy. While the identification of vulnerable plaques
might be desirable and could be regarded as the “holy grail” in
cardiovascular imaging, it may be argued that the concept of a
single “vulnerable” plaque leading to coronary events might be
overly simplistic and that rather the patient himself should be
considered vulnerable. In this regard, detection of atherosclerosis
burden might help in stratification of patients as the presence
of atherosclerosis correlates with cardiovascular events (33, 34).
For example, prospective studies have shown that identification
of coronary artery calcification can be used for risk prediction in
patients with suspected coronary artery disease and is therefore
utilized in clinical risk scores (35). This seems contradictory
at first as it is known from studies on vascular biology that
calcification per se is an important mechanism of plaque
stabilization: while macrophages are undergoing apoptosis,
microcalcifications are occurring as a consequence of cell death
(36). Eventually, the whole necrotic core might calcify over
time, leading to stabilization and passivation of high-risk plaque
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regions (36). Nevertheless, calcification is closely correlating with
overall atherosclerotic burden and therefore predicts mortality
in patients with suspected coronary artery disease (37). Hence,
similarities to our approach of using deep learning for detection
of atherosclerotic burden with OCT are obvious: DeepAD
enables identification of coronary atherosclerosis, which can be
visualized using OCT but often pose a challenge in daily clinical
practice for inexperienced clinician.

When detecting calcification, performance of DeepAD yielded
an IOU = 0.34 (±0.07). While this is definitely inferior
to the detection of atherosclerotic lesions in general (IOU
= 0.68), we demonstrate that in most cases, calcification is
correctly localized by DeepAD but incompletely predicted (i.e.
not the complete extent of the calcification is predicted by
DeepAD). For the interventionalist, this limitation might be
neglectable as the sheer presence of calcification (even though
not completely detected) is highly informative. This in turn
might influence interventional treatment strategy (use of high-
pressure or cutting-balloon, pre- or post-dilatation etc.) to
deliver an optimal procedural result and avoid e.g. incomplete
stent expansion.

With respect to previous work, only one study used co-
registered histopathology images with OCT images for plaque
segmentation (16). While our work is relying on a deep-learning
approach to segment atherosclerotic lesions, the work by He at al.
used ex vivo carotid plaque tissue samples and different, carefully
handcrafted features with a decision tree. In our approach, CNN
learns all filters automatically without any human supervision,
hence a decision tree is not needed this way. Besides, deep-
learning methods that do not use histopathology images have a
limitation on the annotation quality: When segmenting without
the help of histology images, only features which are clearly
visible in the OCT image will be annotated and tissue that
reaches further out will probably be missed. With the help of
histopathology, these regions can be annotated more accurately.
This ideally enables DeepAD to predict even hard-to-detect
features that likely would have been missed if trained on clinical
OCTs only.

Ultimately, DeepAD should be regarded as a decision-
supporting tool which can aid in the clinical setting by
providing a more standardized characterization of OCT with

the potential to quickly visualize atherosclerotic burden in
the cath lab. Whether this may be used for risk prediction
has to be validated in dedicated future studies. In conclusion,
our work highlights the value of using artificial intelligence
in the field of intracoronary imaging. By providing an easily
applicable tool based on a deep-learning algorithm trained with
histopathology-annotated data as well as with clinical expertise,
DeepAD can ultimately improve the diagnostic performance
of intracoronary optical coherence tomography in detecting
atherosclerotic lesions.
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