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1 Introduction

Cells need to adapt constantly to internal and environmental changes ranging from
normal physiological fluctuations to pathological alterations. Changes in the cellular
demand can cause perturbations in different cellular compartments that in turn activate
distinct signaling pathways to elicit transcriptional programs aiming at resolving the
perturbation at the site of origin. In line, distinct adaptive responses to different types of
“stresses” have been described for mitochondria. However, while responses to oxidative
stress and hypoxia as well as events resulting in apoptosis are well understood,
knowledge on signals, mediators, and targets employed in the response to disturbed
mitochondrial proteostasis is still rudimentary (Ryan and Hoogenraad, 2007; Vogtle,
2021). Yet, protein aggregation has a significant impact on mitochondrial function and
consequently, imbalances in mitochondrial proteostasis are implicated in ageing and are
associated with a plethora of human diseases (Rath et al., 2018; Suomalainen and
Battersby, 2018). The mitochondrial unfolded protein response (mtUPR or UPRmt)
evoked by insufficient protein-folding capacity, accumulation of misfolded proteins or
nondegradable protein aggregates in mitochondria, is a protective response to restore
proteostasis. Upregulating nuclear-encoded mitochondrial chaperones and proteases as
well as controlling mitochondrial RNA translation, mtUPR improves the mitochondrial
folding environment, thus maintaining mitochondrial integrity (Munch, 2018).
Although a growing number of players in mtUPR has been identified in the recent
years, many open questions remain, including the identity of the initial signal, as well as
unidentified molecular components to sense and mediate the retrograde signal to the
nucleus (Vogtle, 2021). In 2011, we identified the double-stranded RNA (dsRNA)-
activated protein kinase (PKR) as a signaling component of the mammalian mtUPR and
demonstrated its disease-relevance for inflammatory bowel diseases (Rath et al., 2011),
findings that have been confirmed by us and others (Jackson et al., 2020; Khaloian et al.,
2020). However, we were not able to identify the signal that leads to PKR activation upon
induction of mtUPR by expression of a mutant protein, ornithine transcarbamylase
(OTC)Δ, that accumulates in a misfolded state in the mitochondrial matrix (Ryan and
Hoogenraad, 2007; Rath et al., 2011). New findings by Kim et al. now indicate that PKR
can be activated by mitochondrial RNA that exist as intermolecular dsRNA, in particular
under stress conditions (Kim et al., 2018). These results contribute to a more
comprehensive understanding of mitochondrial stress signaling and make it
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tempting to speculate that mtUPR-associated PKR activation is
mediated via mitochondrial dsRNA.

2 Signaling disturbed mitochondrial
proteostasis

Mitochondrial proteostasis can be used as a sensitive measure
for cellular functionality, as it faces the unique challenge of
coordinating import and processing of mitochondrial
precursor proteins from the cytosol with the mitochondrial
transcriptional and translational machinery to ensure the
stoichiometric assembly of respiratory chain complexes (Ryan
and Hoogenraad, 2007). Physiological triggers like fluctuating
cellular energy demands, oxidative stress, and infections, can
impair protein folding (Ron and Walter, 2007; Ryan and
Hoogenraad, 2007), highlighted by the fact that mtUPR
contributes to the dynamically regulated mitochondrial
biogenesis program (Hood et al., 2006).

The quest to identify the initial sensor or signal activated by
disrupted proteostasis has been complicated by the use of
different model systems (yeast, Caenorhabditis elegans,
different mammalian cell lines) and a large number of

“stressors” used to evoke mtUPR signaling (Vogtle, 2021).
Responses seem to be highly specific for organisms and stress
triggers, and comparing the same stress trigger in metabolically
different cells furthermore demonstrates that the initial
metabolic state of the cell modulates mtUPR signaling (Mick
et al., 2020). Depending on the stressor used (mainly chemical
inhibitors of oxidative phosphorylation, and inhibitors or
knockdown of proteases and chaperones), the following
signals are mainly implicated in the initiation of mtUPR with
different contributions: ROS and metabolites synthesized within
mitochondria, peptide fragments derived from protease-
mediated protein degradation and altered protein transport
across the mitochondrial membranes (Figure 1) (Munch,
2018; Song et al., 2021). For example, ROS generated in yeast
cells treated with respiratory chain inhibitors induce the
generation of oxidized lipids (ergosterol peroxide). These
serve as interaction partners of Vms1 in the outer
mitochondrial membrane and recruit cofactors for the
proteasome-mediated cytoplasmatic degradation of
ubiquitylated outer membrane proteins (Nielson et al., 2017).
In contrast, a proposed sensor for unspecific mitochondria-
released peptides due to stress-induced proteolysis or the
overall rate of efflux is still missing (Yano, 2017). However,

FIGURE 1
Known mitochondrial responses to disturbed proteostasis and proposed role of mitochondrial dsRNA and PKR in mtUPR signaling. Mitochondrial
dsRNA might play a central role in activating the eIF2α kinase PKR and acts as danger signal capable of inducing inflammatory pathways. Light blue
boxes = initial signals mediating mtUPR; Yellow boxes = endpoints of signaling. Details and abbreviation are given in the main text.
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the targeted cleavage of DELE1, a protein associated with the
mitochondrial inner membrane, by proteases has been shown to
give rise to a protein fragments activating the cytoplasmic kinase
HRI (Fessler et al., 2020; Guo et al., 2020). Supporting the notion
on differences and also convergence of mtUPR signaling, two
different mitochondrial proteases were implicated in
DELE1 cleave after CCCP (proton ionophore) or oligomycin
(ATP synthase inhibitor) treatment, HTRA2 and OMA1,
respectively (Fessler et al., 2020; Guo et al., 2020; Bi et al.,
2023). The probably most famous signal for mitochondrial
stress is blocked protein import via the TIM/TOM complexes,
although vice versa the translocation of a nuclear protein (Rox1)
to the mitochondrial matrix to protect the mtDNA and sustain
translation upon mitochondrial perturbation has also been
described (Poveda-Huertes et al., 2020). One current
paradigm is that the mtUPR-associated transcription factor
ATF5 (analogue to C. elegans ATFS-1) is regulated by dual
localization (Nargund et al., 2012; Fiorese et al., 2016).
During homeostasis, ATF5 is imported and degraded within
mitochondria, but upon stress-induced impaired protein import
into mitochondria, it translocates to the nucleus to induce the
transcriptional mtUPR program. Consistent with a model of
sensing mitochondrial protein import in a general way,
pharmacological inhibition of the mitochondrial chaperone
HSP90 leads to accumulation of mitochondrial protein
precursors in the cytosol and a parallel release of mtROS into
the cytosol, activating a cytosolic signaling cascade involving
HSF1 (Sutandy et al., 2023). Similarly, it has been proposed that
accumulation of newly synthesized PINK1 into the outer
mitochondrial membrane as a consequence of collapsed
mitochondrial protein import serves as a trigger for
mitophagy (Jin and Youle, 2013; Fiesel et al., 2017)
(Figure 1). Of note, the defects in mitochondrial protein
import and quality control in these studies were not
associated with mitochondrial depolarization. A proposed
outcome of mtUPR signaling induced by impaired protein
import into mitochondria is increased expression of
mitochondrial chaperones and proteases that need to be
imported into the mitochondrial matrix to fulfil their
functions (Vogtle, 2021). This apparent contradiction suggests
either that parallel, faster signals (partly) restore the
mitochondrial protein import capacity before new nuclear-
encoded mitochondrial precursor proteins are translated or a
prioritized import of certain proteins into the mitochondria.

3 The mitochondrial unfolded protein
response

Several axes of the mtUPR have been characterized that in
part share components with other stress signaling pathways such
as the integrated stress response (ISR), the endoplasmic
reticulum unfolded protein response (erUPR), and the
cytosolic heat shock response (HSR) (Rath et al., 2011;
Munch, 2018; Sutandy et al., 2023). Most likely, the different
mtUPR signaling axes act synergistically and with some
redundancy. The current paradigm also comprises a cascade of
events, beginning with local responses including translational

regulation escalating to cell-wide responses comprising nuclear
gene regulation if disturbances are more severe or affect a larger
proportion of the cell´s mitochondria. Consequently, starting off
as a protective response aiming to alleviate the protein-folding
burden, mtUPR can result mitophagy in the case of severe or
irreversible dysfunction (Munch, 2018; Samluk et al., 2019). With
the exception of the intermembrane space (IMS) UPR axis, all
axes are activated upon mitochondrial protein misfolding/
aggregation in the mitochondrial matrix [reviewed in (Munch,
2018; Rath et al., 2018)]. (I) IMS mtUPR employs ROS-activated
AKT to phosphorylate estrogen receptor- α (ERα) leading to
transcriptional induction of NRF1 and the IMS-localized
protease HTRA2. (II) The sirtuin axis acts via SIRT3, a
protein deacetylase targeting FOXO3A causing its
translocation to the nucleus to enhance transcription of ROS
detoxification and mitophagy-associated genes. (III) The axis
first described, the canonical mtUPR, results in upregulation of
mitochondrial chaperones and proteases involving the
transcription factors CHOP, CEBPβ, AP1, ATF4, and ATF5.
(IV) A local translational mtUPR diminishes mitochondrial
translation by LON-mediated degradation of the
mitochondrial pre-RNA processing nuclease MRPP3 (Figure 1).

4 Eif2α phosphorylation and kinases in
mtUPR

Various mitochondrial defects result in phosphorylation of
eIF2α, a hallmark of the ISR, and also the canonical axis of
mtUPR entails eIF2α phosphorylation (Rath et al., 2011; Quiros
et al., 2017; Zurita Rendon and Shoubridge, 2018; Fessler et al., 2020;
Mick et al., 2020). Phosphorylation of eIF2α results in global
attenuation of cytosolic protein translation and selective
translation of mRNAs containing upstream open reading frames
(uORFs) such as CHOP, ATF4, and ATF5, thus underlining the
central role of this event in mtUPR signaling. Four different kinases
are known to phosphorylate eIF2α, the ER membrane-associated
kinase PERK and the cytosolic kinases GCN2, HRI and PKR. With
the exception of PERK, all kinases have been shown to be directly
involved in mtUPR signaling in different experimental model
systems. GCN2 responds to amino acid or glucose deprivation by
binding to uncharged tRNAs as well as ROS, and ROS are required
for GCN2 activation under mitochondrial stress (Baker et al., 2012).
HRI is classically activated by heme deficiency, but an alternative
way of activation bymtUPR signaling has been described (see above)
(Fessler et al., 2020; Guo et al., 2020). Last but not least, PKR has first
been characterized as kinase initiating immune response during
infection by binding viral double-stranded RNAs (Gal-Ben-Ari
et al., 2018). However, PKR has broad functions in sensing
challenging cellular conditions and can be alternatively activated
by its cellular protein activator of PKR (PACT) or endogenous
dsRNAs such as small nucleolar RNAs during cell cycle or metabolic
stress (Youssef et al., 2015; Chukwurah et al., 2021). Downstream,
PKR posses several substrates including p53 and can modulate
inflammatory and metabolic pathways including TNF signaling,
JNK and NFκB activation, as well as insulin sensitivity (Gal-Ben-Ari
et al., 2018). Consequently, PKR expression is induced by chemical
inhibition of OXPHOS (Lee et al, 2020) and PKR activation is not
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only associated with IBD but also a hallmark of osteoarthritis and
neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s
disease and Huntington’s disease (Bando et al., 2005; Rath et al.,
2011; Ohno, 2014).

5 The riddle on PKR activation

Characterizing mtUPR signaling upon transfection of murine
cells with OTCΔ in 2011, we unexpectedly discovered eIF2α
phosphorylation as part of the signaling cascade. Importantly, we
identified PKR to be responsible for phosphorylation of eIF2α. In
this system, PKR is not only activated by disturbed mitochondrial
proteostasis, but also a transcriptional target of the signaling. In line
with previous publications showing the involvement of the MEK/
JNK2 pathway and subsequent activation of AP1 in the model of
OTCΔ-mediated mitochondrial stress induction (Horibe and
Hoogenraad, 2007), we detected AP1 recruitment to the PKR
promotor. Furthermore, we confirmed a role for the
mitochondrial protease ClpP in the signaling pathway (Rath
et al., 2011). Yet, searching for potential signals leading to PKR
phosphorylation and thus activation we were only able to exclude
several proposed mechanisms. Neither calcium signaling nor PACT
were required for PKR activation/eIF2α phosphorylation.
Additionally, using two different PKR knockout MEF cell lines
with deletions in either the catalytic domain (C-PKR−/−) or the
dsRNA-binding domain (N-PKR−/−), we found both domains to be
required for mtUPR-induced phosphorylation of eIF2α (Rath et al.,
2011; Rath, 2012).

6 Mitochondrial dsRNA and PKR
activation

In contrast to mtDNA, a well-known danger-associated
molecular pattern (DAMP) activating TLR and cGAS-STING
pathways, mtRNA has only recently gained attention as cellular
danger signal (Dhir et al., 2018; Lee J. H. et al, 2020; Grochowska
et al., 2022). The circular mitochondrial genome is bidirectional
transcribed as long polycistronic precursor transcript from both
strands prior to processing into individual RNAs (Ojala et al.,
1981). Thus, mtRNA from both strands of mtDNA can bind each
other to form intermolecular dsRNA, that in turn can act as
mtDAMP if released into the cytosol or the extracellular space
(Kim et al., 2022). Consequently, mitochondrial dsRNAs (mt-
dsRNAs) are implicated in triggering innate immune responses
via MDA5 and TLR3 (Dhir et al., 2018; Lee J. H. et al, 2020; Kim
et al., 2022) and also in disease-associated PKR activation (Kim
et al., 2022; Yoon et al., 2022; Zhu et al., 2023). Actually, applying
formaldehyde crosslinking, Kim et al. revealed that the majority
of endogenous RNAs interacting with PKR is mt-dsRNA.
Additionally, Kim et al. demonstrated that the abundance of
mt-dsRNA and PKR activation is tightly regulated during cell
cycle progression and under severe stress conditions (Kim et al.,
2018; Kim et al., 2022).

The abundance of mt-(ds)RNA is determined by mtRNA
synthesis and degradation and correlates with efflux into
cytoplasm and PKR activation (Kim et al., 2018; Kim et al.,

2022; Yoon et al., 2022; Zhu et al., 2023). With regard to
disturbed mitochondrial proteostasis, two mechanisms
linking mtUPR and mt-dsRNA generation/leakage into the
cytoplasm seem likely, regulation of protease activity and/or
ROS generation. Using an inhibitor of the mitochondrial
chaperone HSP90 resulting in mitochondrial protein
aggregate formation, it was shown that rapid degradation of
the mitochondrial pre-RNA processing nuclease MRPP3 by the
protease LON leads to defective pre-RNA processing and a stall
in translation (Munch and Harper, 2016). These reversible
processes could transiently increase the abundance of
mtRNA and are in line with our results showing a role for
mitochondrial proteases in mtUPR-induced PKR activation. Of
note, the mtRNA encoding the ND5 locus is a preferred binding
partner of PKR, and ND5 was shown to be a target of
mitochondrial translational inhibition in the course of
mtUPR (Munch and Harper, 2016; Kim et al., 2018).
Furthermore, the transcription factor AP1/cJun, that we
found to be activated by OTCΔ expression (Rath et al., 2011)
has been shown to decrease mtDNA transcription by direct
binding to mtDNA (Chae et al., 2013), indicating a potential
feedback mechanism. On the other hand, mt-(ds)RNA decay
might be affected by disturbances of mitochondrial
proteostasis. MtRNA degradation takes place in the
mitochondrial matrix and the IMS and involves, among
others, the helicase SUV3 and the ribonuclease PNPase
(encoded by PNPT1) (Luna-Sanchez et al., 2021). Loss of
each of the proteins results in mt-dsRNA accumulation (Dhir
et al., 2018; Pajak et al., 2019), but only PNPase seems to be
involved in preventing mt-dsRNA efflux from mitochondria
and downstream signaling including PKR activation (Dhir
et al., 2018; Zhu et al., 2023). Next to PNPase, the release of
mtRNA into the cytosol involves BAX/BAK pores, particularly
upon mtDNA damage (Dhir et al., 2018; Tigano et al., 2021).
Similarly, under severe stress conditions causing apoptosis,
mitochondrial outer membrane permeabilization (MOMP) or
disruption of mitochondrial membranes may lead to release of
mtRNA to the cytosol and subsequent PKR activation (Kim
et al., 2022). Vice versa, the mitochondrial chaperone HSP60, a
target gene of mtUPR, is implicated in the retention of mt-
dsRNAs in mitochondria, thereby reducing inflammatory
signaling (Huang et al., 2022). Yet, PKR activation might
also take place inside mitochondria, as a fraction of PKR is
present in the mitochondrial matrix (Kim et al., 2018). In line, a
proteomic study showed that PKR interacts with mitochondrial
proteins, including HSP60 (Nakamura et al., 2015).

Overall, these findings suggest a model in which mt-dsRNA
serves as signal sensed by PKR to integrate mitochondrial stress
signaling into global cellular responses (Figure 1).

7 Conclusion and future directions

Some important questions remain, for example, how exactly
disturbances in mitochondrial proteostasis might account for
increased abundance and release of mt-dsRNA, if mt-dsRNA
efflux involves active transport processes, or where exactly PKR
activation takes place in the cell. It is likely that several signals are

Frontiers in Cell and Developmental Biology frontiersin.org04

Rath 10.3389/fcell.2023.1270341

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1270341


required for mt-dsRNA signalling, resembling other axes of
mtUPR activation that have been shown to be dependent on
multiple factors (Sutandy et al., 2023).

However, the findings by Kim et al. already shed new light on
mitochondrial signaling and are a step towards a mechanistic and
more holistic understanding of cellular responses toward
mitochondrial disturbances (Monzel et al., 2023). It will be
exciting to validate if mtUPR involves mt-dsRNA-initiated
signaling and PKR activation. These data could be a framework
to explore new targets for intervention in pathology-associated
mitochondrial dysfunction.
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Glossary

AKT Serine/threonine kinase

AP1 Activator protein 1

ATF Activating transcription factor

ATFS-1 Stress activated transcription factor

CCCP Carbonyl cyanide m-chlorophenyl hydrazone

Cdc48 Cell division cycle

CHOP C/EBP homologous protein

CEBPβ CCAAT/enhancer-binding protein beta

ClpP Caseinolytic mitochondrial matrix peptidase

DELE1 DAP3-binding cell death enhancer 1

eIF2α Eukaryotic translation initiation factor 2A

FOXO3A Forkhead box O3

GCN2 General control nonderepressible 2

HRI Heme-regulated inhibitor kinase

HSF1 Heat shock factor 1

HTRA2 High temperature requirement protein A2/Serine peptidase 2

JNK2 C-Jun Nh2-terminal kinase 2

LON Serine protease

MAVS Mitochondrial antiviral-signaling protein

MDA5 Melanoma differentiation-associated protein 5

MRPP3 Mitochondrial ribonuclease P protein 3

ND5 NADH dehydrogenase subunit 5

NRF1 Nuclear respiratory factor 1

OMA1 Overlapping with the m-AAA protease 1 homolog/Mitochondrial metalloendopeptidase

OXPHOS oxidative phosphorylation

PERK Protein kinase R-like endoplasmic reticulum kinase

PINK1 PTEN-induced kinase 1

PNPase/PNPT1 Polyribonucleotide Nucleotidyltransferase 1

ROS Reactive oxygen species

Rox1 Regulation by oxygen/Heme-dependent repressor of hypoxic genes

SIRT3 NAD-dependent protein deacetylase sirtuin-3

SUV3 Suv3 like RNA helicase

TIM Translocase of the inner membrane

TOM Translocase of the outer membrane

TLR3 Toll-like receptor 3

Vms1 VCP/Cdc48-associated Mitochondrial Stress-responsive
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