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Background: Sustained environmental enrichment (EE) through a variety of

leisure activities may decrease the risk of developing Alzheimer’s disease. This

cross-sectional cohort study investigated the association between long-term

EE in young adulthood through middle life and microstructure of fiber tracts

associated with the memory system in older adults.

Methods: N = 201 cognitively unimpaired participants (≥ 60 years of age) from

the DZNE-Longitudinal Cognitive Impairment and Dementia Study (DELCODE)

baseline cohort were included. Two groups of participants with higher (n = 104)

or lower (n = 97) long-term EE were identified, using the self-reported

frequency of diverse physical, intellectual, and social leisure activities between

the ages 13 to 65. White matter (WM) microstructure was measured by

fractional anisotropy (FA) and mean diffusivity (MD) in the fornix, uncinate

fasciculus, and parahippocampal cingulum using diffusion tensor imaging. Long-

term EE groups (lower/higher) were compared with adjustment for potential

confounders, such as education, crystallized intelligence, and socio-economic

status.

Results: Reported participation in higher long-term EE was associated

with greater fornix microstructure, as indicated by higher FA (standardized

β = 0.117, p = 0.033) and lower MD (β = −0.147, p = 0.015). Greater

fornix microstructure was indirectly associated (FA: unstandardized B = 0.619,

p = 0.038; MD: B = −0.035, p = 0.026) with better memory function

through higher long-term EE. No significant effects were found for the

other WM tracts.

Conclusion: Our findings suggest that sustained participation in a greater variety

of leisure activities relates to preserved WM microstructure in the memory system

in older adults. This could be facilitated by the multimodal stimulation associated

with the engagement in a physically, intellectually, and socially enriched lifestyle.

Longitudinal studies will be needed to support this assumption.

KEYWORDS

multimodal leisure activities, brain reserve, brain plasticity, memory, prevention,
Alzheimer’s disease

1. Introduction

The worldwide prevalence of AD is expected to reach
153 million cases by 2050 (Nichols et al., 2022). Progressive
deterioration of the memory system and associated function is a
core symptom of Alzheimer’s disease (AD) (e.g., Sperling et al.,
2011). AD-related memory loss and clinical progression are closely
linked to accelerated brain atrophy in medio-temporal brain
structures and their white matter (WM) connections, including
the fornix tract as the major pathway of the hippocampus (Mielke
et al., 2012). In the absence of a cure for AD, tremendous effort
has been placed on developing treatment strategies focusing on the

prevention of AD through protective lifestyle factors comprising
physical, intellectual and social activities (Livingston et al., 2020).
Participation in a greater variety of enriching leisure activities
may have a particularly positive impact on brain health, including
the WM microstructure of the memory system; however, these
neurophysiological relations remain to be determined in older
adults (OA).

Existing studies have indicated that sustained multimodal
environmental enrichment (EE), combining motor, cognitive,
sensory, and social stimulation, has far-reaching benefits for the
brain. In animal models, groups of rats or mice exposed to
EE show greater benefits compared to groups of animals with
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low EE (i.e., standard housing), particularly in the memory
system including hippocampal structure and function (Fabel et al.,
2009; Kempermann et al., 2010; Kempermann, 2019; Manno
et al., 2022). In humans, multimodal activities such as regular
musical instrument playing or dancing have been associated with
a reduced risk of developing dementia (Verghese et al., 2003).
Likewise, participating in a diversity of enriching leisure activities,
including physical and cognitive activities, could be beneficial in
preserving or enhancing the brain and cognition. This has been
suggested by various cross-sectional (Wirth et al., 2014; Porat
et al., 2016; Chan et al., 2018), longitudinal (Karp et al., 2006),
and interventional (Theill et al., 2013; Ngandu et al., 2015; Köbe
et al., 2016) studies as well as systematic reviews and meta-
analyses (Lauenroth et al., 2016; Gavelin et al., 2021; Torre and
Temprado, 2022). A study of particular interest conducted in OA
over 80 years showed that 3 year changes in WM microstructure
in the corticospinal tract accounted for the association between
changes in self-reported leisure activities and changes in perceptual
speed (Köhncke et al., 2016).

Despite these insights, the potential brain correlates associated
with sustained or long-term EE in the memory system of OA
remain unclear. Age-related alterations in WM microstructure,
as defined by lower fractional anisotropy (FA) and higher mean
diffusivity (MD) measured using diffusion-weighted imaging
(DWI), begin and are most severe in the fornix, the uncinate
fasciculus, and the parahippocampal cingulum (Teipel et al., 2016;
Pichet Binette et al., 2021). Disruption of these critical fiber tracts
has been associated with lower episodic memory functioning
(Huang et al., 2007; Fellgiebel et al., 2008; Sexton et al., 2010;
Metzler-Baddeley et al., 2011; Hayek et al., 2020) and cognitive
worsening over time (Mielke et al., 2012; Zhuang et al., 2012;
Fletcher et al., 2013) in OA. Conversely, successful preservation or
adaptation of WM microstructure (as indicated by higher FA and
lower MD) through enriching leisure activities could help protect
the memory system in late life and strengthen brain reserve (Teipel
et al., 2016; Xu et al., 2019; Luo et al., 2020). Evidence syntheses
regarding lifestyle activities, such as physical or cognitive activities,
and their association with WM microstructure in OA have
provided inconclusive results (Sexton et al., 2016; Anatürk et al.,
2018). However, participation in multimodal activities, including a
6-months piano training and a 6-months dance training, has been
associated with a positive impact on fornix microstructure in OA
(Burzynska et al., 2017; Jünemann et al., 2022).

Here, we investigated the cross-sectional association
between sustained EE in young and middle adulthood and
WM microstructure of the memory system in OA from the DZNE-
Longitudinal Cognitive Impairment and Dementia (DELCODE)
study (Jessen et al., 2018). Long-term EE was measured by
the self-reported frequency of participation in a variety of
enriching leisure activities, including physical, intellectual and
social activities, between the ages 13 and 65. We hypothesized
that participants with higher long-term EE would have more
favorable microstructure in three WM tracts, namely the fornix,
uncinate fasciculus, and parahippocampal cingulum, compared
to participants with lower long-term EE. We carefully controlled
for other known reserve proxies, such as education, crystallized
intelligence and socio-economic status (SES) (Stern, 2009), as
done in our previous study in the DELCODE cohort (Böttcher
et al., 2022). Lastly, we explored neuroprotective path models

(Wirth et al., 2014) conceptualized as brain maintenance and brain
reserve models to better understand the interplay among long-term
EE, WM microstructure and memory function in the OA.

2. Materials and methods

This study was based on cross-sectional baseline data that
were obtained from the ongoing multicenter observational DZNE-
DELCODE study (Jessen et al., 2018). The DELCODE study was
designed according to the ethical principles of the Declaration of
Helsinki. Local ethical committees at each participating study site
approved the study protocol. All participants gave written informed
consent. The DELCODE study was registered at the German
Clinical Trials Register (DRKS00007966; date: 2015/05/04).

2.1. Participants

Based on our research questions, participants in the cognitively
normal range were included from the baseline DELCODE database.
Specifically, our sample included older adults, participants with a
family history of AD, and participants with subjective cognitive
decline to increase sample size and statistical power. Briefly, all
participants had fluent German skills and were 60 years of age or
older. All participants included in this study had normal cognitive
performance, as determined using the Consortium to Establish a
Registry of Alzheimer’s Disease (CERAD) battery (Morris et al.,
1989). Past or present major psychiatric, medical, or neurological
disorders were set as exclusion criteria. In total, the current sample
included N = 201 participants. The selection flow chart is provided
in the Supplementary material (Supplementary Figure 1).

2.2. Measurements

2.2.1. Long-term environmental enrichment
Long-term EE was operationalized using items from a German

version (LEQ-D, Roeske et al., 2018) of the Lifetime of Experiences
Questionnaire (LEQ; Valenzuela and Sachdev, 2007). The LEQ
is an established questionnaire that assesses, among others, a
wide range of leisure activities. The LEQ has been translated into
multiple languages (Ourry et al., 2021) and has been implemented
in previous studies on cognitive reserve (Chan et al., 2018;
Collins et al., 2021).

To measure EE, we used items of the non-specific subscore
of LEQ. The non-specific LEQ items are a validated measure of
cognitive, artistic and social engagement across life (Valenzuela
and Sachdev, 2007). Indeed, a factor analysis of the original
LEQ (Valenzuela and Sachdev, 2007) indicated two main factors:
factor one that captures education and occupation (the specific
LEQ factor) and factor two that captures social, artistic, and
musical activities (the non-specific LEQ). This factor structure was
recently replicated in a cross-country validation of the LEQ in
four European countries (Ourry et al., 2021). This study confirmed
the essential factor structure for the specific and non-specific
parts of the LEQ across the sample and for each country (Ourry
et al., 2021). As the non-specific LEQ factor is closest to the
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concept of environmental enrichment from animal research, we use
specific items of interest from the non-specific LEQ that capture
environmental enrichment it in the current study. In this way, our
approach is similar to previous studies (Oltmanns et al., 2017).

More specifically, we selected unspecific items of the LEQ-
D questionnaire measuring the frequency of participation in 6
leisure activities on a 6-point Likert scale ranging from 0 (never),
1 (less than 1 time per month), 2 (1 time per month), 3 (2 times
per month), 4 (weekly), to 5 (daily). These items are related to
(1) social activity (seeing family members), (2) musical activity
(playing a musical instrument) (3) artistic activity (e.g., drawing),
(4) physical activity, (5) reading (as a proxy for cognitive activity),
and (6) speaking an additional language. Participation in these
leisure activities was rated retrospectively for three life periods, i.e.,
young adulthood (13–30 years), mid-life (30–65 years), and late-
life (65 years and older). Only items concerning young adulthood
and mid-life were included in this study, as some participants were
below 65 years of age.

There are several ways to define and analyze long-term EE.
From a conceptual point of view, we aimed to compare the
“effects” of long-term EE between groups of OA with lower or
higher frequency of participation in enriching leisure activities.
This group-based comparison (lower vs. higher EE) was inspired
by the classical enriched environment paradigm, as established in
animal (rat and mice) models (Kempermann, 2019). In the present
(human) data, we used a data-driven approach and evaluated long-
term EE as a binary group variable defined by median split with
lower and higher frequency of participation in the given leisure
activities. Similar binary evaluations of leisure activities have been
reported by previous studies (Böttcher et al., 2022; Duffner et al.,
2022). Briefly, we summed the scores across the 6 leisure activities
as assessed by the LEQ per life period with a maximum total score of
30 per life period. The median score of the summed leisure activities
was 18 for younger adulthood and 16 for mid-life. Participants
with higher EE across both life periods (median and higher) were
included in the higher EE group (n = 104), while participants with
lower EE across both life periods (below median) were included in
the lower EE group (n = 97).

2.2.2. MRI acquisition and pre-processing
The magnetic resonance imaging (MRI) data were collected

in nine participating sites, each equipped with a Siemens 3.0
Tesla MRI scanner (one Prisma, one Skyra, three TimTrio, and
four Verio systems). Scanning instructions were standardized
across sites and identical MRI protocol acquisition parameters
were used. Details on sequence parameters are provided in the
Supplementary material.

Diffusion-weighted MRI data were preprocessed with the
FMRIB software library (FSL, Version 6.0.4. Jenkinson et al.,
2012). The brain extraction tool (bet) was used for skull stripping.
Images were corrected for distortions with a gradient-echo field
map using the fsl_prepare_fieldmap and epi_reg commands. Then,
images were corrected for eddy currents using the command
eddy_correct and the first b0 image as a reference volume. After,
bvecs were rotated to preserve correct orientation information with
the command fsl_rotate_bvecs (see Leemans and Jones, 2009). The
command dtifit was used to fit a diffusion tensor model at each
voxel and to create the FA and MD maps. For all participants, head
movement, defined by the Euclidian distance in millimeters of how

much the head was moved, was calculated using the eddy_correct
log file (Tromp, 2016).

2.2.3. MRI analysis
To extract FA and MD values from the pre-selected fiber

tracts (i.e., fornix, the uncinate fasciculus, and the parahippocampal
cingulum), a tract-of-interest (TOI) based approach was chosen,
following the procedure described by Antonenko et al. (2016). All
TOI masks were extracted based on the 2 mm isotropic resolution
Montreal Neurological Institute (MNI) template provided by FSL.
Masks for the fornix and uncinate fasciculus were extracted
from the probabilistic Juelich histological atlas (Bürgel et al.,
2006). The mask for the parahippocampal cingulum was extracted
from the non-probabilistic JHU ICBM-DTI-81 atlas (Oishi et al.,
2008). Based on previous research (Antonenko et al., 2016) and
visual inspection, voxels of probabilistic masks of the fornix were
thresholded at 50% probability for inclusion in the mask, the
uncinate fasciculus mask was thresholded at 20%. The mask for the
parahippocampal cingulum was not probabilistic and, therefore,
directly used as provided.

As already provided in the description of section “2.2.2.
MRI acquisition and pre-processing,” we transformed the atlas-
based tracts-of interest (TOI) from Montreal Neurological Institute
and Hospital (MNI) reference space to individual subject native
space. The TOI masks were binarized and transformed from
standard space into native space to extract diffusion metrics
using the statistical parametric mapping toolbox (SPM12, version
7487, Wellcome Trust Centre for Neuroimaging, London, UK)1

with the segmentation algorithm of the computational anatomy
toolbox (CAT12, version 12.6, rl1450)2 implemented in Matlab
2018a (Mathworks, Natwick). The computational anatomy toolbox
(CAT12) provides a one-click procedure to perform image
segmentation [gray matter, white matter, cerebrospinal fluid (CSF)]
and estimation of deformation fields for warping the native space
t1-weighted MRI scans to MNI space. The inverse deformation
field can be used to warp the images back from MNI space to
native subject space. As the t1-weighted scans and diffusion scans
were initially coregistered to each other, we could directly apply
the deformations to the MNI TOI masks to bring the masks in
the respective subject space. Subsequently, the mean FA and MD
values per TOI were extracted for each participant. As the fornix
tract borders the lateral ventricles, it is important to correct for CSF
contamination (Hayek et al., 2020). An FA value below 0.1 and an
MD value above 2.5e-03 is likely to reflect CSF rather than brain
tissue (Hasan et al., 2014). Therefore, these thresholds were used
for all voxels of individually extracted fornix FA and MD masks.

2.2.4. Measurement of additional variables
Co-variates of no interest considered in the present study

were age, gender, education, crystalized intelligence, socio-
economic status (SES), diagnostic category, and scanner site.
Most of these measures are provided by the baseline database
of the DELCODE study and were described in our previous
study (Böttcher et al., 2022). In brief, educational attainment
was assessed in years of education. Vocabulary was used as

1 http://www.fil.ion.ucl.ac.uk/spm/

2 http://www.neuro.uni-jena.de/cat/
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a proxy for crystallized intelligence, estimated by the total
score of the German Mehrfachwahl-Wortschatz-Intelligenztest
(MWT, English: Multiple-Choice Vocabulary Intelligence Test,
Lehrl, 2005). MWT scores range from 0 to 37 with higher
scores corresponding to higher crystallized intelligence. The SES
was estimated by the international socio-economic index of
occupational information (ISEI) (Ganzeboom et al., 1992). The
measure was calculated using the self-reported occupational history
assessed by the LEQ-D and established crosswalk procedures. ISEI
scores range from 16 to 90 with higher scores corresponding to
higher SES. The scanner site was included to account for scanner-
related variance in the diffusion tensor imaging (DTI) measures
(Brueggen et al., 2019; Finsterwalder et al., 2020).

2.3. Statistical analysis

Statistical analysis was conducted in IBM SPSS 23 and RStudio
Version 1.4.1103 (R Core Team, 2020). The mediation package
(version 4.5.0) was used to construct path models (Tingley
et al., 2014). An alpha value of 0.05 was considered statistically
significant. As the TOIs were considered as independent from
each other, tests were not corrected for multiple comparisons.
Statistical assumptions for each analysis were checked following
guidelines provided by Field (2013). Plots presented in the results
section were plotted in R with the package ggplot2 (version 3.3.5)
(Wickham, 2016).

2.3.1. Sample characteristics
Long-term EE groups (lower/higher) were first compared

on baseline demographic, behavioral, neuropsychological, and
neuroimaging variables. Statistical comparisons were conducted
with independent samples t-tests for continuous variables and
chi-squared (χ2) tests for categorical variables.

2.3.2. Analysis of main hypotheses
To assess our main hypothesis for WM microstructure,

multiple linear regression models were computed with FA or MD
of each TOI (fornix, uncinate fasciculus, and parahippocampal
cingulum) as dependent variables and long-term EE (lower/higher)
as an independent variable. In all regression models, we accounted
for age, gender, education, crystallized intelligence, SES, and
diagnostic category. Furthermore, we tested for multicollinearity
among all covariates using simple Pearson correlation and
VIF (variance inflation factor). In the Pearson correlation, the
highest correlation was between the covariates education and
SES (r = 0.59). According to Field et al. (2012), multicollinearity
is only present when the correlation coefficient reaches 0.9 or
−0.9. In line with this result, the VIF method also indicated
that there is no multicollinearity among the covariates, as
the highest values were observed for education (1.67) and
SES (1.74), and according to Kutner et al. (2005), VIFs
exceeding 10 may indicate multicollinearity. To minimize site-
effects, regression models for TOIs included scanner site as a
categorical covariate. All categorical covariates were included
as dummy coded variables in all models specified above,
granted they had more than two levels. For all regression
models, the lower long-term EE group was the reference

category for long-term EE, female was the reference category for
gender, and OA was the reference category for the diagnostic
category.

2.3.3. Exploratory path analysis
We conducted exploratory path analyses using the mediation

package v.4.5.0 (Tingley et al., 2014) in RStudio version 1.4.1103
(R Core Team, 2020) and adjusted for co-variates of no interest,
i.e., age, gender, education, crystallized intelligence, SES, diagnostic
category, and scanner location, in a methodological approach
similar to Wirth et al. (2014). Path models were computed for
fornix FA and MD similar to a previous study (Hayek et al., 2020).
One path model, here conceptualized as brain maintenance model,
assessed long-term EE as independent variable, fornix FA/MD
as the mediator, and memory function as dependent variable.
The second (reverse) path model, here conceptualized as brain
reserve model, assessed fornix FA/MD as independent variable,
long-term EE as mediator, and memory function as dependent
variable. We examined the contribution of the indirect (mediator)
effect as the outcome of interest, computed by the product of
path coefficients, similar to our preceding study (Wirth et al.,
2014). Indirect effects were evaluated using bias-corrected 95%
confidence intervals (CI) established with 5,000 bootstrap samples.
The indirect effect was considered significant if the CI did not
include the value zero.

In both path models, we evaluated memory function by
the neuropsychological learning and memory (MEM) factor
score, in detail described elsewhere (Wolfsgruber et al., 2020).
The incorporated neuropsychological tests were provided by
Wolfsgruber et al. (2020). In brief, they consist of the following
tests: performance in learning and memory (MEM) was assessed
using a latent factor score that was previously constructed based
on the extensive neuropsychological test battery of the DELCODE
cohort (Wolfsgruber et al., 2020). The MEM factor score included
the Free and Cued Selective Reminding Test (FCSRT, Grober et al.,
2009), the Logical Memory Test of the Wechsler Memory Scale
(WMS-IV, Lepach and Petermann, 2012), the incidental learning
scale of the Symbol Digit Modalities Test (Smith, 1982), the
computerized Face Name Associative Recognition Test (Polcher
et al., 2017), the word list learning, recall, and recognition of the
ADAS-Cog 13 (Mohs et al., 1997) and a recall task of previously
copied figures (analogous to the CERAD battery, Thalmann
et al., 2000). For the present purpose, the MEM factor score
was z-transformed using the mean and standard deviation of the
present sample (N = 201).

2.3.4. Post hoc group characterization
A post hoc comparison was performed to explore relative

differences in the frequency of participation across the 6
different leisure activities (as assessed by the LEQ-D) between
higher and lower long-term EE groups. We conducted simple
regression models with long-term EE (lower/higher) as the
independent variable and the respective leisure activity (language,
artistic, musical, physical, reading, or social) as the dependent
variable. For the present purpose, the effect size measure
(standardized regression coefficient) was evaluated, classified as
small (0.2–0.5), medium (0.5–0.8) or large (0.8 and larger) effects
(Ferguson, 2009).
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3. Results

3.1. Sample characteristics

This study included a total of N = 201 participants from the
DELCODE study. Of those, n = 97 were in the lower long-term
EE group and n = 104 participants were in the higher long-term
EE group. A summary of the sample characteristics at baseline
including demographics, behavioral and biological measures is
given in Table 1. Participants with higher long-term EE had
significantly higher years of education, crystallized intelligence, and
SES compared to participants with lower EE. The two groups were
comparable in the other baseline characteristics.

3.2. Association between long-term EE
and WM microstructure

The association between long-term EE and WM
microstructure, measured by FA and MD, in the pre-selected
TOIs is shown in Table 2. As the selected LEQ items that were
our measure of EE correlated with years of education (r = 0.34),
crystallized intelligence (r = 0.22), and SES (r = 0.29), we corrected
for these collinear influences in the statistical analysis procedure.
Even after controlling for these co-variates in the main and
exploratory analyses, EE still explained unique variance in the
reported analyses, thus demonstrating the importance of EE.
We found significant group differences for fornix FA (β = 0.117,
p = 0.033) and fornix MD (β = −0.147, p = 0.015), after adjusting
for co-variates that normally contribute to cognitive reserve
and resilience and were correlated with EE in our sample. More
specifically, participants who reported participating in higher
long-term EE had significantly greater WM microstructure in the
fornix, as indicated by higher FA and lower MD, compared to
participants with lower long-term EE (Figure 1). There were no
significant group differences in the other TOIs (all p’s > 0.1).

3.3. Exploratory path analysis

Results of the exploratory path models are shown in Figure 2.
The first path model (brain maintenance model) assessed long-
term EE (lower/higher) as independent variable, fornix FA as
mediator, and memory function as dependent variable. There was
no indication that long-term EE was indirectly associated with
memory function through fornix FA (unstandardized B = −0.020,
SE = 0.007, bootstrapped bias-corrected 95% CI: −0.076, 0.010).
A similar non-significant result was obtained for fornix MD
(unstandardized B = −0.020, SE = 0.008, bootstrapped bias-
corrected 95% CI: −0.081, 0.010, Supplementary Figure 2). The
second alternative path model (brain reserve model) assessed
fornix FA as independent variable, long-term EE (lower/higher)
as mediator, and memory function as dependent variable. In
this model, greater fornix FA was associated with better memory
function through an indirect (mediation) effect of long-term
EE (unstandardized B = 0.619, SE = 0.102, bootstrapped bias-
corrected 95% CI: 0.089, 1.710), even after controlling for co-
variates. A similar significant indirect effect was observed for

the corresponding path model with fornix MD (unstandardized
B = −0.035, SE = 0.005, bootstrapped bias-corrected 95% CI:
−0.090, −0.010, Supplementary Figure 2).

3.4. Post hoc group characterization

We compared the two groups (lower/higher EE) to explore
the relative differences in the frequency of participation across
the 6 leisure activities (i.e., social, musical, artistic, physical,
reading and additional language activities) to better characterize
long-term EE. Compared to the lower EE group, participants
with higher EE reported a greater frequency of participation
in socio-cultural activities, resulting in large effect sizes of
long-term EE (lower/higher) in musical (standardized regression
coefficient: β = 0.538), artistic (β = 0.670), and additional language
(β = 0.754) activities. In contrast, both EE groups (lower/higher)
reported regular frequency of participation in the remaining leisure
activities with small effect sizes of long-term EE in physical
(β = 0.394), reading (β = 0.245), and social (β = 0.079) activities
(Supplementary Table 1).

4. Discussion

4.1. Summary of findings

This study investigated the cross-sectional association between
EE during life and WM microstructure of fiber tracts associated
with the memory system in cognitively unimpaired OA of the
DELCODE study. We compared two groups of OA that reported
sustained higher or lower participation (between 13 and 65 years of
age) in a variety of enriching leisure activities, adjusting for other
known reserve proxies. We show that participants with higher
long-term EE had better microstructure in the fornix tract (higher
FA and lower MD) compared to participants with lower long-
term EE. A similar effect was not seen in the other WM tracts.
Follow-up exploratory path models suggested that greater fornix
microstructure (higher FA and lower MD) was indirectly associated
with better memory function through higher long-term EE. Our
findings imply that sustained participation in a greater diversity
of leisure activities may help preserve WM microstructure in the
memory system of OA.

4.2. Enrichment and memory
microstructure

We show that OA with higher long-term EE had more
favorable microstructure in the fornix, both in terms of higher
FA and lower MD, than OA with lower long-term EE. The
present beneficial association between enriching leisure activities
and fornix microstructure was found, accounting for other reserve
proxies of education, crystallized intelligence, and SES (Stern, 2009;
Jones et al., 2011) that were enhanced in the higher EE group.
At the same time, we observed no significant differences between
lower and higher EE for the other WM tracts, namely the uncinate
fasciculus and the parahippocampal cingulum.
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TABLE 1 Descriptive characterization of the final sample.

Whole sample
(N = 201)

M (SD)

Lower EE
(n = 97)
M (SD)

Higher EE
(n = 104)

M (SD)

Test statistics p

Age (years) 69.10 (6.28) 69.25 (6.19) 68.97 (6.38) t = 0.311 0.756

Gender
female/male (n)

97/104 46/51 51/53 χ2 = 0.052 0.819

Education (years) 15.00 (2.93) 14.18 (2.71) 15.77 (2.93) t = −4.008 < 0.001***

Crystalized
intelligencea

32.51 (2.61) 31.91 (2.59) 33.07 (2.52) t = −3.214 0.002**

SESb 62.76 (17.06) 58.28 (17.02) 66.95 (16.07) t = −3.714 < 0.001***

Diagnostic
category
OA/SCD/FH (n)

84/90/27 42/41/14 42/49/13 χ2 = 0.505 0.777

APOE ε4 allele
carrier, n (%)c

55 (27.8) 28 (29.5) 27 (26.2) χ2 = 0.125 0.724

BMId 25.71 (3.35) 25.83 (3.36) 25.59 (3.35) t = 0.520 0.604

Total intracranial
volume (ml)

1,405.628 (200.991) 1,412.816 (213.300) 1,398.923 (189.585) t = 0.487 0.627

aMultiple-Choice Vocabulary Intelligence Test (MWT).
bInternational socio-economic index (ISEI).
cMeasure available in n = 198 participants (lower EE: n = 95, higher EE: n = 103).
dMeasure was calculated using the following formula: weight (kilograms)/height2 (meters).
Descriptive data are given if applicable as mean and standard deviation (in parenthesis). For continuous variables, p-values correspond to independent t-tests with unequal variances with
long-term EE (levels lower/higher) as the independent variable. For categorical variables, the chi-square statistic was used to compare the distribution.
***p < 0.001, **p < 0.01.
M, mean; SD, standard deviation. Key: BMI, body mass index; OA, older adults; FH, participants with a family history of AD; SCD, subjective cognitive decline; SES, socioeconomic status;
MMSE, mini-mental state examination, GDS, geriatric depression scale.

TABLE 2 Results for the multiple regression analyses between long-term EE and WM microstructure.

Dependent variable B SE B Beta p Total R2 (adj.)

Fornix FA 0.013 0.006 0.117 0.033* 0.567 (0.527)

Fornix MD −6.450e-05 2.631e-05 −0.147 0.015* 0.472 (0.423)

Parahippocampal cingulum FA 0.002 0.008 0.020 0.763 0.357 (0.297)

Parahippocampal cingulum MD −8.055e-06 1.083e-05 −0.046 0.458 0.441 (0.389)

Uncinate fasciculus FA −0.010 0.006 −0.103 0.116 0.372 (0.314)

Uncinate fasciculus MD −8.976e-06 1.188e-05 −0.052 0.451 0.301 (0.236)

Long-term EE was included as a binary predictor, dummy coded with lower long-term EE = 0, higher long-term EE = 1. Models adjusted for age, gender, education, intelligence, SES, diagnostic
category, and scanner site (for WM microstructure). Reference categories for categorical variables: lower EE group as the reference group for long-term EE. Female as the reference group for
gender. Older adults as the reference group for the diagnostic category. Scanner site 1 as the reference group for the scanner site.
*p < 0.05.
Key: B, unstandardized coefficient; CI, confidence interval, SE, standard error; Beta, standardized coefficient; R2, explained variance; FA, fractional anisotropy; MD, mean diffusivity.

Our results align with and extend findings from previous
review and meta-analytical studies reporting small and inconsistent
effects of leisure activities on WM microstructure (Sexton
et al., 2016; Anatürk et al., 2018; Duffner et al., 2023). One
possible explanation for the selective sensitivity of the fornix,
as observed in our study, may be that this major output
tract of the hippocampus appears to be highly susceptible to
aging processes (Zhuang et al., 2012; Hayek et al., 2020) and
environmental challenges. The latter has been demonstrated by
short-term learning/cognitive training studies in younger and older
adults, respectively (Hofstetter et al., 2013; Antonenko et al.,
2016). Intervention studies have further shown positive effects
of longer-term music and dance trainings over 6 months on
WM microstructure of the fornix in OA (Burzynska et al., 2017;

Jünemann et al., 2022). In addition, other WM tracts seem
to be important for the relation between EE and cognitive
capacities. A longitudinal study in OA over 80 years showed that
three year changes in WM microstructure in the corticospinal
tract accounted for the association between changes in self-
reported leisure activities and changes in perceptual speed
(Köhncke et al., 2016).

Together, our and previous findings may reflect a lasting
capability for neuroplastic changes or adaptations of WM
microstructure including the fornix tract−even in late life−in
response to or in interrelation with environmental challenges and
experiences (see below). In light of this, our results may suggest
that a greater variety of leisure activities could help preserve WM
microstructure of the memory system in older age.
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FIGURE 1

Main effect of long-term EE on fornix microstructure. Significant group differences were found for fornix fractional anisotropy, FA (A) and fornix
mean diffusivity, MD (B). (A,B) Significantly better white matter microstructure (higher FA, lower MD) in the fornix was detected for participants with
higher long-term EE (EE+, orange) compared to participants with lower long-term EE (EE–, green). Split violin plots display data adjusted for
covariates (age, gender, education, crystallized intelligence, socioeconomic status, diagnostic category, and scanner site for fornix microstructure).
Boxplots display the median and interquartile range between the 1st and 3rd quartile. Individual data points display data adjusted for covariates.
∗p < 0.05. Key: EE, environmental enrichment; EE–, lower long-term EE; EE+, higher long-term EE; FA, fractional anisotropy; MD, mean diffusivity.

FIGURE 2

Path models investigating the association among long-term EE, fornix FA, and memory function. (A) Brain maintenance model: There was no
statistical indication for a significant indirect (mediation) effect of the fornix FA. (B) Brain reserve model: Greater FA of the fornix was indirectly
associated with better memory function through long-term EE. Path diagrams were adjusted for age, gender, education, crystallized intelligence,
socioeconomic status, diagnostic category, and scanner site. Terms show unstandardized beta (B) coefficients and standardized errors (SE).
Significant terms are indicated with bold font. Significant paths are indicated with continuous lines. Indirect effects with 95% CI are provided.
*p < 0.05. Key: CI, confidence interval; EE, environmental enrichment; FA, fractional anisotropy.

4.3. Exploratory path models

Path modeling showed a significant indirect association
between fornix microstructure and late-life cognition through
long-term EE. The result is challenging to interpret, given the
cross-sectional nature of our study, which limits possibilities for
causal inference. Nevertheless, our observation may suggest that
greater fornix microstructure−if conceptualized as an indicator of
brain reserve−could be associated with better memory function,
when sustainably challenged by participation in enriching leisure
activities. This interpretation aligns with the view that complex
brain-behavior dynamics are associated with EE over the life
course (Richards and Deary, 2005; Olszewska et al., 2021). It has
been argued that more favorable brain properties in high-reserve
individuals may facilitate exposure to or engagement in complex
EE during life (see Maguire et al. (2000) and Olszewska et al. (2021)

for a similar discussion). Other results have shown that a greater
diversity of physically, intellectually and socially enriching activities
in early life (before 13 years of age) are associated with variations
in brain properties in later life (Morris et al., 2021). Greater
brain resources (via predisposition or early EE) could support
the maintenance of an enriched lifestyle throughout life and vice
versa, which might promote a self-sustaining preservation of brain
reserve into older age.

4.4. Enrichment and socio-cultural
activities

We show that participants with higher long-term EE reported a
more frequent participation in enriching leisure activities including
music, art and language. Due to the multimodal sensory, motor,
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cognitive and social stimulation as inherent to socio-cultural
activities (Wan and Schlaug, 2010; Herold et al., 2018), one could
hence reason that participants in the higher EE group were more
likely exposed to additive or synergistic effects of EE (Kempermann,
2019). Participants in the lower EE group also reported having
performed enriching physical, cognitive and social leisure activities,
albeit with relatively lesser frequency of participation in socio-
cultural activities. The proposed benefits of leisure activities might
thus be encouraged by the engagement in art, music, and other
cultural activities, which have been associated with far-reaching
positive effects on the brain and mental health (Fancourt and Finn,
2019). Regular participation in socio-cultural activities appears to
act through broad neurobiological mechanisms to promote brain
reserve and resilience in late life, which should be addressed in
future studies.

4.5. Impact and significance

Taken together, our findings propose that long-term
participation in a greater variety of leisure activities during young
and middle adulthood may help preserve WM microstructure in
the memory system of OA. This could be facilitated by the complex
stimulation and integration processes associated with a physically,
intellectually, and socially enriched lifestyle. In this line, studies
have shown enhanced cognitive functioning after multimodal
training compared with unimodal training in younger adults
(Ward et al., 2017). The multimodal combination of modifiable
lifestyle activities could serve as a low-threshold health strategy
to foster brain and cognitive health throughout life to an older
age. Targeted interventional studies with multimodal enrichment
strategies will help to systematically evaluate the proposed merits
of long-term EE. In addition, the relevance of socio-cultural
activities in the benefits of an enriched lifestyle warrants further
investigation.

4.6. Strengths and limitations

The present study indicates a positive association between
self-reported participation in long-term EE during life and WM
microstructure of fiber tracts associated with the memory system
in a relatively large sample of clinically normal and well-
characterized OA from the DZNE-DELCODE cohort (Jessen
et al., 2018). To further investigate the sustained benefits of
long-term EE, longitudinal studies with fine-tuned assessments of
enriching leisure activities are needed to assess the progression of
cognitive reserve and related brain properties over time. Several
limitations need to be considered. (1) As the present results
are based on cross-sectional data, caution needs to be taken
concerning possible conclusions regarding the directionality of
effects. Future longitudinal cohort studies could test the relation
between environmental enrichment and fornix FA and MD
over timespans to infer causality. (2) Self-reported retrospective
measures of participation in leisure activities can be biased by
the participant’s current cognitive status. However, the LEQ is
considered an established instrument used in prior studies in
cognitively unimpaired OA (Chan et al., 2018; Collins et al., 2021;

Ourry et al., 2021) and we selected participants with a normal
cognitive status from the DELCODE database. (3) The current
study was translational in nature and applied group-based
comparisons of lower and higher EE, to follow procedures from
classical animal studies on enriched environments (Kempermann,
2019). Future studies may use other approaches to assess
associations between EE, brain microstructure and memory and
may additionally incorporate educational/occupational enrichment
as assessed with the LEQ (Valenzuela and Sachdev, 2007). Further,
it might be argued that exposure to earlier-life EE (before the
age of 13 years) may facilitate later-life EE and brain functioning
in older age (Morris et al., 2021). This assumption cannot be
evaluated in the present study, as no information on early-life
EE was available. (4) Studies with native diffusion tractography
are needed to replicate the present results obtained with a
probabilistic atlas-based tracts-of interest analysis. Prospective
studies should explore other ways of addressing partial volume
contamination from cerebrospinal fluid to see whether approaches
with different methods yield robust results. It should be noted
that head movements tend to increase with age, leading to more
artifacts, as demonstrated in a resting-state study by Saccà et al.
(2021). These head movements cannot always be entirely corrected
through preprocessing and should therefore be considered as a
possible limitation. (5) We did not find evidence of a direct cross-
sectional association between fornix microstructure and memory
performance in the present sample, although previous studies
have reported such relations (Huang et al., 2007; Fellgiebel et al.,
2008; Sexton et al., 2010; Hayek et al., 2020). Cross-sectional
correlations between WM microstructure and cognitive function
might be blurred by inter-subject heterogeneity in these measures,
mixed brain pathologies and/or differences in reserve and resilience
factors in our cohort.

5. Conclusion

Our results show that sustained participation in a greater
diversity of leisure activities is associated with better fornix
microstructure in OA. This beneficial association between long-
term enrichment and brain reserve was found, accounting for
other known reserve proxies such as SES, crystallized intelligence,
and education. Regular engagement in multimodal physical,
intellectual, and social enrichment during young and middle
adulthood might represent an easily-accessible behavioral strategy
to contribute to memory preservation and thus strengthen reserve
mechanisms in late life.
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