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Regulatory T cells (Tregs) are key mediators of peripheral self-tolerance and alterations in
their frequencies, stability, and function have been linked to autoimmunity. The antigen-
specific induction of Tregs is a long-envisioned goal for the treatment of autoimmune
diseases given reduced side effects compared to general immunosuppressive therapies.
However, the translation of antigen-specific Treg inducing therapies for the treatment or
prevention of autoimmune diseases into the clinic remains challenging. In this mini review,
we will discuss promising results for antigen-specific Treg therapies in allergy and specific
challenges for such therapies in autoimmune diseases, with a focus on type 1 diabetes
(T1D). We will furthermore discuss opportunities for antigen-specific Treg therapies in
T1D, including combinatorial strategies and tissue-specific Treg targeting. Specifically, we
will highlight recent advances in miRNA-targeting as a means to foster Tregs in
autoimmunity. Additionally, we will discuss advances and perspectives of
computational strategies for the detailed analysis of tissue-specific Tregs on the single-
cell level.

Keywords: antigen-specific Treg therapy, autoimmunity, T1D, microRNAs, tissue Tregs, single-cell multi-omics
integration, TCR specificity prediction
INTRODUCTION

The body’s immune system has evolved to effectively defeat and destroy infiltrating foreign
pathogens. In order to prevent autoimmune reactions directed against the body’s own cells, our
immune system employs sophisticated mechanisms of self-tolerance. On the T cell level, self-
tolerance is executed in the thymus by deletion of T cells with self-reactive TCRs (central tolerance).
Outside of the thymus, peripheral tolerance is maintained by specialized cells, including so-called
regulatory T cells (Tregs). Tregs are characterized by the high expression of the interleukin-2-
receptor-aplpha chain (CD25) and the transcription factor Foxp3, which is the master regulator of
Tregs phenotype and function (1–4). The critical importance of Tregs for the maintenance of self-
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tolerance is illustrated by severe multi-organ autoimmunity in
humans with the immune dysregulation, polyendocrinopathy,
enteropathy, X-linked syndrome (IPEX) (5) and mice with
Scurfy mutations (6), both resulting from mutations in the
Foxp3 gene. Tregs develop in the thymus, referring to thymic
Tregs (tTregs), and harbor a TCR repertoire that is skewed
towards self-antigens. Additionally, Tregs can likewise be
induced in the periphery in an antigen-specific manner, so
called peripheral Tregs (pTregs), with a TCR repertoire
different from their tTreg counterparts (7). Considerable
research has been conducted in order to induce disease-
relevant antigen-specific Tregs with the goal to restore
mechanisms of tolerance and interfere with unwanted immune
reactions in allergies and autoimmunity. Accordingly, we and
others have shown that Treg induction requires stimulation via
the TCR and it has become apparent that fine-tuned TCR signals
are needed to efficiently induce Tregs (8–11). Here, we will
discuss promising results for antigen-specific Treg therapies in
allergy and specific challenges for such therapies in autoimmune
diseases, with a focus on type 1 diabetes (T1D) as well as
opportunities for antigen-specific Treg therapies in T1D.
ADVANCES IN ANTIGEN-SPECIFIC TREG
THERAPIES IN ALLERGY

Antigen-specific therapy is a long-envisioned goal for the
treatment or prevention of autoimmune diseases. The ability of
Tregs to regulate immune responses not only via direct
inhibition of effector T cells with the same specificity but also
via modulation of antigen-presenting cell (APCs), a process
called bystander suppression, makes Tregs an important target
for tolerizing therapies (12). Currently, approaches based either
on the expansion, manipulation and transfer of autologous Tregs
as well as the in vivo induction with antigen are extensively
studied. While the ex vivo expansion of polyclonal Tregs has
proven to be safe in the clinic the efficacy is largely dependent on
disease-relevant antigen-specific Tregs. However, their very low
frequency in the case of autoimmune diseases necessitates the
manipulation of Tregs before transfer [reviewed in (13)]. This
includes the forced expression of FOXP3 in autoantigen-specific
effector T cells as well as the expression of disease relevant TCRs
on isolated Tregs [reviewed in (13)]. Although results from
preclinical studies are promising, the long-term fate of these
engineered Tregs is not fully understood and especially the
differentiation into pro-inflammatory lineages might be a
safety concern. The alternative of induction of Tregs with
antigen administered directly to the patients is more cost-
effective and its safety has been demonstrated in a variety of
clinical trials. Even though clinical translation of such tolerizing
therapies has been challenging, several examples relying on
different forms of antigen-delivery and tolerization protocols
from pre-clinical and clinical trials highlight the potential of
such strategies.

Desensitization to allergens is a common practice for the
treatment of severe allergies. However, only a few studies have
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addressed the effect of such antigen-specific desensitization
protocols on Tregs. Importantly, oral immunotherapy with
peanut proteins in allergic patients led to an increase in peanut
protein-specific FOXP3+ Tregs within peripheral blood
mononuclear cells (PBMCs) 6 and 12 months after the
treatment started (14). Interestingly, in a follow-up study
focusing more specifically on Tregs, it became evident that the
increased frequencies of peanut-protein specific Tregs were
associated with enhanced DNA demethylation of the FOXP3
locus (15), a measure for maintenance of FOXP3 expression and
therefore for the stability of the Treg phenotype (16). These
findings highlight that antigen-specific therapy can not only
enhance Treg frequencies but also positively affect Treg
characteristics including their stability.
CHALLENGES FOR ANTIGEN-SPECIFIC
TREG THERAPY IN AUTOIMMUNITY
AND T1D

Autoimmune diseases like T1D affect millions of people
worldwide with a steadily rising incidence. Currently, curative
treatments for autoimmune diseases do not exist and available
therapies rely on the treatment of symptoms often involving
immunosuppressive reagents that can have severe side effects.
The antigen-specific induction of disease-relevant Tregs offers
the opportunity to restore natural tolerance mechanisms in the
absence of immune side effects induced by general immune
suppression and is therefore a long-standing goal for the
treatment or prevention of autoimmune diseases. We were able
to demonstrate that in the peripheral blood of children at risk to
develop T1D, insulin-specific Treg frequencies are reduced
during the onset of islet autoimmunity, while higher
frequencies are associated with a slow progression to clinically
overt T1D (17). These findings directly support the concept of
inducing these insulin-specific Tregs to delay the progression to
clinically symptomatic disease. However, the translation of
antigen-specific Treg therapies for autoimmune diseases into
the clinic remains challenging and most studies using oral insulin
treatments for tolerization in T1D conducted so far failed to meet
their primary outcome (18, 19). Nevertheless, post-hoc analysis
revealed a delay in progression in a subset of these treated
participants (20). One analytical caveat of clinical trials
studying Treg therapies has been the divergence of protocols
for Treg identification in peripheral blood. While in the mouse
setting Foxp3 is expressed exclusively by Tregs, human effector T
cells can transiently express intermediate levels of FOXP3.
Accordingly, most researchers characterize human Tregs as
CD25+CD127lowFOXP3+. It has become apparent though, that
even those more stringently defined Tregs are heterogeneous in
their composition. Not only can Tregs co-express classical
effector T cell transcription factors (e.g. TBET, RORC,
GATA3) which affects their migration and function, but they
also vary in their activation state and functionality. This is
especially evident in the divergent expression of CD45RA, with
CD45RA- Tregs being antigen-experienced and having a higher
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suppressive activity [reviewed in (7)]. According to this
heterogeneity, divergent markers have been used for the
identification of Tregs in clinical trials which contributes to the
difficulties in assessing translatability. Importantly, researchers
are starting to analyze antigen-specific immune responses in
such clinical trials in more mechanistic detail, which will help to
define critical parameters, such as the optimal dosing of oral
insulin. Additionally, other factors need to be critically
considered, including the route of administration and the
chosen antigen but also the time point of administration
within the disease course.

We know from murine studies that the efficient de novo
induction of Tregs from naïve T cells in vivo requires the
stimulation with a strong-agonistic ligand for the TCR
supplied under subimmunogenic conditions (8, 9). Higher
immunogenic doses of antigen on the other hand activate the
Pi3k-Akt-mTOR pathway, thereby directly inhibiting Treg
induction (10). We used immunodeficient HLA-DQ8-
transgenic NOD-Scid-IL2Rg knockout (NSG) mice
reconstituted with human hematopoietic stem cells to study
requirements for human Treg induction in vivo. Importantly,
these humanized mice develop a functional human immune
system, including the positive selection of autoreactive insulin-
specific CD4+ T cells in the thymus (17, 21). Using this system
under steady state conditions in the absence of autoimmune
activation, we were able to demonstrate that, similar to the
murine setting, subimmunogenic doses of strong-agonistic
insulin variants are able to induce human Tregs in vivo (17).

In contrast to the steady state, we demonstrated that during
the onset of islet autoimmunity the capacity to induce Tregs from
naïve T cells from peripheral blood is significantly impaired (22).
Importantly, this impairment in Treg induction was not limited
to the insulin-specific population, but was likewise observed for
hemagglutinin-specific and polyclonal Treg induction,
highlighting a broad defect in Treg induction (22).
Furthermore, we were able to show that a reduction in the
activation threshold of insulin-specific T cells during the onset of
islet autoimmunity limits the possibility of subimmunogenic
stimulation for efficient Treg induction (22). Apart from
defects in Treg induction during islet autoimmunity, we
likewise observed reduced Treg stability as indicated by
increased DNA methylation of the conserved non-coding
sequence 2 (CNS2) of the Foxp3 locus both in non-obese
diabetic mice (NOD, mouse model for T1D) with islet
autoimmunity as well as in children with overt T1D (23). The
Foxp3 CNS2 is completely demethylated in stable Tregs, while its
methylation leads to the loss of Foxp3 expression and the Treg
phenotype (16). Importantly, this defect in Treg stability in NOD
mice was observed already at a young age, shortly after weaning,
indicating a possible causative role in disease development and
progression as opposed to a mere consequence of the ongoing
autoimmune process (23). The identified impairments in Treg
induction and stability directly highlight the importance of
considering the time point of administration of antigen-specific
Treg inducing therapies. Our in vitro and ex vivo data suggest
limitations in the efficacy of such treatments during the first years
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after development of islet autoimmunity. In addition, these
findings strengthen the rationale of considering preventive
strategies in genetically at-risk patients, before the onset of
overt islet autoimmunity, for future antigen-specific Treg
targeting in man. Accordingly, for T1D pilot results from the
Pre-POINT study, the first study to administer daily oral insulin
to children at risk to develop T1D, but before the start of the
autoimmune reaction, resulted in enhanced frequencies of
insulin-specific CD4+ T cells with regulatory features (24).
These preliminary results are currently further investigated in
the larger POINT study for efficacy (25).
OPPORTUNITIES FOR ANTIGEN-SPECIFIC
TREG THERAPY IN T1D

The finding that Treg induction potential is significantly limited
during onset of islet autoimmunity (22) highlights the concept
that antigen-specific Treg induction in the presence of ongoing
autoimmune activation will benefit from combinatorial immune
targeting. Specifically, a combination with treatments that
control aberrant immune activation while fostering Tregs will
be critical in order to broaden the window of opportunity for
Treg induction.

miRNA Targeting to Foster Tregs
in Islet Autoimmunity
With the goal to understand mechanisms of impaired Treg
induction, we focused on microRNAs (miRNAs). miRNAs are
small non-coding RNAs that can sequence-specifically inhibit
their target mRNAs. miRNAs usually target a multitude of
different mRNAs, thereby regulating entire signaling pathways
and complex cellular states, such as T cell activation, which
makes them important targets for immunotherapies (26–28).
Using miRNA sequencing of CD4+ T cells from peripheral blood
of children with or without ongoing islet autoimmunity, we were
able to identify several differentially regulated miRNAs and
investigated three in more detail. Specifically, we focused on
miRNAs that are predicted to target negative regulators of T cell
activation and could therefore potentially inhibit Treg induction
[reviewed in (29–31)].

We were able to demonstrate that miRNA92a-3p, a member
of the miRNA17~92 cluster of miRNAs which was shown to
induce lupus-like autoimmunity when overexpressed in mice
(32), regulates human T follicular helper (TFH) cell
differentiation (33). TFH cells are an integral part of the
humoral immune response because of their ability to help B
cells produce high-affinity antibodies [reviewed in (34)].
Accordingly, we found CXCR5+ insulin-specific TFH cell
frequencies to be increased during onset of islet autoimmunity,
which was directly correlated with miRNA92a-3p expression.
Importantly, miRNA92a-3p targets negative regulators of T cell
activation (e.g., PTEN, PHLPP2, FOXO1, CTLA4) and thereby
simultaneously reduces Treg induction. Hence, inhibition of
miRNA92a-3p enhanced while a miRNA92a-3p mimic
reduced Treg induction (33).
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Furthermore, we investigated miRNA181a-5p, which has
been demonstrated previously to regulate the signal strength of
the TCR stimulus in developing T cells in the thymus (35). In line
with excessive T cell activation observed during recent onset of
islet autoimmunity, we found miRNA181a-5p to be specifically
increased in CD4+ T cells from peripheral blood of children with
recent activation of islet autoimmunity. Importantly, we found
that higher expression of miRNA181a-5p enhances the
expression of Nfat5 involving mechanisms of increased TCR-
and co-stimulation and that enhanced Nfat5 expression
negatively affects Treg induction. Accordingly, inhibiting either
miRNA181a-5p or Nfat5 augmented in vitro Treg induction,
while inhibiting miRNA181a-5p in Nfat5 deficient T cells had no
effect on Treg induction. These findings thereby highlight, that
miRNA181a-5p mediated impairments in Treg induction are
dependent on Nfat5 (22).

In a third study we used high throughput sequencing of RNA
isolated by crosslinking immunoprecipitation (HITS-CLIP) to
show, that miRNA142-3p directly targets the methylcytosine
deoxygenase Tet2. Importantly, TET proteins catalyze the first
step of DNA demethylation and can thereby impact the
epigenetic landscape (36). We were able to link increased
expression of miRNA142-3p and resulting reduced Tet2
expression with impairments both in Treg induction as well as
in Treg stability. Accordingly, the inhibition of miRNA142-3p
was able to enhance Treg induction and enable induced Tregs to
retain their Foxp3 expression to a higher degree than their
untreated counterparts (23).

Importantly, the inhibition of all three miRNAs or the
downstream molecule Nfat5 directly in vivo in NOD mice with
ongoing islet autoimmunity resulted in enhanced frequencies of
Tregs accompanied by a reduction in the clinical disease score of
the mice (22, 23, 33). These preliminary findings highlight the
potential of miRNA-targeting as immunotherapy in T1D.
Notably, a miRNA inhibitor is currently being investigated in a
clinical trial as treatment for hepatitis C virus infections,
thereby indicating the feasibility of miRNA modulation as
immunotherapy (37). However, miRNAs are important
regulators of cellular functions and can have distinct properties
depending on the cell type. Therefore, the use of miRNA
modulation as immunotherapy will be largely dependent on
the cell type-specific targeting of the therapy. Specifically, the
targeted delivery of miRNA inhibitors or mimics to immune cells
or even immune cell subsets will greatly improve their use as
immunotherapeutics. Here, it will be especially important to
identify specific signatures for targeting defined subsets of
immune cells, e.g., tissue-specific Tregs in the target organ,
the pancreas.

Targeting Tissue-Specific Tregs
Apart from their canonical function of immune suppression, it is
now well accepted that Tregs likewise take residence in tissues,
where they play important roles in maintaining tissue
homeostasis. These tissue Tregs were found to express specific
gene signatures that are distinct from their circulating
counterparts. Such tissue specific Treg gene signatures have
Frontiers in Immunology | www.frontiersin.org 4
been identified for Tregs from specific tissues, while they have
been especially well studied for Tregs in the muscle and adipose
tissue [reviewed in (38)]. Importantly, some signature genes are
universal for tissue Tregs while others are more unique to Tregs
from distinct tissues, e.g., the expression of the transcription
factor PPARg on adipose-tissue residing Tregs (39). Apart from
their gene expression signature, TCR sequencing of tissue
resident Tregs has identified a distinct TCR repertoire and
clonal expansion of certain TCRs, indicating the response to
tissue-specific antigens (40). Importantly, treatment with the
PPARg agonist pioglitazone, which is used for the treatment of
type 2 diabetes because of its positive effects on metabolic health
and local inflammation, was shown to expand adipose tissue
Tregs, which supports the idea of targeting tissue-specific Tregs
for the treatment of diseases (39).

While Tregs in adipose tissue, muscle and the intestine have
been studied extensively, only very little is known about Tregs in
the pancreas. A study by the group of Christophe Benoist
demonstrated that the diabetic lesions in NOD mice are
enriched in CXCR3+ Tregs and that the expression of CXCR3
is dependent on Tbet. More importantly, they showed that the
ablation of Tbet in Tregs accelerates the disease and overcomes
the usually present sex-bias in NOD mice (41). Interestingly,
Tbet+ Tregs were also found in the lamina propria of patients
with inflammatory bowel disease (42) as well as in patients with
multiple sclerosis (43), where Tbet+ Tregs were shown to
contribute to the disease manifestation and being less
suppressive (43). Importantly, the reduced suppressive activity
was linked to the Ifng production of the Tregs which was not
elevated in Tbet+ Tregs from the pancreas (41). These findings
highlight the possibility of specifically targeting defined Treg
subsets within the pancreas for a more tailored immune
modulation. However, all studies conducted so far on pancreas
residing Tregs focused solely on NOD mice with ongoing
insulitis. A more detailed understanding of pancreas residing
Tregs and their contribution to immune homeostasis in the
steady state will be crucial to advance immune modulation
targeted to the pancreas.

As one means to foster advancement in tissue-specific Treg
targeting, recent years have seen tremendous progress in the
simultaneous analysis of transcriptome, DNA methylation and
accessibility, surface protein expression, perturbations, and
receptor sequences on the single cell level. In this regard,
computational strategies for integration of these complex data
sets have enabled an unprecedented description of molecular
behavior and identities of individual cells and therefore made it
possible to move along to the next level of dissecting tissue
Tregs (Figure 1).

Defining Tissue-Specific Treg
Characteristics Using Single-Cell
Multi-Omics Integration
Current single-cell multi-omics methods can measure up to four
different omics types at once [reviewed in (44–46)], with the
transcriptomics layer often used to connect between the different
omics types. These techniques bear high potential for medical
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FIGURE 1 | Advancements in single-cell multi-omics integration allow for a detailed analysis of tissue Treg signatures. After isolation and sorting of heterogeneous
immune cell populations from tissues and single-cell sequencing of distinct libraries for RNAseq in combination with, e.g., TCRseq, CITEseq or ATACseq, novel
computational approaches enable data integration of different traits, thereby enabling unprecedented description of molecular behavior and identities of individual
cells within a certain tissue.
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research to study individual heterogeneity, drug resistance, or
disease progression at an unprecedented level (47, 48).
Especially, T cell focused immunological studies will benefit
from recent developments as newly arising techniques can also
simultaneously reconstruct TCR sequences and determine their
specificities for a predefined set of epitopes (49–51). These
methods have already greatly advanced our understanding of T
cell responses in disease (50, 52–56), and lead to innovative
analysis strategies such as the usage of TCR-sequence as natural
barcodes to trace the cellular response pre- and post-antigen
stimulation in vivo (57).

With the rise of single-cell multi-omics approaches, new
computational models have been developed that can jointly
analyze such multi-modal data [reviewed in (46, 58)]. Several
studies used correlation-based approaches to jointly analyze copy
number variations (59, 60), DNA methylation (61–63), or
protein abundance (64) and gene expression data. Recently,
Schattgen et al. proposed an integration approach for TCR and
gene expression data based on graph analysis defined on
transcriptomic and TCR distances and could uncover known
and novel associations between TCR sequences and
transcriptomics phenotypes (65). Others used traditional
statistical approaches (66), or advanced deep learning methods
(67–73) to integrate multiple data sources at once to represent
the joint information of all omics-layers. Along these lines, a
recent method by Zhang et al. jointly integrated TCR and
transcriptomic information using Bayesian clustering based on
the TCR sequence and gene expression profile (74). Through this
method Zhang et al. could show that joint TCR and gene
expression analysis better separates T-cell specificity and
captures the antigen binding efficiency gradient better than
TCR-information alone (74). Similarly, we introduced a joint
TCR-transcriptome deep learning model which additionally
captured transcriptional gradients within clonotypes (73). Such
methods could be used to further elucidate the relationship
between the TCR sequence and transcriptional information of
Tregs in autoimmune diseases.

The identification of specific TCRs on tissue Tregs will help to
define whether the migration of these cells to the tissue is likely
antigen-driven and can also help to facilitate studies on tissue
Tregs. In this regard, Diane Mathis group was able to analyze the
ontogeny of visceral white adipose tissue (VAT)-residing Tregs
by generating a mouse line transgenic for the TCR of an
expanded VAT Treg clone (40). Additionally, the transfer of
TCR transgenic Tregs has already been tested in preclinical
studies for autoimmune diseases (75, 76). These studies mostly
rely on the use of effector T cell derived TCRs and it is not
entirely clear how that could affect Treg function, migration, and
fate after transfer. The identification of tissue- and Treg-specific
TCRs in the steady state as well as differences to the disease state
might enable us to design such transgenic Tregs more
strategically and could therefore help to increase efficacy and
safety of TCR transgenic Treg infusions.

However, the identification of TCR sequences is only one side
of the coin and a remaining bottleneck for T cell biology is the
identification of the peptide-MHC ligands recognized by the
Frontiers in Immunology | www.frontiersin.org 6
identified TCRs. Here, recent advances have been made for
experimental identification of epitopes recognized by orphan
TCRs in a high-throughput screening of highly complex peptide-
encoding oligo pools presented by bar-coded T cell-cytokine
capturing APCs (77). Additionally, machine learning has
enabled novel computational approaches to predict
TCR specificity.

Sequence-based computational methods for TCR specificity
analysis can be grouped into two categories: comparison and
prediction. TCR comparison approaches impute antigen
specificities by either allocating unknown TCRs to T-cell
clusters or by assigning pairwise distance scores to TCR
sequences with known antigen specificity. When several TCRs
specific to the antigens of interest are known, these methods can
be used to identify T cells with similar sequences likely to bind to
the same antigen. The second category applies machine learning
models to directly predict TCR binding to specific epitopes. Since
these methods often additionally analyze the epitope sequence,
they allow to predict specificity towards previously
unknown antigens.

TCR sequences with common epitope specificity carry
statistically enriched motifs (78, 79). Methods such as TCRdist
(78) and GLIPH (79, 80) compare such common motifs to
identify TCR sequences with shared antigen specificities. Other
methods were proposed differing in computational approach to
match TCRs using sequence similarity (81) or numeric
embeddings (82, 83).

While comparison-based methods can serve as a proxy for
determining TCR-specificity, such methods fail for novel
epitopes without known corresponding TCRs. Machine
learning methods can alleviate these issues by learning general
rules that guide the T-cell epitope interaction. De Neuter et al.
provided a proof of concept by predicting specificity towards one
of two B*08 restricted HIV-1 epitopes based on the TCR CDR3b
sequence (84). Jurtz et al. additionally incorporated the peptide
sequence but observed limited generalization to unknown
epitopes (85). Subsequently, different models developed on
varying datasets have been proposed with l imited
improvements (86). In recent years, deep learning methods
were introduced (52, 87–89), of which some incorporate
additional information such as CDR3a, CDR1 and CDR2
sequences, HLA type, and surface protein counts leading
partially to increased prediction performances (52, 86).

These tools will potentially enable the identification of Tregs
associated with disease-relevant antigens by predicting the
specificity for large libraries of sequenced T cells. By limiting
the number of candidates, for which specificity needs to be
tested, the time and cost for identifying disease-relevant Tregs
will be significantly reduced. However, due to different
evaluation methodologies and different datasets, these methods
often cannot directly be compared. Therefore, it remains yet to
be determined, which model to choose, and to what degree
computational tools can be already used for the development of
targeted immunotherapies. It is apparent though, that the use of
multi-omics techniques for the deep characterization of tissue-
specific Tregs can critically contribute to the development and
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advancement of Treg-based immunotherapies. TCR transgenic
Tregs migrate to the site of immune activation and therefore will
facilitate the development of effective and safe therapies.
Additionally, identification of surface markers specific to
tissue-residing Tregs will enable targeted delivery of
therapeutics, e.g., miRNA inhibitors or mimics, to foster Tregs
specifically at the site of the autoimmune attack.
CONCLUSION

While advances have been made for antigen-specific Treg
inducing therapies e.g. to treat patients with severe peanut
allergies, the success of such therapies in autoimmune T1D is
still limited. A broad impairment in Treg induction in children
during onset of islet autoimmunity highlights the necessity of
combinatorial strategies to foster Tregs in order to open the
window of opportunity for antigen-specific Treg therapies.
miRNA-targeting offers the opportunity to improve Treg
induction and stability in T1D. However new strategies to
specifically modify miRNAs in specific cell types are needed.
Identifying key signatures and characteristics of Tregs residing in
the pancreas, the target organ of the disease, will be important to
target therapies more specifically to those cells that are directly
involved in the disease development and progression. Major
advances in the use of single-cell multi-omics integration
together with machine learning approaches for TCR specificity
prediction have paved the way for a detailed description of
individual cells from different tissues and will therefore help to
bring antigen-specific Treg therapy to the next level.
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