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Introduction: Source analysis of Electroencephalography (EEG) data requires the

computation of the scalp potential induced by current sources in the brain.

This so-called EEG forward problem is based on an accurate estimation of the

volume conduction e�ects in the human head, represented by a partial di�erential

equation which can be solved using the finite element method (FEM). FEM

o�ers flexibility when modeling anisotropic tissue conductivities but requires a

volumetric discretization, a mesh, of the head domain. Structured hexahedral

meshes are easy to create in an automatic fashion, while tetrahedral meshes are

better suited to model curved geometries. Tetrahedral meshes, thus, o�er better

accuracy but are more di�cult to create.

Methods: We introduce CutFEM for EEG forward simulations to integrate the

strengths of hexahedra and tetrahedra. It belongs to the family of unfitted finite

element methods, decoupling mesh and geometry representation. Following a

description of the method, we will employ CutFEM in both controlled spherical

scenarios and the reconstruction of somatosensory-evoked potentials.

Results: CutFEM outperforms competing FEM approaches with regard to

numerical accuracy, memory consumption, and computational speed while being

able to mesh arbitrarily touching compartments.

Discussion: CutFEM balances numerical accuracy, computational e�ciency, and

a smooth approximation of complex geometries that has previously not been

available in FEM-based EEG forward modeling.

KEYWORDS

EEG forwardproblem, realistic headmodeling, volumeconductormodeling, unfitted FEM,

level set, finite element method

1. Introduction

Electroencephalography (EEG) is a widely used tool for the assessment of neural activity

in the human brain (Brette andDestexhe, 2012). To estimate the area of the brain responsible

for the measured data, one has to simulate the electric potential as induced by hypothetical

current sources in the brain, i.e., the EEG forward problem has to be solved. While quasi-

analytical solutions to the differential equation underlying the forward problem exist,

these are only available in simplified geometries such as the multi-layer sphere model
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(De Munck and Peters, 1993). One, thus, requires numerical

methods to incorporate accurate representations of the head’s

shape and volume conduction properties. Popular approaches

are the boundary element method (BEM) (Mosher et al., 1999;

Gramfort et al., 2011; Makarov et al., 2020), finite difference

method (FDM) (Song et al., 2015; Cuartas Morales et al., 2019),

and the finite element method (FEM) (Zhang et al., 2004;

Vallaghé and Papadopoulo, 2010; Medani et al., 2015; Acar

et al., 2016; Azizollahi et al., 2018). Here, we will focus on the

FEM due to its flexibility in modeling complex geometries with

inhomogeneous and anisotropic compartments (Schimpf et al.,

2002; Van Uitert et al., 2004; Wolters et al., 2007; Bangera et al.,

2010; Nüßing et al., 2016; Beltrachini, 2018; He et al., 2020; Vermaas

et al., 2020). Efficient solvers and the transfer matrix approach

(Wolters et al., 2004; Lew et al., 2009) allow significantly reduced

computational costs.

When employing FEM, one usually chooses between either

a hexahedral or tetrahedral discretization of the head. Both

choices come with their own strengths and limitations. The

mesh creation requires a classification of the MRI into tissue

types. This segmentation data often come in the form of binary

maps with voxels of approximately 1mm resolution, allowing

for quick and simple hexahedral mesh generation. However, as

head tissue surfaces are smooth, approximating them with regular

hexahedra is bound to be inaccurate. While the methods for

geometry adaptation exist (Wolters et al., 2007), the resulting

meshes still have an (reduced) angular pattern. Furthermore, when

applying a standard continuous Galerkin FE scheme, areas with

very thin compartments may suffer from leakage effects where

current can bypass the insulating effects of the skull (Sonntag

et al., 2013). To alleviate this, flux-based methods, such as the

discontinuous Galerkin method, offer a robust alternative (Engwer

et al., 2017). These, however, severely increase the number of

degrees of freedom (DOF) and thus necessary for computational

effort.

Surface-based tetrahedral FEM approaches, on the other hand,

are able to accuratelymodel the curvature of smooth tissue surfaces.

Creating high quality tetrahedra, e.g., ones fulfilling a delaunay

criterion, requires tissue surface representations in the form of

triangulations first. These triangulations have to be free of self-

intersections and are often nested, usually leading to modeling

inaccuracies such as neglecting skull holes or an artificial separation

of gray matter and skull. Therefore, we will not discuss surface-

based tetrahedral FEM approaches throughout this study.

In the study by Rice et al. (2013), the impact of prone vs.

supine subject positioning on EEG amplitudes was investigated.

In the small group study, average differences of up to 80% were

found. These were accompanied by differences in MRI-based CSF-

thickness estimation of up to 30% underlining the importance of

correctly modeling CSF-thickness and areas of contact between the

skull and brain surfaces.

Recently, an unfitted discontinuous Galerkin method (UDG)

(Bastian and Engwer, 2009) was introduced to solve the EEG

forward problem (Nüßing et al., 2016). Rather than working

with mesh elements that are tailored to the geometry, it uses

a background mesh which is cut by level set functions, each

representing a tissue surface. It was shown to outperform the

accuracy of a discontinuous Galerkin approach on a hexahedral

mesh while not being limited by the assumptions necessary to

create tetrahedral meshes.

Extending the ideas of the UDG method, this study introduces

a multi-compartment formulation of the CutFEM (Burman et al.,

2015) for EEG source analysis. Compared with UDG, it operates

on a simpler trial function space and adds a ghost penalty based

on the study by Burman (2010). The ghost penalty couples small

mesh elements to their neighbors to improve the conditioning of

the method.

This study is structured as follows. After introducing the

theory behind CutFEM, three successively more realistic scenarios

are tested. These scenarios include a multi-layer sphere model,

followed by realistic brain tissues embedded in spherical skull

and scalp compartments. Finally, a fully realistic five-compartment

head model is used for source analysis of the P20/N20 component

of measured somatosensory evoked potentials (SEP). Comparison

results from different FEM and meshing approaches will be

considered throughout the scenarios.

2. Methods

2.1. A cut finite element method

Deviating from classical, fitted FEM-approaches, where the

mesh cells resolve tissue boundaries, CutFEM uses a level set-based

representation of domain surfaces. Let � =
⋃

i �i be the head

domain divided into m disjunct open subdomains, e.g., the gray

matter, white matter, CSF, skull, and skin. The level set function for

compartment i is then defined as follows:

8i(x)











< 0, if x ∈ �i

= 0, if x ∈ ∂�i

> 0, else

and Li = {x ∈ � :8i(x) = 0} denotes its (zero) level set. We

proceed by defining a background domain �̂ ⊂ R3 covering the

head domain �. This background is, then tesselated, yielding a

regular hexahedral mesh T (�̂), the fundamental or background

mesh. Taking on the level set representation, submeshes T i
h

⊂

Th(�̂) are created from the background mesh, containing all cells

that have at least partial support within the respective subdomain

�i. This results in an overlap of submeshes at compartment

interfaces. For each submesh, we define a conforming Q1 space

V i
h
. Thus, up to this point, each submesh is treated the way a

conforming Galerkin method would treat the entire mesh.

The difference, then, lies in restricting the trial and test

functions to their respective compartment, effectively cutting them

off at the boundary and giving rise to the name CutFEM. A

fundamental mesh cell intersected by a level set Li is called a cut

cell. Their respective fundamental cells are contained in multiple

compartments and thus have more DOF. On the other hand,

compared with classical conforming discretizations, a coarser mesh

resolution can be chosen, as the mesh does not have to follow

small geometric features. As the trial functions are only continuous

on their respective compartment and cut off at the boundary,

using them to approximate the electric potential requires internal
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coupling conditions at the tissue interfaces. We define the internal

skeleton as the union of all subdomain interfaces.

Ŵ =
⋃

{

�̄i ∩ �̄j : i 6= j, µd−1(�̄i ∩ �̄j) > 0
}

. (1)

µd−1 is the d-1 dimensional measure in d-dimensional space. For

two sets, E, F sharing both a common interface (an element of Ŵ)

and a possibly discontinuous function u operating on them we can

define a scalar- or vector-valued jump operator as JuK : = u|E ·

nE+ u|F · nF with nE, nF the outer unit normal of the respective set.

Additionally, a (skew-)weighted average can be stated as follows:

{u} = ωEu|E + ωFu|F (2)

{u}∗ = ωFu|E + ωEu|F . (3)

with ωE = δE
δE+δF

, δE = ntEσEnE. Here, σE refers to the symmetric

3 × 3, positive definite electric conductivity tensor on E. Notably,

JuvK = JuK{v}∗ + {u}JvK. The purpose of these definitions will

become clear when deriving the weak formulation for our forward

model.

Typically, the EEG forward problem for the electric potential u

induced by a neural source term f is derived from the quasi-static

formulation of Maxwell’s equations (Brette and Destexhe, 2012).

∇ · σ∇u = f , in
⋃

i

�i (4)

〈σ∇u, n〉 = 0, on ∂�̄ (5)

And in addition we require continuity of the electric potential

and the electric current

JuK = 0, on Ŵ (6)

Jσ∇uK = 0, on Ŵ. (7)

As trial and test space, we employ Vh as direct sum of all V i
h
.

The weak formulation can be obtained by multiplying with a

test function, integrating and applying subdomain-wise integration

by parts. This yields:

∑

i

(

∫

�i

σ∇uih∇vihdx)−

∫

Ŵ

{σ∇uh}JvhKdS = −
∑

i

(

∫

�i

fvihdx),

where the jump formula for a product of two functions as well as (7)

were used. ui
h
is the restriction of uh ∈ V to Vi. A symmetry term

±
∫

Ŵ
{σ∇vh}JuhKdS is added to end up with either a symmetric or

non-symmetric bilinearform.

To incorporate (6), a Nitsche penalty term (Nitsche, 1971) is

added that weakly couples the domains. Asymptotically, it enforces

continuity of the electric potential over tissue boundaries and

ensures the coercivity necessary for the methods’ convergence

(Burman et al., 2015):

Pγ (u, v) = γ νk

∫

Ŵ

σ̂

ĥ
JuhKJvhKdS. (8)

Here, νk, ĥ, and σ̂ are scaling parameters based on the ratio

of cut cell area on each interfaces’ side, dimension, degree of trial

functions used, and conductivity. See Di Pietro and Ern (2011) for

a further discussion. γ is a free parameter to be discussed later.

A challenge is the shape of the cut-cells. Distorted or sliver-

like snippets with very small volumes lead to very small entries in

the stiffness matrix, deteriorating the conditioning of the forward

problem. To alleviate this, a ghost penalty (Burman, 2010) term

is used, which takes place on the interfaces of all the fundamental

mesh cells cut by a level set. Let

Ŵ̂ = ∪
{

∂Ei :Ei ∈ Th,Ei ∩ Ŵ 6= ∅}. (9)

Note the difference between Ŵ and Ŵ̂. Ŵ operates on

compartment interfaces, Ŵ̂ on faces of the fundamental mesh. The

ghost penalty is then defined as follows:

aG(uh, vh) = γG

∫

Ŵ̂

ĥJσ∇uhKJ∇vhKdS, (10)

where γG is again a free parameter, usually a couple orders of

magnitude smaller than γ . Penalizing the jump in the gradient

ensures that trial functions which are only active on small snippets

cannot deviate too strongly from the solution in neighboring cells.

When using higher order trial functions, higher order derivatives

are no longer zero and have to be penalized as well. Notably, by

adding a ghost penalty, the method is no longer fully consistent

with the original problem. However, due to the size of γG, the effect

on the overall result is negligible. The weak CutFEM EEG-forward

problem can now be stated as finding the electric potential uh ∈ Vh

such that

a(uh, vh)+ aNn/s(uh, vh)+ aG(uh, vh) = l(vh) ∀vh ∈ Vh, (11)

with

a(uh, vh) =
∑

i

∫

�i

σ∇uih∇vihdx,

l(vh) = −
∑

i

∫

�i

fvihdx

and

aNn/s(uh, vh) : =−

∫

Ŵ

{σ∇uh}JvhK ±

∫

Ŵ

{σ∇vh}JuhKdS

+ γ νk

∫

Ŵ

σ̂

ĥ
JuhKJvhKdS.

In the following, we will refer to these two variants

as NWIPG/SWIPG, short for the non-symmetric/symmetric

weighted interior penalty Galerkin method.

In the study by Oden et al. (1998) and Guzmán and Rivière

(2009), it was shown that the non-symmetric DG-methods may

result in a sub-optimal convergence rate in the L2-norm (full

convergence in H1), a result that also extends to CutFEM (Burman

and Hansbo, 2012). However, while SWIPG is coercive only if γ is

chosen sufficiently large (Burman andHansbo, 2012), NWIPG does

not have such a limitation. Therefore, we will employ the NWIPG

method throughout this study due to its stability with regard to the

selection of γ .
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2.1.1. Integration over the cut domains
Fundamental cells that are cut by level sets, the cut cells;

can be integrated over by employing a topology preserving

marching cubes algorithm (TPMC) (Engwer and Nüßing, 2017).

The initial cell is divided into a set of snippets, each completely

contained within one subdomain. These snippets are of a simple

geometry and therefore easy to integrate over. Thus, integrals over

the fundamental cell or subdomain boundaries are replaced by

integrals over the snippets or their boundaries. The trial functions

are effectively cut off at the compartment boundaries.

See Figure 1 for an overview of the reconstruction steps.

Notably, the trial functions are coupled to their respective submesh,

not to the TPMC reconstruction of the domain. The latter only

determines the area over which the functions are integrated.

Starting on the fundamental mesh, the algorithm is applied

once per level set. Each following iteration is applied on the cut cells

of the previous iteration, i.e., first the fundamental mesh is cut, then

the resulting snippets are cut. This ensures the correct handling of

mesh cells that are cut by multiple level sets.

2.1.2. Source model and transfer matrix
Following the principle of St. Venant, the source term f will be

approximated by a set of monopoles. Where fitted FEM use mesh

vertices as monopole locations, this is not feasible for CutFEM

as fundamental cells may have vertices not belonging to the

source compartment. Only gray matter cut cells are used, and the

locations are based on a Gauss-Legendre quadrature rule. For more

information on the Venant source model, see Buchner et al. (1997)

and Medani et al. (2015).

For an accurate source analysis, it is necessary to compute the

EEG-forward solution for a large number, i.e., tens of thousands,

of possible sources. However, the electric potential induced by a

source is only of interest at a set of predetermined points, namely,

the electrodes at the scalp. However, rather than solving (11) for

each source individually, a transfer matrix approach (Gençer and

Acar, 2004; Wolters et al., 2004) is employed, significantly reducing

the amount of computation time needed.

2.2. Numerical validation

2.2.1. Head models
For numerical evaluations, three progressively more realistic

scenarios were created, two sphere models, one of which contains

realistic brain tissues, and a five compartment model created from

anatomical data. For each model, we will compare CutFEM and

a geometry-adapted hexahedral CG-FEM approach (Hex) with a

FIGURE 1

Level sets over fundamental mesh and TPMC reconstruction. Left: Fundamental mesh with two spherical level sets, topology preserving marching

cubes reconstruction. Center: Overlapping submeshes for the two compartments enclosed by the level sets. Right: Trial function space for the inner

compartment with white dots representing degrees of freedom, cut area that the DOF are restricted to.
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TABLE 1 Radii, center, and conductivities for the shifted sphere model.

Radius
[mm]

Center
[mm]

σ [S/m]

Scalp 92 (127 127 127) 0.43

Skull 86 (127 127 127) 0.01

CSF 80 (127 127 127) 0.33

Brain 78 (129 127 127) 0.33

node shift for the geometry-adaptation of 0.33 (Wolters et al.,

2007). In the first model, the UDG approach of Nüßing et al. (2016)

will also be added to the comparisons. To balance computational

load, Hex will use 1 mm meshes, whereas for CutFEM and UDG,

we use a 2 mm background mesh. Additionally, in the sphere

model, the convergence rate for CutFEM will be investigated by

comparing models with 16, 8, 4, and 2 mm resolution. The realistic

5-compartment model will feature an additional tetrahedral head

model.

2.2.1.1. Shifted spheres

The first scenario contains the four spherical compartments,

such as the brain, CSF, skull, and scalp. The brain sphere will be

shifted to one side, simulating a situation where the subject lies

down and the brain sinks to the back of the skull. Conductivities

were chosen according to study by McCann et al. (2019), with the

exception that the CSF and brain use the same conductivity. In

terms of volume conduction, the model is thus indistinguishable

from a 3-layer concentric sphere model, and analytical solutions

(De Munck and Peters, 1993) can be used as benchmark. These

would not be available if a realistic CSF conductivity was used.

Conductivity values and radii of the compartments are shown

in Table 1. Notably, the spherical geometries used here cannot

properly represent the shape of the human head. They are

commonly used as an initial validation in a simplified scenario

where exact reference solutions are available (Wolters et al., 2004;

Medani et al., 2015). Thus, they are merely the first of three

numerical validation steps in this study.

TPMC was applied twice, once on the fundamental mesh and

once on the resulting cut cells. Notably, this additional refinement

step does not change the number of trial functions of the model. In

total, 200 evenly spaced electrodes were placed on the surface of the

outer layer, and a total of 13,000 Evaluation points were distributed

evenly throughout the inner sphere. Lead fields for both radial

and tangential source directions were computed at each point. For

CutFEM, a combination of γ = 16 and γG = 0.1 has shown

promising results. For UDG, no ghost penalty was implemented

and γ = 4 was chosen, following Nüßing et al. (2016).

2.2.1.2. Spheres containing realistic brain

In the previous section, the level set functions could be

computed analytically up to an arbitrary accuracy. In a realistic

scenario where the segmentation quality is limited by the MRI

resolution as well as partial volume effects and MRI artifacts, this

is not the case. An easy way to pass level sets to CutFEM is by

using tissue probability map (TPM), a typical intermediate result

(Ashburner et al., 2014) from segmentation which provides for each

voxel the probability that it is located in a certain compartment.

To examine the performance of CutFEM when used together

with TPM’s, another sphere model is employed, this time

containing realistic gray and white matter compartments obtained

from MRI scans of a human brain. The subject was a healthy 24-

year-old male from whom T1- and T2-weighted MRI scans were

acquired using a 3 Tesla MRI Scanner (MagnetomTrio, Siemens,

Munich, Germany) with a 32-channel head coil. For the T1, a fast

gradient-echo pulse sequence (TFE) using water selective excitation

to avoid fat shift (TR/TE/FW = 2300/3.51 ms/8◦, inversion pre-

pulse with TI = 1.1 s, cubic voxels of 1 mm edge length) was used.

For the T2, a turbo spin echo pulse sequence (TR/TE/FA= 3200/408

ms/90◦, cubic voxels, 1 mm edge length) was used. TPM’s were

extracted from both T1- and T2-MRI using SPM12 (Ashburner

et al., 2014) as integrated into fieldtrip (Oostenveld et al., 2011).

For each voxel, the average of both TPM’s was computed, and a

threshold probability of 0.4 was set as zero-line.

The inner skull surface was defined as the minimal sphere

containing the entire segmented brain with CSF filling the gaps.

The spherical skull and scalp were chosen to have a thickness of

6 mm. The same conductivities as before were used with CSF, and

gray and white matter being identical, and again 200 sensors were

placed on the scalp surface.

2.2.1.3. Realistic 5 compartment head model

As an extension of the previous model, realistic 5-compartment

head models were created using the same anatomical data,

replacing the spherical skin, skull, and CSF by realistic

segmentations. Again, level sets were created from probability

maps. To obtain smooth skull and scalp surfaces in the TPM

case, binary maps of the skull and skin were created following

the procedure in the study by Antonakakis et al. (2020). The level

sets of the skull/skin were then calculated as an average of the

binary map and the T1/T2 TPM again with a threshold of 0.4.

Following the study by Antonakakis et al. (2020), the level sets

were cut off below the neck to reduce computational load while

maintaining a realistic current flow below the skull. Again, lead

fields from a hexahedral mesh were created for comparison as well

as a 5-compartment tetrahedral model with surfaces created using

SIMNIBS’ headreco pipeline (Saturnino et al., 2019). SIMNIBS

provides an automated segmentation and meshing pipeline taking

both T1 and T2MRI into account, similar to the model using TPM.

Level sets were created from the surfaces, and another CutFEM

model was created from these, yielding four lead fields: TPM-

CutFEM and Hex, which are based on the tissue probability maps

as well as Tri-CutFEM andTet, which are based on the headreco

surface triangulations. DOF, number of cut cells/mesh elements

and the resulting number of snippets are shown in Table 2. Now,

we have lead fields based on two different segmentation routines.

TPM is closer to the original MRI while surface triangulations yield

smoother surfaces at the cost of demanding nested compartments.

The question which of the two segmentation routines is preferable

is beyond the n = 1 study performed in this paper. Thus, neither

method can be used as a reference solution. It is rather our goal to

test CutFEM in both scenarios and showcase differences compared

with the respective alternative, a standard first order tetrahedral or

hexahedral FEM.
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TABLE 2 Number of degrees of freedom/snippets/cut cells for CutFEM

and number of degrees of freedom/elements for hexahedral/tetrahedral

mesh.

DOF Cut cells/
elements

Snippets

TPM-CutFEM 917,463 716,994 7,950,120

TRI-CutFEM 1,159,831 911,567 7,647,088

Hex 3,909,303 3,475,138 -

Tet 1,135,379 6,475,318 -

2.2.2. Forward and inverse comparisons
For the two spherical scenarios, analytical forward solutions

were calculated as a reference. For the realistic cases, somatosensory

evoked potentials were recorded, and a dipole scan was performed

as described in detail in Section 2.2.2.2.

The two latter scenarios including realistic gray/white matter

use a regular 2 mm source grid created using Simbio https://www.

mrt.uni-jena.de/simbio/. It was ensured that the sources are located

inside the gray matter compartment for both approaches (Hex

+ CutFEM). The resulting source space contains 58.542 different

dipole locations with no orientation constraint being applied.

2.2.2.1. Error measures

Two different metrics were employed to quantify the observed

errors, the relative difference measure (RDM) and the magnitude

error (MAG) (Wolters et al., 2007).

The RDM measures the difference in potential distribution at

the scalp electrodes.

RDM(%)(uana, unum) = 50 ∗ ||
uana

||uana||2
−

unum

||unum||2
||2. (12)

It ranges from 0 to 100, the optimal value being 0. MAG

determines the differences in signal strength at the electrodes.

MAG(uana, unum) = 100 ∗ (
||unum||2

||uana||2
− 1). (13)

Measured in percent, its optimal value is 0. It is unbounded

from above and bound by −100 from below. uana, unum ∈ Rs

contain the analytical and numerical potential at the s different

sensor locations.

CutFEM is implemented into the DUNEuro toolbox https://

www.medizin.uni-muenster.de/duneuro (Schrader et al., 2021),

where the FEM calculations were performed. Analytical EEG

solutions were calculated using the fieldtrip toolbox (Oostenveld

et al., 2011). An example data set including somatosensory data was

uploaded to Zenodo https://zenodo.org/record/3888381#.Yf0tT_

so9H4.

For a comparison of runtime and memory usage, the forward

calculation is split into five steps. The time necessary to create

a driver, i.e., the time DUNEuro needs to setup the volume

conductor, the times needed to assemble the stiffness matrix and

AMG solver, the transfer matrix solving process using Dune-ISTL

(Bastian et al., 2021), and the calculation of the final lead field

matrix. All computations are performed on a bluechip workstation

with an AMD Ryzen Threadripper 3960X and 128 GB RAM. A

total of 16 threads are used to calculate the 200 transfer matrix/lead

field columns in parallel. In the current implementation, CutFEM

is limited to six compartments but that is an arbitrary restriction

which can be increased at will.

2.2.2.2. Somatosensory data and dipole scan

To investigate CutFEM’s influence on source reconstruction,

an electric stimulation of the median nerve was performed on

the same subject the anatomical data was acquired from. The

subject gave written informed consent before the experiment

and had no history of neurological or psychiatric disorders.

The institution’s ethical review board (Ethik Kommission der

Ärztekammer Westfalen-Lippe und der WWU) approved all

experimental procedures on 2 February 2018 (Ref. No. 2014-156-

f-S). The stimuli were monophasic square-wave pulses of 0.5ms

width in random intervals between 350 and 450ms. The stimulus

strength was adjusted such that the right thumbmoved clearly. EEG

data were measured using an 80 channel cap (EASYCAP GmbH,

Herrsching, Germany, 74 channel EEG plus additional 6 channels

EOG to detect eye artifacts). EEG positions were digitized using a

Polhemus device (FASTRAK, Polhemus Incorporated, Colchester,

Vermont, U.S.A.). In total, 2,200 stimuli were digitally filtered

between 20 and 250 Hz (50 Hz notch) and averaged to improve

signal-to-noise ratio. A single dipole scan was conducted over the

whole source space using the data at the peak and the CutFEM lead

field.

The P20/N20 component typically exerts a high signal-to-

noise ratio and a strongly dipolar topography, making it an ideal

candidate for a dipole scan approach as motivated for example by

Buchner et al. (1994).

3. Results

3.1. Shifted sphere model

The first investigated model is the shifted sphere scenario,

where the brain sphere was moved within the CSF-sphere until

there was exactly one contact point between the skull and brain

(see 2.2.1.1). In Figure 2, the convergence speed for both radial

and tangential source directions can be seen. Fundamental meshes

with a resolution of 16, 8, 4, and 2 mm were created yielding

finite element spaces with 4600/21401/111,192 and 552,985 DOF,

respectively. Mean RDM decreases from 10.54 to 3.47 to 0.63 to

0.18 while the mean of the absolute value of the MAG decreases

from 17.63 to 3.37 to 0.80 to 0.33. A 2 mm resolution, thus, already

yields excellent numerical results.

When comparing number of DOF and RAM usage, it is

clear that CutFEM is by far the most memory efficient approach,

using approximately one-fifth of the number of trial functions and

approximately one-tenth of the amount of RAM as UDG (Table 3).

Hex also uses significantly more resources than CutFEM.

Regarding computation time, as UDG has to solve a

significantly larger system, each iteration step in the solution phase

takes longer than for CutFEM. As most time is spent on solving the

system, CutFEM is overall approximately 16 min or 34% faster than

UDG. The same cannot be said for comparisons to the standard

Hex approach. While each iteration of the solver required less time

than for Hex, it required an average of 92 iterations compared with

14 for Hex. The unfitted approaches spend less time calculating
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FIGURE 2

EEG forward modeling errors for di�erent fundamental mesh resolutions in a shifted sphere scenario. Top: Errors for tangential source directions.

Bottom: Errors for radial source directions. Errors are in percent and grouped by eccentricities. The green line marks optimal error values. The gray

area indicates the physiologically most realistic eccentricities.

TABLE 3 Computation times, RAM/degree of freedom usage in the

shifted sphere model.

CutFEM UDG Hex

Number DOF 552 985 3 601 824 3 341 280

Max. RAM used 6.91 GB 64.77 GB 40.2 GB

Driver setup 44 s 45 s 52 s

Matrix assembly 319 s 161 s 25 s

Solver setup 353 s 235 s 45 s

Solving 1,111 s 2,367 s 1,550 s

Lead field 22 s 20 s 125 s

Total time 1,849 s 2,828 s 1,797 s

the final lead field as the time needed to locate each dipole within

the 2 mm background mesh is lower than the 1 mm hexahedral

mesh. In total, the hexahedral CG was only faster than CutFEM by

a negligible 3% or 52 s.

Error comparisons between CutFEM, UDG, and Hex are

shown in Figure 3. CutFEM outperforms Hex in all eccentricity

categories and for both radial and tangential source directions.

As the pyramidal cells that give rise to the EEG potential are

located in layer 5 of the gray matter (Murakami and Okada, 2006),

eccentricities corresponding to 1–2mm distance to the skull are the

physiologically most relevant. For eccentricities between 0.96 and

0.98 and both source directions, CutFEM has average RDM/MAG

values of 0.18 and −0.06%, comparable to UDGs 0.17 and −0.2%

and significantly lower than Hex’s 0.94 and 1.57%.

The most pronounced differences are at low eccentricities

or when looking at magnitudes. CutFEM performance is similar

for both radial and tangential source directions, and UDG

shows similar or slightly better results at low eccentricities.

However, except for radial RDM’s, UDG deteriorates faster at high

eccentricities above 0.98. As both operate on the same cut mesh, the

larger variance in the UDG results can most likely be explained by

CutFEM’s use of the ghost penalty stabilization. The overall largest

absolute error values for CutFEM are 3.08 % RDM and 8.21 %

MAG, underlining its performance with regard to outliers. Due to

the similar numerical accuracy of CutFEM and UDG, we will only

compare CutFEM and Hex in the following scenarios.

3.2. Sphere containing realistic brain

The results in the previous section were achieved using

analytically computed level sets. Deviating from this, we will

now use a semi-realistic case where realistic brain compartments

are contained within spheres. Again, several different penalty

parameters were tried, showing that a combination of γ = 40 and

a ghost penalty of γg = 0.5 yield good results for CutFEM.

The results are presented in Figure 4. Notably, eccentricity is

stated with respect to the distance to the skull. As source points are

only inside the gray matter, the number of source points at high

eccentricities is much lower. The eccentricity groups 0.98, 0.985,

0.99, and 0.995 were thus combined into one group containing 136

points.

Much like before, CutFEM remains well below 1.5 and 2%RDM

and MAG, respectively, whereas Hex has higher median values for

Frontiers inHumanNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1216758
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Erdbrügger et al. 10.3389/fnhum.2023.1216758

FIGURE 3

EEG forward modeling errors for Hex and unfitted FEM approaches in a shifted sphere scenario. Top: Errors for tangential source directions. Bottom:

Errors for radial source directions. Errors are in percent and grouped by eccentricities. The green line marks optimal error values. The gray area

indicates the physiologically most realistic eccentricities.

FIGURE 4

Overview of di�erent EEG-errors for five layer continuous Galerkin- and CutFEM approaches using realistic brain compartments contained in

spherical skull and scalp shells. Top: Errors for tangential source directions. Bottom: Errors for radial source directions. Errors are in percent and

grouped by eccentricities. The green line marks optimal error values. The gray area indicates the physiologically most realistic eccentricities.

nearly all eccentricities and more outliers going up to more than

1.5% RDM and 4%MAG. CutFEM is again more stable with regard

to outliers and especially when looking at magnitudes, differences

between the two methods are in the several percent range.

Overall, it can be stated that CutFEM is about as fast as and

more accurate than Hex and about as accurate as and faster than

UDG.

3.3. Realistic 5-compartment head model

For the final part of this study, two lead fields, one from

CutFEM, one from hexahedral CG, were created using realistic 5-

compartment head models including the gray and white matter,

CSF, skull and scalp tissues. Somatosensory evoked potentials were

acquired from a medianus stimulation of the right hand.

Frontiers inHumanNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1216758
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Erdbrügger et al. 10.3389/fnhum.2023.1216758

3.3.1. Lead field di�erences
Before looking at inverse reconstructions, we will investigate

the differences between the forward results. As the same source

space and electrodes were used for both models, we can again
compute MAG and RDM values. In the absence of an analytical
solution, these measurements cannot capture errors but rather

differences between the methods without making a clear statement
which is more accurate.

For visualization purposes, for each gray matter centerpoint
of the Hex mesh, the closest source point is identified, RDM and

MAG are computed for each spatial direction and averages over
the directions are calculated. The results are shown in Figure 5.

Looking first at the differences between theHex and TPM-CutFEM

model, we see that in both measures, the highest differences can

be observed in inferior areas near the foramen magnum and optic

channels or in superior areas. Overall, the difference in potential

distribution was 9.40 ± 4.15% and the difference in magnitude

was 18.94 ± 12.03%. Interestingly, with a correlation coefficient of

only 0.22, high RDM values do not necessarily coincide with high

MAG values.

When comparingTet to Tri-CutFEMwe see that the differences

are significantly smaller. With RDMs of 4.59± 3.54% andMAGs of

8.74 ± 8.30%, they average less than half the differences between

the TPM-based models. Additionally, the differences between Tri-

CutFEM and TPM-CutFEM are 4.52± 2.86% (RDM)/0.03 ±

14.50%(MAG) lower than when comparing Tet and Hex. This is

to be expected as the CutFEM lead fields only differ in the way the

surfaces are provided while the differences between hexahedral and

tetrahedral FEM also encompass geometry adaptation, multi-linear

vs. linear FE-spaces and local differences in mesh resolution.

3.3.2. Reconstruction of somatosensory
stimulation

Finally, all four lead fields were used to perform a source

reconstruction of the P20 component of an electric wrist

stimulation. Dipole scans were conducted over the entire source

space, the results of which are shown in Figure 6. In total, 93.03

and 92.15% of the data could be explained the TPM-CutFEM

and the Hex lead field, respectively, resulting in dipole strengths

of 5.8 and 7.56 nAm. These are slightly weaker than the Tri-

CutFEM and Tet dipoles at 8.1 and 8.7 nAm, respectively. From the

literature (Buchner et al., 1994), one expects the P20 component

to be located in Brodmann Area 3b, located in the anterior wall

of the postcentral gyrus (and oriented toward the motor cortex).

This is in line with the TPM-CutFEM reconstruction while the

other three lead fields yield reconstructed dipoles that located on

the posterior wall. Overall, the CutFEM-based reconstructions are

located slightly more medial and frontal than their counterparts.

While this is only a single subject study, it shows that the choice of

the FEM method can significantly change the localization result of

a dipole scan.

FIGURE 5

Lead field di�erences in distribution and magnitude. Top: TPM-CutFEM vs. Hex, Bottom: Tri-CutFEM vs. Tet. Di�erences are interpolated onto the

gray matter.

Frontiers inHumanNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1216758
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Erdbrügger et al. 10.3389/fnhum.2023.1216758

FIGURE 6

Dipole reconstruction results of P20 component of the medianus stimulation based on four di�erent lead fields: Tet (dark green), Hex (dark blue),

Tri-CutFEM (light blue), and TPM-CutFEM (light green). Left to right: Axial, Coronal, and Sagittal view.

4. Discussion

The purpose of this study is to introduce CutFEM, an unfitted

FEM for applications in EEG forward modeling. After discussing

the mathematical theory behind CutFEM and implementational

aspects, three progressively more realistic scenarios are introduced,

ranging from a multi-layer sphere model to the reconstruction of

somatosensory evoked potentials.

At similar computation times, CutFEM shows preferable results

when compared with a geometry-adapted hexahedral CG-FEM

(Wolters et al., 2007) in both a shifted sphere scenario and a

sphere model with realistic brain tissues. While CutFEM requires

significantly less DOF, both methods require similar computation

times due to the different number of solver iterations. Thus, a

thorough investigation of different iterative solver techniques such

as multigrid methods and possibly a modification of the ghost

penalty will be a part of future studies.

Compared with UDG (Bastian and Engwer, 2009), it is shown

that CutFEM combined with a ghost penalty leads to a decrease in

outlier values at high eccentricities as well as a significant reduction

in memory consumption and computation time.

Using a realistic five-compartment head model based on either

tissue probability maps or surface triangulations, we found larger

differences compared with standard hexahedral or tetrahedral first

order FEM when using TPM. Of all four computed lead fields,

only CutFEM in conjunction with tissue probability maps correctly

localizes the somatosensory P20 in the expected Brodmann area

3b. Especially in applications such as presurgical epilepsy diagnosis,

such accurate reconstructions might contribute significantly to the

correct localization of the irritative zone (Neugebauer et al., 2022).

The employed somatosensory experiment featured clear peaks and

a high signal-to-noise ratio, making it an ideal candidate for an

initial study. Further investigations and a larger study size are

necessary to determine CutFEM’s contribution to accurate source

reconstructions when used with noisier data and/or more advanced

inverse methods.

In the study by Vallaghé and Papadopoulo (2010), a trilinear

immersed FEM approach was introduced that like CutFEM

employs level sets as tissue surfaces. Rather than using a Nitsche-

based coupling, continuity of the electric potential is enforced by

modifying the trial function space. Compared with CutFEM, no

free parameters such as γ and γG are introduced but the absence of

overlapping submeshes means that there is no increased resolution

in areas with complex geometries.

In the study by Windhoff et al. (2013); Nielsen et al. (2018),

the process of building a tetrahedral mesh from segmentation data

is investigated. Surface triangulations that are free of topological

defects, self-intersections, or degenerate angles have to be created

before volumetric meshing. The authors show that it is possible

to create such high quality surfaces and subsequent tetrahedral

meshes for realistic head models; however, they may come at the

cost of modeling inaccuracies such as the separation of the gray

matter and skull by a thin layer of CSF.

A main advantage of CutFEM is its flexibility with regard

to the anatomical input data. Level sets can be created from a

variety of sources, such as tissue probability maps, binary images,

or surface triangulations. This simplifies the question of how to

create a mesh from segmentation data. However, CutFEM does

not answer the question which of these sources should be used in

future. Numerically, one can expect the smoother level sets created

from surface triangulations to produce fewer distorted cut cells

than those created from TPM. As shown in the results though,

CutFEM is stable with regard to tissue probability maps. Future

investigations will show whether staying close to the raw MRI data

by using tissue probability maps is preferable over having nested,

smooth surfaces as required for tetrahedral models. The n = 1

study we performed here cannot conclusively answer this question.

From an anatomical perspective, CutFEM now offers the possibility

to accurately model supine subject positioning where the brain

touches the skull. Quantifying the impact, this has on EEG source

estimation will also be a part of future investigations.

5. Conclusion

CutFEM performed well both when the underlying head

model was created using analytical level sets or realistic

segmentation results. Application to an inverse reconstruction of

a somatosensory evoked potential yielded findings that are in line

with the literature. The level sets underlying CutFEM impose few

restrictions on the compartments, thus allowing formore simplified

segmentation routines when compared with other FEM approaches

using surface triangulations.
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