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Abstract

Population genetics is a field that imagines evolutionary trajectories to understand the sparse
treasure of genetic diversity that has surfaced over time. This is achieved through modeling,
either simulation-based or through rigorous mathematical formulation. The later modeling
approach acknowledges the foundational work laid down by eminent figures in the discipline,
notably Fisher, Haldane, Muller, and Wright. Their pioneering contributions spanned a broad
spectrum, from the understanding of gene frequencies and genetic linkage to the intricate
roles mutations play in shaping genetic diversity. These early ventures into the genetic un-
derpinnings of populations provided the groundwork for what would later be recognized as
the Modern Synthesis. From this area, the intuitive understanding of evolution can thus be
modeled by Markovian and individual-based simulations of generation after generation.
Chronologically, however, and in the following years of Kimura’s work on diffusion equa-
tions, which modeled allele frequencies through time, a pivotal shift in the study of population
genetics came with the advent of the Coalescent Theory. This transformative approach rev-
olutionized the analysis of DNA sequences by advocating for a methodology that traced ge-
nealogies backward in time. The following thesis stands on the shoulders of both perspectives
and countless research endeavors, exploring further, the intuitive, so-called forward-in-time
simulation-based strategy by studying process, where contemporary mathematical theory
has not been formulated. Specifically, we dedicate Chapter 3 to the fascinating biological
phenomenon of seed banking or dormancy. Here, organisms, ranging from bacteria to plants,
have evolved mechanisms to store genetic information in a metabolically reduced or halted
state. This ensures that the genetic material can be preserved and subsequently revived in
more favorable conditions. We, specifically, highlight how seed banking decreases genetic
drift, by scaling the ancestral recombination graph, both in terms of the frequency of coales-
cence and recombination events. There, implying the inception of prominent selective sweep
signatures in depths and sharpness.
We continue to paint a more realistic picture of the complete life-cycle, by addressing the
aspect of high offspring variance observed in a range of organisms. This phenomenon, where
some species produce a large number of offspring with a correspondingly high rate of early
mortality, introduces a layer of complexity to population genetics and more specifically acts
in contrast to seed banks by increasing genetic drift as a function of the strength of fecundity.
Lastly, in the modern era, computational advancements have surged to the forefront of many
scientific disciplines, and population genetics is no exception. The thesis underscores the
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transformative potential of deep learning in the field by providing both an overview of the field
in Chapter 2 and demonstrating inference capabilities in Chapter 4 of the above-mentioned
highly stochastic environment enabled by multiple merger coalescence model, thereby di-
rectly benefiting from the extensions of early coalescent theory models, which now lay the
basis for the necessary large datasets required to capture enough of the variation for making
predictions regarding demographic and selective inferences.
In essence, this work provides a panoramic view of simulation-based modeling in population
genetics. And alongside, it weaves together historical perspectives, mathematical intricacies,
and cutting-edge computational methodologies to offer a comprehensive understanding of
the genetic tapestry that underpins populations and their evolutionary journeys.
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Zusammenfassung

Die Populationsgenetik ist ein Bereich, in dem evolutionäre Trajektorien erstellt werden. Ihr
Ziel ist es, den spärlichen Schatz genetischer Vielfalt zu verstehen, der im Laufe der Zeit
entstanden ist. Dies wird durch Modellierung erreicht, die entweder auf der Grundlage von
Simulationen oder durch strenge mathematische Formulierung erfolgt. Der letztere Model-
lierungsansatz würdigt die grundlegende Arbeit, die von bedeutenden Persönlichkeiten der
Disziplin, insbesondere Fisher, Haldane, Muller und Wright, geleistet wurde. Ihre bahn-
brechenden Beiträge umfassten ein breites Spektrum, das vom Verständnis der Genhäufigkeit
und der genetischen Verknüpfung bis hin zur komplizierten Rolle von Mutationen bei der
Gestaltung der genetischen Vielfalt reichte. Diese frühen Erkenntnisse, die genetischen
Grundlagen von Populationen darstellen, legten den Grundstein für das, was später als ‘Mod-
erne Synthese’ bezeichnet wurde. Aus diesem Bereich stammt das intuitive Verständnis der
Evolution, die durch Markovianische und individualbasierte Simulationen von Generation zu
Generation modelliert werden kann.
Chronologisch gesehen kam es jedoch in den Folgejahren von Kimuras Arbeit an den Diffu-
sionsgleichungen, die die Allelhäufigkeiten im Laufe der Zeit modellierten, mit dem Aufkom-
men der Koaleszenztheorie zu einem entscheidenden Wandel in der Untersuchung der Popula-
tionsgenetik. Dieser transformative Ansatz revolutionierte die Analyse von DNA-Sequenzen,
indem er für eine Methodik plädierte, die Genealogien in der Zeit zurückverfolgte. Die fol-
gende Arbeit steht auf den Schultern beider Perspektiven und zahlloser Forschungsbemühun-
gen, indem sie die intuitive, so genannte zeitlich vorwärts gerichtete simulationsbasierte
Strategie weiter erforscht und Prozesse untersucht, für die keine zeitgenössische mathematis-
che Theorie formuliert wurde. Insbesondere widmen wir uns in Kapitel 3 dem faszinierenden
biologischen Phänomen der Dormanz. Hier haben Organismen, von Bakterien bis hin zu
Pflanzen, Mechanismen entwickelt, um genetische Informationen in einem metabolisch re-
duzierten oder angehaltenen Zustand zu speichern. Dadurch wird sichergestellt, dass das
genetische Material erhalten bleibt und später unter günstigeren Bedingungen wiederbelebt
werden kann. Wir zeigen insbesondere auf, wie Dormanz den genetischen Drift verringert, in-
dem es den Ahnenrekominationsgraphen sowohl in Bezug auf die Häufigkeit der Koaleszenz-
als auch der Rekombinationsereignisse skaliert. Dies impliziert das Auftreten auffälliger se-
lektiver Sweep-Signaturen in Tiefe und Schärfe.
Wir fahren fort, ein realistischeres Bild des gesamten Lebenszyklus zu zeichnen, indem wir
uns mit dem Aspekt der hohen Nachkommenschaftsvarianz befassen, die bei einer Reihe von
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Organismen beobachtet wird. Dieses Phänomen, bei dem einige Arten eine große Anzahl
von Nachkommen mit einer entsprechend hohen frühen Sterblichkeitsrate produzieren, führt
eine neue Ebene der Komplexität in die Populationsgenetik ein und wirkt insbesondere im
Gegensatz zur Dormanz, indem es den genetischen Drift in Abhängigkeit von der Anzahl der
Nachkommen pro Individuum erhöht.
Schließlich sind in der modernen Ära rechnergestützte Fortschritte in vielen wissenschaftlichen
Disziplinen in den Vordergrund gerückt, und die Populationsgenetik bildet hier keine Aus-
nahme. Die Dissertation unterstreicht das transformative Potenzial von neuronalen Netzw-
erken in diesem Bereich, indem sie sowohl einen Überblick über das Feld in Kapitel 2 bietet
als auch in Kapitel 4 die Inferenzfähigkeiten des oben erwähnten hochstochastischen Umfelds
demonstriert, das ein Koaleszenzmodell mit mehreren simultanen Koaleszenzen ermöglicht,
und so direkt von den Erweiterungen der frühen Koaleszenztheoriemodelle profitiert, die
nun die Grundlage für die notwendigen großen Datensätze bilden, die erforderlich sind, um
genügend Variation für Vorhersagen hinsichtlich demografischer und selektiver Inferenzen
zu erfassen.
Im Wesentlichen bietet diese Arbeit einen Panoramablick auf die simulationsbasierte Model-
lierung in der Populationsgenetik. Daneben werden historische Perspektiven, mathematische
Formulierungen und hochmoderne Berechnungsmethoden miteinander verwoben, um ein
umfassendes Verständnis der genetischen Diversität zu vermitteln, die Populationen und
deren evolutionäre Entwicklung untersteht.



xvii

Contents

List of Figures ii

List of Tables vi

Acknowledgements ix

Publications and Licenses xi

Abstract xiii

Zusammenfassung xv

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Early Historical Introduction to Population Genetics . . . . . . . . . . . . . 1
1.3 Coalescent Theory and the State of Evolutionary Simulations . . . . . . . . 4
1.4 Seed Banking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Offspring Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Demographic Inference and Beyond . . . . . . . . . . . . . . . . . . . . . 7

2 Methods for Deep Learning Population Genomics Analyses 9
2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 From model-based to data-driven discipline . . . . . . . . . . . . . . . . . 10
2.3 Machine learning in population genetics . . . . . . . . . . . . . . . . . . . 12
2.4 Deep learning algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Fully connected neural networks . . . . . . . . . . . . . . . . . . . 15
2.4.2 Convolutional neural networks . . . . . . . . . . . . . . . . . . . . 18
2.4.3 Recurrent neural networks . . . . . . . . . . . . . . . . . . . . . . 22
2.4.4 Generative models . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Available resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5.1 Simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6 A novel application: detecting short-term balancing selection from temporal
data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



Contents

xviii

2.7 Interpretable machine learning . . . . . . . . . . . . . . . . . . . . . . . . 31
2.8 Dealing with uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Weak Seedbanks Influence the Signature and Detectability of Selective
Sweeps 39
3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.3 Statistics and sweep detection . . . . . . . . . . . . . . . . . . . . 46
3.3.4 Code description and availability . . . . . . . . . . . . . . . . . . . 47

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.1 Neutral coalescence . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.2 Allele fixation under positive selection . . . . . . . . . . . . . . . . 50
3.4.3 Footprints of selective sweep . . . . . . . . . . . . . . . . . . . . . 50
3.4.4 Detectability of selective sweeps . . . . . . . . . . . . . . . . . . . 52

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.5.1 Dynamics of alleles under positive selection . . . . . . . . . . . . . 56
3.5.2 Signals of selective sweeps . . . . . . . . . . . . . . . . . . . . . . 57
3.5.3 Strengths and limitations of the simulation method . . . . . . . . . 58
3.5.4 Towards more complete scenarios of selection . . . . . . . . . . . . 59

3.6 Supplementary Information . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.7 Absolute TMRCAs for different germination and recombination rates . . . . 60
3.8 Fixation time phase contribution . . . . . . . . . . . . . . . . . . . . . . . 62
3.9 Sweep recovery signatures after fixation . . . . . . . . . . . . . . . . . . . 65
3.10 Effect of different dominance coefficients . . . . . . . . . . . . . . . . . . 66
3.11 Scaling population size by 1

𝑏2 . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.12 Narrow sweep signature of

a large sequence lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Determination of Rapid Adaptation in Species with Large Offspring Variance 69
4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.1 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3.2 Stochastic simulations . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3.3 Mutation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 78



Contents

xix

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4.1 Distribution of new mutations . . . . . . . . . . . . . . . . . . . . 79
4.4.2 Constant population size and constant selection . . . . . . . . . . . 80
4.4.3 Fluctuating conditions . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.5.1 Mutational process under sweepstakes reproduction . . . . . . . . . 86
4.5.2 Neutrality versus selection under sweepstakes reproduction . . . . . 87
4.5.3 Fecundity and viability selection under sweepstakes reproduction . 89
4.5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.6 Supplementary Material . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.7 Theoretical set-up:

Genetic drift and allele frequencies . . . . . . . . . . . . . . . . . . . . . . 91
4.7.1 The neutral case . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.7.2 Fecundity Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.7.3 Viability Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.8 Simulating offsprings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.9 Simulated scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.10 Supplementary Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.11 Supplementary Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5 Simultaneous Inference of Demography and Selection under the Beta co-
alescent from the Ancestral Recombination Graph 111
5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.3 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.3.1 SMC-based method . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.3.2 GNN𝑐𝑜𝑎𝑙 method . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.3.3 ARGweaver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.3.4 Simulation of data . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.4.1 Inference bias under the wrongly assumed Kingman coalescent . . . 121
5.4.2 The limit of the Markovian hypothesis . . . . . . . . . . . . . . . . 122
5.4.3 Inferring 𝛼 and past demography on ARG . . . . . . . . . . . . . . 123
5.4.4 Inferring 𝛼 and past demography from simulated sequence data . . 126
5.4.5 Inferring MMC and accounting for selection . . . . . . . . . . . . 127

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.6 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.7 Data availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.8 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136



Contents

xx

5.9 Supplementary Material: The Sequentially Markovian 𝛽 Coalescent . . . . 136
5.9.1 SM𝛽C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.10 Supplementary Material: Description of the Graph Neural Network Ap-
proach (GNN𝑐𝑜𝑎𝑙) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.10.1 Brief Introduction to neural network . . . . . . . . . . . . . . . . . 147
5.10.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.10.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.10.4 Neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.10.5 Time window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.11 Supplementary Figures and Tables: Simultaneous Inference of Past Demog-
raphy and Selection from the Ancestral Recombination Graph under the Beta
Coalescent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.11.1 Supplementary Figures . . . . . . . . . . . . . . . . . . . . . . . . 153
5.11.2 Supplementary Tables . . . . . . . . . . . . . . . . . . . . . . . . 166

6 General Discussion 169
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.2 Contemporary and adjacent research landscape . . . . . . . . . . . . . . . 171
6.3 Limitations of simulations and inferences . . . . . . . . . . . . . . . . . . 172
6.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Bibliography 175



1

1 Introduction

1.1 Motivation

The nature of simulation-based modeling is constrained by the number or dimensions of
model-able interacting or non-interacting layers which aim to explain some phenomena. In
consequence, the space of possible evolutionary histories is far larger than can be appreciated
at first glance. Further, when comparing a variety of modelable processes, the arising
simulation is a product of each process contributing a stochastic amount of signal. The result
is complex and difficult to interpret or to model mathematically a priori especially if the
number of dimensions increases. Yet, the variation, that we observe in nature represents
an often one-time experiment of all the hidden stochastic processes that have occurred over
millions of years, of which only traces have been captured by means of sequencing or
historically-electrophoretic technologies. Thus, an open question, when facing any dataset
is to what kind of degree a particular process has shaped the observed variation, how many
processes are involved, and how their contributions shaped the outcome. This is further
complicated by difficulties of the non-identifiability by indifferentiable processes. Despite
the complexity, it was proven successful to come up with expectations and theories about
the nature of aspects of the observed variation through the mathematical formulation and
identification of some of the dimensions throughout the last century. To highlight some
historical insights into the field as well as early and mid-century controversies or open
questions, we start by summarizing the history in an overview before moving on to the
promise of simulation-based modeling of multiple dimensions in the form of biological
traits and their interacting genomic processes like recombination or external forces in the
form of positive selection and moving to inference by non-model-based deep learning (DL)
methodology, as well as giving an extended introduction to the current state of DL inference
approaches in population genetics.

1.2 Early Historical Introduction to Population Genetics

Much to the benefit of population genetics the field has been rigorously conceptualized from
its inception (Sarkar and Cohen, 1992). Roughly one hundred years ago the retrospectively
named founders Fisher, Haldane, Muller, and Wright had the foresight to derive the funda-
mental concepts of i.e. gene frequencies (Fisher, 1919), genetic linkage and drift (Haldane,



1 Introduction

2

1990), dominance effects (Fisher, 1922; Charlesworth, 2022), the role of mutations (Muller,
1927, 1932), genetic load (Muller, 1950; Haldane, 1937) and much more, despite unavailable
and yet to derive knowledge of the precise underlying biological machinery, including the
discovery of DNA sequence structure decades later (Watson and Crick, 1953). Starting from
the rediscovered Mendelian ratios, quantitative observations, and the emerging acceptance
of linearly arranged genes (Sturtevant, 1913), Fisher laid down the foundations of population
genetics in his historic paper On the dominance ratio, followed by the development of statis-
tical methods and their application in series of threes papers in 1922 (Fisher, 1922). The first
key ideas of Fisher’s foundational paper conceptualized the first description of selectively
maintained variation at a heterozygous site, known as balancing selection, followed by the
study of the survivability of selective mutations and their chance of loss in large populations
and stochastic frequency changes in finite populations. While Fisher continued to extend his
study towards dominance and adjacent topics culminating in his influential book on The Ge-
netical Theory of Natural Selection (Fisher, 1930) Wright likewise introduced fundamental
aspects of the field. In 1922, he introduced the inbreeding coefficient, known as a measure
of the probability that two alleles are identical by descent while highlighting implications
on the fitness as a result of increased homozygosity and thus reduced genetic variation
(Wright, 1922). Later, in his lengthy landmark publication Evolution in Mendelian Popula-
tions (Wright, 1931) Wright introduced most-notably among many other topics the concept
of random fluctuation of allele frequencies or genetic drift, which was directly impacted
by the effective population size, likewise has been in introduced in the same publication.
Other contributions in later years include the notation of the adaptive landscape or population
structure, setting up the framework Wrights’ Shifting Balance Theory (Wright, 1931, 1932).
The essence of this postulation can be summarized in an attempt to explain how populations
caught in sub-optimal areas in the adaptive (epistatic) fitness landscape can still transition to
higher fitness peaks essentially through migration leading to one of the earlier controversies
of the field due to an unresolved disagreement with Fisher. Staying for a while longer in the
pre-50s area of population genetics, Haldanes and Muller’s work remains to be acknowledged
and is no less important. Continuing with the last mathematician of the four, Haldane inves-
tigated the effect of selection starting from a simple Mendelian population defining concepts
like fitness, gene frequency, and selection coefficients to show that the rate of selection is
capable of explaining genetic variation (Haldane, 1990). Later, Haldane went on to discuss
the above-mentioned concept of genetic load, which measures the cost of deleterious alleles
in a population. Yet, one of his earliest contributions evolved around the formulation of
genetic linkage, which later have been extended by Maynard Smith with regard to selection.
The last of the early contributors, being the only geneticist, among the four above-named
pioneers, came with the most fundamental concepts, largely taken for granted by today, with
early work centering on the conceptualization of a gene, and intrinsically linked concept of
genetic inheritance, description of the evolutionary value of recombination, alongside the
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later famous idea of "Muller’s ratchet", further emphasizing the value of sexual reproduction
as a mechanism to counteract the accumulation of deleterious mutations. Unfortunately, this
summary represents only a small introduction of the highly significant contributions of the
first half of the 20th century and many ideas can not be named or addressed. However, the
shared contributions above ultimately culminated in the formulation of the Modern Synthesis
(Huxley, 1942), interweaving the predominate fields of Mendelian Genetics with a Darwinian
view of evolution. This first theory, though often criticized by today’s standards, offered the
broader field of evolutionary biology the opportunity of a rigid physics-oriented framework
centered around the principles of genetic drift, gene flow, mutational pressure, and selective
forces. Holding onto a unifying idea at the center of evolution also enabled the possibility for
conscientious scientific investigation and lively discussion and controversies of the precise
underlying mechanisms (Crow, 2008). One such discussion tried to explain the underlying
performance increase of hybrids attributing it either to a dominance phenomenon, a kind
of rescue event of deleterious recessive alleles or to overdominance, in which heterozygotes
inherently have higher fitness. This discussion as well as the 1955 introduced conversation
of the "classical vs. balance hypothesis" led primarily by disagreements by Dobzhansky and
Muller, were examples of the experimentally-driven investigation.
Following this era, Kimura shifted the conversation towards the investigation of genetic vari-
ation by means of studying diffusion equations, which led to many theoretical expectations
in population genetics and most notably led to the formulation of the "neutral theory" and to
the description of the rate of evolution using a molecular clock metaphor. As Hahn, however,
points out the misinterpretation of the at the time controversial theory, does not mean that the
majority of mutations, that arise are associated with a selection coefficient equal to zero, but
that alternative alleles in the population have the same selective potential if they happened
to be substituted by genetic drift (Hahn, 2018). From today’s perspective, the theory is often
regarded as a null model for molecular evolution and remains to be accepted as realistic for
non-coding or non-functional locations in genomes. Following Kimura’s work has been the
introduction of a fundamental shift of perspective in the modeling of evolution. Kimuras
continued the tradition of letting the evolutionary process unfold itself forward in time, trac-
ing the loss or fixation of an allele. However, Coalescent Theory turned this point of view
upside-down, and starting from the present traced events of ancestral coalescence of a pool
of samples. This mathematical shortcut or approximation leads to many simplifications for
the field of large-scale data generation, essential for modern inference methods. A summary
of the theory is presented below.



1 Introduction

4

1.3 Coalescent Theory and the State of Evolutionary
Simulations

The introduction of Coalescent Theory can be regarded as a scientific breakthrough in the
field due to the accompanying perspective change of looking at a sample of DNA sequences
and letting the genealogy emerge backward in-time. It, thus, provides the possibility of
approximating the intuitive but time-consuming way of a continuous and forward in-time
evolving process, like it has been historically introduced through the early models described
by the founders and extended by Kimura’s work on diffusion models. Kingman described
in his 1982 paper the process of samples which coalesce at different times in the past at a
given rate ( 1

2𝑁𝑒
), notability the distribution of coalescence events depends on the effective

population time (𝑁𝑒), thus providing a theoretical framework which can be used for parameter
estimation, i.e. population size changes through time. Extension of the coalescence process
quickly followed, generating the possibility of a fast way of generating data, which mirrors
real observed variation in accordance with the studied process.

Most notably extensions include the addition of recombination events (Hudson, 1983;
Griffiths and Marjoram, 1996), effectively describing the opposite of a coalescence event or
bifurcation of a lineage traced backward in time, leading to a graph structure known as the
ancestral recombination graph (ARG) onto whose branches mutations fall at a given rate (`)
measured per generations per site, accompanied by the recombination rate (𝑟) per generation
per site. In this context, the effective population size (𝑁𝑒), reflecting the number of breeding
individuals in an idealized population, scales both ` and 𝑟 by 4𝑁𝑒 to get an estimation of the
population-comparable genetic variability in a population due to mutation (\ = 4𝑁𝑒`) and
recombination (𝜌 = 4𝑁𝑒𝑟), respectively.

Another straightforward extension of the original Kingman coalescence model is the gen-
eralization of allowing multiple coalescence events as opposed to strictly binary occurrences.
The family of models known as multiple merger models due to the mentioned multiple
coalescence appearance (Tellier and Lemaire, 2014) resulted in a need for modeling the
ecological more realistic offspring distribution of species with sweepstake reproduction ca-
pabilities, such as virus, fungi, plant, mollusk or fish species. Further complications of the
coalescent deal with the simulation of selection (Krone and Neuhauser, 1997; Neuhauser
and Krone, 1997), yet these extensions rely on the mathematical formulation of simultaneous
processes, i.e. demographic changes under selection with non-WF offspring distribution and
recombination, often remains difficult to derive and implement.

Despite the early-on perceived promise of efficient ancestral simulations, the exact coa-
lescent (with recombination) only became simulated-able for large genome sequences and
sample sizes under low memory and importantly time constraints after the introduction of
sparse trees and coalescent records in the form the succinct tree sequence data structure
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by Kelleher’s reimplementation of Hudson’s algorithm (Kelleher et al., 2016). Up till then,
the predominant understanding happened to be that the state-space of ARGs (Griffiths and
Marjoram, 1996) is too large to be simulated, which is why much effort was put into develop-
ing the approximation of the underlying ancestral process by modeling recombination events
along the sequence (Wiuf and Hein, 1999). This viewpoint was picked up later by providing
the algorithmic formulation, being the sequentially Markov coalescent (SMC) (McVean and
Cardin, 2005), which was improved a year later in the form of the SMC’ (Marjoram and Wall,
2006). The class of SMC algorithms is known to give a close approximation of the coalescent,
but suffer to capture long-range linkage correlations. Yet, their intrinsic Markovian property
gave rise to powerful HMM inference algorithms, discussed below. However, coalescent
simulations, as elegant as they are, persist not only to be useful only for scenarios of limited
complexity or as a starting point for hybrid coalescent and forward simulation approaches or
for verification of theoretical expectations of neutral base models, but also for DL required
data generation.

In case the studied model does not require estimations from the underlying genealogy,
(markovian) individual-based simulations of each consecutive generation of a given evolu-
tionary process can be sufficient to create data sets. This more historic approach has become
more popular again with the introduction of SLiM, a programmable evolutionary simulation
framework (Messer, 2013). This modus operandi, which has been named forward in-time
simulations above is suitable for modeling complicated interaction of simultaneous processes
as each of them can be tightly linked to the precise and known biological assumptions. Later
versions have added the possibility of adding a tree recording feature, which added support
for keeping track of ARGs as well if required (Haller et al., 2019b). Further, the program-
matic aspect makes it intuitive to study statistical distributions for the offspring generations,
which deviate from the standard Wright-Fisher assumption of having approximately a Poisson
number of offspring with a rate parameter of one for mean and variance. This kind of model
has been termed the Cannings model and is described in detail in Chapter 4 for the study
of large offspring variance distributions interacting with various kinds of selective processes
(Cannings, 1974).

With the availability of coalescent and computational frameworks or data structures, the
study into signatures of ecological traits is enabled, in particular, if the coalescent formulation
of base models exists. One such trait is summarized under the term dormancy, which
effectively describes a sort of inactive or resting stage. Because this trait is fundamental and
easily abstracted, it can be found ubiquitously in resting cells (i.e. cancer cells or bacteria) to
more complex biological structures (i.e. spores or seeds). A short introduction of the trait,
also otherwise known as seed banking, highlighting the life-cycle adaptation applicability
part follows below as a precursor for Chapter 3.



1 Introduction

6

1.4 Seed Banking

Seed banking or dormancy is the biological phenomenon of storing genetic information in
a metabolically -reduced or halted state and structure in order for the system to resuscitate
at a later generation. Depending on the time horizon spanning only a few (weak version,
suitable i.e. for plants) up to thousands (strong model, suitable i.e. for bacteria or virus)
of generations, two seed bank models have been proposed. Despite the straightforward
extension of the neutral coalescent, in the form of i.e. demographic inference (see below),
the consequences and complexity arising from a general model, which in its purest form
simply describes a stochastically paused state of a biological object, implying wide-reaching
interactions within the field of health (i.e. Malaria infections of Plasmodium vivax or dormant
cancer cells) or in biography, in the form of dispersal or conservation efforts and breeding
or biotechnological potential due to their storage of genetic diversity. Both mentioned seed
bank models have their own coalescent formulation, which extends the Kingman coalescent
model by this biological trait adding a dimension of complexity to the data, thus increasing
the space of potential simulated-able or observable information or concretely altering branch
length distributions of the underlying coalescent tree or ARG through a rescaling by 1

𝑏2

(with 𝑏 being the germination rate) in the case of the weak model or more complex and
multiple coalescence-like signals in the strong version. Moreover, interactions regarding
recombination have been formulated, which consequentially lead to informational signal
alterations when adding selection modifiers to the sequence as the linkage is affected by the
scaling of the underlying genealogy. It has previously been shown for the weak seed bank
model, that recombination is scaled by a factor of 1

𝑏
(assuming no recombination during the

dormant state), implying a faster linkage decay with a simultaneous decrease of genetic drift
due to the storage effect of a allele, which only can be considered to be lost when it also leaves
the seed bank, despite potentially not having any copies in the parent generation. A detailed
introduction including references to derivations of seed bank diffusion approximations under
selection can be found in Chapter 3. While seed banking scales the ARG and decreases
genetic drift, having a lengthening effect on the effective life span, variations of the underlying
offspring distributions can have an opposing effect and are introduced next.

1.5 Offspring Variance

Traditionally under Wright-Fisher conditions, the variation of offspring is considered to be low
and often modeled through binomial sampling or approximated with a Poisson distribution.
Yet, exchanging the probability function leads to the possibility of modeling populations other
than humans, and thus explores a range of organisms with relevance to disease management or
agricultural importance. The respective species can be biologically characterized as having
stochastically large offspring numbers per individual and associated high infant mortality.
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Ecologically, the class of species is thus known as choosing a type-III survivorship strategy.
From a coalescence modeling perspective, the multiple merger coalescent models have been
derived to model these organisms (see above). In Chapter 4, we explore the consequences of
adaptation, when modeling the tailored life cycle in interaction with multiple positive selection
models and the importance of distinguishing between somatic mutations (mutation emerging
in offspring) or heritable mutations (mutation emerging in parents) into account. This, yet,
adds another dimension of complexity increasing the space of observable genealogies, here
increasing genetic drift.
In the next part we look at the topic of demographic changes and provide a short overview as
it will be relevant for Chapter 4.

1.6 Demographic Inference and Beyond

A fundamental parameter of population genetics is the size of a population, often idealized
as the effective population size (𝑁𝑒), which defines the amount of genetic drift acting on a
population. The size further leads to baseline understandings of the genetic diversity and by
extension adaptive potential of populations by giving insights into the expected number of
mutations or recombination events on the population level. On top of that, it characterizes
the putative exchange between populations and is a prerequisite for understanding the level
of gene flow events. Mean estimates of the effective population size can be approximated
for constant population sizes from polymorphism data: 𝑁𝑒 =

\𝜋
4` . However, the coalescent

framework directly enabled the inference of 𝑁𝑒 through time as it modifies the effective rate
of coalescence leading to longer or shorter branch length distributions and the respective
accumulation of mutations. Having a more fine-scaled understanding of population size
changes, i.e. population bottlenecks or expansion, not only leads to insights regarding the
evolutionary history but also can be essential for the calibration of genome-wide scans of
selection events. Therefore, a substantial literature exists consisting of methodological ad-
vances and their respective applications. On the methods side theoretical advances based on
the sequential Markovian Coalescent theory should be especially highlighted as they make
use of the underlying derived theoretical expectations of the coalescent. The first inference
method PSMC, compared the number of segregating sites between two sequences as a proxy
of how far the coalescence time is believed to have occurred in the past and assumed a Marko-
vian Poisson process of recombination events along the genome. This realization spawned
a whole series of SMC methods integrating more samples at a time of inferring population
genetically relevant parameters like recombination rates along the genome or ecological traits
of which Sellinger and colleagues provided a study concerning their limitations and conver-
gence properties (Sellinger et al., 2021b). The underlying method for SMC methods is a
Hidden Markov Model whose observed variables are the polymorphisms and latent variable
the coalescent times.
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For some models of interest, the underlying coalescent model is difficult to derive, but simula-
tion methods can be more easily implemented (see above). For this kind of setup, approximate
Bayesian computation (ABC) approaches filled a methodological gap and provided a valuable
tool for countless studies (Sunnåker et al., 2013; Robinson et al., 2014; Boitard et al., 2016;
Johri et al., 2022b). The objective of the ABC strategy can be summarised by its aim of
optimizing a posterior distribution of given parameters of interest by iteratively exploring the
state-space of possible simulation-enabled realization. Yet, in recent years shortcomings of
the time-consuming exploration step and reliance on summary statistics have been attempted
to be overcome through DL methods, which contrary to ABC is gradient-based optimization
method unrestricted by the type of input data. It therefore evolved to become a powerful
inference framework which like ABC has proven to be not only helpful for complex inference
tasks but also provides sophisticated generative abilities. A detailed review of the state of the
art of DL in population genetics is provided in Chapter 2.
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2 Methods for Deep Learning
Population Genomics Analyses

The following chapter has been published as:
Kevin Korfmann, Oscar E Gaggiotti, Matteo Fumagalli, Deep Learning in Population Ge-
netics, Genome Biology and Evolution, Volume 15, Issue 2, February 2023, evad008,
https://doi.org/10.1093/gbe/evad008

KK contributed an equal amount as his co-authors to the manuscript and revisions. KK
additionally designed and implemented the methodological part ‘2.5 A novel application:
detecting balancing selection from temporal data.’

2.1 Abstract

Population genetics is transitioning into a data-driven discipline thanks to the availability of
large-scale genomic data and the need to study increasingly complex evolutionary scenarios.
With likelihood and Bayesian approaches becoming either intractable or computationally
unfeasible, machine learning, and in particular deep learning, algorithms are emerging as
popular techniques for population genetic inferences. These approaches rely on algorithms
that learn non-linear relationships between the input data and the model parameters being
estimated through representation learning from training data sets. Deep learning algorithms
currently employed in the field comprise discriminative and generative models with fully con-
nected, convolutional, or recurrent layers. Additionally, a wide range of powerful simulators
to generate training data under complex scenarios are now available. The application of deep
learning to empirical data sets mostly replicates previous findings of demography reconstruc-
tion and signals of natural selection in model organisms. To showcase the feasibility of deep
learning to tackle new challenges, we designed a branched architecture to detect signals of
recent balancing selection from temporal haplotypic data, which exhibited good predictive
performance on simulated data. Investigations on the interpretability of neural networks,
their robustness to uncertain training data, and creative representation of population genetic
data, will provide further opportunities for technological advancements in the field.
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Significance Deep learning, a powerful class of supervised machine learning, is emerging
as a promising inferential framework in evolutionary genomics. In this review, we intro-
duce all deep learning algorithms currently used in population genetic studies, highlighting
their strengths, limitations, and empirical applications. We provide perspectives on their
interpretability and usage in face of data uncertainty, whilst suggesting new directions and
guidelines for making the field accessible and inclusive.

2.2 From model-based to data-driven discipline

Population genetics arose in the early 20𝑡ℎ century as a conceptual framework aimed at
unifying two opposing views of evolution (Provine, 2020). As such, it developed a rich body
of theory that became a vast treasure trove of probabilistic models to develop sophisticated
statistical methods when molecular data became available. This body of theory has continued
to grow in complexity in order to consider more realistic evolutionary and genetic scenarios as
well as more efficient computational algorithms. Therefore, the field of population genetics
has been dominated by model-based statistical approaches. One could even say that many
population geneticists would agree to the proposition of slightly modifying George E.P. Box’s
aphorism so as to say that in our field, all models are wrong but many are useful.

The preeminence of model-based statistical inference may explain the fact that our field
has lagged behind other life-science disciplines in the adoption of machine learning methods
and, in particular, deep learning approaches. Clearly, the black-box nature of deep learning
is an important obstacle to applications in the domain of population genetics, which main
objective is to uncover the genetic and evolutionary mechanisms responsible for the diversity
of life on our planet. Another deterrent is the apparent difference in foci between the fields
of statistics and machine learning. Statistics is focused on inference through the creation and
fitting of a probabilistic model while machine learning is focused on prediction using general-
purpose algorithms that capture patterns present in complex and large data sets (Bzdok et al.,
2018). However, population geneticists are interested in both inference and prediction, as
clearly illustrated by the general interest in making inferences about demographic history of
species on the one hand and detecting signatures of natural selection or assigning individuals
to populations on the other. Nevertheless, most genetic clustering methods and so-called
genome scans of selection are based on probabilistic models, in some cases mechanistic (e.g.
Bayescan (Foll and Gaggiotti, 2008) and STRUCTURE (Pritchard et al., 2000)) and in others
phenomenological (e.g. LFMM (Frichot et al., 2013) and DAPC (Jombart et al., 2010)).

The focus on model-based statistical inference in population genetics has been challenged
by the massive data sets generated by next generation sequencing technologies (Levy and
Myers, 2016). This is particularly the case for maximum likelihood and Bayesian methods,
which are implemented using expensive computational methods such as Monte Carlo Markov
Chain and Expectation-Maximisation. In principle, the computational cost of calculating the
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likelihood function of very complex models, can be overcome using Approximate Bayesian
Computation (ABC), which relies on the use of summary statistics to capture the information
present in raw population genetic data (Bertorelle et al., 2010). In ABC, the posterior
distribution of the parameter(s) to be estimated is approximated without the calculation of a
likelihood function. Instead, a model fit is obtained by the collection of simulated summary
statistics matching the observed values (Beaumont et al., 2002). ABC has been widely and
successfully used for population genetic inferences (Lopes and Beaumont, 2010). However,
capturing enough information requires large numbers of summary statistics which lead to
a “curse of dimensionality” because, as the number of summary statistics increases, the
error in the approximation increases (Prangle, 2015). This problem has led to an increasing
interest in machine learning approaches (Schrider and Kern, 2018). The underlying rationale
here is that analysing genomic data with machine learning methods can uncover signatures
of evolutionary and genetic processes in a model agnostic way and in doing so teach us
something new about nature (Schrider and Kern, 2018). But a major motivation for the shift
is the practical reality that population genetics has been transitioning from a theory-driven
discipline into a data-driven field with vast amounts of genomes and metadata at hand in
the past few years. For instance, in human population genetics, scientists have access to
high-quality whole-genome sequencing data from more than 150,000 individuals from the
UK Biobank (Halldorsson et al., 2022), and more than 3,000 individuals distributed world-
wide (Byrska-Bishop et al., 2022), or to hundreds of genomic data from ancient samples
(https://reich.hms.harvard.edu/datasets).

In this review we will focus on a particular subset of supervised machine learning al-
gorithms, namely deep neural networks. Although such methods can be considered as the
epitome of a black box, we will argue that new advances in this field are providing the tools we
need to uncover the mechanisms underlying the complex patterns present in population ge-
nomic data. Moreover, deep learning can be implemented to analyse raw genetic data as well
as summary statistics. Additionally, it has been used to carry out statistical inference about
the demographic history of populations as well as to carry out selection scans and assign indi-
viduals to geographic locations. Applications to demographic history inference embrace the
model-based tradition of population genetics in that the training set (see Glossary) is usually
generated through simulations of specific evolutionary scenarios. Applications to genome
scan methods on the other hand, rely on new techniques for evaluating the importance of
features, in this case loci, in predicting an outcome such as a phenotype or an environmental
factor that may exert a selective pressure.

We will first provide a definition of supervised machine learning and its applications in
population genetics. We will then focus our attention on various deep learning algorithms
currently used in the field, with a discussion on efforts to "open the black box" of said
algorithms. We will finally discuss ongoing challenges of deep learning applications in
population genetics, and highlight future research directions.

https://reich.hms.harvard.edu/datasets
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2.3 Machine learning in population genetics

Machine learning, a subset of artificial intelligence, refers to a class of operations using
data to perform inferential tasks without explicit mathematical models. To do so, machine
learning algorithms identify informative patterns which can be then used to predict unknown
outcomes. Typically, the performance of machine learning algorithms increases with the
amount of available data. Machine learning comprises both supervised and unsupervised
algorithms. Unsupervised machine learning aims at finding patterns and clusters within the
data, and does not have a notion of prediction. On the other hand, supervised machine
learning algorithms automatically tune their internal parameters to maximise the prediction
accuracy and, as such, require a known data set (called training set) to learn the relationship
between input and output.

To train a supervised machine learning algorithm, the available data sets are typically
divided into training, validation, and testing sets, with the latter two sets used to evaluate
the performance during and after training. In supervised learning, a labelled data set (which
explicitly relates any given input to a specific output) is given to the algorithm. The loss
(the distance between the predicted and true value) is calculated, and at the next iteration the
internal parameters are updated towards decreasing loss (and increasing accuracy). Training
a supervised machine learning algorithm is a fine balance between prediction accuracy over
the training set and generalisation performance over the testing set.

Machine learning has a rich history in biological sciences and genomics (reviewed in Yue
and Wang, 2018; Zou et al., 2019; Greener et al., 2022). Additionally, supervised machine
learning methods have been designed and deployed to perform population genetic tasks such
as variant calling (Poplin et al., 2018) and the prediction, characterisation, and localisation of
signatures of natural selection (Pavlidis et al., 2010; Lin et al., 2011; Ronen et al., 2013; Pybus
et al., 2015; Schrider and Kern, 2016; Sugden et al., 2018; Mughal and DeGiorgio, 2019;
Koropoulis et al., 2020). An important difference between the variant calling application
(which only uses observed data) and those aimed at detecting selection is that the latter im-
plement an innovation first introduced by (Pavlidis et al., 2010) whereby the ML algorithms
are trained using synthetic data sets generated via simulations. These applications, therefore,
can be considered as being part of likelihood-free simulation-based approaches (Cranmer
et al., 2020a), which are commonly employed in population genetics. Currently, most popu-
lation genetics applications of ML use this strategy but, as we describe below, some recent
applications only use observed data to train the algorithms. These applications, however,
require the combination of genotypic data with phenotypic, environmental or geographic
coordinate data.

As already stated, in this review we will focus on deep learning, a class of machine learning
algorithms based on artificial neural networks comprising nodes in multiple layers connecting
features (input) and responses (output) (LeCun et al., 2015). Weights between nodes are
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optimised during the training to minimise the distances between predictions and ground truth.
After training, an ANN can predict the response given any arbitrary new input data. Unlike
approaches that use a predefined set of summary statistics as input, deep learning algorithms
can effectively learn which features are sufficient for the prediction (LeCun et al., 2015). This
is an important aspect as summary statistics are meaningful but human-constructed features.
When dealing with different sources of raw data, the design of such features has been a
major part of information engineering. A key finding of deep learning was that such features
emerged within a well-trained deep network: they are effectively suggested and discovered
by a network during training (Krizhevsky et al., 2012). This finding has been repeated in
different domains: features can be automatically discovered, and new suggestions made, by
the approaches of deep learning. Nodes in an ANN can be arranged in various numbers and
layers, making this method as flexible and "deep" as needed.

Deep learning in population genetics is in its infancy, and most of current applications rely
on synthetic data sets for training. Nevertheless deep learning represents a notable progress
over commonly used simulation-based techniques for several reasons. First, they have the
capacity to handle any feature extracted from a data set as input and are less sensitive to
poorly crafted summary statistics than ABC (Csilléry et al., 2010). Second, neural networks
are universal approximators of any complex function provided that they include a sufficiently
large number of “neurons”, non-linear units (Hornik et al., 1989). Nevertheless, careful
monitoring of networks’ training and a posteriori diagnostic analyses are required to ensure
that predictions are robust.

Whilst overviews of machine learning applications for population and molecular genetics
are provided elsewhere (Schrider and Kern, 2018; Fountain-Jones et al., 2021; Kumar et al.,
2022), here we aim at providing an update on the latest advances in deep learning algorithms
and how they have been exploited to address questions in population genetics. Additionally,
we focus our attention on deep neural networks, in all their supervised forms, rather than
including other commonly used algorithms such as support vector machine (Pavlidis et al.,
2010), random forests (Schrider and Kern, 2016; Vizzari et al., 2020), gradient forests
(Laruson et al., 2022), and hierarchical boosting (Pybus et al., 2015). Finally, we restrict our
review on applications in population genomics while acknowledging that similar algorithms
herein described are used in other related disciplines like genomics (Yue and Wang, 2018),
phylogenetics (Suvorov et al., 2020; Azouri et al., 2021; Blischak et al., 2021), phylogeography
(Fonseca et al., 2021; Perez et al., 2022), and epidemiology (Voznica et al., 2021).

Glossary

• Accuracy: proportion of correct predictions made by a model

• Activation function: operation that each neuron performs
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• Attribute: name of a variable describing an observation

• Bias term: a term attached to neurons allowing the model to represent patterns that do
not pass through the origin

• Backpropagation: gradient descent-based learning algorithm for calculating derivatives
through the network starting from the last layer

• Confusion Matrix: table that summarises the prediction performance by providing false
and true positive/negative rates

• Embedding: learned low-dimensional continuous vector representation of a concept
(e.g., a word, sentence, genotype matrix or graph)

• Epoch: the number of times the algorithm sees the data set

• Feature: input variable used in making predictions

• Hyperparameters: higher level properties of a model controlling the training process
(e.g., learning rate, number of epochs) and that need to be tuned, in principle before the
ML model is trained

• Instance: a data point or sample in a data set (observation)

• Learning rate: magnitude at which an algorithm updates its parameters

• Loss: (also called cost) measurement of distance between predictions and ground truth;
its function is minimised during training

• Normalisation: scaling technique used when input features have different ranges

• Regularisation: an additional penalty to the loss function for better generalisation

• Testing set: portion of the data set that it is not used for training, but rather to evaluate
the performance a neural network

• Training set: portion of the data set that it is used to optimise parameters of a neural
network

• Tuning or hyperparameter optimisation: process of finding the hyperparameter values
that maximise the performance of the model

• Validation set: portion of the data set that it is used for monitoring the training of a
neural network
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2.4 Deep learning algorithms

We now introduce, describe and discuss four common families of architectures for deep
learning algorithms used in population genetics: fully connected neural networks, convolu-
tional neural networks, recurrent neural networks, and generative models. For each type of
algorithm, we illustrate their main applications in the field and the novel findings generated
by their deployments. Note that these general algorithms have a long history spanning many
decades and numerous original contributions which we cannot properly credit in our review
because of space. Thus, we refer readers interested in historical developments to previous
publications (Schmidhuber, 2014).

2.4.1 Fully connected neural networks

Fully connected neural networks (FCNNs) are suitable for generic prediction problems when
there are no special relations among the input data features. They can be viewed as a
generalisation of linear regression. In fact, standard regression is nested in the general neural
network framework in the sense that a linear regression fits a hyperplane to the data, while
a neural network fits a space of hyperplanes in a transformed space (Qin et al., 2022). This
becomes clear by comparing the formulation for the simplest multivariate linear regression
model with the equation representing the operations taking place in a single node of a hidden
layer of a FCNN,

linear regression: 𝑦𝑖 (x,w) = 𝑏 +∑𝐼
𝑖=1 𝑤𝑖𝑥𝑖

FCNN: 𝑠(x,w) = 𝑓 (𝑏 +∑𝐼
𝑖=1 𝑤𝑖𝑥𝑖),

where 𝑏 is the bias (not to be confounded with statistical bias), w = {𝑤𝑖} is a vector of
weights, x = {𝑥𝑖} is a vector of input features (explanatory variables), and 𝑓 is a nonlinear
activation function. In a FCNN with a single hidden layer, there will be a number 𝐽 of hidden
nodes, each carrying out a similar operation using a different vector of weights, all of which
can be represented by a matrix W = {𝑤𝑖 𝑗 }, 𝑖 = 1, 2..., 𝐼, 𝑗 = 1, 2, ...𝐽. A very simple example
of a FCNN with one hidden layer and only two nodes is presented in Figure 2.1.

In the linear regression case a dependent variable is computed by calculating the dot-product
of a set of input data points with a set of parameters. This output variable is then used in the
context of a maximum-likelihood or least square approach to optimise the set of learnable
parameters. FCNNs extend this idea by computing a matrix-product of the weight matrix
with the input data points, which is then transformed with a non-linear activation function.
The activation function is applied element-wise and the result is called an embedding. Instead
of using the maximum likelihood or least square approaches for optimisation, FCNNs are
optimised using the multivariate version of the gradient-descent algorithm, which iteratively
adapts the parameters across the network layers (back-propagation algorithm (Linnainmaa,
1976; LeCun et al., 1989)) based on a task-specific loss-function and learning rate. A
fundamental property of FCNNs is expressed by the Universal Approximation Theorem,
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Figure 2.1 A simple FCNN consisting of a single hidden layer with only two nodes. 𝑓 and 𝑔 represent
different activation functions used respectively in the hidden layer and the output layer and ℎ and
𝑜 superscripts are used to identify parameters associated with these layers; all other parameters are
defined in the text.

which states that a neural network with a single hidden-layer can approximate any continuous
function to any desired precision. Precision can be increased by increasing the number of
hidden neurons or the number of hidden layers. It is this property that enables the use of
neural networks as a viable alternative to common model-based statistical methods.

In an early application of deep learning methods to population genetics, FCNNs are used to
simultaneously infer natural selection and population bottlenecks (Sheehan and Song, 2016).
This approach was inspired by ABC methods and therefore used summary statistics to extract
the information present in the raw data, which was then fed to a fixed-size linear input layer of
the network. To discriminate between demographic and natural selection effects, Sheehan and
Song trained the FCNN using simulated datasets generated under various models assuming
different bottleneck times and selection models (Sheehan and Song, 2016) . The software
evoNet, which implemented said FCNN, was applied to almost 200 genomes of Drosophila
melanogaster from Africa to jointly infer the demography history and loci under selection.
One interesting analysis in the study is the evaluation of the most informative summary
statistics, either by permutation or perturbation. Notably, summary statistics derived from
the site frequency spectrum, linkage disequilibrium (LD), number and location of single
nucleotide polymorphisms (SNPs), and identity-by-state tracts are among the most important
features for the inference of population size changes and type of selection.

Another example of a FCNN application in population genetics that uses simulated data
to train the algorithm is provided by the work of Burger and colleagues on the estimation
on mutation rates (Burger et al., 2022b). They show that a simple neural network is able
to recapitulate estimators of mutation rate for intermediate recombination rates. As a novel
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methodological advance, their implementation features an adaptive reweighting of the loss
function based on model-based estimators of the mutation rate. By doing so, with sufficient
and appropriate training set, only a single hidden layer is required to achieve the same
performance of model-based estimators. The method was able to recover variation in mutation
rates from synthetic human population genetic data under a realistic recombination map.

There are also recent population genetics applications of FCNNs that implement the
standard approach of training algorithms using observed instead of simulated data. A good
example is Locater, which assigns individual genotypes to their geographic origin (Battey
et al., 2020). Interestingly, this method implements a regression approach that is capable of
assigning correlated genetic samples to similar geographic space. Uncertainty in the estimates
due to drift is taken into account by running predictions in windows across the genome.
Simulations indicate that Locater has an accuracy comparable to that of other state-of-
the-art competing algorithms but with shorter run-times. Its application to an empirical
population genetic data set of Anopheles mosquitoes, Plasmodium falciparum, and human
populations, provides results that are in general concordant with current knowledge.

Another example that only uses observed data to train the FCNN is DeepGenomeScan(Qin
et al., 2022). However, this method’s objective departs from the prevalent use of neural
networks, i.e. prediction and pattern recognition. Its aim is to develop a statistical framework
to carry out genome scans or GWAS, much in the same way that PCA and redundancy
analysis have been used to develop equivalent approaches ((Capblancq et al., 2018; Luu
et al., 2017). Specifically, DeepGenomeScan implements a FCNNs that uses genotypes
to predict individuals’ traits (e.g., geographic coordinates or phenotype), and constructs a
feature importance measure based on the weights of the trained network. Furthermore, p-
values for variable importance are obtained through bootstrapping of the input. As opposed
to other methods that can only detect linear associations, DeepGenomeScan is able to detect
non-linear ones thanks to the non-linear approximation property of FCNNs. Its application to
a genomic data set of human samples of European ancestry identified novel targets of natural
selection which showed significant geographical variation.

Finally, we note that FCNNs have also been used in the context of ABC frameworks. Early
studies used neural networks to construct the posterior distribution of parameters from the
collection of accepted values (Blum and François, 2010), as implemented in the abc package
(Csilléry et al., 2012). More recently, Mondal and colleagues coupled an ABC framework,
using the site frequency spectrum (SFS) as summary statistic, with a four-layer FCNN to
infer the demographic history of human Eurasian populations (Mondal et al., 2019). Their
implementation includes an ad hoc noise injection algorithm to partly take into the account
any bias associated with a simulated training set. A similar study by Villanea and Schraiber
used the joint SFS between Europeans and Neanderthal genomes to fit a demographic model
using a 3-layer FCNN (Villanea and Schraiber, 2019). Both studies inferred multiple gene
flow events between archaic and anatomically modern humans.
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Summary statistics and genotype matrices are not the only way in which population
genomic data can be described and used as input to deep learning algorithms. It is also
possible to represent samples of sequences as images and, in the next section, we discuss an
architecture that is being increasingly applied to such data.

2.4.2 Convolutional neural networks

Convolutional neural networks (CNNs) are specifically designed to analyse data that has a
grid-like structure, such as images (LeCun et al., 2004; Krizhevsky et al., 2012). Whilst in
theory FCNNs could be used to make predictions from images, the number of features (i.e.,
pixels) they contain would require networks with a very large number of parameters, which
would render them very slow and computationally expensive. Similarly to FCNNs, CNNs
are comprised of a set of learnable parameters (LeCun et al., 1989; Lecun and Bengio, 1995).
However, as opposed to FCNNs, in which hidden layers are all of the same type (layers of
neurons carrying out similar operations), CNNs architecture consists of consecutive sets of
convolutional and pooling layers, followed by a fully connected set of layers (similar to a
FCNN, Figure 2.2). The first convolutional layer takes the input image and carries out a
convolution using a kernel (also known as filter; a matrix of learnable parameters) to generate
a feature map that is then fed to the pooling layer. This layer uses a filter to reduce the size
of the feature map and to help dissociate a particular feature from its position in the input
image. This first set of operations will capture coarse grained features; adding additional
convolutional and pooling layers helps capture more fine-grained features (O’Shea and Nash,
2015). The final step of the convolutional layers (flatten step) converts the feature map into
a vector that is fed to the fully connected layers that will carry out the image classification
step. The number of kernels, their dimensions, and initialisation are all hyperparameters of
the model.

CNNs can be regarded as a regularised version of FCNNs with a focus on localised spatial
signatures. In fact, a fundamental property of CNNs is the space-invariance of the learned
features in the data set, which means that they can identify a pattern regardless of its spatial
location in the image. Note, however, that identification of feature realisations like rotations
or scaling requires either appropriate samples or perturbations of the input (Goodfellow et al.,
2016).

First applications of CNNs in population genetics relied on "image" data sets in the form
of stacked summary statistics. The method implemented in software diploS/HIC aimed at
classifying genomic windows into neutral regions or under soft or hard selective sweeps from
unphased genotypes (Kern and Schrider, 2018). It did so by applying convolutional operations
on a feature vector of normalised summary statistics calculated in windows surrounding the
target location. The architecture consisted of three branches of two dimensional convolutional
layers with different filter sizes, followed by max pooling, flattening and two fully connected
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Figure 2.2 A simple CNN illustration consisting of the input matrix (i.e. genotype matrix), a user-
specified number of kernels (or filters) and the resulting feature maps, followed by a FCNN.

layers. Extensive simulations of tested scenarios were produced to train the CNN. The
authors showed that CNNs outperformed competing ML algorithms previously used for
this classification task (Schrider and Kern, 2016), possibly because CNNs retain the spatial
relationships of summary statistics. Notably, with moderate sample size, diploS/HIC
appears to be robust to model misspecification as it retains accuracy when predictions for a
population growth demography were obtained from CNNs trained on constant size population
simulations. As an application of diploS/HIC, the authors replicated previous findings of
selective sweep in the Anopheles gambiae genome. A later extension of this method led to
partialS/HIC which uses CNNs on a larger feature vector of summary statistics for a finer
classification of selective events, including partial sweeps and linked selection (Xue et al.,
2020). Finally, an additional application of CNNs based on summary statistics to test against
different modes of selective sweeps has been recently proposed (Caldas et al., 2022). This
study uses varying window sizes to accommodate the calculation of summary statistics at
different genomic extents within the target loci. They also introduced a hybrid simulation
strategy to pair the flexibility of forward-in-time simulations with the efficiency of coalescent
ones.

An approach that fully exploits the potential of CNNs is to replace summary statistics as
input with full information on sequence alignments, with convolutional layers automatically
extracting informative features. Input data can consist of either genotype or haplotype
sequences. In the simplest form, input data is a binary matrix, with rows and columns
corresponding to individuals and alleles at each SNP, respectively. Under this representation,
and in opposition to the structured nature of "classic" images, the ordering of individuals
(i.e. random samples from a population) in an unstructured population is arbitrary and
carries no information (Chan et al., 2018); i.e. genetic data are exchangeable. However,
standard CNNs rely on spatial information and, therefore, the ordering of the data can
affect its accuracy. To avoid this problem, individuals need to be sorted in a "biologically
meaningful" way. For example, Flagel and collaborators sort chromosomes by genetic
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similarity (Flagel et al., 2018). Additionally, they represent the information on genomic
positions of SNPs as a separate branch in the architecture. Interestingly, the inclusion of
monomorphic sites in windows of fixed length seems to yield good accuracy for predicting
natural selection, as shown in a separate study (Nguembang Fadja et al., 2021). Notably,
several applications of the proposed method are illustrated, with CNN achieving equal if
not better better performance than state-of-the-art methods to detect gene flow and selective
sweeps, estimate recombination rates, and infer demographic parameters (Flagel et al., 2018).
Therefore, these findings demonstrated the capability of CNNs to infer population genetic
parameters, even in cases where a theoretical framework is not available.

To address the exchangeability issue, Chan and coworkers proposed an exchangeable
neural network (Chan et al., 2018). This architecture consists of convolutional layers with 1-
dimension kernels with a subsequent permutation-invariant function to allow for the network
to be insensitive to the order of individuals. Although they employed the mean operation
as permutation-invariant function, other functions are possible, including a fully connected
layer. Another important contribution of this study is the adoption of a "simulation-on-the-
fly" approach: training data is continuously generated by simulations to avoid the network to
see the same data twice and therefore to reduce overfitting. This is a valuable consideration
since, when reliable simulators are available (as in the case of population genetics), we
have access to theoretically infinite training data, the latter being constrained by computing
time only. The implemented software defiNETti was applied to illustrate the accuracy of
exchangeable neural networks to predict recombination hotspots in human data.

Further solutions to tackle the issue of exchangeable genetic data have been explored by
Torada et al. in the software ImaGene (Torada et al., 2019). Specifically, the authors showed
how ordering haplotypes and SNPs by frequency leads to accurate predictions of positive
selection. Whilst sorting SNPs implied a loss of information on LD patterns, this approach
makes training faster with minimal decay in accuracy, as the number of learnable parameters
is drastically reduced as the final fully connected layer is not required. However, double-
sorting makes the method less appropriate for a general-purpose methodology. Additionally,
by training and testing ImaGene with simulations conditioned on different demographic
models, the authors quantified the drop in accuracy when CNNs are affected by model
misspecification during training. Finally, a multiclass classification approach was proposed
as an alternative method to approximate the posterior distribution of the selection coefficient,
a continuous parameter typically hard to estimate.

In another landmark study, Sanchez and colleagues provide a comprehensive framework
for building deep neural networks taking into account several nuances of the input data, such
as the variable number of SNPs, their correlation, and the exchangeability of individuals
(Sanchez et al., 2021a). These challenges were tackled by proposing an architecture, called
SPIDNA (Sequence Position Informed Deep Neural Architecture), which consisted of stacks
of multiple blocks of convolutional, pooling, and fully connected layers. In addition to deploy
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their method to reconstruct changes in effective population size of cattle breed populations, the
authors compared the accuracy of several deep neural networks against ABC, including hybrid
approaches. Notably, results suggest that integrating deep learning with ABC marginally
improves performance, and possibly explainability. Further investigations from the same
authors demonstrated a more prominent increased performance using deep neural networks
(Sanchez, 2022). These studies depart from previous attempts to adapt existing architectures,
and instead they suggest to build novel architectures tailored to the specifics of population
genetic data.

In a later study, Gower and colleagues (Gower et al., 2021) aimed to identify signatures of
adaptive archaic introgression in the human genome without relying on statistics that capture
the frequency of putatively introgressed haplotypes. The authors developed a deep learning
method based on CNNs, genomatnn, to jointly infer archaic admixture and positive selec-
tion. genomatnn is trained from a matrix consisting of concatenated genotype alignments
encompassing donor (archaic humans) and recipient (modern humans) populations. Matrix
entries represent counts of minor alleles in an individual haplotype within a given genomic
window. Thus, this approach is applicable to low-quality sequencing data where genotype
calling can be bypassed by the statistical estimation of allele frequencies (Kim et al., 2011).
Additionally, the authors proposed a framework to visually inspect the input features that
are more informative for the prediction by means of saliency maps (Simonyan et al., 2013).
Intriguingly, the latter indicated that the network focus most of its attention on Neanderthal
and European haplotypes when exposed with data from an adaptive introgression, in line
with the expected pairing of donor and recipient populations.

DeepSweep is another application of CNNs to detect selective sweeps from "haplotypic"
images, as defined by the authors (Deelder et al., 2021). This method selects the longest
common haplotype among neighbouring SNPs, and sort all remaining haplotypes based
on their distance to it. This sorted alignment of haplotype differences is then fed into a
series of convolutional layers. The aim of of the original study was to detect signatures
of positive selection in malaria parasites, namely Plasmodium falciparum and Plasmodium
vivax. Interestingly, the algorithm was then trained using real data from regions covering
SNPs previously associated with drug resistance, and the validation was performed using
a leave-one-out approach. Possibly as a result of both the data processing and training
strategies, when deployed on whole-genome data, DeepSweep predicted selection targets to
be known drug-resistance genes and largely overlapping with predictions using haplotype-
based summary statistics. One advantage of this training strategy is that it enables an
assessment of which data points are informative during training.

A comparison between the performance of FCNN and CNN to detect natural selection,
specifically balancing selection, is presented by Isildak and colleagues (Isildak et al., 2021a) in
the softwareBaSe. While both architectures exhibit high classification accuracy to distinguish
between neutrality and selection, CNN outperformed FCNN to predict the type of balancing
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selection, a task that proved too challenging when relying solely on summary statistics as
input. Authors used forward-in-time simulations and conditioned the target variants to a
predefined range of final allele frequency. To counterbalance the increased computational
time associated with this simulation scheme, a data augmentation to artificially enlarge the
training data was adopted.

In recent years, the generation of sequencing data from ancient or historical samples, as well
as from capture-recapture and evolve-and-resequence experiments, has allowed for a direct
observation of how genetic diversity and allele frequencies change under natural or controlled
conditions over time. To detect positive selection with time-series data, Whitehouse and
Schrider proposed to stack either allele frequency or haplotype data over sampling times to
be fed as input to 1-dimensional CNNs (Whitehouse and Schrider, 2022). Their method
was implemented in the software Timesweeper, and evaluated under various sampling
conditions. Results show overall good accuracy levels for predicting selection, localising the
target variant, and distinguishing between selection from de novo mutation and from standing
variation. Interestingly, using haplotype instead of allele frequency data yields a lower
performance, possibly due to the difficulty in properly sorting the input data in a biologically-
meaningful way. Timesweeper was deployed to time-series pooled-sequencing data from
Drosophila simulans, and it was able to replicate previously detected sweep signatures with
better resolution.

CNNs have quickly become the main deep learning algorithm in population genetic studies
thanks to their ability to automatically extract important features from raw genotype data,
and their flexibility in accommodating different models to be tested. As a result, novel
applications of such algorithms in population genetics are frequently proposed and introduced
(Smith et al., 2022). In machine learning, natural language processing (NLP) represents a
branch of algorithms that aims at "understanding" words in a text, meaning that they can, for
instance, perform speech recognition, text generation, or sentiment analysis (i.e., associating
an output label to each word or sentence). As DNA sequences are easily representable as a
series of letters or motifs, in the next section, we will introduce NLP applications that are
emerging in population genetics.

2.4.3 Recurrent neural networks

Recurrent neural networks (RNNs) are algorithms derived from FCNNs but designed specif-
ically for sequential data as they introduce a mechanism that influence current predictions
based on previous outcomes (Elman, 1990; Minsky, 1967; Rumelhart and McClelland, 1987).
In fact, RNNs are comprised of connected nodes that form a cycle, with the output of some
nodes feeding back to other (or same) nodes. Therefore, simple RNNs can be considered
as for-loops iterating along the sequential data, where at each position the current input and
the previous output are combined to form the next output (or hidden state). Multiple RNN
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layers can be stacked on top of each other to increase the capacity of the network and extract
more features from the data. One of the limitations of RNNs is the limited capacity to learn
long-range dependencies. Architectures such as Long Short-Term Memory (LSTM) and
Gated-Recurrent Units (GRUs) networks circumvent this problem by adding the concept of
cell state which is propagated along the sequence in the case of LSTMs, and GRUs enabling
the filtering of passing information of long-range information through a Gating mechanism
alone (Cho et al., 2014) whilst maintaining similar performance to LSTMs (Hochreiter and
Schmidhuber, 1997).

Recurrent layers have been used by Adrion and colleagues (Adrion et al., 2020b) to estimate
recombination maps for D. melanogastor. The proposed software ReLERNN provides a
comprehensive modular workflow on how to generalise the method for different model species
of interest, including instructions for phased, unphased and pooled-sequencing data. However,
caution should be made when estimating recombination rates from genotype alignments using
machine learning under certain conditions of low variability (Johnson and Wilke, 2022).
Hejase and coworkers proposed a method to detect natural selection by extracting features
from estimated genealogical trees (Hejase et al., 2021). They used counts of remaining
lineages along a discrete log-transformation of the time dimension. The sequential nature
of the trees along the sequence was used to set up an LSTM, which recognises the lack
of remaining lineages, i.e. zeros in the distant past or upper part of the feature matrix.
This approach, implemented in the software SIA, gains the possibility to obtain an easily
interpretable model at the cost of using an ancestral recombination graph (ARG)-inference
method such as Relate (Speidel et al., 2019).

Inspired by the sequential nature of the Sequential Markov Chain (SMC) methodology,
Khomutov et al. proposed a RNN method to estimate times to the most recent common
ancestor from simulated data (Khomutov et al., 2021). Interestingly, this method achieved
good results after coupling it with a CNN. Their approach is setup as a coalescent event
classification strategy, thus creating a probability distribution of the TMRCA coalescent
time at any given sequence position. Finally, neural net compression algorithms have been
developed (Wang et al., 2018; Silva et al., 2020) making use of recurrent layers for the
emphasis of long-range inter-dependencies and convolution layers. These approaches appear
useful as the cost of sequencing dramatically decreases and becomes increasingly negligible
compared to storage costs.

RNNs, in all their forms, have becoming increasingly popular in population genetics
thanks to their ability to incorporate sequential data. Whilst training recurrent layers tend to
be more challenging, coupling them with convolutional layers appear to be a suitable solution
to overcome such issue whilst incorporating novel information. In the next section, we will
explore how CNNs can be embedded in a more general family of machine learning algorithms
called generative models.
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2.4.4 Generative models

Generative models aim at capturing, and therefore approximating, the probability distribution
between data and labels. By their nature, generative models are able to "generate" novel data
points according to the captured probability distribution. Fitting a Gaussian mixture model
and sampling from the distribution can be interpreted as a generative process, although it
is insufficient to capture complex phenomena in high-dimensional spaces. In fact, even if
sampling procedures can yield impressive results, i.e. for ARG inference (Mahmoudi et al.,
2022b), they often remain model-based, and are fundamentally limited by their run-time. For
these reasons, deep generative models have become a subject of increased attention, especially
for their capability of generating new samples even if the true underlying distribution is
unknown. The following section focuses on three among the most popular non-model-based
and high-parameter generative methods that have been explored in population genetics:
autoencoders (Rumelhart and McClelland, 1987), variational autoencoders (Kingma and
Welling, 2014), and generative adversarial networks (Goodfellow et al., 2014).

Autoencoders and variational autoencoders

Similar to Principal Component Analysis (PCA), autoencoders aim to solve a compression
problem by step-wise reducing the input parameters into a smaller set of hidden parameters,
analogues of the principal components. The number of hidden parameters, known as the
latent space, is dependent on the network architecture. In a simple form, compression is
achieved by a FCNN, called the encoder, with a decreasing number of learnable parameters
in each layer. A second expanding network, called the decoder, rebuilds the original data
from said latent space by minimising a suitable loss function. An important part of the
autoencoders is the regularisation step, usually introduced as part of the loss function, which
is necessary for learning a meaningful latent space by avoiding memorisation.

Variational autoencoders (VAEs) differ from autoencoders as they introduce a generative
operation by compressing the data into a latent space distribution, instead of a point represen-
tation. Furthermore, the latent space directly offers the possibility to probe the network for
any kind of structure as input data, which the encoder has been forced to compress, by plotting
the low-dimensional latent variables against each other. Thanks to the non-linearity of neural
networks, VAEs outperform classic methods, i.e. PCA, for visual data representation (Battey
et al., 2021).

VAEs have been implemented by Battey and colleagues in the software popvae (Battey
et al., 2021). By applying it to genomic data sets, they recovered geographic similarities
among human populations, and tested for robustness in the presence of genomic inversions
in Anopheles mosquitoes. Additionally, low values of population genetic differentiation, as
measured by 𝐹𝑆𝑇 (Holsinger and Weir, 2009), are more likely to be detected by VAEs. Lastly,
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whilst the generative property of VAEs has difficulties in detecting more complex relations,
like long-range LD signatures, it can produce data with similar SFS patterns.

Other authors proposed a different VAE, named HaploNet (Meisner and Albrechtsen)
to infer population structure and ancestry proportions. HaploNet was shown to be able
to infer parameters from very large genomic data sets, such as the UK Biobank and the
1000 Genomes Project. Likewise, others have proposed a multi-headed autoencoder, called
Neural ADMIXTURE (Mantes et al., 2021), which was evaluated on the Simons Genome
Diversity Project and the Human Genome Diversity Project, achieving similar results. Finally,
Lopez-Cortes and coworkers combined an autoencoder with common clustering methods,
such as hierarchical clustering and K-Means (López-Cortés et al., 2020). They sought to
assign maize lines into subpopulations, and achieved marginally better results than by using
a Bayesian clustering method.

Generative adversarial networks

Generative adversarial networks (GANs) provide a framework capable of estimating high-
dimensional probability distributions by solving a min-max optimisation problem between
two opposing networks (Goodfellow et al., 2014). The aim of this architecture is thus to
approximate the underlying data generation process (i.e. evolutionary process) of a study
object of interest (i.e. genotype matrix). The model is capable then to sample new instances
of the study object.

The first part of the architecture, called the generator network, only has access to the
random distribution as a prior for constructing the target object, while the second network,
called the discriminator has access to a real object (i.e. genotype matrix) and the generated
object. The loss function from GANs illustrates the objectives of both networks: 𝐿 =

𝐸𝑥 [𝑙𝑜𝑔(𝐷 (𝑥))] + 𝐸𝑧 [𝑙𝑜𝑔(1 − 𝐷 (𝐺 (𝑧)))]. The first part 𝐸𝑥 [𝑙𝑜𝑔(𝐷 (𝑥))] representing the
expected value of real samples 𝑥 to be classified correctly by the discriminator (𝐷 (𝑥)) and
the second part 𝐸𝑧 [𝑙𝑜𝑔(1−𝐷 (𝐺 (𝑧)))] stands for the expected value of generated data (𝐺 (𝑧),
𝑧 being the latent initialisation) to be classified as fake by the discriminator (1 − 𝐷 (𝐺 (𝑧))).
Thus, the discriminator aims to maximise the loss function, while the generator tries to
minimise it. The parameters of both networks are updated alternately. Optimisation can be
particularly challenging as neither network should be under-performing nor outperforming the
other network too quickly. For instance, when both networks are not training synchronously,
many values of the random initialisation distribution can collapse into few target estimations,
leading to decreased diversity of generated samples of the generator, a phenomenon known as
the ’Helvetica scenario’ or ’mode collapse’ (Arjovsky and Bottou, 2017). The discriminator
would become trapped in a rejection space, and eventually end in a local minimum (Che
et al., 2016). Another issue focuses around the fleeting convergence property during training,
meaning the generator network becomes too good at misleading the discriminator, in which
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case the discriminator could only guess the correct class, resulting in poor gradients for both
networks overtime.

In the first application of GANs in population genetics, Wang and colleagues (Wang et al.,
2021) integrated the coalescent simulator msprime (Baumdicker et al., 2021) with a pa-
rameter sampling algorithm (called simulated annealing) as the generator, with a CNN as
discriminator. The objective was to infer optimal parameters of the simulations that gener-
ated realistic data sets. In this study, authors sought to estimate demographic parameters and
recombination rate by evaluating both real and simulated data using summary statistics in a
likelihood-free approach, similarly to ABC. In fact, authors compared their method, imple-
mented in the software pg-gan, to an SFS-based ABC and achieved a similar performance.
However, it is still unclear whether ABC or GANs yield a better performance in terms of
the number and accuracy of parameters (here demographic changes), number of necessary
simulations, and run-time for population genetic applications.

Beyond inferring parameters, the generative property of GANs has been explored in the
form of other generative models such as Restricted-Bolthman-Machines (RBMs, (Teh and
Hinton, 2000; Smolensky, 1986)). Yelmen et al. used RBMs to recreate a population structure
data set as genotype matrices extrected from 1000 Genomes Project data set (Yelmen et al.,
2021a). The authors successfully demonstrated the ability of RBMs to reconstruct multi-
modal distributions by reporting various distance measures (such as Wasserstein distance) and
by visual inspection via dimensionality reduction. However, this initial attempt is not capable
of recovering rare variant patterns, but advanced architectures designed to deal with mode
collapse may solve this issue (Ghosh et al., 2017). Despite current limitations, GANs appear
to be a promising deep learning framework to infer complex population genetic parameters
in face of an uncertain or unknown demographic model (Booker et al., 2022).

2.5 Available resources

2.5.1 Simulators

The application of deep learning methods has been empowered by decades of research into
mathematical models of evolution and development of simulators built to recreate the the
hidden stochasticity of unseen evolutionary processes. In the context of deep learning, most of
the applications in population genetics rely on training algorithms via synthetic data generated
by such simulators. Broadly speaking, simulators can be categorised as forward-in-time and
backward-in-time approaches. The latter category refers to coalescent simulators which, due
to their rigorous underlying models, are extremely efficient as they only keep track of sampled
genomes.. Forward-in-time simulation tend to be more intuitive in their development, and are
often used for complex selective processes which cannot be described by coalescent models..
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The following section is dedicated to name a few popular simulation tools, which can be used
to generate data set to train neural networks.

SLiM (Messer, 2013), provides a whole programming language Eidos (Haller, 2016) de-
signed to build forward simulation code for a vast range of evolutionary processes. Therefore,
it has been used to train deep learning algorithms that aimed at inferring complex models.
Interestingly, current developments on spatial simulators, such as slendr (Petr et al., 2022),
leverage SLiM’s capabilities to generate synthetic genetic data variable in time and space.
Likewise SLiM’s extensions to simulate bacterial populations (Cury et al., 2022) allow for
studies of non-model organisms to generate synthetic data sets which could be used in a deep
learning framework. Another forward-in-time simulator that has been used in deep learning
is SFS_code (Hernandez and Uricchio, 2015).

Among coalescent simulators, msprime (Baumdicker et al., 2021) is the preferred choice
among practitioners due to its carefully designed code base, efficient tree sequence data struc-
ture (Kelleher et al., 2018), fast run-time, available choice of coalescent models (Adrion et al.,
2020a), easy programmatic access as well as active maintenance. It should be noted that tree
sequences are not inherently limited to coalescent simulations, but have also been integrated
into forward-in-time simulators such as SLiM (Haller et al., 2019b), fwpyy (Thornton, 2014)
or sleepy (Korfmann et al., 2022a). Lastly, ms (Hudson, 2002), msms (Ewing and Her-
misson, 2010), fastsimcoal2 (Excoffier et al., 2021), and discoal (Kern and Schrider,
2016) are coalescent tools that have been applied to train deep neutral networks for population
genetic inferences.

2.5.2 Software

Most of the studies herein mentioned provide their implementations, often as user-friendly
software, of deep learning algorithms for population genetic analyses. In Table 2.1, we
summarise these implementations by the programming language and required (or preferred)
simulator (if any) used, and by the input data required (Table 2.1). We further categorise
implementations based on their underlying type of neural network. Whilst general-purpose
software for simulation-based inferences are available (Tejero-Cantero et al., 2020), here we
focus only on implementations specific to population genetic analysis.

From this collection, we note that recent implementations often rely on python packages
such as keras and tensorflow which allow for easy building of layers, efficient optimisa-
tion of networks, and intuitive monitoring of training performance. Implementations based
on pytorch (another popular python package) allow for more flexibility in constructing
complex architectures and investigating internal nodes. These python packages are sup-
ported by a strong and active community of developers and users, which ensures constant
debugging and development.
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We also note that forward-in-time simulators are becoming increasingly popular for training
deep neural networks despite their significant computational cost, although the adoption of
tree-sequence data and ’simulation-on-the-fly’ techniques can reduce such burden. Despite
the plethora of implementations, each one appears to be suitable to perform specific tasks. At
the moment of writing, only DNADNA (Sanchez et al., 2022a) is the sole software providing a
general framework to both generate simulations and build and training arbitrary networks.
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2.6 A novel application: detecting short-term balancing
selection from temporal data

We now wish to illustrate the feasibility and accessibility of deep learning algorithms to
perform population genetics predictive tasks which are typically unachievable using classic
approaches. To this aim, by using some of the architectures and techniques described above,
we seek to develop a novel algorithm to detect signals of recent balancing selection from
temporal genomic data.

Balancing selection is a process that generates and maintains genetic diversity within pop-
ulations (Charlesworth, 2006) whose signals are typically detected by investigating patterns
of genetic diversity, allele frequency, and shared polymorphisms between species and pop-
ulations (Key et al., 2014). Long-term balancing selection has been proved to be a major
determinant of important phenotypes, including in humans (Soni et al., 2022). However,
recent and fleeting balancing selection leaves cryptic genomic traces which are hard to detect
and greatly confounded by neutral evolutionary processes (Sellis et al., 2011). Therefore,
currently employed methods are either unsuitable or underpowered to detect short-term bal-
ancing selection (Fĳarczyk and Babik, 2015).

Information from temporal genetic variation, either from evolve-resequence or ancient
DNA (aDNA) experiments, is particularly suitable to identify when and at to what extent
natural selection acted (Dehasque et al., 2020). Previous attempts to use deep learning to infer
balancing selection from contemporary genomes (Isildak et al., 2021a) and positive selection
from temporal data (Whitehouse and Schrider, 2022) suggest that training an algorithm that
uses the haplotype information from both contemporary and aDNA data has high potential
to characterise signals of recent adaptation (and thus recent balancing selection).

To illustrate the ability of deep learning to detect signals of recent balancing selection, we
simulated a scenario inspired by available data in human population genetics. We simulated
2000 50 kbp loci under either neutrality or overdominance (i.e. heterozygote advantage, a
form of balancing selection) at the centre of the locus, conditioned to a demographic model of
European populations (Jouganous et al., 2017). We performed forward-in-time simulations
using SLiM (Haller and Messer, 2019), similarly to a previous study (Isildak et al., 2021a).
We imposed selection on a de novo mutation starting 10k years ago, with selection coefficients
of 0.25% and 0.5%. We sampled 40 present-day haplotypes, and 10 ancient haplotypes at
four different time points (8k, 4k, 2k, 1k years ago, mirroring a plausible human aDNA data
collection).

We trained a deep neural network to distinguish between neutrality and selection. Using
pytorch, we built a network comprising two branches. One branch receives present-day
haplotypes and performs a series of convolutional and pooling layers with permutation-
invariant functions. The other branch processes stacked ancient haplotypes at different
sampling points, and both branches performing residual convolutions. The two branches
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Figure 2.3 Confusion matrices to classify neutrality (N), weak (D0.25), or moderate (D0.5) overdom-
inance with a deep learning algorithm using only ancient, present-day, or both types of samples. True
and predicted classes are on the x-axis and y-axis, respectively.

are merged with a dense fully layer that performs a ternary classification. We used 64
filters with 3x3 kernel size and 1x1 padding size after sorting haplotypes by frequency
(Torada et al., 2019). We performed 10 separate training operations to obtain confidence
intervals in accuracy values. We report results in the form of confusion matrices, a typical
representation to summarise the predictive performance at testing. To further showcase the
accessibility of deep learning, we made the full implementation and scripts are available at
https://github.com/kevinkorfmann/temporal-balancing-selection.

Results show that, despite the small training set used, the network has high accuracy to
infer recent balancing selection under this tested scenario (Figure 2.3). Notably, we observe a
significant decrease in accuracy for distinguishing between weak and moderate selection when
silencing the time-series branch, suggesting an important contribution of ancient samples in
the prediction. In this illustrative example, we do not attempt to take into account the
uncertainty given by degraded and low-coverage aDNA data and population structure across
time points, among other confounding factors. Nevertheless, these results demonstrate that
building and training novel deep learning algorithms is accessible and generates powerful
predictions to address current questions in population genetics.

2.7 Interpretable machine learning

As already mentioned in the introduction, population genetics and evolution in general are
aimed at uncovering the mechanisms responsible for the diversity of life in our planet. Thus,
the black-box nature of deep learning methods represent an important obstacle for their
application in these research fields. However, very recent advances in “interpretable machine
learning” algorithms (Linardatos et al., 2021) are providing the tools needed to overcome this
hurdle.

But what exactly do we mean by interpretability? There is no general consensus on
what the word ‘interpretability” means (Fan et al., 2020; Doshi-Velez and Kim, 2017) and

https://github.com/kevinkorfmann/temporal-balancing-selection
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discussions of this concept in the artificial intelligence literature tend to be rather abstract
and sometimes highly technical. In the context of machine learning, a common definition
is “the ability to explain or present in understandable terms to a human” (Doshi-Velez and
Kim, 2017). This abstract definition has been translated into a myriad of different operational
definitions based on a wide range of criteria. In fact, several taxonomies for interpretability of
neural networks have been proposed and the number of published articles on interpretability
has been increasing exponentially since 2000 (Fan et al., 2020). Therefore, here we will
restrict ourselves to distinguishing between global and local interpretability and explaining
the relevance of these two concepts for population genomics studies. Also, we note that we
will not consider very recent efforts aimed at designing inherently interpretable deep neural
networks (e.g. (Chen et al., 2020)) and instead focus on post-hoc interpretation methods, i.e.
algorithms that can be used to interpret an already trained network.

Global interpretability aims at explaining the overall behaviour of a model (Ancona et al.,
2019b), which in turn can inform us about the system being studied. In principle, this
goal can be achieved by analysing the hyperparameters (which control the learning process
and the values taken by the parameters; e.g. learning rate, activation function, number of
hidden layers, number of neurons per hidden layer) or parameters (weights and biases) of
a deep neural network. However, the information provided by hyperparameters tend to be
limited to model complexity, for example in terms of the number of nodes and hidden layers
retained after tuning and fitting or the type of activation function. On the other hand, the
values taken by parameters (weights and biases) after fitting can provide more meaningful
biological information; in particular, they help identify the features that contributed the most
to the predictive power of the algorithm. For example, Sheehan and Song (Sheehan and Song,
2016) (see FCNN section above) use random permutation of each summary statistic (feature)
and identify as most informative for the detection of population size changes those statistics
that, when randomly permuted, lead to the sharpest decrease in accuracy. Another approach
is based on feature importance (Olden and Jackson, 2002), which was used by another study
(Qin et al., 2022) to identify as outlier loci those that contributed the most to the power of a
FCNN to predict an individual’s phenotype or geographic origin. Feature importance is based
on the idea that the magnitude of connection weights between neurons connecting input and
output nodes measure the extent to which each feature contributes to the network’s predictive
power. The architecture used for these two examples was a FCNN. A different approach is
necessary in the case of CNNs. For example, in the case of a CNN that classify images into
different categories, a common approach is to use saliency maps, which measure the support
that different groups of pixels in an image provides for a particular class (Mohamed et al.,
2022). This is implemented by feeding the CNN an image of a particular class and using
visualisation techniques to generate heatmaps overlayed on the original image; the image
elements that are being used by the CNN to identify the class are highlighted in red. A
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population genetics application of this approach is presented by Gower and colleagues, who
used a CNN algorithm to detect adaptive introgression (Gower et al., 2021).

Local interpretability aims at understanding the reasons for a specific decision concerning
a particular instance. Note that the ability of a particular feature to predict an attribute (e.g.
phenotype) for a particular instance (data point), may depend on the values taken by the
other features. This is particularly relevant in population genomics applications as the effect
that a particular locus variant has on the phenotype of an individual may depend on the
variants found at other loci (i.e. the genetic background; (Chandler et al., 2013)). A very
promising technique to address this important issue is the Shapley value approach (Strumbelj
and Kononenko, 2010). Shapley values were first introduced in cooperative game theory
(Shapley, 1953) to calculate the contribution of individual players to the outcome of a game.
In the context of deep learning, each feature represent a player, different combinations of
features (feature subsets) represent a coalition, and the set comprising all features represents
the “grand coalition of players”. The objective is to explain how values of a feature for a
particular instance contribute to the difference between the prediction of a machine learning
algorithm with the feature included and the expected prediction when the feature value is
ignored (Strumbelj and Kononenko, 2010). Thus, the Shapley value of a feature can be
interpreted as the average marginal contribution of the feature to all possible feature subsets
that can be formed without it (c.f., Ancona et al., 2019a). An important advantage of the
approach is that it is the only explanation method that takes into account all the potential
dependencies and interactions between feature values (c.f., Strumbelj and Kononenko, 2010).
In principle this requires the evaluation of all 2𝑁 feature subsets (coalitions), were 𝑁 is the
number of features in the full set (grand coalition). Obviously, this is only possible when
the number of features is small to moderate (some few dozens). Thus, several algorithms
have been proposed for approximating Shapley values and a unified approach proposed
by (Lundberg and Lee, 2017) has been implemented in both python (KernelShap and
DeepShap) and R (shapr). However, they are limited to deep neural networks with moderate
number of features. Nevertheless, very recent developments have led to new approaches,
DASP (Ancona et al., 2019a) and G-DeepShap (Chen et al., 2022), that may scale up to
population genomics datasets. For the moment there are no applications of Shapley values
to population genomics studies; there is only an application in population genetics but in the
context of random forests (Kittlein et al., 2022).

Much work remains to be done in order to incorporate the latest advances in interpretable
machine learning to population genomics. Interpretability can lead to important break-
throughs by uncovering complex genomic signatures left by the non-linear interactions among
many genetic and evolutionary processes. Although population genetics theory has already
provided a deep understanding of the genomic signatures left by complex demographic history
and selective processes, the ‘agnostic’ nature of deep learning has the potential to uncover
‘hidden’ genomic signatures that traditional model-based statistical methods are unable to
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detect. In doing so, they may generate new hypotheses for explaining observed genomic
patterns that could then be tested.

2.8 Dealing with uncertainty

Whilst, as described so far, deep learning has led to novel applications in population genetics,
the intrinsic challenges associated with uncertain DNA sequencing data, simulated training
data sets, and an incomplete statistical framework are limiting factors to fully exploit the
power of such technique.

As previously described, data given as input to deep learning algorithms in population
genetics typically consist of alignments of genotypes, inferred haplotypes, or summary statis-
tics. Genotype calling, phasing, and calculation of summary statistics are associated with
statistical uncertainty (Nielsen et al., 2011), especially when performed from low-coverage
sequencing (i.e. from museum specimen, ancient samples, or generally non-model species)
(Lou et al., 2021). Sequencing data uncertainty could be tackled by providing estimates of
summary statistics from genotype likelihoods as input. Additional approaches based on filter-
ing masks to take into account data errors and missingness have been proposed in the literature
(Adrion et al., 2020b). Finally, generating sequencing data-like simulations (Escalona et al.,
2016; Cury et al., 2022) for training could be a valuable solution to accommodate all nuances
of the experimental data, at the expense of increasing computational resources needed. Other
sequencing technologies may provide data of different nature (e.g., sample allele frequencies
from pooled-sequencing experiments (Anand et al., 2016)), and therefore appropriate con-
siderations should be made in terms of additional statistical uncertainty associated with such
output. Approaches based on using trees or local ancestry tracts as input (Hamid et al., 2022)
may be more prone to input data uncertainty.

One of the main concerns about current applications of deep learning in population genetics
is the use of synthetic data for training neutral networks. For instance, the detection of signals
of natural selection typically requires the knowledge of the underlying demography model
to generate a null distribution under neutrality (Nielsen, 2005). If the baseline demographic
model is ill-defined, inference of natural selection is expected to be biased (Johri et al., 2022c).
Whilst such issue is shared with other popular inferential frameworks, such as ABC (Bertorelle
et al., 2010), the use of simulations in this context appears to be more problematic given the
‘black-box‘ nature of neural networks. Solutions to address the uncertainty of simulations
explored in the literature include testing a network trained on misspecified models (e.g.,
Flagel et al., 2018; Torada et al., 2019; Adrion et al., 2020b), and deploying it on known
cases of selection and neutrality (Isildak et al., 2021a) to quantify false positive and false
negative rates. Although post-inference diagnostic analyses are required to ensure robustness
of results, as per best-practice in machine learning (Lones, 2021; Whalen et al., 2022), the
ever increasing curated list of demographic models (Adrion et al., 2020a) will facilitate the
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use of synthetic data for training networks. Likewise, these resources will facilitate the
establishment of gold-standard data sets to benchmark newly proposed architectures. Finally,
efforts towards the adoption of transfer learning and domain adaptation techniques should
further reduce any bias associated with uncertain training data sets.

Most applications described herein aim at classifying data into discrete labels or providing
point-estimates of parameters of interests. Statistical uncertainty should be quantified by
characterising probability distributions of both the model uncertainty (epistemic or reduce-
able part) and the inherent stochastic uncertainty of data generating process (aleatoric or
irreduce-able uncertainty) (Sanchez et al., 2022b; Hüllermeier and Waegeman, 2021). So-
lutions to this problem include the prediction of mean and standard deviation (Chan et al.,
2018) or confidence intervals alongside point estimates, and the quantification of any errors
associated with the training phase (Smith et al., 2022). Thus, we encourage practitioners for
the upcoming publications to consider modifying their models to account for uncertainty in
a principled manner.

From regular convolutions to graph convolutions
Genotype matrices have been the starting point for doing any kind of population genetics analysis,
either by calculating summary statistics (e.g., site frequency spectra), model-based probabilistic
optimisation algorithms (e.g., SMC), or Bayesian sampling techniques (e.g., ABC) and non-model
based function approximations (e.g., deep learning). Yet, recent trends emphasise a need to
combine the power of deep learning approaches with a model-based constraint. A promising idea
is to format the input data (genotype matrix) in order for model assumptions to be encoded directly
in the data for subsequent training and inference. In the most general case, this model-based
formatting can be considered as a representation of the ARG, for which few methods have been
developed (Rasmussen et al., 2014b; Speidel et al., 2019; Kelleher et al., 2019; Mahmoudi et al.,
2022b). Decoupling the ARG or genealogy construction and inference of evolutionary parameters
of interest would create the opportunity to increase collaborations with mathematical modellers,
by incorporating more complex coalescent models or biological processes like introgression,
structured populations, or species-specific life history traits. Additionally, it may no longer
be necessary to try to interpret the inner workings of a CNN trained on (sparse) genotype
matrices (which likely rebuilds parts of the ARG through complex aggregation of genotype
density patterns). Any type of model-based properties could be questioned through modification
of the ARG. An essential step has been developed by Korfmann et al., providing not only a new
ARG-parameter inference method based on graph neural networks (GNN) but also a SMC method
applied to a particular coalescent model, known for long-range LD interdependencies (Korfmann
et al., 2022b). This approach offers the unique opportunity to test for mathematical model-based
blind spots in an inherently-Markovian constrained SMC method using GNNs.
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2.9 Conclusions

This review illustrates the great diversity of deep learning architectures that have been used
in population genetics applications. Currently, the prevailing type of applications involve
the training of algorithms with simulated data but there is an increasing number of studies
that use a more standard approach where training is carried out using observed data. Thus,
we can identify two strands of methods, one that is closely associated with likelihood-free,
simulation-based approaches that consider explicit evolutionary models and another one that
conforms to a purely data-driven, model-free approach. In both cases, however, deep learning
is used as an inferential tool (as opposed to a predictive or pattern recognition approach).
However, as the popularity of deep learning increases among population geneticists, we
expect that further deep learning algorithms, including the latest diffusion models (Ramesh
et al., 2022), will be adapted to solve predictive tasks. Intriguingly, novel applications may
go beyond classic inferential tasks and include other aims, such as efficient data compression
or generation of synthetic experimental data sets. Likewise, solutions for making neural
networks a ’transparent-box’, such as neural additive models (Novakovsky et al., 2022) and
symbolic metamodelling (Alaa and van der Schaar, 2019), will facilitate the adoption of deep
learning among empiricists.

More research is needed in the domain of ’interpretable’ machine learning so as to gain
an understanding of how deep learning algorithms make their decisions. This in turn would
enable population geneticists to uncover novel genomic signatures associated with non-linear
processes that current theory has not yet suggested including non-linear interactions among
many genetic, ecological, and evolutionary processes. Importantly, further developments in
local interpretability (see above) can help us to identify epistatic interactions and gain a better
understanding of how genetic background influences the phenotypic effect of mutations.

One key aspect to make deep learning a popular framework in population genetics, is to
ensure reproducible analyses and avoid repeating training of highly parameterised networks
from scratch. In this context, recent efforts to provide users with documented workflows
(Whitehouse and Schrider, 2022) and pre-trained networks (Hamid et al., 2022) will both
reduce carbon footprint (Grealey et al., 2022) and facilitate the application of deep learning
to a wider range of data sets, allowing users to modify the network’s parameters according
to the specific requirements of the biological system under examination.

Finally, we urge the community to make the field as inclusive as possible. Whilst open-
source software release is common practice among machine learning practitioners, access to
appropriate computing resources is still a limiting factor for many researchers. Initiatives to
provide GPUs (i.e. graphics processing unit) and cloud computing credits to academics in
need represent a valuable step towards making deep learning in population genetics acces-
sible and inclusive to a wide range of scientists. Likewise, we encourage the establishment
of training opportunities in machine learning for early-career population geneticists. Impor-
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tantly, such events should happen either online or in hybrid format, with resources provided
in multiple languages to ensure that text or verbal comprehension is not a barrier to learning.
Consortia and local networks, properly funded by the wealthiest countries, appear to be a
natural solution to fulfil this need. If all these conditions are met, deep learning will soon be
established as part of the common toolkit among population geneticists globally.
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3.1 Abstract

Seed banking (or dormancy) is a widespread bet-hedging strategy, generating a form of
population overlap, which decreases the magnitude of genetic drift. The methodological
complexity of integrating this trait implies it is ignored when developing tools to detect
selective sweeps. But, as dormancy lengthens the ancestral recombination graph (ARG),
increasing times to fixation, it can change the genomic signatures of selection. To detect
genes under positive selection in seed banking species it is important to 1) determine whether
the efficacy of selection is affected, and 2) predict the patterns of nucleotide diversity at
and around positively selected alleles. We present the first tree sequence-based simulation
program integrating a weak seed bank to examine the dynamics and genomic footprints
of beneficial alleles in a finite population. We find that seed banking does not affect the
probability of fixation and confirm expectations of increased times to fixation. We also
confirm earlier findings that, for strong selection, the times to fixation are not scaled by the
inbreeding effective population size in the presence of seed banks, but are shorter than would
be expected. As seed banking increases the effective recombination rate, footprints of sweeps
appear narrower around the selected sites and due to the scaling of the ARG are detectable for
longer periods of time. The developed simulation tool can be used to predict the footprints
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of selection and draw statistical inference of past evolutionary events in plants, invertebrates,
or fungi with seed banks.

3.2 Introduction

Seed banking is an ecological bet-hedging strategy, by which seeds or eggs lay in a dor-
mant state of reduced metabolism until conditions are more favourable to hatch or germinate
and complete the life-cycle. This life-history trait acts therefore as a buffer in uncertain
environments (Cohen, 1966; Templeton and Levin, 1979) and has evolved several times inde-
pendently in prokaryotes, fungi, plants, and invertebrates (Evans and Dennehy, 2005; Nara,
2009; Willis et al., 2014; Tellier, 2019; Lennon et al., 2021b). Because several generations
of seeds are simultaneously maintained, seed banks act as a temporal storage of genetic in-
formation (Evans and Dennehy, 2005), decreasing the effect of genetic drift and lengthening
the time to fixation of neutral and selected alleles (Templeton and Levin, 1979; Hairston Jr
and De Stasio Jr, 1988). Seed banks are therefore expected to play an important role in
determining the adaptive potential of a species (Tellier, 2019). In bacteria (Shoemaker and
Lennon, 2018; Lennon et al., 2021b), invertebrates (Evans and Dennehy, 2005) or plants
(Willis et al., 2014; Tellier, 2019), dormancy determines the neutral and selective diversity of
populations by affecting the effective population size and buffering population size changes
(Nunney and Ritland, 2002), affecting mutation rates (Levin, 1990; Whittle, 2006; Dann
et al., 2017), genetic structure (Vitalis et al., 2004), rates of population extinction/recolo-
nization (Brown and Kodric-Brown, 1977; Manna et al., 2017) and the efficacy of positive
(Hairston Jr and De Stasio Jr, 1988; Koopmann et al., 2017; Heinrich et al., 2018; Shoemaker
and Lennon, 2018) and balancing selection (Tellier and Brown, 2009; Verin and Tellier, 2018).

Seed banking, or dormancy, introduces a time delay between the changes in the active
population and changes in the dormant population which considerably increases the time to
reach the common ancestor of a sample of genes from the active population (Kaj et al., 2001;
Blath et al., 2015, 2016, 2020). We note that two models of seed banks are proposed, namely
the weak and strong dormancy models. These make different assumptions regarding the scale
of the importance of dormancy relative to the evolutionary history of the species. On the one
hand, the strong version is conceptualized after a modified two-island model with coalescence
events occurring only in the active population as opposed to the dormant population (seed
bank) with migration (dormancy and resuscitation) between the two (Blath et al., 2015, 2016,
2019; Shoemaker and Lennon, 2018). Strong seed bank applies more specifically to organ-
isms, such as bacteria or viruses, which exhibit very quick multiplication cycles and can stay
dormant for times on the order of the population size (thousands to millions of generations,
Blath et al., 2015, 2020; Lennon et al., 2021b). On the other hand, the weak seed bank
model assumes that dormancy occurs only over a few generations (tens to hundreds), thus
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seemingly negligible when compared to the order of magnitude of the population size (Kaj
et al., 2001; Tellier et al., 2011; Živković and Tellier, 2012; Sellinger et al., 2019), making
it applicable to plant, fungi or invertebrate (e.g. Daphnia sp.) species or when the seed
bank is experimentally imposed (as it is in practice difficult to generate the strong seed bank)
(Shoemaker et al., 2022). We focus here on a pseudo-diploid version of the weak seed bank
model in order to provide novel insights into the population genomic analysis of species which
undergo sexual reproduction. The applicability of our results, as well as the differences and
similarities between the strong and weak seed bank models, are highlighted in the Discussion.

The weak seed bank model can be formulated forward-in-time as an extension of the classic
Wright-Fisher model for a population of size 𝑁 haploid individuals. The constraint of choos-
ing the parents of offspring at generation 𝑡 only from the previous generation (𝑡 − 1) is lifted,
and replaced with the option of choosing parents from previous generations (𝑡 −2, 𝑡 −3, ... up
to a predetermined boundary 𝑡 − 𝑚)(Nunney and Ritland, 2002). The equivalent backward-
in-time model extends the classic Kingman coalescent and assumes an urn model in which
lineages are thrown back-in-time into a sliding window of size 𝑚 generations, representing
the past populations of size 𝑁 (Kaj et al., 2001). Coalescence events occur when two lineages
randomly choose the same parent in the past. The germination probability of a seed of age 𝑖
is 𝑏𝑖, which is equivalent to the probability of one offspring choosing a parent 𝑖 generations
ago. The weak dormancy model is shown to converge to a standard Kingman coalescent
with a scaled coalescence rate of 1/𝛽2, in which 𝛽 =

∑𝑚
𝑖=1 𝑏𝑖∑𝑚
𝑖=1 𝑖𝑏𝑖

is the inverse of the mean time
seeds spend in the seed bank, and 𝑚 is the maximum time seeds can be dormant (Kaj et al.,
2001). The intuition in a coalescence framework (Kaj et al., 2001) is that for two lineages to
find a common ancestor, i.e. to coalesce, they need to choose the same parent in the active
population, each the probability 𝛽 to do so, as only active lineages can coalesce. Thus the
probability that two lineages are simultaneously in the active population is a 𝛽2 scaling of the
coalescence rate. The germination function was previously simplified by assuming that the
distribution of the germination rate follows a truncated geometric function with rate 𝑏, so that
𝑏 = 𝛽 when 𝑚 is large enough (Tellier et al., 2011; Živković and Tellier, 2012; Sellinger et al.,
2019, see methods). A geometric germination function is also assumed in the forward-in-time
diffusion model analysed in Koopmann et al., 2017; Heinrich et al., 2018 and Blath et al., 2020.

Seed banking influences neutral and selective processes via its influence on the rate of
genetic drift. In a nutshell, a seed bank delays the time to fixation of a neutral allele and
increases the inbreeding effective population size (from now on referred to only as the "effec-
tive population size") by a factor 1/𝑏2. The effective population size under a weak seed bank
is defined as 𝑁𝑒 =

𝑁𝑐𝑠

𝑏2 where 𝑁𝑐𝑠 is the census size of the active population (Nunney and
Ritland, 2002; Tellier et al., 2011; Živković and Tellier, 2012). Mutation under an infinite site
model can occur in seeds with probability `𝑑 and `𝑎 in the active population, so that we can
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define \ the population mutation rate under the weak seed bank model: \ =
4𝑁𝑐𝑠 (𝑏`𝑎+(1−𝑏)`𝑑)

𝑏2

(Tellier et al., 2011). If mutations occur in the dormant population at the same rate as in
the active population, we define `𝑑 = `𝑎 = ` yielding \ =

4𝑁𝑐𝑠`

𝑏2 , while if the dormant state
does not mutate, `𝑑 = 0 and `𝑎 = `, yielding \ =

4𝑁𝑐𝑠`

𝑏
. Empirical evidence (Levin, 1990;

Whittle, 2006; Dann et al., 2017) and molecular biology experiments have shown that even
under reduced metabolism DNA integrity has to be protected (Waterworth et al., 2016), and
suggest that mutations occur in the dormant population (for simplicity at the same rate as in
the active population, see model in Sellinger et al., 2019). Furthermore, recombination and
the rate of crossing-over is also affected by seed banking. However, only the non-dormant
lineages are affected by recombination in the backward-in-time model so that the population
recombination rate is 𝜌 = 4𝑁𝑒𝑟𝑏 =

4𝑁𝑐𝑠𝑟

𝑏
. The recombination rate 𝑟 needs to be multiplied

by the probability of germination 𝑏 as only active individuals can recombine (Živković and
Tellier, 2018; Sellinger et al., 2019). The ratio of the population mutation rate and the recom-
bination rate defines the amount of nucleotide diversity in the genome as well as the amount
of linkage disequilibrium, a property which has been used to develop a sequential Markovian
coalescent (SMC) approach to jointly estimate past demographic history and the germination
rate (Sellinger et al., 2019, 2021b).

While there is now a thorough understanding of how neutral diversity is affected by seed
banking, the dynamics of alleles under selection have not been fully explored. Koopmann
et al., 2017 developed a diffusion model of infinite (deterministic) seed bank model with
positive selection and show that the time to fixation is not multiplied by 1/𝑏2 (as for neutral
alleles) but by a higher factor (between 1/𝑏2 and 1/𝑏). The interpretation is as follows:
while the time to fixation of an advantageous allele is lengthened compared to a model
without dormancy, the efficacy of selection should be altered compared to a neutral allele
(the effect of genetic drift). Namely, the Site Frequency Spectrum (SFS) of independently
selected alleles shows an increased deviation from neutrality with a decreasing value of 𝑏.
By relaxing the deterministic seed bank assumption, Heinrich et al., 2018 find that: 1) a finite
small seed bank decreases the efficacy of selection, and 2) selection on fecundity (production
of offspring/seeds) yields a different selection efficiency compared to selection on viability
(seed viability), as can be seen from their estimated Site-Frequency Spectrum (SFS) of in-
dependent alleles under selection. Furthermore, based on the effect of seed banks on \ and
𝜌 and on selection, verbal predictions on the genomic signatures of selection have been put
forth (Živković and Tellier, 2018).

These theoretical and conceptual approaches, while paving the way for studying selection
under seed banks, did not consider the following argument. If the time to fixation of an
advantageous allele increases due to the seed bank, it can be expected that 1) drift has more
time to drive this allele to extinction, and 2) the signatures of selective sweeps can be erased
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by new mutations appearing in the vicinity of the selected alleles. These effects would
counter-act predictions that selection is more efficient under a stronger seed bank compared
to genetic drift, as well as, that selective sweeps are more easily observable under stronger
seed bank (Koopmann et al., 2017; Živković and Tellier, 2018). In order to resolve this
paradox, we develop and make available the first simulation method for the weak seed bank
model, which allows users to generate full genome data under neutrality and selection. We
first present the simulation model, which we use to follow the frequencies of an adaptive allele
in a population with seed banking. We aim to provide insights into the characteristics of
selective sweeps, including the time and probability of fixation, as well as recommendations
for their detection in species exhibiting seed banks.

3.3 Methods

Forward-in-time individual-based simulations are implemented in C++. Genealogies are
stored and manipulated with the tree sequence toolkit (tskit, Kelleher et al., 2018), which
allows for a general approach to handling arbitrary evolutionary models and an efficient
workflow through well-documented functions.

3.3.1 Model

The model represents a single, panmictic population of 𝑁 hermaphroditic pseudo-diploid
adults, which will henceforth be referred to as diploids for brevity. Population size is fixed
and generations are discrete, so that in the absence of dormancy and selection, the population
follows a classic Wright-Fisher model. In this case, at the beginning of each generation, a new
individual is produced by sampling two parents from the previous generation. Once sampled,
each parent contributes a (recombined) gamete to generate the new individual. Each parent
is sampled with probability 1

𝑁
(multinomial sampling), leading to two vectors X𝑝𝑎𝑟𝑒𝑛𝑡1 and

X𝑝𝑎𝑟𝑒𝑛𝑡2, containing the indices of the respective parents:

X𝑝𝑎𝑟𝑒𝑛𝑡1 = (𝑋1
1 , 𝑋

1
2 , ..., 𝑋

1
𝑁
) ∼ 𝑀𝑢𝑙𝑡 (𝑁, 1

𝑁
) with {𝑋1

𝑖
∈ ℕ : 𝑋1

𝑖
≤ 𝑁}

X𝑝𝑎𝑟𝑒𝑛𝑡2 = (𝑋2
1 , 𝑋

2
2 , ..., 𝑋

2
𝑁
) ∼ 𝑀𝑢𝑙𝑡 (𝑁, 1

𝑁
) with {𝑋2

𝑖
∈ ℕ : 𝑋2

𝑖
≤ 𝑁}

Dormancy adds a layer of complexity, by introducing seeds that can germinate after being
dormant for many generations. This relaxes the implicit Wright-Fisher assumption, as parents
are no longer only sampled from the previous generation, but also from dormant individuals
produced up to 𝑚 generations in the past. The probability of being sampled from generation
𝑘 depends on the probability of germination, which is a function of the age of the dormant
individual. As for the classical Wright-Fisher model, there are 2𝑁 possible parents. The
parents are sampled using a probability vector Y𝑛𝑜𝑟𝑚 written as:
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Y = (𝑌1, 𝑌2, 𝑌𝑘 , ..., 𝑌𝑚) with 𝑌𝑘 = 𝑏(1 − 𝑏)𝑘−1 and {𝑌𝑘 ∈ ℝ : 𝑌𝑘 > 0}
from which we obtain: Y𝑛𝑜𝑟𝑚 = Y∑𝑚

𝑗=1 𝑌 𝑗

From the expression above, the probability of being sampled follows a truncated geometric
distribution parameterized with germination rate 𝑏 and then normalized. The generation 𝐺

of each parent is randomly sampled using a multinomial sampling with the probability vector
Y𝑛𝑜𝑟𝑚.

G𝑝𝑎𝑟𝑒𝑛𝑡1 = (𝐺1
1, 𝐺

1
2, ..., 𝐺

1
𝑁
) ∼ 𝑀𝑢𝑙𝑡 (𝑁,Y𝑛𝑜𝑟𝑚) with {𝐺1

𝑖
∈ ℕ : 𝐺1

𝑖
≤ 𝑁}

G𝑝𝑎𝑟𝑒𝑛𝑡2 = (𝐺2
1, 𝐺

2
2, ..., 𝐺

2
𝑁
) ∼ 𝑀𝑢𝑙𝑡 (𝑁,Y𝑛𝑜𝑟𝑚) with {𝐺2

𝑖
∈ ℕ : 𝐺2

𝑖
≤ 𝑁}

Once the age of each of the 2𝑁 parents has been determined, random individuals from
the corresponding age groups are sampled (the same individual can be sampled more than
once) and one recombined gamete from each of these 2𝑁 individuals is generated. These
gametes are then randomly combined to form 𝑁 new diploid individuals which constitute the
current active population. Thus, the forward simulation process models two haploid dormant
individuals (with different ages) which become active at the current generation and join to
form a diploid individual (Figure 3.1). This pseudo-diploid model formulation is implicitly
equivalent to haploid gametes being resuscitated from the dormant state and fusing to create a
diploid individual capable of reproduction. The probability of coalescence (𝑝𝑐𝑜𝑎𝑙) is therefore
expected to follow haploid expectations 𝑝𝑐𝑜𝑎𝑙 = ( 1

2𝑁 ) × 𝑏2). The number of recombination
events is sampled from a Poisson distribution with parameter 𝑟 (for example 1 × 10−8 per bp
per generation). At the end of this process, new mutations can be introduced (only necessary
for sweep detection tools). Generally neutral mutations are not simulated and statistics are
computed using branch lengths. We assume here that mutations are also introduced at every
generation in dormant individuals at the same rate (following Sellinger et al., 2019), even if
they are not explicitly simulated. Recombination breakpoints are uniformly distributed across
the genome with each coalescent tree being delineated by two recombination breakpoints.

To model selection signatures within a neutral genomic background, we consider non-
neutral bi-allelic loci, placed at predefined and fixed genomic positions, with beneficial
mutations arising after the burn-in period. A locus under selection has a dominance ℎ and
selection coefficient 𝑠, respectively. The expressions for the fitness of heterozygote and
homozygote individuals with the beneficial mutation are thus 1 + ℎ𝑠 and 1 + 𝑠, respectively.
Fitness affects the probability that an individual’s gametes can leave the dormant state and
contribute to reproduction. The choice of the germinating generation when sampling the
parents is unaffected by their fitness values, but the sampling of individuals within a given
generation is determined by the fitness. In other words, selection acts on fecundity, as the
fitness of an allele determines the number of offspring produced and not survival (viability
selection). A selection coefficient of 0 would lead to multinomial Wright-Fisher sampling,
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which can be used to track neutral mutations over time. This two-step process of first choosing
the generation followed by the individual is presented in Figure 3.1.

distant past

seed bank

current generation

Figure 3.1 Schematic representation of our pseudo-diploid weak dormancy seed bank model by a
forward-in-time two step process in the spirit of Kaj et al., 2001 for haploid dormant seeds. The
arrows originating from the parent or seed generation represent the geometric sampling process of the
current generation, and the sampling of the individual within the given generation of the past based
on the respective fitness value.

From a technical perspective, individuals can be tracked in the tskit-provided table data
structures, if the tree_sequence_recording feature is enabled. This feature is not required
when computing statistics on allele frequency dynamics only (i.e. to compute fixation times
or probabilities). The tables used in this simulation are as follows: 1) a node table representing
a set of genomes, 2) an edge-table defining parent-offspring relationships between node pairs
over a genomic interval, 3) a site table to store the ancestral states of positions in the genome,
and 4) a mutation table defining state changes at particular sites. The last two tables are
only used to introduce the mutation under selection. If neutral mutations are required for
down-stream analysis, they are simulated after this step. The simulation code works with the
aforementioned tables through tskit functions, e.g. the addition of information to a table after
sampling a particular individual or through the removal of parents who do not have offspring
in the current generation in a recurrent simplification process. This clean-up process is a
requirement to reduce RAM-usage during the simulation, because keeping track of every
individual ever simulated to build the genealogy quickly becomes infeasible. However, a
noticeable difference to the classic use of the tskit function is that in our case individuals
which have not produced offspring in the past, but are still within the dormancy upper-bound
defined range of 𝑚 generations, need to be protected from the simplification process, which is
achieved by marking them as sample nodes during the simulation. Indeed, forward-in-time,
a parent can give offspring many generations later (maximum 𝑚) through germinating seeds.
As previously stated, the simulation process can be run independently of tskit, but the latter
is required when planning to analyze the genealogy.
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3.3.2 Simulations

Except when indicated otherwise, the population size is generally set to 𝑁 = 500 individuals
or 2𝑁 = 1, 000 haploid genomes. We specifically change population size when testing
whether sweep signatures can be explained by simple size scaling. In this case we use
𝑁 = 2000 individuals with a germination rate of 𝑏 = 1, corresponding to 𝑁 = 245 for
𝑏 = 0.35 (Figure 3.14). Our focal seed bank setup is that of a population of 𝑁 = 500
individuals with a germination rate 𝑏 = 0.35 and dominance coefficient ℎ = 0.5.

The genome sequence length is set to 100,000 bp, 1MB or 10 MB. Simulations start with
a burn in or calibration phase of 50,000 generations for 𝑏 = 1, and 200,000 generations for
𝑏 = 0.5 (see Figure 3.6, Table 3.1 for the calibration method used to define the of generations
needed for a given recombination rate), to make sure full coalescence has occurred and
a most-recent common ancestor is present. We consider that after this initial phase, the
population is at an equilibrium state in terms of neutral diversity, including within the seed
bank. After this phase, one selectively advantageous mutation is introduced at the predefined
site. To study sweep signatures as well as the time it takes for sweep signatures to recover,
simulations are run for several generations after fixation of the beneficial allele (up to 16,000
generations after fixation).

Neutral diversity is calculated based on the branch length, meaning that explicitly simulat-
ing mutations is not required. To check whether the strength of a sweep behaves in accordance
to expectations i.e. lower recombination rates result in wider sweeps, recombination rates
ranging from 5 × 10−8 to 𝑟 = 10−7 are tested for all parameter sets. Simulations are run for
the germination rate 𝑏 ranging from 0.25 up to 1 (with 𝑏 = 1 meaning no dormancy). The
upper-bound number of generations 𝑚 which is the maximum time that seeds can remain
dormant (i.e. seeds older than 𝑚 are removed from the population) is set at 30 generations.
Beneficial mutations have a selective coefficient 𝑁𝑏=1

𝑒 𝑠 ranging from 0.1 to 100 and domi-
nance ℎ takes values 0.1, 0.5 and 1.1, representing recessive, co-dominant and overdominant
beneficial mutations.

3.3.3 Statistics and sweep detection

We first calculate several statistics relative to the forward-in-time change of the frequency of
an advantageous allele in the population, such as the mean time to fixation and the probability
of fixation, using 1,000 simulations per parameter configuration. Each simulation run con-
sists of the recurrent introduction over time of an allele (mutant at frequency 1/2𝑁) which is
either lost or fixed. When an allele is lost and the simulation is conditioned on fixation a new
simulation starts from a neutral genetic diversity background (see below for more details).
An allele is considered to be fixed if its number of copies is 2N for 𝑚 consecutive generations.
For each simulation run we store 1) the time it takes for the last introduced allele to reach
fixation (time between allele introduction until fixation), and 2) the number of alleles which
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were introduced until one has reached fixation (yielding the probability of fixation of an allele
per simulation run). The resulting times to fixation and fixation probabilities are calculated
as the averages over the 1,000 simulation runs.

We also compute statistics on the underlying coalescent tree and ancestral recombination
graph (ARG) such as time to the most recent common ancestor, linkage disequilibrium (𝑟2, Hill
and Robertson, 1968), as well as Tajima’s 𝜋 and D (Tajima, 1983; Nei and Li, 1979; Tajima,
1989) over windows of size 5,000 (giving 200 windows for a sequence length of 1 MB). This
allows us to analyse the effects of seed-dormancy on the amount of linkage disequilibrium and
nucleotide diversity along the genome, as well as the footprint of a selective sweep on these
quantities. Tskit functions are used for diversity and linkage disequilibrium calculations.
Nucleotide diversity (𝜋) is calculated based on the branch length. Sweeps are detected using
Omega and SweeD statistic, the first one quantifies the degree to which LD is elevated on
both sides of the selective sweeps, as implemented and applied with OmegaPlus (Alachiotis
et al., 2012), while SweeD (Pavlidis et al., 2013) uses changes in SFS across windows to
detect sweeps. A difficult issue in detecting selective sweeps is choosing the correct window
size to perform the computations. It is documented that the optimal window size depends on
the recombination rate and thus the observed amount of linkage disequilibrium (Alachiotis
et al., 2012; Alachiotis and Pavlidis, 2016). We use two different setups with different window
sizes: –minwin 2000 –maxwin 50000 and –minwin 1000 –maxwin 25000 . The window sizes
refer to the minimum and maximum region used to calculate LD values between mutations.
Importantly the –minwin parameter determines the sensitivity, meaning the degree to which
false positives or false negatives (high –minwin values) are detected, while the –maxwin
parameter determines run-time and memory requirements. A detailed graphical description
can be found in the online OmegaPlus manual. In theory the larger window size is more
appropriate for the model without dormancy (𝑏 = 1), and the narrower window size for the
model with dormancy (𝑏 < 1). For both cases, we set –grid 1000 –length 10 MB. SweeD is
only tested using a –grid 1000 parameter. The statistic is computed for a sample size of 100
over 400 simulations for each sweep signature at multiple generations after fixation (sweep
recovery scenerios).

3.3.4 Code description and availability

Source code of the simulator and demonstration of the analysis can be found at https://
gitlab.lrz.de/kevin.korfmann/sleepy andhttps://gitlab.lrz.de/kevin.
korfmann/sleepy-analysis. A convenient feature of the simulator is the option to
choose between switching the tree sequence recording on or off depending on the question,
i.e. if analysing fixation time and probability of fixation it is unnecessary to record the tree
sequence (or use a calibration phase). To analyse the sweep signatures, the simulation pro-

https://gitlab.lrz.de/kevin.korfmann/sleepy
https://gitlab.lrz.de/kevin.korfmann/sleepy
https://gitlab.lrz.de/kevin.korfmann/sleepy-analysis
https://gitlab.lrz.de/kevin.korfmann/sleepy-analysis
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cess has been divided into two phases to alleviate the large run-times of forward simulations.
During the first phase, a tree sequence will be generated under neutrality and stored to disk.
And in the second phase the neutral tree sequence is loaded and a parameter of interest is
tested until fixation or loss. Additionally, if the simulation is conditioned on fixation, then
the simulation can start again from the beginning of the second phase that will have been run
for tree sequence calibration, saving the time.

1 import tskit

2 from utils import sleepy

3

4 sleepy(N=500, b=1.0, m=30, output_directory="./b1/")

5 ts_no_selection = tskit.load("./b1/run_0.trees")

6

7 sleepy(N=500, b=1.0, m=30, s=0.01, output_directory="./b1_s001/")

8 ts_selection = tskit.load("./b1_s001/run_0.trees")

Listing 1 Simplified, demonstrative Python code example for a simulation with and without selection.
Tree sequence results are stored in a specified output directory and are loaded via tskit function
for further processing or analysis of e.g. linkage disequilibrium or nucleotide diversity along the
genome. A more detailed version with more parameters can be found in the example notebook at
https://gitlab.lrz.de/kevin.korfmann/sleepy-analysis.

Simulations rely on regular simplification intervals for efficiency of the genealogy record-
ing, yet the weak dormancy model requires keeping up to 𝑚 generations in memory even for
past individuals (seeds) which do not have offspring in the current generation. To make sure
that this assumption is realized in the code, up to 𝑚 generations are technically defined as
leaf nodes, thus hiding them from the regular memory clean-up process. Furthermore, the
presence or absence of an allele with an associated selection coefficient needs to be retriev-
able, even under the influence of recombination, for all individuals for up to 𝑚 generations in
order to determine the fitness of the potential parents. Therefore, recombination and selective
alleles are tracked additionally outside of the tskit table data structure, allowing the running
of the the simulation without the tree sequence. Both of these model requirements, namely
maintaining individuals which do not have offspring in the current generation (but potentially
could have due to stochastic resuscitation of a seed) as well as the knowledge about the precise
state of that given individual in the past, are reasons to choose our own implementation over
SLiM (Haller and Messer, 2019).

3.4 Results

3.4.1 Neutral coalescence

We first verify that our simulator accurately produces the expected coalescent tree in a
population with a seed bank with germination parameter 𝑏 and population size 𝑁 . To do
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Figure 3.2 (a) Time to the most recent common ancestor (TMRCA) as a function of the germination
rate 𝑏 and scaled by results under 𝑏 = 1. For each germination rate, three recombination rates per
site are presented (𝑟 = 0, 𝑟 = 10−7 and 𝑟 = 10−6. Boxes describe the 25th (Q1) to 75th percentile
(Q3), with the lower whisker representing Q1-1.5×(Q3-Q1) outlier threshold and the upper whisker
is calculated analogously. The mean is plotted between Q3 and Q1. Each boxplot represents the
distribution of 200 TMRCA values over 200 sequences of 0.1 Mb. Per sequence the oldest TMRCA is
retained. (b) Monotonous decrease of linkage disequilibrium as a function of distance between pairs
of SNPs, setting 𝑟 = 10−7 per generation per bp, sequence length to 105 bp. While population size is
500, linkage decay was calculated by subsetting 200 individuals, purely to constrain the computational
burden. In total 200 replicates were used for TMRCA and LD calculations. Shaded areas represent
the 95 % confidence interval.

so, we first compute the time to the most recent common ancestor (TMRCA) of a coalescent
tree for a sample size 𝑛 = 500. We find that the coalescent trees are scaled by a factor 1

𝑏2

independently of the chosen recombination rate (Figure 3.2a). The variance of the TMRCA
decreases with increasing recombination due to lower linkage disequilibrium among adjacent
loci, as expected under the classic Kingman coalescent with recombination (Hudson, 1983).
Moreover, we also find that decreasing the value of 𝑏 (i.e. maintaining the dormant population
for longer) decreases linkage disequilibrium (Figure 3.2b). This is a direct consequence of
the scaling of the recombination rate by 1

𝑏
, because any active individual can undergo

recombination (and can be picked as a parent with a probability 𝑏 backwards in time).
Therefore, we observe here two simultaneous effects of seed banks on the ARG: 1) the length
of the coalescent tree and the time between coalescence events is increased by a factor 1

𝑏2

meaning an increase in nucleotide diversity (under a given mutation parameter `), and 2) a
given lineage has a probability 𝑏𝑟 to undergo an event of recombination backward in time.
In other words, even if the recombination rate 𝑟 is slowed down by a factor 𝑏 (because only
active individuals recombine), since the coalescent tree is lengthened by a factor 1

𝑏2 there
are on average 1

𝑏
more recombination events per chromosome. This property of the ARG

was used in Sellinger et al., 2019 to estimate the germination parameter using the sequential
Markovian coalescent approximation along the genome.
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3.4.2 Allele fixation under positive selection

We examine the trajectory of allele frequency of neutral and beneficial mutations, by com-
puting the probabilities and times to fixation over 1000 simulations. As expected for the
case without dormancy (𝑏 = 1), the probability of fixation of a beneficial allele increases
with the strength of selection (Figure 3.3a). We note, that the mean fixation probability is
unaffected by the seed bank, as when 𝑁𝑒 is large enough and the coefficient of selection 𝑠 is
not too strong, the probability of fixation of a beneficial mutation depends only on ℎ𝑠 (Barrett
et al., 2006). As expected from the neutral case, the time to fixation with dormancy becomes
longer with smaller values of 𝑏 (Figure 3b). When selection is weak the time to fixation is
close to the expectation for neutral mutations (Figure 3.3b, 𝑏 = 1: 4𝑁 = 2000 generations
and 𝑏 = 0.25: 4𝑁 × 1

𝑏2 = 32, 000 generations). However, increasing 𝑠 changes the scaling
of the time to fixation. Dormancy significantly increases the times to fixation, beyond that
expected by 𝑁𝑒. This can be seen by comparing the expectations for the times to fixation for
the rescaled effective population size without dormancy (blue lines in Figure 3.3b) to those
obtained from our simulations (black lines). In order to understand this observation, we ex-
amine the time an allele under selection remains at given frequencies in the active population.
The trajectory of an allele undergoing selection can be separated into three phases: two that
are qualified as "stochastic", when the allele is at a very low or very high frequency, and one
"deterministic", during which the frequency of the allele increases exponentially (see Kim
and Stephan, 2002). As shown in Figures 3.7-3.9, we find that the proportion of time spent
at very low and very high frequencies increases with increasing selection and decreasing 𝑏

(it is unaffected by 𝑏 when selection is weak i.e. 𝑠 = 0.0001). This observation, along with
generally shorter relative times spent in the deterministic phase (Figure 3.9) with increasing
𝑏, imply that the seed bank contributes to increasing the duration of the stochastic phases,
slowing down the selection process.

3.4.3 Footprints of selective sweep

Now that we have a clearer indication of the dynamics of allele fixation, we use our new
simulation tool to investigate the genomic diversity and signatures of selective sweeps at and
near the locus under positive selection by simulating long portions of the genome (Figure
3.4). In accordance with the results from Figures 3.2a and 3.2b and the effects of the
seed bank in maintaining genetic diversity, smaller germination rates lead to higher neutral
genetic diversity due to the lengthening of the coalescent trees (e.g. Figure 3.4a measured as
Tajima’s 𝜋). Moreover, comparing the width of the selective sweeps valley of polymorphism
in presence and absence of dormancy, we conclude that stronger dormancy generates narrower
selective sweeps around sites under positive selection which have reached fixation (Figures
3.4b, 3.4d, 3.10-3.12, and 3.14-3.15). In other words, there is a narrower genomic region
of hitch-hiking effect around the site under selection (Maynard Smith and Haigh, 1974b).
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Figure 3.3 (a) Simulated estimates of
the probability of fixation of an advan-
tageous allele with different coefficients
of selection 𝑠 under absence of seed bank
𝑏 = 1 (black solid line) and various seed
bank strength 𝑏 = 0.5, 0.35, 0.25 (blue
lines) along with the theoretical expec-
tations for a neutral allele (dashed). (b)
Time to fixation for different selection
coefficients. Y-axis is the time in gen-
erations, and X-axis is the germination
rate 𝑏. (c) Normalized time to fixation
with respect to the number of genera-
tions for 𝑏 = 1 for each selection co-
efficient version of b). In b) and c)
black lines represent time to fixation un-
der seed bank. The blue lines indicate the
time to fixation in a population without
dormancy but with an effective popula-
tion size scaled by 1

𝑏2 and the respec-
tive scaled effective selection coefficient
𝑁𝑏
𝑒 𝑠. For example, for 𝑠 = 0.001, we

quantify the fixation time of alleles under
𝑁𝑏=1.0
𝑒 𝑠 = 1, 𝑁𝑏=0.71

𝑒 𝑠 = 1.98, 𝑁𝑏=0.5
𝑒 𝑠 =

4, 𝑁𝑏=0.35
𝑒 𝑠 = 8.2, and 𝑁𝑏=0.25

𝑒 𝑠 = 16 (in-
dicated by the red vertical dashed lines).
Population size is 500 diploids, ℎ = 0.5,
1,000 replicates are used for each param-
eter combination, and shaded areas rep-
resent the 95% confidence interval.
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This is due to the re-scaling of the recombination rate as a consequence of dormancy. We
note that with lower germination rates the depth of the sweeps increases in absolute diversity
terms (Figure 3.4a) but not in relative diversity (Figure 3.4b), when scaling by 1

𝑏2 . However,
we observe that nucleotide diversity close to the site under selection is not zero (Figure 3.4a)
because of the longer times to fixation of a positive mutation and longer time for drift and
new mutations to occur at neutral alleles close to the selected site. The results in Figure
3.4 reflect the manifold effect of dormancy on neutral and selected diversity as well as the
recombination rate (Figures 3.2b and 3.3c). Furthermore, as recombination and selection
are scaled by different functions of the germination rate, the results in Figure 3.4 cannot be
produced by scaling by the expected effective population size in the absence of dormancy
(Figure 3.14), since that would likewise scale the recombination rate by 1

𝑏2 , when it should be
only be scaled by 1

𝑏
. Scaling only by the effective population size, leads to narrower sweeps

for 𝑏 = 1 (Figure 3.14). Additionally, seed bank diversity appears to decrease visibility of
the sweep when mutations are overdominant (𝑑 = 1.1 with 𝑏 = 0.35, Figures 3.11-3.12) due
to the increased time over which recombination can act to reduce linkage within the region
(Figure 3.15b). We finally point out that while the signatures of sweeps appear smooth in
Figures 3.4 and 3.15, it is because these are averaged footprints over 400 repetitions. Each
simulation shows variance in both nucleotide diversity and the sweep signature, both of which
condition the detectability of the sweep against the genomic background.

3.4.4 Detectability of selective sweeps

Based on the previous results, we hypothesize that, compared to the absence of seed banking,
the detectability of selective sweeps in a species with seed bank is affected 1) in the genome
space, that is the ability to detect the site under selection, and 2) in time, that is the ability to
detect a sweep after the fixation of the beneficial allele. First, as the footprints of selective
sweeps are sharper and narrower in the genome under a stronger seed bank, we expect that
the detection of these sweeps likely requires adapting the different parameters of sweep
detection tools, namely the window size to compute sweep statistics. Second, in a population
without dormancy, the time for which the detection of a selective sweep signature is possible
is approximately 0.1N generations (Kim and Stephan, 2002). We hypothesize that as the
mutation rate and genetic drift are scaled by 1/𝑏2, the time it takes a sweep to recover after it
has reached the state of fixation is slowed down. The time window for which a sweep could
still be detected would then be potentially longer than 0.1𝑁 generations.
In Figure 3.5 we show the results obtained using OmegaPlus and SweeD, both tools for
detecting selective sweeps (Alachiotis et al., 2012; Pavlidis et al., 2013). As noted above,
individual simulations show significant variation in nucleotide diversity and LD, which is not
captured by the mean diversity over several runs plotted in the figures above. As the detection
of sweeps is performed against the genomic background of each individual simulation, these
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Figure 3.4 Signature of selective sweeps as measured by nucleotide diversity (Tajimas 𝜋 in a, b, c)
and Tajimas D (in d) over 1Mb sequence length (X-axis), the selected site being located in the middle
of the segment. The statistics are computed per windows of size 5,000 bp and averaged over 200
repetitions, the shaded area representing the 95% confidence interval. The black line indicates the
value without a seed bank (𝑏 = 1) and the blue line with dormancy (𝑏 = 0.35). a) 𝜋 assuming two
selection coefficients 𝑁𝑏=1

𝑒 𝑠 = 200 (a1) and 𝑁𝑏=1
𝑒 𝑠 = 100 (a2) with ℎ = 0.5. (b) Normalized 𝜋 as

divided by the average neutral branch diversity, namely approx. 2000 for 𝑏 = 1 and approx. 16000
for 𝑏 = 0.35 (see (a) or (c) between sequence range of 0 to 0.2× 106 or from 0.8× 106 to 1× 106). (c)
𝜋 assuming two recombination rates 𝑟 = 10−7 per bp per generation (c1) and 𝑟 = 5 × 10−8 per bp per
generation (c2).
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variations in nucleotide diversity and LD generate confounding effects and define the rates
of false positives expected from the detection test.

Following the classic procedure to detect sweeps, we use neutral simulations to define
different thresholds for detection, for which we obtain a false positive rate of less than 0.05.
We find that when using the same large detection window “–minwin 2000 –maxwin 50000"
for 𝑏 = 1 and 𝑏 = 0.35 (Figures 3.5 a21 and 3.5 b21), sweep detection almost completely fails
for 𝑏 = 1, unless the fixation has just occurred, meaning that no generation has passed since
the fixation event. For 𝑏 = 0.35 sweeps are detectable up to >2000 generations after fixation.
Decreasing the window size is generally associated with a loss of sensitivity, increasing the
rate of true and false positives. This is true for 𝑏 = 1 (see neutral threshold line in Figure 3.5
b21 and b22), indicating a decrease from roughly 60 % detected sweeps to 40 % (after 400
repetitions). However, the detectability of older sweeps (>2,000 generations) is increased for
𝑏 = 0.35 (Figure 3.5 b22). Results using SweeD support this increased detectability, also
when using the SFS statistics, showing the possibility of locating sweeps approximately up
to 2,000 generations after fixation (Figure 3.5 a3 and b3)

We note that there is a much sharper decrease in the rate of detection of false positive
sweeps (neutral simulation line in Figure 3.5) under seed bank compared to the absence of
a seed bank, likely being a direct consequence of the increased linkage decay around the
site. Lastly, the possibility to locate sweeps multiple generations after the fixation event
emphasizes the slower recovery of nucleotide diversity post-fixation in combination with the
already established narrowness of the signature in the presence of a seed bank for a given
population size 𝑁 (𝑏 = 0.35, Figure 3.10).

3.5 Discussion

We investigate the neutral and selective genome-wide characteristics of a weak seed bank
model by means of a newly developed simulator. We first characterize the emergent behavior
of an adaptive allele under a weak seed bank model, and simulate the times to and probabilities
of fixation, considering different strengths of selection and recombination. In populations
without seed banks, a neutral mutation is expected to fix after a time of 2𝑁𝑒 generations
and ≈ 2𝑁𝑒𝑠 if the allele is under weak selection (Kimura, 1962). Though both processes
are re-scaled by the weak dormancy model (Koopmann et al., 2017), the time to fixation of
a neutral mutation can be obtained by rescaling 𝑁𝑒 appropriately (𝑁𝑒 = 𝑁

𝑏2 in the case of a
seed bank, with 𝑏 the germination rate). This remains true under weak selection, however
under strong selection the time to fixation is significantly decreased and cannot be explained
by the change in 𝑁𝑒 alone. In accordance with existing theory, the probability of fixation is
unaffected by the seed bank (since it depends only on 𝑠ℎ, see for example Barrett et al., 2006),
implying that the main effect of seed banks is on the dynamics of allelic frequencies, but
not on the outcome of selection at a single locus. Combining this observation and the effect
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Figure 3.5 Selective sweep detection depending on the threshold of OmegaPlus or SweeD statistics
on a 10MB sequence with a strong selective mutation of 𝑁𝑏=1

𝑒 𝑠 = 1, 000 located in the middle of the
sequence. Two germination rates apply: a1) 𝑏 = 1 and b1) 𝑏 = 0.35, with the signature of sweep being
shown at various time points after the fixation event (0, 1000, 2000 and 4000 generations). Results for
two window sizes “–minwin 2000 –maxwin 50000" (a21,b21) and “–minwin 1000 –maxwin 25000"
(a22,b22) for analysis with OmegaPlus and SweeD (a3 and b3) using a grid size of 1,000. The
percentage of detected sweeps is indicated for a given user-defined threshold value on the X-axis.
Vertical dashed lines indicate the 5% sweep detection based on neutral simulations, setting up the
false positive rate. Recombination rate is 𝑟 = 1×10−7 per bp per generation for all sweep simulations,
and 400 replicates for each parameter.
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of seed banks on increasing the effective recombination rate, we suggest that the signatures
of sweeps may be slightly easier to detect in the presence of seed banking as shown by the
sharpness and depth of the nucleotide diversity pattern (the so-called valley of polymorphism
due to genetic hitch-hiking, Maynard Smith and Haigh, 1974b; Kim and Stephan, 2002)
against the genomic background.

3.5.1 Dynamics of alleles under positive selection

Our results regarding the time to fixation of advantageous alleles are in line with previous
works in showing that a weak seed bank delays the time to fixation (Hairston Jr and De Sta-
sio Jr, 1988; Koopmann et al., 2017; Heinrich et al., 2018; Shoemaker and Lennon, 2018).
However, a novelty here is that we refine these results in showing that the time to fixation
of a weakly (𝑠 < 0.01) and a strongly (𝑠 ≥ 0.01) positively selected allele differ under seed
bank: the selection on weak alleles is delayed by a factor 1

𝑏2 while for strong selection, the
time to fixation is delayed by more than would be expected for a population without a seed
bank but the same effective population size(see Figure 3.3b,3.3c, and Koopmann et al. 2017
for an analytical approach with an infinite deterministic seed bank). We show that this delay
can be explained by an increase in the time spent in the stochastic phases of allele fixation (at
below 10% and above 90% in the active population). In other words, dormancy delays the
action of selection under the weak seed bank model (due to the dormant population acting
as a buffer slowing down allele frequency change). In the initial phase of selection when
the advantageous allele is at a very low frequency in the (active) population, and before
reaching the exponential phase, the allele frequency increases almost deterministicly (Kim
and Stephan, 2002). This delay in the initial selection phase is visible in Figure 4a in Shoe-
maker and Lennon, 2018. Our results are valid for the weak seed bank model (as studied
in Figure 4a in Shoemaker and Lennon, 2018, and Koopmann et al., 2017) and we find that
there exists a unique phase of selection encompassing the time until all individuals (in the
active and dormant population) have fixed the advantageous allele. Strong seed bank models
behave differently with respect to time to fixation of alleles under selection (Shoemaker and
Lennon, 2018), showing two distinct phases: a first rapid phase of selection in the active
population, followed by a second long delay until there is fixation in the dormant population.
We are not aware of any results regarding the effect of strong seed banking on the probability
of allele fixation. Our results thus mitigate the previous claim that (weak) seed banks may
amplify selection, making it relatively more efficient with regards to the effects of genetic
drift, while it does not alter the probability of fixation of an advantageous allele. Longer
times to fixation should promote genetic diversity, but as the probability of fixation at a single
locus is unchanged by the seed bank, dormancy does not necessarily enhance the adaptive
potential (by positive selection) of a population.
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3.5.2 Signals of selective sweeps

The precise signature of a positive selective sweep is dependent on a variety of factors, i.e. age
of the observation after fixation, degree of linkage due to recombination, and its detectability
depends on the specified window size to compute polymorphism statistics. However, in the
case of sweeps under seed bank, two effects are at play and change the classic expectations
based on the hitch-hiking model without generation overlap. First, as the effective population
size under seed bank increases with smaller values of 𝑏, an excess of new mutations is expected
to occur after fixation around the site under selection compared to the absence of seed bank.
As these new mutations are singleton SNPs, we suggest that the signature of selective sweeps
observed in the site-frequency spectrum (U-shaped SFS) should be detectable under seed
bank (Maynard Smith and Haigh, 1974b; Kim and Stephan, 2002). Additionally, this effect
was also detectable by the other sweep detection methods based on the SFS (SweeD, Pavlidis
et al., 2013), finding sweeps older than 2000 generations (for N=500).
Second, the signature of sweeps also depends on the distribution of linkage disequilibrium
(LD) around the site under selection (Alachiotis et al., 2012; Bisschop et al., 2021b), which
is affected by the seed bank (Figure 3.4). Theoretically, it has been shown that patterns of LD
both on either side and across the selected site generally provide good predictive power to
detect the allele under selection. We use this property when using OmegaPlus, which relies
on LD patterns across sites. Further past demography should be accounted to correct for
false positives, due for example to bottlenecks (see review in Stephan, 2019c). We speculate
that a high effective recombination rate around the site under selection, as a consequence of
the seed bank, maybe an advantage when detecting sweeps. This allows the avoidance of
confounding effects due to the SFS shape, which is sensitive to demographic history. We
also highlight that the narrower shape of the selective sweep under stronger seed bank, and
the smaller number of loci contained in the window, reduce the number of false positives.
As mentioned above, a crucial parameter to detect sweeps is the window length to compute the
statistics that the various methods rely on. The optimal window size depends on the neutral
background diversity around the site of interest, which is a consequence not only of the rate of
recombination but also the scaled rate of neutral mutations. We choose a constant mutation
rate over time, and make the assumption of mutations being introduced during the dormant
phase at this constant rate (see equations in introduction). This simplifying assumption is
partially supported by empirical evidence (Levin, 1990; Whittle, 2006; Dann et al., 2017),
and has so far been made in the wider field of inference models, notably in the ecological
sequential Markovian coalescent method (eSMC, Sellinger et al., 2019). While assuming
mutation in the dormant population favors the inference of footprints of selection by simply
adding additional data, which subsequently increases the likelihood to observe recombination
events, it remains unclear if this assumption is justified for all species with a dormant phase
and/or if mutations occur at a different rate depending on the age of the dormant population.
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More research on the rate of mutation and stability of DNA during dormant phases is needed
in plant (e.g.Waterworth et al., 2016), fungi and invertebrate species. Nevertheless, even
if this mutation rate in seeds is relatively low, our results of a stronger signal of selection
under seed banking than in populations without seed banking are still valid. In contrast to the
weak seed bank model, it is possible to test for the existence of mutations during the dormant
stage under a strong seed bank model as assumed in prokaryotes, because of the much longer
dormant phase compared to the coalescence times (Blath et al., 2020).
Finally, as for all sweep models, we show that selective events that are too far back in the past
cannot be detected under seed banks. Nonetheless, we show that when there is a seed bank,
older sweeps can be detected with increasing accuracy. The presence of a long persistent seed
bank could therefore be convenient when studying older adaptation events in plants, fungi
and invertebrates that have some form of dormancy. This prediction also agrees with the
previous observation that the footprint of older demographic events is stored in the seed bank
(predicted in Živković and Tellier, 2012, observed theoretically in Sellinger et al., 2019, and
empirically observed in Daphnia in Möst et al., 2015). Our results open avenues for further
testing the correlation between past demographic events and selective events for species that
present this life-history strategy. However, current methods estimating the age of selective
sweeps (Tournebize et al., 2019; Bisschop et al., 2021b) would need to use an ad hoc simulator
(e.g. such as the one we present here) to generate neutral and selected simulations under seed
banking.

3.5.3 Strengths and limitations of the simulation method

The simulation program developed and used in this work, written in C++, is centered on
the use of tskit. The toolkit allows for the efficient storage of genealogies through time, by
removing lineages that have effectively gone extinct in the current population, thus simplifying
the genealogy at regular intervals during the program run-time. Despite all our efforts to
streamline the process, forward simulations are inherently limited, because each generation
has to be produced sequentially. Thus, while being more flexible and intuitively easier to
understand than their coalescent counterparts, forward simulations sacrifice computational
efficiency in terms of memory and speed. While simulating hundreds or thousands of
individuals is possible (also storing their genealogies in a reasonable amount of time), this
limitation becomes exaggerated when adding genomic phenomena such as recombination,
and even more so when considering ecological characteristics such as seed banking. The latter
scales the process of finding the most recent common ancestor by an inverse factor of 𝑏2. As
this leads to an increase in run-time of the order of𝑂 (1/𝑏2), we kept the population size at 500
(hermaphroditic) diploid individuals. Furthermore, the output format of the simulations are
tree sequences, which enables downstream processing and data analysis without the elaborate
design of highly specific code. We believe that our code is the first to allow simulations of
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long stretches of DNA under the seed bank model including recombination and selection. In
a previous study, we developed a modified version of the neutral coalescent simulator scrm
(Staab et al., 2015) which includes a seed bank with recombination (Sellinger et al., 2019).
Our current simulator can be used to study the effect and signatures of selection along the
genome under dormancy for non-model species with reasonably small population sizes. For
a strict application of our model to diploid plants, future work would need to consider the
constraint of having only 𝑁 individual diploid parents to choose from. We expect this to
likely yield slightly shorter coalescent times than in our pseudo-diploid model (based on the
haploid Kaj et al., 2001), while our insights should still be valid.

3.5.4 Towards more complete scenarios of selection

We here explore a scenario in which a single beneficial allele is introduced. The much
longer times to fixation in the presence of seed banks suggest that such a scenario may be
unlikely. Indeed, it is probable that several alleles under selection, potentially affecting the
same biological processes, are maintained simultaneously in populations for longer periods
of time. We can therefore surmise that under seed banking, polygenic selective processes
and/or competing selective sweeps, often associated with complex phenotypes and adaptation
to changing environmental conditions in space and time, should be common.

From the point of view of genomic signatures of selection, the overall effectiveness of se-
lection at a locus coupled with increased effective recombination with seed banking generate
narrower selective sweeps, hence less genetic hitch-hiking throughout the genome. While we
show that these effects can be advantageous to detect selective sweeps, we speculate that this
might not be the case for balancing selection. If seed banks do promote balancing selection
(Tellier and Brown, 2009), the expected genomic footprints would be likely narrowly located
around the site under selection, and the excess of nucleotide diversity would not be signifi-
cantly different from the rest of the genome. The presence of seed banking would therefore
obscure the signatures of balancing selection. Concomitantly, the Hill-Robertson-Effect and
background selection are expected to be weaker under longer seed banks. These predictions
could ultimately define the relationship between linkage disequilibrium, the efficacy of se-
lection and observed nucleotide diversity in species with seed banks compared to species
without it (Tellier, 2019, Živković and Tellier, 2018).
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3.7 Absolute TMRCAs for different germination and
recombination rates

0 10−7 10−6

recombination rate [per bp per generation]

0

50000

100000

150000

200000

250000

T
M

R
C

A
s

[g
en

er
at

io
n

s]

0 10−7 10−6

103

104

105

b=1.0 b=0.5 b=0.35 b=0.25

Figure 3.6 Absolute time to the most recent common ancestor (TMRCA) as a function of the ger-
mination rate 𝑏. For each germination rate, three recombination rates per site are presented (𝑟 = 0,
𝑟 = 10−7 and 𝑟 = 10−6. Boxes describe the 25th (Q1) to 75th percentile (Q3), with the lower whisker
representing Q1-1.5×(Q3-Q1) outlier threshold and the upper whisker is calculated analogously. The
mean is plotted between Q3 and Q1. Each boxplot represents the distribution of 200 TMRCA values
over 200 sequences of 0.1 Mb. Per sequence the oldest TMRCA is retained.
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Table 3.1 Proposed number of generations to simulate before adding selective mutation (for 2N=1000).
Also, the number of generations simulated to estimate TMRCA.

germination rate (b) recombination rate (r) calibration generations
1 0 40000
0.5 0 80000
0.35 0 160000
0.25 0 320000
1 10−8 48000
0.5 10−8 96000
0.35 10−8 192000
0.25 10−8 384000
1 10−7 56000
0.5 10−7 112000
0.35 10−7 224000
0.25 10−7 448000
1 10−6 64000
0.5 10−6 128000
0.35 10−6 256000
0.25 10−6 512000
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3.8 Fixation time phase contribution
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Figure 3.7 Time to fixation for different selec-
tion coefficients. Y-axis is the unnormalized
time in generations, and X-axis is the germi-
nation rate 𝑏. a) Time allele spends below
10% frequecy in population and b) time allele
spends above 10 % and below 90% frequency
c) above 90% in population. A dormancy
effective population size coefficient 𝑁𝑏

𝑒 𝑠 can
be calculated with each intersection of verti-
cal dashed lines with fixation times by scaling
with 𝑏2, e.g. for 𝑁𝑏=1.0

𝑒 𝑠 = 1: 𝑁𝑏=0.71
𝑒 𝑠 = 2.0,
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𝑒 𝑠 = 4, 𝑁𝑏=0.35

𝑒 𝑠 = 8.2, 𝑁𝑏=0.25
𝑒 𝑠 = 16.

In total 1000 replicates were used for each
parameter configurations
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Figure 3.8 Time to fixation for different selec-
tion coefficients. Y-axis is the time normal-
ized by the 𝑏 = 1 estimate for each respective
selection coefficient, and X-axis is the germi-
nation rate 𝑏. a) Time allele spends below
10% frequency , b) time allele spends above
or equal to 10 % and below or equal to 90%
frequency and c) above 90% frequency in pop-
ulation. A dormancy effective population size
coefficient 𝑁𝑏

𝑒 𝑠 can be calculated with each in-
tersection of vertical dashed lines with fixation
times by scaling with 𝑏2, e.g. for 𝑁𝑏=1.0

𝑒 𝑠 = 1:
𝑁𝑏=0.71
𝑒 𝑠 = 2.0, 𝑁𝑏=0.5

𝑒 𝑠 = 4, 𝑁𝑏=0.35
𝑒 𝑠 = 8.2,
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𝑒 𝑠 = 16. In total 1000 replicates were
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Figure 3.9 Time contribution to fixation for
different selection coefficients in percent of
the phases (a) below 10 % allele frequency
and (b) above 10 % and below 90% allele
frequency and (c) above 90% allele frequency.
In total 1000 replicates were used for each
parameter configurations.
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3.9 Sweep recovery signatures after fixation
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Figure 3.10 Nucleotide diversity (Tajima’s 𝜋, Y-axis) over sequence length (X-axis) for windows of
size 5000 mapping length and averaged over 400 repetitions. Comparison between germination rate
a) 𝑏 = 1 and b) 𝑏 = 0.35 for different sweep recovery times. A selection coefficient of 𝑁𝑏=1

𝑒 𝑠 = 100.0
and recombination rate 𝑟 = 5 × 10−8 per generations per bp was set for all simulations.



3 Weak Seedbanks Influence the Signature and Detectability of Selective Sweeps

66

3.10 Effect of different dominance coefficients
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Figure 3.11 Nucleotide diversity (Tajima’s 𝜋, Y-axis) over sequence length (X-axis) for windows of
size 5000 and averaged over 200 repetitions. Comparison between germination rate a) 𝑏 = 1 and
b) 𝑏 = 0.35 for different dominance coefficients a1, b1) ℎ = 1.1, a2,b2) ℎ = 0.5, a3, b3) ℎ = 0.1,
respectively. A selection coefficient of 𝑁𝑏=1

𝑒 𝑠 = 200 and recombination rate 𝑟 = 5 × 10−7 per bp per
generation was set for all simulations.

0.0 0.2 0.4 0.6 0.8 1.0
×106

0.0

0.5

1.0

s = 0.2, dom.coef = 1.1 with r = 10−7

0.0 0.2 0.4 0.6 0.8 1.0
×106

0.0

0.5

1.0

s = 0.2, dom.coef = 0.5 with r = 10−7

0.0 0.2 0.4 0.6 0.8 1.0

sequence [bp] ×106

0.0

0.5

1.0

s = 0.2, dom.coef = 0.1 with r = 10−7

b=1 b=0.35

ge
n

et
ic

d
iv

er
si

ty
(T

a
ji

m
as
π

b
as

ed
on

b
ra

n
ch

es
)

Figure 3.12 Normalized nucleotide diversity (Tajima’s 𝜋, Y-axis) over sequence length (X-axis) for
windows of size 5000 and averaged over 200 repetitions. Comparison between germination rate 𝑏 = 1
and 𝑏 = 0.35 for different dominance coefficients ℎ = 1.1, ℎ = 0.5, ℎ = 0.1, respectively. A selection
coefficient of 𝑁𝑏=1

𝑒 𝑠 = 200 and recombination rate 𝑟 = 5 × 10−7 per bp per generation was set for all
simulations.
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Figure 3.13 Fixation probability (a) and time (b) for different dominance coefficients and two different
germination rates, namely 𝑏 = 1 and 𝑏 = 0.35 for 400 replicates. Selection coefficient was set to 0.2,
corresponding to 𝑁𝑏=1

𝑒 𝑠 = 200 and 𝑁𝑏=0.35
𝑒 𝑠 = 1632.7. In total 1000 replicates were used for each

parameter configurations and simulations were conditioned on fixation.
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Figure 3.14 Tajima’s 𝜋, Y-axis) over sequence length of 5 mb (X-axis) for windows of size 25000
and averaged over 150 repetitions. Comparison between germination rate 𝑏 = 1 and 𝑏 = 0.35 under
a selection coefficient of 𝑠 = 0.2, corresponding to 𝑁𝑏=1

𝑒 𝑠 = 400 without a seed bank (black) and to
𝑁𝑏=0.35
𝑒 𝑠 = 400 (blue), assuming population sizes of 2000 and 245 diploid individuals, for no seed

bank and seed bank, respectively. A recombination rate of 𝑟 = 5 × 10−8 per bp per generation was set
for all simulations.

3.12 Narrow sweep signature of
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Figure 3.15 Nucleotide diversity (a) Tajimas 𝜋 and (b) normalized diversity Y-axis) over sequence
length of 10 mb (X-axis) for windows of size 50000 and averaged over 400 repetitions, the shaded
area represents a 95% confidence interval. Comparison between germination rate 𝑏 = 1 (black) and
𝑏 = 0.35 (blue) for selection coefficients 𝑠 = 1 corresponding to 𝑁𝑏=1

𝑒 𝑠 = 1000 and 𝑁𝑏=0.35
𝑒 𝑠 = 8163.3

with a dominance coefficient of ℎ = 0.5 and recombination rate of 𝑟 = 10−7 per bp and generation.
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4 Determination of Rapid Adaptation in
Species with Large Offspring
Variance

The following chapter has been published as:
Kevin Korfmann, Marie Temple-Boyer, Thibaut Sellinger and Aurélien Tellier (2023). Deter-
minants of rapid adaptation in species with large variance in offspring production. Molecular
Ecology, 00, 1– 14. https://doi.org/10.1111/mec.16982

KK re-implemented and extended the simulator in Julia, based on an original Pythonic imple-
mentation of M. Temple-Boyer. All simulations and figures were contributed by KK, while
additionally working on the manuscript and revisions.

4.1 Abstract

The speed of population adaptation to changing biotic and abiotic environments is deter-
mined by the interaction between genetic drift, positive selection and linkage effects. Many
marine species (fish, crustaceans), invertebrates and pathogens of humans and crops, exhibit
sweepstakes reproduction characterized by the production of a very large amount of off-
spring (fecundity phase) from which only a small fraction may survive to the next generation
(viability phase). Using stochastic simulations, we investigate whether the occurrence of
sweepstakes reproduction affects the efficiency of a positively selected unlinked locus and
thus the speed of adaptation since fecundity and/or viability have distinguishable conse-
quences on mutation rate, probability and fixation time of advantageous alleles. We observe
that the mean number of mutations at the next generation is always function of the population
size, but the variance increases with stronger sweepstakes reproduction when mutations occur
in the parents. On the one hand, stronger sweepstakes reproduction magnifies the effect of
genetic drift thus increasing the probability of fixation of neutral allele, and decreasing that
of selected alleles. On the other hand, the time to fixation of advantageous (as well as neu-
tral) alleles is shortened by stronger sweepstakes reproduction. Importantly, fecundity and
viability selection exhibit different probabilities and times to fixation of advantageous alleles
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under intermediate and weak sweepstakes reproduction. Finally, alleles under both strong
fecundity and viability selection display a synergistic efficiency of selection. We conclude
that measuring and modelling accurately fecundity and/or viability selection is crucial to
predict the adaptive potential of species with sweepstakes reproduction.

4.2 Introduction

Starting from the seminal work of Darwin, evolution and adaptation of species/populations to
their environment through a particular phenotype or trait have been traditionally assumed to
be occurring at a slow pace and be beyond the direct observation of evolutionary biologists.
However, numerous counter-examples recently challenge this view, and demonstrate that
adaptation to environmental change can be fast, that is occurring over few generations (Zhou
et al., 2019). To name but a few, rapid adaptation is observed in natural settings during
colonization of novel habitats (Losos and Ricklefs, 2009; Hu et al., 2019), but also in
response to human activities: in plants (Anderson et al., 2012) and fish (Crotti et al., 2021)
responding to anthropogenic changes and destruction of habitats, in insects colonizing new
urban habitats (Diamond et al., 2022), in bacteria resisting antibiotics (Barbosa et al., 2021),
in fungi resistant to fungicides (Fisher et al., 2022), or in crop pathogens overcoming new
plant resistance (Persoons et al., 2017). We define here rapid adaptation as occurring over
few tens (up to hundred) generations thus including the effect of generation time.

With advances in sequencing technology, it becomes feasible to dissect the genetic archi-
tecture of the trait underpinning rapid adaptation, namely to decipher whether one or few
genes with major effects or many loci with small effects are involved. In the former case,
so-called selective sweeps occur at the given genes by selection of an advantageous allele
(Maynard Smith and Haigh, 1974a; Stephan, 2019b), while in the latter case, there is so-
called polygenic selection driven by simultaneous changes in allele frequencies across many
loci (Barghi et al., 2020; Jain and Stephan, 2017). Arguably, these both types of selection
processes and models represent two extreme in a continuum of possible genetic architectures
(number of genes involved, epistatic and pleiotropic interactions) and distribution of selection
coefficients across loci (Barghi et al., 2020; Jain and Stephan, 2017; Stephan, 2016). Based
on the current climate and global change accompanied by loss of biodiversity, as well as
the importance of adaptive mechanisms for medicine and agriculture, there is a tremendous
interest in measuring the speed of adaptation of species and uncovering the underlying genetic
(coding genes, gene expression change, gene duplication, genome rearrangement, transpos-
able elements,..) or epigenetic (RNA silencing, methylation,. . . ) mechanisms. However,
we suggest here that for evolutionary genomics of rapid adaptation to move into a predictive
science, that is to be able to assess the adaptive potential of species and predict how and
when adaptation may occur, it is important to account for the variability in life cycles and
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specificity of the life history traits of each species. Indeed, a potential pitfall lies in the
relative inadequacy of classic population genetics theory to describe the diversity of life
cycles and life history traits found in nature (Ellegren and Galtier, 2016). To date, analyses
and predictions of adaptation (rapid or not) are mostly biased by the use of mathematical
models with simplifying assumptions (e.g. assuming a Wright-Fisher model) which are vi-
olated in many species of bacteria, viruses, fish, invertebrates, fungi or plants which exhibit
clonal reproduction, large variance in offspring production (sweepstakes reproduction) and
dormancy/quiescence (Ellegren and Galtier, 2016; Tellier and Lemaire, 2014; Tellier, 2019;
Lennon et al., 2021a; Sabin et al., 2022; Eldon, 2020a).

In this study we chose to focus on adaptation provided by one locus with a significant
positive fitness effect. As a result this allele may spread and become fixed in the population,
generating a so-called selective sweep at the locus under selection (Maynard Smith and Haigh,
1974a; Stephan, 2016, 2019b). The speed of rapid adaptation depends on three distinct
processes (Charlesworth and Charlesworth, 2010; Charlesworth, 2020): 1) the probability
that a given advantageous allele appears by mutation at this locus, 2) the probability of fixation
of this allele, and 3) the time to fixation of that advantageous allele. First, an advantageous
allele needs to appear by random mutation. This process is quantified by the population
mutation rate \ = 4𝑁𝑒`, where 𝑁𝑒 is the inbreeding effective population size and ` the
mutation rate (per site or per locus). In general, the time for new mutations to appear is
only small enough to play an important role in rapid adaptation when both the mutation rate
and population size are high such as in viruses, bacteria or fungi (especially crop pathogens,
Stam and McDonald, 2018). Conversely, in most animal or plant species, mutation rates are
too small to promote new mutations over few generations, and it suffices to analyze rapid
adaptation based on standing variation (Eldon and Stephan, 2018, 2023. Second, a new
advantageous allele (mutant) has a probability to reach fixation (𝑃 𝑓 𝑖𝑥) or to be lost, as genetic
drift may counter-act the effect of positive selection. To assess the efficiency of selection,
the probability of fixation of an advantageous allele should be compared to the probability
of fixation of a neutral allele. Third, if the advantageous allele reaches fixation, it can do so
more or less rapidly (measured in generations). This is termed as the time to fixation (𝑇 𝑓 𝑖𝑥),
and to measure the effectiveness of selection it ought to be compared to that of a neutral
allele. While we focus, for simplicity, on rapid adaptation due to positive selection at one
locus, note that our predictions are affected in the genomic context by the effect of linked
selection at neighbouring sites.

As mentioned above, population genetics theory is built on a mathematical framework
which models these three processes and is historically based on the so-called Wright-Fisher
(WF) model of population evolution (see description in textbooks such as Charlesworth and
Charlesworth, 2010). The Wright-Fisher model was rapidly extended to continuous-time
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diffusion and coalescent models (e.g. Charlesworth and Charlesworth, 2010). In its simplest
version, the WF neutral model of evolution assumes a simplified life-cycle in which each of the
𝑁 haploid parents at generation 𝑔 produce more than enough offspring (an infinite number),
in order for 𝑁 of them to constitute the next reproducing generation (𝑔+1). There is no overlap
between generations, and offspring choose their parent at random from generation 𝑔 following
a binomial sampling. An emerging property resulting from this random sampling scheme
is that parents exhibit a distribution of offspring number which is well approximated by a
Poisson distribution with mean (and variance) equals to one (Charlesworth and Charlesworth,
2010). In other words, the variance in offspring production is small as most parents produce
zero, one or two offspring which become the next reproducing generation (𝑔+1).

To explicit the limitations of the WF model, we draw in Figure 4.1 a simplified life-cycle
starting from parents at generation 𝑔 producing offspring regrouping various developmental
stages: plants produce seeds germinating into seedlings, fish but also invertebrates such as
nematodes, crustaceans or insects produce eggs developing into juveniles, fungi produce
various forms of spores, and bacteria can produce dormant/quiescent spores. The production
of offspring constitutes the fecundity phase. These produced offspring hatch, germinate
and/or grow to form potential parents which are mature for reproduction, and constitute the
next generation (𝑔+1). The survival of the produced offspring is termed the viability phase
of the cycle. At each phase, life history traits determine the rate of genetic drift, as well
as mutational and selective processes, which can potentially result in different expectations
from the Wright-Fisher model for \, 𝑃 𝑓 𝑖𝑥 , and 𝑇 𝑓 𝑖𝑥 . First, some species present a very large
fecundity meaning that parents can produce a number of offspring/developmental stages
much larger than the population size of adults (number of offsprings >> number of parents
𝑁) which can generate a large variance in offspring production (and/or survival) between
parents (e.g. Árnason et al., 2023; Arnason and Halldorsdottir, 2015; Sabin et al., 2022;
Menardo et al., 2020; Hedgecock and Pudovkin, 2011; Eldon and Wakeley, 2006; Eldon
et al., 2015; Eldon and Stephan, 2023 and reviewed in Tellier and Lemaire, 2014; Eldon,
2020a) resulting in a neutral sweepstakes reproduction life-cycle. The neutral sweepstakes
reproduction life-cycle can be qualified as a specific case of "boom-and-bust" population
dynamics within a generation.
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Figure 4.1 Schematic view of species life-cycle. The cycle has two phases: fecundity and production
of developmental stages (green), and viability (orange) with the growth and development to become
a reproducing parent at generation 𝑔+1. Each phase has neutral, mutational and selective processes
associated.

Furthermore, under the explicit life-cycle of Figure 4.1, defining the mutational process
can be important as new mutations can occur in 1) the parental germ lines and are inherited
by all produced offspring, or 2) in the offspring. Additionally, fecundity selection occurs
if a parent with an advantageous allele produces on average a larger number of offspring
than other genotypes (Figure 4.1). Second, once the offspring are produced, their viability
and life span can exhibit large variance within and between population/species. Dormancy
is a common life history trait of plants (seeds), invertebrates (eggs) or fungi and bacteria
(also called quiescence or covert infections for human diseases) which increases the life span
of the offspring, generating overlap of generations (Charlesworth et al., 1994; Charlesworth
and Charlesworth, 2010; Kaj et al., 2001; Lennon et al., 2021a; Tellier, 2019). Defining the
mutational process is also here non-trivial as mutations may or may not occur in the dormant
stage (Tellier, 2019; Lennon et al., 2021a). Viability selection occurs when the survival of
offspring carrying an advantageous allele increases compared to other genotypes (Fig. 4.1).
When adding mutations in the population model, the fecundity and viability phases are not
distinguished nor distinguishable under the assumptions of the WF model. As a result, for
an advantageous allele, the probability of fixation and the time to fixation are identical for
fecundity and viability selection (He et al., 2017).

Recent studies have chiefly investigated the effect of sweepstakes reproduction on the
polymorphism of neutral alleles with the aim to infer the strength of the skew in offspring
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production (Schweinsberg, 2003; Eldon and Wakeley, 2006; Eldon et al., 2015; Koskela,
2018; Koskela and Berenguer, 2019; Freund, 2020; Vendrami et al., 2021; Árnason et al.,
2023; Sackman et al., 2019; Irwin et al., 2016; Korfmann et al., 2022b), while the influence of
sweepstakes reproduction on selected alleles is not yet fully understood. It is shown in (Der
et al., 2011) that selection should act more deterministically under sweepstakes reproduction
than under the WF model though under a peculiar model of reproduction (the Dirac model).
Further, the time to fixation of an advantageous allele is much faster than expected under
the WF model under a sweepstakes reproduction model with viability selection (Eldon
and Stephan, 2018). A complementary analysis of the effect of sweepstakes reproduction
with viability selection including the effect of allele dominance and random demographic
changes is concomitantly available to the present study (Eldon and Stephan, 2023). These
studies suggest that strong sweepstakes reproduction may, on the one hand, increase the
effectiveness of positive selection and speed up adaptation by shortening the time to fixation
of an advantageous allele (𝑇 𝑓 𝑖𝑥 conditioned on fixation). On the other hand, when observing
all allele trajectories (Supplementary Results in Eldon and Stephan, 2018, and Eldon and
Stephan, 2023), there is a high chance that advantageous alleles get lost under sweepstakes
reproduction. This means that the efficiency of viability selection, that is the probability
of fixation (𝑃 𝑓 𝑖𝑥), may be decreased under sweepstakes reproduction. These studies mostly
consider constant population size (but see Eldon and Stephan, 2023) and constant selection
in time, while varying population size and fluctuating selection are shown to be also key
determinants of the fate of advantageous alleles. Indeed, such non-constant conditions affect
the outcome of the interaction between genetic drift and selection under the WF model (Devi
and Jain, 2020; Kaushik and Jain, 2021).

Our study is unique in disentangling the effect of viability and fecundity effect on genetic
drift (sweepstakes reproduction under boom and bust cycle) and selection. We first investigate
the effect of sweepstakes reproduction on the three components of speed of adaptation \, 𝑃 𝑓 𝑖𝑥 ,
and 𝑇 𝑓 𝑖𝑥 by comparing neutral and advantageous alleles and considering fecundity and/or
viability selection under constant and varying population size as well as under fluctuating
selection. Second we also investigate the effect of joint viability and fecundity selection
on 𝑃 𝑓 𝑖𝑥 , and 𝑇 𝑓 𝑖𝑥 . We rely on the Cannings Model (Cannings, 1974) which allows us to
model the life cycle depicted in Figure 4.1. We use simple analytical derivations to provide
intuitions on the main results, and then use stochastic forward-in-time simulations, to assess
the effectiveness and efficiency of positive selection under a wide range of biologically
plausible life cycles and scenarios. We conclude on the importance of taking into account
life-cycles, including neutral sweepstakes, when predicting the potential of species for rapid
adaptation in medicine or agriculture.
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4.3 Materials and Methods

4.3.1 Model Description

With the idea to focus on sweepstakes reproduction in invertebrates, fungi, viruses or bacteria,
we consider a population of haploid individuals of constant size 𝑁 evolving under a Cannings
model (Cannings, 1974). We furthermore assume in our population the existence a bi-allelic
locus (with alleles 𝐴 or 𝑎). We begin by setting up the definitions of the neutral Cannings
model following the model of Schweinsberg (Schweinsberg, 2003) in which allele 𝐴 and 𝑎

have an identical fitness value.

Definition 1 (Neutral Cannings model of reproduction) Let (𝑋𝑖)1≤𝑖≤𝑁 be identical inde-
pendent ℕ-valued random variables such that 𝔼(𝑋1) > 1.
For each 1 ≤ 𝑖 ≤ 𝑁 , the number of offspring of the 𝑖th parental individual is 𝑋𝑖. The 𝑁

surviving offspring are then drawn without replacement amongst the 𝑋1 + ... + 𝑋𝑁 offspring
(ℕ is the set of natural numbers).

The hypothesis 𝔼(𝑋1) > 1 guarantees there will be more than 𝑁 offspring generated at
each generations assuring at least 𝑁 surviving offspring when 𝑁 goes to infinity as required in
mathematical models (Schweinsberg, 2003; Eldon and Stephan, 2018, 2023). As we wish to
investigate sweepstakes reproduction, we assume throughout this manuscript that the number
of offspring produced by each parents to be independent and identically distributed as in
Schweinsberg, 2003. Hence the distribution of the number of produced offspring is shaped
by a unique parameter 𝛼 (dropping the scaling constant 𝐶). More precisely, the distribution
of the number of produced offspring by a parent 𝑖 (i.e. 𝑋𝑖), given the parameter 𝛼, is:

𝑃(𝑋𝑖 = 0) = 0

𝑃(𝑋𝑖 ≥ 𝑘) = 1
𝑘𝛼

with 𝑘 ≥ 1
(4.1)

Let us define now a Cannings model with selection with the allele of type 𝐴 exhibiting a
selection advantage with coefficient 𝑠. Under fecundity selection individuals with allele 𝐴

produce on average more offspring than 𝑎 individuals.

Definition 2 (Reproduction with fecundity selection) Let (𝑋𝑖)1≤𝑖≤𝑁 be identical indepen-
dent ℕ-valued random variables such that 𝔼(𝑋𝑖) > 1. Let 𝑠 be the selection coefficient
of the type 𝐴. Let (𝑌𝑖)1≤𝑖≤𝑁 be identical independent ℕ-valued random variable such that



4 Determination of Rapid Adaptation in Species with Large Offspring Variance

76

𝔼(𝑌𝑖) > 1 and 𝔼(𝑌𝑖) = (1 + 𝑠)𝔼(𝑋𝑖).
For each 1 ≤ 𝑖 ≤ 𝑁 , the number of offspring of the 𝑖th parental individual is 𝑋𝑖 if the 𝑖th

individual has the type 𝑎, and 𝑌𝑖 otherwise.
The 𝑁 surviving offspring are then drawn without replacement amongst all produced off-
spring.

We first assume that parental individuals with allele 𝐴 produces on average 1 + 𝑠 more (or
less is if 𝑠 < 0) offspring than parents with allele 𝑎. Yet each produced offspring have the
same probability to be drawn for the next generation (viability). We define an advantageous
allele for fecundity, as an allele that increases on average the number of produced offspring
by a factor 𝑠 (𝑠 > 0).

In other words the expected number of produced offspring by parent with the allele 𝐴 is
(1 + 𝑠) times of the number of offspring produced by parents with allele 𝑎. Additionally,
there is no limit to the total number of offspring produced. This definition, referred to as the
model F1 for fecundity selection, is our fecundity selection default model. Our F1 fecundity
model is implemented by applying the inverse transform sampling method (see Appendix
and equation 4.1), multiplying the number of offspring produced by the selection component
(1 + 𝑠) and flooring the resulting number of type 𝐴 offspring for each generation.

However, we also suggest that alleles might affect the fecundity in a different way than in
the model F1 (i.e. scaling the average of the offspring distribution for individuals carrying
allele 𝐴). We wish to investigate an alternative fecundity selection model F2, in which
the distribution of produced offspring by parents with allele 𝐴 is possibly more skewed
(towards high values) than that of parents with allele 𝑎. This effect takes place in addition
to producing on average (1 + 𝑠) times the expected number of offspring produced by parents
with allele 𝑎. Such model might be a more realistic model for selection in species already
displaying skewed offspring distribution. In this alternative fecundity selection scenario (F2),
the advantageous (𝐴) allele increases on average the number of produced offspring by a factor
𝑠 as well compared to individuals with allele 𝑎 (as in F1). However, individuals with the
allele 𝑎 produce offspring with parameter of the Cannings model 𝛼𝑎 whereas the individuals
with the allele 𝐴 produce their offspring with a modified 𝛼𝐴 (where 𝛼𝐴 < 𝛼𝑎). Hence in our
fecundity F2 model, 𝛼𝐴 is obtained by the following formula:

𝛼𝐴 = 𝛼𝑎/(1 + 𝑠) (4.2)

Definition 3 (Reproduction with viability selection) Let (𝑋𝑖)1≤𝑖≤𝑁 be identical indepen-
dent ℕ-valued random variables such that 𝔼(𝑋𝑖) > 1. Let 𝑠 ≥ 0 be the selection coefficient
of the type 𝐴.
For each 1 ≤ 𝑖 ≤ 𝑁 , the number of offspring of the 𝑖th individual is 𝑋𝑖.
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The 𝑁 surviving offspring are the draw according to the Wallenius non central hypergeomet-
ric distribution where the weight of an offspring is 𝑤 = 1 + 𝑠 if it has the type 𝐴, and 𝑤 = 1
otherwise.

Here, viability selection increases the probability of offspring with allele 𝐴 to be drawn to
constitute the next generation 𝑔+1 (similar to Eldon and Stephan, 2018). In the Supplementary
Material, we present a cursory analysis of our discrete time Cannings model with and without
selection. We provide some useful general expressions for the expectation and variance of
the number of offspring (of allele A) at a given generation. These analytical results generate
the insight that fecundity and viability selection do differ in their mean and variance of
the number of offspring produced under our sweepstakes reproduction model. However, this
formalism does not allow to compute further analytical results because the precise distribution
of offspring would need to be specified. We therefore use simulations to generate quantitative
results on the comparison of neutral and selection models.

4.3.2 Stochastic simulations

Simulating offspring production

The neutral and selection Cannings models are implemented in 𝐽𝑢𝑙𝑖𝑎. As defined above
(equation 4.1), under neutrality we assume the number of offspring produced by each parents
to be independent and identically distributed as defined in (Schweinsberg, 2003). The main
parameter 𝛼 determines the distribution of offspring produced (Schweinsberg, 2003), with
𝛼 close to one meaning a large variance in offspring production with some individuals
producing extremely large number of offspring (on the order of 𝑁). When 𝛼 is close to
two, there is a small variance (of one) in offspring production between parents. Note that as
described in (Eldon and Stephan, 2018, 2023), due to scaling of large offspring production
under the Cannings model, a value of 𝛼 = 2 does not generate exactly a WF model. In
order to obtain the WF model, we specify in our Cannings model a Poisson distribution
of offspring (with parameter _). Further details of the implementation are found in the
Supplementary Material. Implementations and scripts to run simulations can be found at
https://github.com/kevinkorfmann/CanningsSimulator.

Simulating selection and demography

Each 𝛼 parameter setting is coupled with viability selection and/or fecundity selection model
under the influence of weak and strong selection coefficient, namely 𝑠 = [0, 0.01, 0.1] (𝑠 = 0
being the neutral case). We use population sizes 𝑁 of 500, 1000, 5000, so that the effective
selection coefficients are 𝑁𝑠 = [[0, 0, 0, ], [5, 10, 50], [50, 100, 500]], respectively.
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We follow previous work to model time dependent sinus functions with varying amplitudes
and periods for the population size (Devi and Jain, 2020) or selection coefficient (Kaushik and
Jain, 2021) (see Supplementary Material, Figs. SI1 and SI2). As environmental conditions
change, so can the fitness provided by alleles. To model this fluctuating effect, we now
assume population size to be constant, but the selective advantage provided by the allele
A to be changing through time. To simplify our approach (as in Kaushik and Jain, 2021),
we assume the average value of the selection coefficient to be 0 over a period of fluctuating
selection, but the amplitude of the selective coefficient 𝑠 ranges up to 0.01 or 0.1 (i.e.
maximum fitness provided by the allele A).

We test the effects on the probability of fixation and time to fixation regarding the initial
introduction phase of the allele (initially advantageous or deleterious) and the speed at which
the selection coefficient changes through time (slow period ∼ 1,000 generations or fast period
∼ 100 generations, see Supplementary Material and Figure 4.8).

We analyze the allele fixation probabilities and fixation times under different scenarios:
constant population size, fluctuating population size, and fluctuating selection. The obtained
results are based on 5×105 simulations to compute the probability of fixation, while the time
to fixation simulations are conditioned on fixation. Thus, simulations are run until 5,000
fixation events have occurred. Simulations start with time independent constant population
size and selection coefficient. Finally, to produce simulations under the WF model, we use a
Poisson distribution with _ = 1.2 (based on empirical simulation). We perform simulations
demonstrating that we recover the known expectations for probability of fixation and time to
fixation of neutral and advantageous alleles under the WF model (Table 4.1). Furthermore,
the probabilities and times to fixation are found to be identical for viability and fecundity
selection (Table 4.1) as expected under the WF model (He et al., 2017).

4.3.3 Mutation Process

Mutations may occur during the life cycle of the parent (in the cells of the germ line) and can
be heritable, so that all offspring produced by this parent share these mutations. Mutations
can occur during the gamete production and are thus offspring specific, with independence
between mutations. Hence the total number of occurring mutations 𝑀 in the produced
offspring at generation 𝑔 can be decomposed as:

𝑀 = 𝐿 × (`𝑝 × 𝑁𝑝 + `𝑜 × 𝑁𝑜) (4.3)

Where 𝐿 is the sequence length (or number of loci), `𝑝 is the mutation rate per generation
per site/locus during the life cycle of the parent, 𝑁𝑝 the number of parents (in our case,
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𝑁𝑝 = 𝑁), `𝑜 the mutation rate per generation per site/locus during gamete production, and
𝑁𝑜 the number of produced offspring.

We simulate two different models. In the first model, parents mutate at rate 0.01 (i.e.
`𝑝 = 0.01 and `𝑜 = 0), while in the second model the offspring mutate (and not the parents)
individually and independently under the same mutation rate (i.e. `𝑝 = 0 and `𝑜 = 0.01).
We then simulate mutations under the two models and compare the observe diversity, that is
the number of 𝐴 alleles produced in one generation. Each replicate consists of a population
of size 𝑁=10,000 (starting with all individuals of type 𝑎 allele) and only one generation is
simulated. The number of offspring produced is simulated under the distribution described
above (equation 4.1) for different values of the 𝛼 parameter. We then randomly sample among
the produced offspring, 𝑁𝑝 surviving individuals to assess the diversity at the next generation
(𝑔+1).

4.4 Results

4.4.1 Distribution of new mutations

We first focus on the distribution of new alleles obtained by mutations under a parental or
offspring mutational process and as function of the 𝛼 parameter. As expected from the
equation 4.3, the average number of new alleles are very similar for the parental and offspring
mutational model and all values of 𝛼, with a mean of 100 (as 𝑁𝑝 × `𝑝 = 𝑁𝑜 × `𝑜 =

10000 × 0.01 = 100, Figure 4.2). However, if mutations occur in the parents the variance in
the number of new mutations across simulation replicates is higher than if mutations occur in
offspring. Furthermore, the variance across replicates in the number of new alleles increases
with diminishing 𝛼 when mutations occur in parents, while 𝛼 has a negligible effect on the
variance of number of new alleles when mutations occur in the offspring (Figure 4.2). These
first results indicate that in a population of fixed size 𝑁 , species with mutation in parents or
in offspring would exhibit on average similar speed of adaptation based on the average rate
of appearance of novel advantageous mutations, but species with mutations in offspring are
more likely to consistently produce this number at each generation.
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Figure 4.2 Density distribution of new mutants (individuals with type A allele) after one
generation for two different mutation models. Density distribution of individuals with type A allele
after one generation under our Cannings model of offspring distribution with 𝛼 measures of 1.3, 1.5,
1.7, 1.9 for two different mutation models. In a) parents mutate, and the mutation is heritable for all
offspring of a given parent, in b) mutations occur in each offspring individually. Population size is
𝑁𝑝 = 𝑁𝑜 = 104 and mutation rate `𝑝 = `𝑜 = 0.01. The density estimation is the result of 5 × 103

repetitions per 𝛼 value.

4.4.2 Constant population size and constant selection

Viability and F1 fecundity selection

We first estimate the probability for alleles to reach fixation for different 𝛼 values under
constant population size (Figure 4.3 with 𝑁 = 1, 000, 𝑁 = 500 in Figure 4.9 and 𝑁 = 5, 000 in
Figure 4.10). The fixation probability of a neutral allele, i.e. 𝑠 = 0 in Figure 4.3a, diminishes
from 0.001 to 0.0002 with increasing 𝛼 values. Hence, neutral stronger sweepstakes
reproduction increases the probability of a neutral allele to become fixed. As expected
from classic theoretical results under the WF model, the probability of fixation of a neutral
allele diminishes with increasing population size (compare Figure 4.3a, d to Figure 4.9 and
4.9). Furthermore, viability and fecundity have a similar effect on the probability of fixation
(advantageous alleles for viability in Figure 4.3a, or for fecundity, Figure 4.3d). As could be
expected, under weaker selection (𝑠 = 0.01), the probability of fixation of the advantageous
allele is similar to that under neutrality, while stronger selection (𝑠 = 0.1) increases the fixation
probability (Figure 4.3a, d). Note that in contrast to the neutral allele, stronger sweepstakes
reproduction decreases the probability of fixation of an advantageous allele (from ca. 0.005
for 𝛼 = 1.1 to 0.02 for 𝛼 = 2). This means that that sweepstakes reproduction is equivalent
to stronger genetic drift which can counter-act the action of selection, thus decreasing the
probability of advantageous allele to be fixed by up to a factor four. Under strong sweepstakes
reproduction (low 𝛼 values), viability and fecundity advantageous alleles exhibit ultimately
similar probabilities of fixation as neutral alleles (Figure 4.3c, f). To better assess the
dissimilarity between viability and fecundity selection, we compute the difference of fixation
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probability between allele providing a fecundity and viability advantage (Figure 4.3c). When
an allele provides no or only a small advantage, the difference is equal to zero for all 𝛼 values
and population sizes (see Figure 4.9 and 4.10). However under strong selection for 𝛼 smaller
than 1.7, fecundity selection yields higher probabilities of fixation than viability selection, a
trend which reverses for higher 𝛼 values (Figure 4.3c).

We provide estimates of the fixation time (in generation) of a neutral or advantageous
allele (see Figure 4.3b, e). As expected from the classic theory under the WF, the time to
fixation decreases with the strength of selection and with population size (Figure 4.9b,e and
4.10b,e). As reported before (Eldon and Stephan, 2018), the time to fixation of advantageous
alleles increases with increasing 𝛼 values (the effect being more apparent for large population
size 𝑁 = 5, 000 in Figure 4.10b,e). Yet under neutrality (𝑠 = 0 in Figure 4.3e), the time to
fixation (and its variance) increases exponentially with 𝛼, while under strong selection the
time to fixation increases almost linearly with 𝛼. Overall, neutral alleles tend to reach fixation
as fast as advantageous alleles under strong sweepstakes reproduction (low 𝛼 values), i.e.
confirming the stronger effect of genetic drift with diminishing 𝛼 (note that the neutral case is
not shown in Eldon and Stephan, 2018). We assess the difference in time to fixation between
fecundity or viability selection (Figure 4.3f) and observe, as expected, no difference under
neutrality. Under selection, the time to fixation of an allele providing fecundity advantage is
shorter than an allele providing viability advantage, while this difference tends to zero when
𝛼 tends to one.



4 Determination of Rapid Adaptation in Species with Large Offspring Variance

82

1.2 1.4 1.6 1.8 2.0
0.000

0.005

0.010

0.015

0.020

fix
at

io
n 

pr
ob

ab
ilit

y

a) viability selection (N=1000)

1.5 2.0
10 5

10 2

1.2 1.4 1.6 1.8 2.0
0

200

400

600

800

fix
at

io
n 

tim
e

b) viability selection (N=1000)

1.5 2.0

102

1.2 1.4 1.6 1.8 2.0
0.003

0.002

0.001

0.000

0.001

fix
at

io
n 

pr
ob

ab
ilit

y 
di

ffe
re

nc
e c) fecundity-viability selection (N=1000)

1.2 1.4 1.6 1.8 2.0
0.000

0.005

0.010

0.015

0.020

fix
at

io
n 

pr
ob

ab
ilit

y
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Figure 4.3 Allele fixation probability and average time to fixation of alleles under constant pop-
ulation size. Fixation probability (a, d) and average fixation times (b, e) under different sweepstakes
strength (𝛼 ranging from 1.1 to 2.0) for (a, b) viability selection and (d, e) fecundity selection (F1).
Three selection coefficients are shown (𝑠 = 0; 0.01; 0.1) and 𝑁 = 1, 000. Probabilities are obtained
from 5× 105 simulations, while fixation times are estimated based on 5× 103 simulations conditioned
on fixation. Shaded areas correspond to 95% confidence intervals. Panels (c) and (f) present the
difference between the probability of fixation (c) and time to fixation (f) for fecundity compared to
viability selection.

Joint fecundity and viability selection

We now generalize the previous results by considering that the advantageous allele affects
simultaneously fecundity (F1) with weak 𝑠 = 0.01 or strong 𝑠 = 0.1 coefficient and viability
with weak 𝑠 = 0.01 or strong 𝑠 = 0.1 effect. As above, for an allele with strong effect
for both types of selection (i.e. 𝑠 = 0.1), the probability of allele fixation increases with
increasing 𝛼. However, the probability of fixation under joint strong selection (blue line
in Figure 4.4a) can become greater than the additive effect of viability and fecundity as
measured by summing up the probability for strong viability and strong fecundity obtained
separately (solid black line in Figure 4.4a). This synergistic effect is also observed for the
time to fixation when comparing the time to fixation under joint strong selection with the sum
of each strong selection measured independently (blue line versus solid black line in Figure
4.4b). When both selection coefficients are smaller (𝑠 = 0.01) or sweepstakes reproduction
is strong (small 𝛼), this synergistic effect diminishes so the probability of fixation and time
to fixation are close to the weak combined effect (see Figure 4.4). These results hold for all
tested population sizes (Figure 4.11 and Figure 4.12). We therefore demonstrate that as we
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decouple fecundity and viability selection in our model of offspring production, a synergistic
effect appears for simultaneous strong fecundity and strong viability selection.
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b) viability + fecundity selection (N=1000)
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Figure 4.4 Allele fixation probability and average fixation time under constant population size
and additive selection models. a) Probability of fixation under simultaneous viability and fecundity
selection (F1, blue) in comparison to neutral fixation probability with added effect (net contribution) of
fecundity (F1) and viability selection, when simulated individually (black). b) Average time to fixation
of alleles under simultaneous selection models (blue) in comparison to neutral estimates of time to
fixation summed up with the effect (net contribution) of each selection type (black). Probabilities are
obtained from 5 × 105 simulations, while fixation times are estimated based on 5 × 103 simulations
conditioned on fixation.

Fecundity selection (F2) model

We then estimate the probability (Figure 4.5a) and time to fixation (Figure 4.5b) of neutral
and advantageous alleles under the fecundity selection F2 model and compare with previous
results under F1 fecundity selection. The probability of fixation under model F2 is at least
five times greater than that under model F1 (Figure 4.5a), and the the time of fixation is at
least twice as fast than under F1 (Figure 4.5b).
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Figure 4.5 Allele fixation probability and average fixation time under constant population size
and two constant selection fecundity models. a) Probability of fixation and b) fixation time for two
positive selection fecundity models. In black fecundity is modelled by increasing the offspring number
(F1) , and in blue the fecundity F2 selection. Probabilities are obtained from 5× 105 simulations, and
fixation times are estimated based on 5 × 103 simulations.

4.4.3 Fluctuating conditions

Fluctuating population sizes

Under fluctuating population sizes (Figure 4.7), the probability of fixation of an allele under
fecundity F1 or under viability selection is similar as that under constant population size
(Figure 4.13 and 4.14). When comparing two different demographic scenarios, namely with
different amplitude and period of oscillations, the probability of fixation only slightly vary.
Similarly, the times to fixation of an advantageous allele with fecundity or viability selection
under fluctuating population sizes, are slightly shorter and with higher variance than those
obtained under constant population size (Figure 4.15 and 4.16). This confirms the intuition
and previous theoretical results under the WF model that varying population size around the
mean 𝑁 does increase genetic drift and decrease the time to fixation of alleles. Overall, the
difference in time to fixation and in fixation probability between the two selection models
(fecundity F1 and viability) also follow those under constant populations size (Figure 4.17,
4.18, 4.19 and 4.20).

Fluctuating selection

Under a slow variation of 𝑠 through time, the probability of fixation of the A allele depends
strongly on whether the initial fitness of that allele is beneficial or deleterious (Figure 4.6).
Comparing these two situations, when the A allele is initially advantageous, the fixation
probability is higher (less chance for the allele to be lost) and time to fixation is smaller
(Figure 4.21, 4.22, 4.23). Furthermore, we observe no noticeable difference between the
probability of fixation under viability or fecundity selection. The probability of fixation is
increasing with 𝛼 (for all population sizes Figure 4.24 and 4.25) when the allele is initially



4.4 Results

85

highly beneficial, otherwise in other cases, the probability of fixation is decreasing with 𝛼

when we consider slow fluctuating selection (Figure 4.6a,c). A new result emerges when
varying the speed of the fluctuating fitness (Figure 4.6b, d). When the speed of fitness
variation increases (fast fluctuations), the probability of fixation becomes non-monotonic
and is maximized at intermediate values of 𝛼 (at high amplitude of fitness).

For small amplitude of fitness variation, the results are similar to slow variation of fitness
(Figure 4.6). If the allele is initially deleterious (disadvantageous, light curves Figure 4.6a-
d), the probability to loose this allele is higher when the amplitude of fitness variation
increases. Similar results are obtained if the speed of fitness variation is increased (Figure
4.6). This demonstrates that there is an interaction between the speed and amplitude of
fitness fluctuation on one hand, and the occurrence of sweepstakes reproduction events on the
other hand. When selection is fast and strong enough, it can counter-act the stronger genetic
drift generated by sweepstakes reproduction (intermediate values of 𝛼), increasing thus the
probability of fixation for advantageous alleles.
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c) slow fluctuating fecundity selection (N=1000)
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Figure 4.6 Allele fixation probability under constant population size and fluctuating selection
coefficients. Fixation probability under different sweepstakes strength (𝛼 ranging from 1.1 to 2.0) for
(a) slow fluctuating viability selection with initial positive selection 𝑠 (dark blue) or starting with a
negative selection coefficient (light blue). b) fast fluctuating viability selection starting with allele 𝐴

being advantageous (dark red) and allele 𝐴 starting being deleterious (light red). The same color code
is used for slow (c) and fast (d) fluctuating fecundity selection (F1). Estimates were obtained from
5 × 105 simulations.
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4.5 Discussion

Throughout this manuscript, we investigate the effect of sweepstakes reproduction on the
three components of speed of adaptation \, 𝑃 𝑓 𝑖𝑥 , and 𝑇 𝑓 𝑖𝑥 . Our results are in line with
previous results under viability selection regarding 𝑃 𝑓 𝑖𝑥 becoming higher, and 𝑇 𝑓 𝑖𝑥 becoming
shorter, when decreasing the parameter 𝛼 (Eldon and Stephan, 2018, 2023). In the following,
we highlight few far reaching implications of our results. We focus on pathogens of crops
and plant species where sweepstakes reproduction may occur (Tellier and Lemaire, 2014) to
complement the abundant literature on already investigated biological systems such as fish
and marine organisms, or bacteria and viruses parasites of humans (Vendrami et al., 2021;
Árnason et al., 2023; Sackman et al., 2019; Irwin et al., 2016; Menardo et al., 2020; Sabin
et al., 2022; Matuszewski et al., 2017; Morales-Arce et al., 2020). On a technical note of
caution, our model assumes that the potential maximum number of produced offspring is
unbounded (as in Schweinsberg, 2003). As we intend to keep our model generally applicable
to many species, from fish to fungi, we refrain to fix a species specific boundary, although
we are aware that this may be biologically unrealistic. Investigating the effect of different
boundary values for the number of offspring produced is beyond the scope of this study and
will be part of future work focusing on given species of interest.

4.5.1 Mutational process under sweepstakes reproduction

We first analyze the number of new mutations produced either in the parental germ lines
giving rise to the gametes or in the offspring. Species with a short life span and with
strong sweepstakes reproduction, such as fungi (e.g. of crop pathogens), viruses, bacteria,
invertebrates, and vertebrates (fish) presenting a typical type-III survivorship ecological
strategy (i.e. life span is exponentially distributed), do benefit from mutations occurring in
offspring (eggs, spores, particles). Indeed, the number of new alleles is proportional to the
number of produced offspring (which is affected by 𝛼 and can possibly be very large) and
not to the number of parents, but the probability that individuals with new mutation survive
the viability phase is very small. Nevertheless, in such sweepstakes reproducing species
with mutations in offspring, a more consistent number of new (advantageous) mutations
are observed than when mutations occur in the parents (centered around the expected mean
𝑁 × `). This small variance in number of new mutations would reduce the variance for the
waiting time for a new advantageous mutation to appear (the random variable \), thereby
likely speeding up rapid adaptation compared to the case where mutations occur in the parents.
When mutations occur in offspring, even under large boom-and-bust cycle of population size,
that is the production of large amount of offspring which can mutate, the number of new
mutants observed at the next generation is determined by the number of offspring surviving
(𝑁) and does not depend on the parameter 𝛼. Hence, for parasites, the effective population
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size depends on the number of spores/infectious particles which successfully land on, transmit
to and infect a host (𝑁). If we define the total number of offspring (spores, infectious particles)
produced during the boom cycle of fecundity as the census size (𝑁𝑐𝑠), we obtain the following
relationships: the inbreeding effective population size (𝑁𝑒) is smaller than the number of
surviving offspring (𝑁), which is itself smaller than 𝑁𝑐𝑠. These discrepancies between 𝑁𝑒,
𝑁 and 𝑁𝑐𝑠 become larger as 𝛼 becomes smaller, meaning that the sweepstakes reproduction
model shows increasing discrepancy with the WF model of population evolution in which
𝑁 = 𝑁𝑒 = 𝑁𝑐𝑠 (Waples, 2005; Hare et al., 2011; Eldon, 2020a and references therein).
In other words, sweepstakes reproduction as well as dormancy in seed banks, disentangle
the process of genetic drift and mutation as usually considered in the classic expression of
the population mutation rate \ = 4𝑁𝑒` (see Figure 4.1) possibly explaining the so-called
Lewontin’s paradox in some species (Tellier, 2019; Charlesworth and Jensen, 2022).

We consequently draw two conclusions. First, the high stochastic processes of fecundity
and viability under sweepstakes reproduction does generate different, but likely more realistic,
predictions regarding the number of new mutations compared to average simple computations
based on census size (𝑁𝑐𝑠) observations in the field. Indeed, the census size of the boom
fecundity part of the life cycle is routinely assessed in plant pathology by measuring the
spore production of fungal lesions (see computations in Stam and McDonald, 2018), while
measuring the viability part of the infection cycle is more difficult but essential to define
the value of the population size 𝑁 (likely overestimated in Stam and McDonald, 2018).
Conversely, the estimation of inbreeding effective population size (𝑁𝑒) using polymorphism
sequence data is likely biased and likely underestimates (𝑁), meaning that predictions from
𝑁𝑒 do not fully assess the full adaptive potential of crop pathogens (see for example McDonald
and Linde, 2002). We suggest as a way forward to use full genome polymorphism data to
estimate simultaneously 𝑁 and 𝛼 (Korfmann et al., 2022b). Second, species with parents
exhibiting long live life span (trees, mammals) and in which mutations occurs in parental
germ lines (generating the gametes) may be expected to show more variable amount of
new (advantageous) mutations each generation. Our results show that this number of new
mutations is reduced under strong sweepstakes reproduction (𝛼 close to one). Nonetheless,
as sweepstakes reproduction and a boom-and-bust life cycle is not common to species with
type-I and type-II survivorship ecological strategy (e.g. mammals), we may expect our results
to be relevant to explain the variance in number of new mutations (and variance in waiting
time for new advantageous mutations) in species such as long lived plant species which
produce large amount of seeds, few of which surviving to the next generation.

4.5.2 Neutrality versus selection under sweepstakes reproduction

We study the probability of fixation of an allele providing fecundity and/or viability advantage.
We first attempt to derive fixation probabilities analytically under a general reproduction
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model. Yet, those probabilities could not be obtained without the exact definition of offspring
distributions. Hence, we use simulations. We quantify the effect of sweepstakes reproduction
on increasing, respectively decreasing, the fixation probabilities of neutral and, respectively,
selected alleles. Under strong sweepstakes reproduction (𝛼 tends to one), the probability of
fixation and the time to fixation of advantageous alleles tend to the probability of fixation of
neutral alleles (namely a probability of 0.001 for 𝑁 = 1000 when 𝛼 = 1.1 similar to 1/𝑁
under the WF model), while these quantities are not notably affected by population size or
population size variations.

We draw two further conclusions. First, as the probability of fixation of neutral allele
increases under stronger sweepstakes reproduction, we suggest that genomic divergence
(substitution rate) is not any longer a sole function of the mutation rate (`) as assumed
under the classic population genetics neutral theory (Charlesworth and Charlesworth, 2010).
Phylogenetic methods and dating of past events would need to account for the higher substi-
tution rate in species with low 𝛼. We speculate that this effect of neutral sweepstakes may
explain the large variance in substitution rates observed across bacteria species (Cui et al.,
2013; Gibson and Eyre-Walker, 2019), especially as pervasive and strong recurrent selection
generates sweepstakes in bacteria (Neher and Hallatschek, 2013; Menardo et al., 2020). As
a follow up, we speculate that classic methods to detect the action of positive selection based
on divergence versus polymorphism analyses at synonymous and non-synonymous sites (the
McDonald-Kreitman test, McDonald and Kreitman, 1991); and its derivatives (Stoletzki and
Eyre-Walker, 2011) could be biased and could show low statistical power in species with
sweepstakes. This is because neutral (synonymous) and selected (non-synonymous) allele
exhibit similar probability and time to fixation. Second, we suggest to revise the previous
claim that sweepstakes reproduction speed up rapid adaptation (Eldon and Stephan, 2018,
but a slightly different model generates a significant decrease of the probability of fixation;
Eldon and Stephan, 2023), because while we agree that time to fixation is faster, the prob-
ability of fixation of advantageous allele is significantly smaller for small values of 𝛼 (see
also the Supplementary Table A11 in Eldon and Stephan, 2018). Furthermore, the detection
of selective sweeps is likely complicated by the fact that strong sweepstakes reproduction
generates fixation (sweep) of neutral alleles as often as of positively selected alleles. It is
therefore expected that genome scan for positive selection would overestimate the number of
true selective events and show a high rate of false positives depending on the recombination
rate in the genome, a small rate increasing the effect of linkage disequilibrium and pervasive
sweepstakes signatures (possibly partially explaining the results in cod fish; Árnason et al.,
2023; discussed in Eldon and Stephan, 2023).
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4.5.3 Fecundity and viability selection under sweepstakes
reproduction

Our results suggest an interaction between the type of selection, fecundity and viability,
and the strength of the sweepstakes reproduction. At intermediate sweepstakes reproduction
fecundity selection is more efficient than viability, and the reverse is true at low sweepstakes
reproduction. Note that as expected when our model is adjusted to fit a WF model, we find
the probability and time to fixation of advantageous alleles to be the same for both types of
selection (He et al., 2017). These results hold under varying population size. Population
size variation only slightly shortens the time to fixation of beneficial alleles, likely because
in contrast to (Devi and Jain, 2020), sweepstakes reproduction is the strongest determinant
of the effect of genetic drift compared to the weaker effect of population size change with a
random bottlenecks model (see also Eldon and Stephan, 2023). Furthermore, when an allele
jointly affects fecundity and viability, the probability of fixation and time to fixation of weakly
advantageous alleles are largely additive as opposed to multiplicative, but a synergistic effect
is observed for strong selection coefficients. This demonstrates the non-additive interaction
between the fecundity and viability phases of the life-cycle for species with boom-and-bust
dynamics, possibly explaining the high adaptive potential and rapid adaptation of crop or
animal pathogens in response to drug/fungicide treatments (Barbosa et al., 2021; Fisher et al.,
2022) or to new crop resistant varieties (Persoons et al., 2017). Additionally, we observe
that the probability of fixation of a beneficial allele affecting fecundity is elevated if it jointly
increases the mean and skewness of the offspring distribution (model F2) compared to only
increasing the average fitness (model F1). Therefore, the effect and magnitude of selection
can only be appreciated and measured in the light of the offspring distribution and life cycle.
We speculate that our F2 selection model may be typical of species such as asexual bacteria
(Neher and Hallatschek, 2013) or asexual fungi (pathogen of crops), possible exhibiting
some kind of "winner takes all" dynamics whereby one clone would invade the population
extremely rapidly due to selection accelerated by neutral sweepstakes reproduction.

Finally, we also investigate the effect of fluctuating fecundity or viability selection. As
stronger sweepstakes reproduction corresponds to a higher occurrence of strong genetic drift
events, the efficiency of selection depends on the period of selection variation. When the
period of selection change is smaller (and with large amplitudes) than the occurrence of
sweepstakes reproductive events, selection overruns drift. In other cases, selected alleles do
not differ in their probability and time to fixation from the neutral alleles. As previously
acknowledged (Kaushik and Jain, 2021), the initial phase of the cycle of selection is crucial
to determine the fate of an allele: if the selection coefficient is initially positive, the allele
can become fixed, if it is negative, the allele is lost from the population. In this respect, there
is no difference between fecundity or viability selection, and the strength of sweepstakes
reproduction does not influence this behaviour. As far as we are aware, our results may
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be the first to demonstrate the different effect of fecundity and viability selection on fitness
under sweepstakes reproduction (Figure 4.1), and thus further work is needed to explore
the possible selection models and their biological implications as well as how to test the
predictions in empirical data. We highlight especially the cases where fecundity and viability
selection occur simultaneously, or that of fluctuating selection, as testing and measuring each
selection phase and varying the selection coefficient in time maybe be doable empirically
under controlled laboratory conditions.

4.5.4 Conclusion

As indicated in the introduction, we advocate to remain cautious regarding the applicability of
our results for the analysis of genome-wide polymorphism data (see for example Johri et al.,
2021, 2022a). Indeed, our model considers only one single locus under positive selection.
The speed of rapid adaptation in species with sweepstakes, and the signatures of selective
sweeps, are realistically affected by linked (positive and negative) selection at neighbouring
sites with various distribution of fitness effects (e.g. Hill and Robertson, 1966; Eyre-Walker
and Keightley, 2007; Johri et al., 2022a). Nevertheless, life history traits, such as sweepstakes
reproduction, dormancy and clonality are ubiquitous in many virus, bacteria, fungi, inverte-
brates and plant species, and do impact the reproductive mechanism and consequently the
relative importance of the various forces shaping genome evolution. We disentangle here the
fecundity and viability phases of the life cycle (Figure 4.1) under sweepstakes reproduction.
We note that similar observations have been made for seed dormancy disentangling fecundity
and viability selection in dormant seeds (Heinrich et al., 2018). However, in nature, organ-
isms may exhibit several peculiar life history traits (dormancy, sweepstakes reproduction)
such that there is a large variance in produced offspring, some of which remain dormant for
more than one generation before they become activated and can reproduce. Hence, it may be
important to consider more complex but realistic models of evolution for species with peculiar
life cycles to assess the limits of current population genetics theory, and better predict the
evolutionary potential of such species possibly important for medicine or agriculture.
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4.6 Supplementary Material

The following part contains the supplementary material, including the theoretical setup,
implementation details of the offspring distribution, tables for comparison to theoretical
expectations and supplementary figures.

4.7 Theoretical set-up:
Genetic drift and allele frequencies

We describe here the diffusion of the allele 𝐴 in our population of haploid individuals of
constant size 𝑁 under the different Cannings models: the neutral Cannings model and the
models with fecundity selection or viability selection.

4.7.1 The neutral case

We note 𝑛𝑡 the number of individual of type 𝐴, 𝑤𝑡 the number of offspring produced by
individual of type 𝐴 and 𝑀𝑡 the total number of offspring produced at the generation 𝑡. In
addition we write 𝑋𝑖 the number of offspring produced by individual 𝑖 and for 𝑘 ≥ 1 we
define 𝑋 𝑘 = 𝑋1 + ... + 𝑋𝑘 . Without loss of generality, we assume that the individuals of type
𝐴 are indexed from 1 to 𝑛𝑡 and the individual of type 𝑎 from 𝑛𝑡 + 1 to 𝑁 . Hence 𝑋𝑛𝑡 = 𝑤𝑡

and 𝑋𝑁 = 𝑀𝑡 .

Theorem 1 (Neutral case) Under the neutral Cannings model 𝑛𝑡 is a martingale and we
have the following:

𝔼(𝑛𝑡+1 |𝑛𝑡 = 𝑛) = 𝑛

Var(𝑛𝑡+1 |𝑛𝑡 = 𝑛, 𝑤𝑡 = 𝑤, 𝑀𝑡 = 𝑀) = 𝑁
𝑤

𝑀

(𝑀 − 𝑤)
𝑀

(𝑀 − 𝑁)
(𝑀 − 1)

In order to prove Theorem 1 we need the following lemma

Lemma 1 Let (𝑋𝑖)𝑖≥1 be identical independent ℕ-valued random variable. Let 𝑘 ≥ 1 and
let note 𝑋 𝑘 = 𝑋1 + ... + 𝑋𝑘 . We have the following result:
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𝑚

𝑘
= 𝔼(𝑋1 |𝑋 𝑘 = 𝑚)

[Proof of Lemma 1] We first compute the expectation of the sum and the square of the sum
conditionally to the value of the sum.

We hence have:

𝑚 = 𝔼(𝑋 𝑘 |𝑋 𝑘 = 𝑚)

=

𝑘∑︁
𝑖=1

𝔼(𝑋𝑖 |𝑋 𝑘 = 𝑚) by linearity of the expectation

= 𝑘𝔼(𝑋1 |𝑋 𝑘 = 𝑚) because the 𝑋𝑖 are exchangeable

[Proof of Theorem 1]

The number of surviving offspring of type 𝐴 in the next generation 𝑛𝑡+1 correspond to a
drawing without replacement of 𝑁 offspring amongst 𝑀𝑡 in which 𝑤𝑡 have the type 𝐴. Hence
the law of 𝑛𝑡+1 knowing that 𝑤𝑡 = 𝑤 and 𝑀𝑡 = 𝑀 is an hypergeometric H(𝑤, 𝑀, 𝑁). We
therefore have :

𝔼(𝑛𝑡+1 |𝑛𝑡 = 𝑛, 𝑀𝑡 = 𝑀, 𝑤𝑡 = 𝑤) = 𝑁𝑤

𝑀
(4.6)

Since for any random variable 𝑋,𝑌, 𝑍 we have 𝔼(𝑋 |𝑌 = 𝑦) = ∑
𝑧 ℙ(𝑍 = 𝑧 |𝑌 = 𝑦)𝔼(𝑋 |𝑌 =

𝑦, 𝑍 = 𝑧) and using 4.6 we have:

𝔼(𝑛𝑡+1 |𝑛𝑡 = 𝑛, 𝑀𝑡 = 𝑀) =
∑︁
𝑤

ℙ(𝑤𝑡 = 𝑤 |𝑛𝑡 = 𝑛, 𝑀𝑡 = 𝑀)𝔼(𝑛𝑡+1 |𝑛𝑡 = 𝑛, 𝑀𝑡 = 𝑀, 𝑤𝑡 = 𝑤)

=
𝑁

𝑀
𝔼(𝑤𝑡 |𝑛𝑡 = 𝑛, 𝑀𝑡 = 𝑀)

Knowing that 𝑛𝑡 = 𝑛 we have then 𝑤𝑡 =
∑𝑛

𝑖=1 𝑋𝑖 hence by linearity of the expectation
and because the (𝑋𝑖)1≤𝑖≤𝑁 have all the same law and are exchangeable, we have 𝔼(𝑤𝑡 |𝑛𝑡 =
𝑛, 𝑀𝑡 = 𝑀) = 𝑛𝔼(𝑋1 |𝑛𝑡 = 𝑛) which gives:

𝔼(𝑛𝑡+1 |𝑛𝑡 = 𝑛, 𝑀𝑡 = 𝑀) = 𝑁

𝑀
𝑛𝔼(𝑋1 |𝑀𝑡 = 𝑀)
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Because 𝑀𝑡 = 𝑋𝑁 and of Lemma 1 we have𝔼(𝑋1 |𝑋𝑁 = 𝑀) = 𝑀

𝑁
and𝔼(𝑛𝑡+1 |𝑛𝑡 = 𝑛, 𝑀𝑡 =

𝑀) = 𝑛 which leads to 𝔼(𝑛𝑡+1 |𝑛𝑡 = 𝑛) = 𝑛. Hence 𝑛𝑡 is a martingale.

As mentioned above, the number of surviving offspring of type 𝐴 in the next generation
𝑛𝑡+1 is an hypergeometric H(𝑤, 𝑀, 𝑁) knowing that 𝑤𝑡 = 𝑤 and 𝑀𝑡 = 𝑀 . Hence:

Var(𝑛𝑡+1 |𝑛𝑡 = 𝑛, 𝑤𝑡 = 𝑤, 𝑀𝑡 = 𝑀) = 𝑁
𝑤

𝑀

(𝑀 − 𝑤)
𝑀

(𝑀 − 𝑁)
(𝑀 − 1)

An explicit formula for the variance is not obtainable without the explicit definition of
the offspring distribution. At that stage, we leave to future work more involving analytical
derivations, and use stochastic simulations thereafter.

4.7.2 Fecundity Selection

We note 𝑋𝑡 the number of offspring produced by individual of type 𝐴 and 𝑌𝑡 the number
of offspring produced by individual of type 𝑎 at the generation 𝑡. In addition we write
𝑌𝑖 the number of offspring produced by individual 𝑖 of type 𝑎 such that 𝐸 (𝑌𝑖) = a𝑦 with
a𝑦 > 1, and Var(𝑌𝑖) = 𝜎2

𝑦 with 𝜎𝑦 > 0. We write 𝑋𝑖 the number of offspring produced by
individual 𝑖 of type 𝐴. Individuals of type 𝐴 display a fecundity advantage of 𝑠 such that
𝐸 (𝑋𝑖) = a𝑥 = (1 + 𝑠)a𝑦 = (1 + 𝑠)𝐸 (𝑌𝑖), with 𝑠 > 0, and Var(𝑋𝑖) = 𝜎2

𝑥 ,with 𝜎𝑥 > 0. We
further assume all individuals to produce offspring independently from one another.

The number of surviving offspring of type 𝐴 in the next generation, written 𝑛𝑡+1, correspond
to a drawing without replacement of 𝑁 offspring amongst𝑌𝑡 +𝑋𝑡 in which 𝑋𝑡 have the type 𝐴.
Hence the law of 𝑛𝑡+1 knowing that 𝑌𝑡 = 𝑌 and 𝑋𝑡 = 𝑋 is an hypergeometric H(𝑋, 𝑋 +𝑌, 𝑁).
We therefore have :

𝔼(𝑛𝑡+1 |𝑛𝑡 = 𝑛, 𝑋𝑡 = 𝑋,𝑌𝑡 = 𝑌 ) = 𝑁
𝑋

(𝑋 + 𝑌 )

Var(𝑛𝑡+1 |𝑛𝑡 = 𝑛, 𝑋𝑡 = 𝑋,𝑌𝑡 = 𝑌 ) = 𝑁
𝑋

(𝑋 + 𝑌 )
𝑌

(𝑋 + 𝑌 )
(𝑋 + 𝑌 − 𝑁)
(𝑋 + 𝑌 − 1)

However, because 𝑋𝑡 and 𝑌𝑡 are independent we can write :

𝔼(𝑛𝑡+1 |𝑛𝑡 = 𝑛) =
∑︁
𝑋

∑︁
𝑌

ℙ(𝑌𝑡 = 𝑌 |𝑛𝑡 = 𝑛)ℙ(𝑋𝑡 = 𝑋 |𝑛𝑡 = 𝑛)𝑁 𝑋

(𝑋 + 𝑌 )

Var(𝑛𝑡+1 |𝑛𝑡 = 𝑛) =
∑︁
𝑋

∑︁
𝑌

ℙ(𝑌𝑡 = 𝑌 |𝑛𝑡 = 𝑛)ℙ(𝑋𝑡 = 𝑋 |𝑛𝑡 = 𝑛)𝑁 𝑋

(𝑋 + 𝑌 )
𝑌

(𝑋 + 𝑌 )
(𝑋 + 𝑌 − 𝑁)
(𝑋 + 𝑌 − 1)
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As above, an explicit formula is not obtainable without a proper definition the offspring
production’s distribution. However, in practice the population size 𝑁 is assumed to be large.
We can hence assume the number of individuals of type 𝑎 and 𝐴 (respectively 𝑁 −𝑛 and 𝑛) to
be large as well. Because, 𝑋 = 𝑋1 + ... + 𝑋𝑛 and 𝑌 = 𝑌1 + ... +𝑌𝑁−𝑛, the central limit theorem
applies so that:

𝑌 ≈ N((𝑁 − 𝑛)a𝑦, (𝑁 − 𝑛)𝜎2
𝑦 )

𝑋 ≈ N(𝑛(1 + 𝑠)a𝑦, 𝑛𝜎2
𝑥 )

In this case, we can write :

𝔼(𝑛𝑡+1 |𝑛𝑡 = 𝑛) ≈
∫ +∞

−∞

∫ +∞

−∞
𝑁

𝑥

(𝑥 + 𝑦)
𝑒
− (𝑥−(1+𝑠)𝑛a𝑦 )2

2(𝑛𝜎𝑥 )2

𝑛𝜎𝑥

√
2𝜋

𝑒
− (𝑦−(𝑁−𝑛)a𝑦 )2

2( (𝑁−𝑛)𝜎𝑦 )2

(𝑁 − 𝑛)𝜎𝑦

√
2𝜋

𝑑𝑥𝑑𝑦

Var(𝑛𝑡+1 |𝑛𝑡 = 𝑛) ≈
∫ +∞

−∞

∫ +∞

−∞
𝑁

𝑥

(𝑥 + 𝑦)
𝑦

(𝑥 + 𝑦)
(𝑥 + 𝑦 − 𝑁)
(𝑥 + 𝑦 − 1)

𝑒
− (𝑥−(1+𝑠)𝑛a𝑦 )2

2(𝑛𝜎𝑥 )2

𝑛𝜎𝑥

√
2𝜋

𝑒
− (𝑦−(𝑁−𝑛)a𝑦 )2

2( (𝑁−𝑛)𝜎𝑦 )2

(𝑁 − 𝑛)𝜎𝑦

√
2𝜋

𝑑𝑥𝑑𝑦

4.7.3 Viability Selection

We note 𝑋𝑡 the number of offspring produced by individual of type 𝐴 and 𝑌𝑡 the number of
offspring produced by individual of type 𝑎 at the generation 𝑡. We write 𝑋𝑖 the number of
offspring produced by individuals 𝑖. We here assume all 𝑋𝑖 to be independent and identically
distributed. However, individuals of type 𝐴 display a viability advantage (i.e. more likely to
survive) of 𝑠 > 0 such that the 𝑁 surviving offspring are the draw according to the Wallenius
non central hypergeometric distribution where the weight of an offspring is 1 + 𝑠 if it has the
type 𝐴, and 1 otherwise.

Hence the number of surviving offspring of type 𝐴 in the next generation, written 𝑛𝑡+1,
correspond to a drawing without replacement of 𝑁 offspring amongst 𝑌𝑡 + 𝑋𝑡 in which 𝑋𝑡

have the type 𝐴. Hence the law of 𝑛𝑡+1 knowing that 𝑌𝑡 = 𝑌 and 𝑋𝑡 = 𝑋 is a Wallenius non
central hypergeometric distribution 𝑤𝑛𝑐ℎ𝑦𝑝𝑔(𝑁, 𝑋,𝑌, (1 + 𝑠)). Unfortunately there are no
explicit formulae for the variance or the expectation of a Wallenius non central hypergeometric
distribution, but these can be computed numerically and by stochastic simulations.
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4.8 Simulating offsprings

We build a forward simulator model as described in the main text. At each generation parents
produce offspring and the distribution is obtained as follows. The number 𝑋𝑖 of offspring
being obtained through inverse transform sampling by:

𝑋𝑖 = 𝑒
1
𝛼
×ln 1−𝑝0

𝑢 (4.12)

With 𝑢 being a random number (𝑢 ∼ 𝑈 (0, 1)) and 𝑝0 the probability for an individual
to not produce any offspring. All 𝑋𝑖 are summed, and floored to discretize the number of
sampled alleles. The parameter 𝛼 ranging from 𝛼 = 2 to 𝛼 = 1 affects the probability of
sweepstake reproductive events to occur. When 𝛼 = 2 the reproductive mechanism is similar
to the one in a Wright-Fisher. This way the number of type 𝐴 allele individuals are sampled,
while the number of type 𝑎 allele are calculated by subtracting the number of type 𝐴 from
the total population size.

Likewise, modeling the offspring of a Wright-Fisher model in a Cannings formulation is
achieved by sampling a Poisson number of offspring with rate parameter _.

𝑋𝑖 = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(_) (4.13)

Further implementation details can be found at:
https://github.com/kevinkorfmann/CanningsSimulator/blob/main/src/CanningsSimulator.jl.

4.9 Simulated scenarios

We investigate three possible scenarios: constant population size, varying population size
and fluctuating selection. The fluctuating population size is set to vary in regular cycles with
a given period and amplitude, to yield an harmonic mean of size 500, 1,000 and 5,000 as
defined in Figure 4.7. These values of the harmonic mean are the same as the values used
for the constant population size scenario. The cycles of population size variation can either
start with a population increase or population decrease as modelled by the shift in the sinus
function by a factor 𝜋 (Figure 4.7). Fluctuating selection is modelled to obtain an average
selection coefficient of zero across a full period. We choose two different amplitudes for 𝑠
(0.01 and 0.1) and two periods (fast with 100, and slow with 1,000 generations) as shown in
Figure 4.8. Slow fluctuating selection is defined as 𝑠 × 𝑠𝑖𝑛(0.006283𝑥) and fast fluctuating
selection as 𝑠 × 𝑠𝑖𝑛(0.06283𝑥). Importantly, the initial part of the cycle can yield that the 𝐴

allele is advantageous, or deleterious when shifting the sin function by 𝜋 (Figure 4.8).
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Figure 4.7 Fluctuating population size model. The curves indicate the population size variation
with harmonic means of 500, 1,000 and 5,000 and the same periods.
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Figure 4.8 Fluctuating selection coefficient model. The curves indicate the change in selection
coefficient with mean 𝑠 = 0, two amplitudes (0.01 and 0.1) and two periods (fast and slow).
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4.10 Supplementary Table

Table 4.1 Average fixation probability and time for Cannings model with Poisson offspring distribution
with rate parameter _ = 1.2. Probabilities are obtained from 5× 105 simulations, while fixation times
are estimated based on 5×103 simulations conditioned on fixation. In bold the neutral cases for which
the expectation is 1/𝑁 for the probability of fixation, and 2𝑁 for the time to fixation.

Selection type Selection coefficient Population size N Fixation probability Fixation time
fecundity 0.00 500 0.00197 999.15
fecundity 0.01 500 0.00685 587.38
fecundity 0.10 500 0.06851 108.64
fecundity 0.00 1,000 0.00097 2000.45
fecundity 0.01 1,000 0.00689 740.88
fecundity 0.10 1,000 0.06826 123.08
fecundity 0.00 5,000 0.00023 9976.43
fecundity 0.01 5,000 0.00674 1070.92
fecundity 0.10 5,000 0.06871 156.69
viability 0.00 500 0.00201 995.14
viability 0.01 500 0.00736 862.7
viability 0.10 500 0.06169 239.36
viability 0.00 1,000 0.00095 2005.19
viability 0.01 1,000 0.00705 1328.78
viability 0.10 1,000 0.06274 280.35
viability 0.00 5,000 0.0002 9973.58
viability 0.01 5,000 0.00702 2303.67
viability 0.10 5,000 0.06276 373.39
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4.11 Supplementary Figures
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f) fecundity-viability selection (N=500)

Figure 4.9 Allele fixation probability and average time to fixation of alleles under constant
population size. Fixation probability (a, d) and average fixation times (b, e) under different sweepstake
strength (𝛼 ranging from 1.1 to 2.0) for (a, b) viability selection and (d, e) fecundity selection (F1).
Three selection coefficients are shown (𝑠 = 0; 0.01; 0.1) and 𝑁 = 500. Probabilities are obtained
from 5× 105 simulations, while fixation times are estimated based on 5× 103 simulations conditioned
on fixation. Shaded areas correspond to 95% confidence intervals. Panels (c) and (f) present the
difference between the probability of fixation (c) and time to fixation (f) for fecundity compared to
viability selection.
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f) fecundity-viability selection (N=5000)

Figure 4.10 Allele fixation probability and average time to fixation of alleles under constant
population size. Fixation probability (a, d) and average fixation times (b, e) under different sweepstake
strength (𝛼 ranging from 1.1 to 2.0) for (a, b) viability selection and (d, e) fecundity selection (F1).
Three selection coefficients are shown (𝑠 = 0; 0.01; 0.1) and 𝑁 = 5, 000. Probabilities are obtained
from 5× 105 simulations, while fixation times are estimated based on 5× 103 simulations conditioned
on fixation. Shaded areas correspond to 95% confidence intervals. Panels (c) and (f) present the
difference between the probability of fixation (c) and time to fixation (f) for fecundity compared to
viability selection.
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Figure 4.11 Allele fixation probability and average fixation time under the joint selection model
and N=500. a) Probability of fixation under joint viability and fecundity selection (F1, blue) in
comparison to neutral fixation probability with added effect of fecundity (F1) and viability selection,
when simulated individually (black). b) Average time to fixation of alleles under simultaneous
selection models (blue) in comparison to neutral estimates of time to fixation summed up with the
effect of each selection type (black). Probabilities are obtained from 5×105 simulations, while fixation
times are estimated based on 5 × 103 simulations conditioned on fixation.
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Figure 4.12 Allele fixation probability and average fixation time under the joint selection model
and N=5,000. a) Probability of fixation under joint viability and fecundity selection (F1, blue) in
comparison to neutral fixation probability with added effect of fecundity (F1) and viability selection,
when simulated individually (black). b) Average time to fixation of alleles under simultaneous
selection models (blue) in comparison to neutral estimates of time to fixation summed up with the
effect of each selection type (black). Probabilities are obtained from 5×105 simulations, while fixation
times are estimated based on 5 × 103 simulations conditioned on fixation.



4.11 Supplementary Figures

101

1.2 1.4 1.6 1.8 2.0
0.000

0.005

0.010

0.015

0.020
fix

at
io

n 
pr

ob
ab

ilit
y

a) viability selection (N=578)

1.5 2.0
10 5

10 2

1.2 1.4 1.6 1.8 2.0

b) viability selection (N=1156)

1.5 2.0
10 5

10 2

1.2 1.4 1.6 1.8 2.0

c) viability selection (N=5777)

1.5 2.0
10 5

10 2

1.2 1.4 1.6 1.8 2.0
0.000

0.005

0.010

0.015

0.020

fix
at

io
n 

pr
ob

ab
ilit

y

d) fecundity selection (N=578)

1.5 2.0
10 5

10 2

1.2 1.4 1.6 1.8 2.0

e) fecundity selection (N=1156)

1.5 2.0
10 5

10 2

s=0 s=0.01 s=0.1

1.2 1.4 1.6 1.8 2.0

f) fecundity selection (N=5777)

1.5 2.0
10 5

10 2

Figure 4.13 Allele fixation probability under variable population size with initial increase in
size. Forward in-time simulations of a Cannings model with Schweinsberg offspring probability of
different sweepstake strength parameter 𝛼 range from 1.1 to 2.0 under viability (a-c) and fecundity(d-f)
selection (F1) with selection coefficients ranging from the neutral case to strong positive selection.
Population size at time 𝑡 𝑝𝑡 is defined as 𝑝𝑡 = 𝑁

2 ∗ 𝑠𝑖𝑛(0.05 × 𝑡) + 𝑁 with 𝑁 = 578, 𝑁 = 1, 156
and 𝑁 = 5, 777 individuals leading to harmonic mean of 𝑁𝐻𝑀 = 500 (a, d), 𝑁𝐻𝑀 = 1, 000 (b, e),
𝑁𝐻𝑀 = 5, 000 (c, f). Each combination of 𝛼, selection coefficient and population size parameter
was simulated 5 × 105 times, while counting the number of fixation events to estimate the fixation
probability.
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Figure 4.14 Allele fixation probability under variable population size with initial decrease in
size. Forward in-time simulations of a Cannings model with Schweinsberg offspring probability of
different sweepstake strength parameter 𝛼 range from 1.1 to 2.0 under viability (a-c) and fecundity (d-
f) selection (F1) with selection coefficients ranging from the neutral case to strong positive selection.
Population size at time 𝑡 𝑝𝑡 is defined as 𝑝𝑡 =

𝑁
2 ∗ 𝑠𝑖𝑛(0.05 × 𝑡 + 𝜋) + 𝑁 with 𝑁 = 578, 𝑁 = 1, 156

and 𝑁 = 5, 777 individuals leading to harmonic mean of 𝑁𝐻𝑀 = 500 (a, d), 𝑁𝐻𝑀 = 1, 000 (b, e),
𝑁𝐻𝑀 = 5, 000 (c, f). Each combination of 𝛼, selection coefficient and population size parameter
was simulated 5 × 105 times, while counting the number of fixation events to estimate the fixation
probability.
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Figure 4.15 Allele fixation time under variable population size with initial increase in size.
Forward in-time simulations of a Cannings model with Schweinsberg offspring probability of different
sweepstake strength parameter𝛼 range from 1.1 to 2.0 under viability (a-c) and fecundity (d-f) selection
(F1) with selection coefficients ranging from the neutral case to strong positive selection. Population
size at time 𝑡 𝑝𝑡 is defined as 𝑝𝑡 =

𝑁
2 ∗ 𝑠𝑖𝑛(0.05 × 𝑡) + 𝑁 with 𝑁 = 578, 𝑁 = 1, 156 and 𝑁 = 5, 777

individuals leading to harmonic mean of 𝑁𝐻𝑀 = 500 (a, d), 𝑁𝐻𝑀 = 1, 000 (b, e), 𝑁𝐻𝑀 = 5, 000 (c,
f). Each combination of 𝛼, selection coefficient and population size parameter was simulated until
5,000 alleles reached fixation. Mean and 95% confidence interval of fixation time are presented.
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Figure 4.16 Allele fixation time under variable population size with initial decrease in size.
Forward in-time simulations of a Cannings model with Schweinsberg offspring probability of different
sweepstake strength parameter𝛼 range from 1.1 to 2.0 under viability (a-c) and fecundity (d-f) selection
(F1) with selection coefficients ranging from the neutral case to strong positive selection. Population
size at time 𝑡 𝑝𝑡 is defined as 𝑝𝑡 = 𝑁

2 ∗ 𝑠𝑖𝑛(0.05× 𝑡 + 𝜋) +𝑁 with 𝑁 = 578, 𝑁 = 1, 156 and 𝑁 = 5, 777
individuals leading to harmonic mean of 𝑁𝐻𝑀 = 500 (a, d), 𝑁𝐻𝑀 = 1, 000 (b, e), 𝑁𝐻𝑀 = 5, 000 (c,
f). Each combination of 𝛼, selection coefficient and population size parameter was simulated until
5,000 alleles reached fixation. Mean and 95% confidence interval of fixation time are presented.
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Figure 4.17 Difference in allele fixation probability between fecundity and viability selection
under variable population size with initial size increase. Forward in-time simulations of a Can-
nings model with Schweinsberg offspring probability difference (fecundity (F1)- viability selection)of
different sweepstake strength parameter 𝛼 range from 1.1 to 2.0 with selection coefficients rang-
ing from the neutral case to strong positive selection. Population size at time 𝑡 𝑝𝑡 is defined as
𝑝𝑡 =

𝑁
2 ∗ 𝑠𝑖𝑛(0.05× 𝑡) + 𝑁 with 𝑁 = 578, 𝑁 = 1, 156 and 𝑁 = 5, 777 individuals leading to harmonic

mean of 𝑁𝐻𝑀 = 500 (a), 𝑁𝐻𝑀 = 1, 000 (b), and 𝑁𝐻𝑀 = 5, 000 (c). Each combination of 𝛼, selection
coefficient and population size parameter was simulated 5 × 105 times, while counting the number of
fixation events to estimate the fixation probability.
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Figure 4.18 Difference in time to fixation between fecundity and viability selection under under
variable population size with initial size increase. Forward in-time simulations of a Cannings
model with Schweinsberg offspring probability difference (fecundity (F1) - viability selection)of
different sweepstake strength parameter 𝛼 range from 1.1 to 2.0 with selection coefficients ranging
from the neutral case to strong positive selection. Population size at time 𝑡 𝑝𝑡 is defined as 𝑝𝑡 =
𝑁
2 ∗ 𝑠𝑖𝑛(0.05× 𝑡) +𝑁 with 𝑁 = 578, 𝑁 = 1, 156 and 𝑁 = 5, 777 individuals leading to harmonic mean
of 𝑁𝐻𝑀 = 500 (a), 𝑁𝐻𝑀 = 1, 000 (a), and 𝑁𝐻𝑀 = 5, 000 (c). Each combination of 𝛼, selection
coefficient and population size parameter was simulated until 5,000 alleles reached fixation.
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Figure 4.19 Difference in allele fixation probability between fecundity and viability selection
under variable population size with initial size decrease. Forward in-time simulations of a Cannings
model with Schweinsberg offspring probability difference (fecundity (F1)- viability selection) of
different sweepstake strength parameter 𝛼 range from 1.1 to 2.0 with selection coefficients ranging
from the neutral case to strong positive selection. Population size at time 𝑡 𝑝𝑡 is defined as 𝑝𝑡 =
𝑁
2 ∗ 𝑠𝑖𝑛(0.05 × 𝑡 + 𝜋) + 𝑁 with 𝑁 = 578, 𝑁 = 1, 156 and 𝑁 = 5, 777 individuals leading to harmonic
mean of 𝑁𝐻𝑀 = 500 (a), 𝑁𝐻𝑀 = 1, 000 (b), and 𝑁𝐻𝑀 = 5, 000 (c). Each combination of 𝛼, selection
coefficient and population size parameter was simulated 5 × 105 times, while counting the number of
fixation events to estimate the fixation probability.
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Figure 4.20 Difference in time to fixation between fecundity and viability selection under under
variable population size with initial size decrease. Forward in-time simulations of a Cannings
model with Schweinsberg offspring time difference (fecundity (F1) - viability selection) of different
sweepstake strength parameter 𝛼 range from 1.1 to 2.0 with selection coefficients ranging from the
neutral case to strong positive selection. Population size at time 𝑡 𝑝𝑡 is defined as 𝑝𝑡 = 𝑁

2 ∗ 𝑠𝑖𝑛(0.05×
𝑡 + 𝜋) + 𝑁 with 𝑁 = 578, 𝑁 = 1, 156 and 𝑁 = 5, 777 individuals leading to harmonic mean of
𝑁𝐻𝑀 = 500 (a), 𝑁𝐻𝑀 = 1, 000 (b), and 𝑁𝐻𝑀 = 5, 000 (c). Each combination of 𝛼, selection
coefficient and population size parameter was simulated until 5,000 alleles reached fixation.
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Figure 4.21 Time to fixation under constant population size and fluctuating selection coefficients
with N=1,000. Fixation times under different sweepstake strength (𝛼 ranging from 1.1 to 2.0) for (a)
slow fluctuating viability selection starting with a positive value of 𝑠 (dark blue) and starting with
a negative value of 𝑠 (light blue) and (b) fast fluctuating viability selection starting with a positive
(dark red) and negative (light red) value of 𝑠. The same color code is used for slow (c) and fast (d)
fluctuating fecundity selection (F1). Each combination of 𝛼, selection coefficient and population size
parameter was simulated until 5,000 alleles reached fixation. Mean and 95% confidence interval of
fixation time are presented.
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Figure 4.22 Time to fixation under constant population size and fluctuating selection coefficients
with N=500. Fixation times under different sweepstake strength (𝛼 ranging from 1.1 to 2.0) for (a)
slow fluctuating viability selection starting with a positive value of 𝑠 (dark blue) and starting with
a negative value of 𝑠 (light blue) and (b) fast fluctuating viability selection starting with a positive
(dark red) and negative (light red) value of 𝑠. The same color code is used for slow (c) and fast (d)
fluctuating fecundity selection (F1). Each combination of 𝛼, selection coefficient and population size
parameter was simulated until 5,000 alleles reached fixation. Mean and 95% confidence interval of
fixation time are presented.
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Figure 4.23 Time to fixation under constant population size and fluctuating selection coefficients
with N=5,000. Fixation times under different sweepstake strength (𝛼 ranging from 1.1 to 2.0) for (a)
slow fluctuating viability selection starting with a positive value of 𝑠 (dark blue) and starting with
a negative value of 𝑠 (light blue) and (b) fast fluctuating viability selection starting with a positive
(dark red) and negative (light red) value of 𝑠. The same color code is used for slow (c) and fast (d)
fluctuating fecundity selection (F1). Each combination of 𝛼, selection coefficient and population size
parameter was simulated until 5,000 alleles reached fixation. Mean and 95% confidence interval of
fixation time are presented.
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Figure 4.24 Allele fixation probability under constant population size and fluctuating selection
coefficients with N=500. Fixation probability under different sweepstake strength (𝛼 ranging from
1.1 to 2.0) for (a) slow fluctuating viability selection starting with a positive value of 𝑠 (dark blue) and
starting with a negative value of 𝑠 (light blue) and (b) fast fluctuating viability selection starting with
a positive (dark red) and negative (light red) value of 𝑠. The same color code is used for slow (c) and
fast (d) fluctuating fecundity selection (F1). Estimates were obtained from 5 × 105 simulations.
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Figure 4.25 Allele fixation probability under constant population size and fluctuating selection
coefficients with N=5,000. Fixation probability under different sweepstake strength (𝛼 ranging from
1.1 to 2.0) for (a) slow fluctuating viability selection starting with a positive period (dark blue) and
starting with a negative period (light blue) and (b) fast fluctuating viability selection starting with a
positive (dark red) and negative (light red) period. The same color code is used for slow (c) and fast
(d) fluctuating fecundity selection (F1). Estimates were obtained from 5 × 105 simulations.
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5 Simultaneous Inference of
Demography and Selection under the
Beta coalescent from the Ancestral
Recombination Graph

The following chapter was under review and on BioRxiv as:
Kevin Korfmann, Thibaut Sellinger, Fabian Freund, Matteo Fumagalli, Aurélien Tellier. Si-
multaneous Inference of Past Demography and Selection from the Ancestral Recombination
Graph under the Beta Coalescent (2023) bioRxiv 2022.09.28.508873;
doi: https://doi.org/10.1101/2022.09.28.508873

KK designed and implemented GNN𝑐𝑜𝑎𝑙, while Thibaut Sellinger (TS) contributed SM𝛽C
as shared first-co-author. KK contributed equally to the manuscript, however the original
work on the 𝛽-Coalescent has been started by TS. Any perceived overlap between the 𝛽-
Coalescent Chapter of the PhD thesis of TS and our preprint can be attributed to his original
work.

A revised version is now published as:
Kevin Korfmann, Thibaut Sellinger, Fabian Freund, Matteo Fumagalli, Aurélien Tellier.
Simultaneous Inference of Past Demography and Selection from the Ancestral Recombination
Graph under the Beta Coalescent. Peer Community Journal, Volume 4 (2024), article no.
e33. doi : https://doi.org/10.24072/pcjournal.397

5.1 Abstract

The reproductive mechanism of a species is a key driver of genome evolution. The standard
Wright-Fisher model for the reproduction of individuals in a population assumes that each
individual produces a number of offspring negligible compared to the total population size.
Yet many species of plants, invertebrates, prokaryotes or fish exhibit neutrally skewed off-
spring distribution or strong selection events yielding few individuals to produce a number of
offspring of up to the same magnitude as the population size. As a result, the genealogy of a
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sample is characterized by multiple individuals (more than two) coalescing simultaneously to
the same common ancestor. The current methods developed to detect such multiple merger
events do not account for complex demographic scenarios or recombination, and require large
sample sizes. We tackle these limitations by developing two novel and different approaches to
infer multiple merger events from sequence data or the ancestral recombination graph (ARG):
a sequentially Markovian coalescent (SM𝛽C) and a graph neural network (GNN𝑐𝑜𝑎𝑙). We
first give proof of the accuracy of our methods to estimate the multiple merger parameter
and past demographic history using simulated data under the 𝛽-coalescent model. Secondly,
we show that our approaches can also recover the effect of positive selective sweeps along
the genome. Finally, we are able to distinguish skewed offspring distribution from selection
while simultaneously inferring the past variation of population size. Our findings stress the
aptitude of neural networks to leverage information from the ARG for inference but also the
urgent need for more accurate ARG inference approaches.

5.2 Introduction

With the availability of genomes of increasing quality for many species across the tree of life,
population genetics models and statistical methods have been developed to recover the past
history of a population/species from whole genome sequence data from several individuals
(Sheehan and Song, 2016; Li and Durbin, 2011; Schiffels and Durbin, 2014; Speidel et al.,
2019; Sellinger et al., 2020; Barroso et al., 2019; Barroso and Dutheil, 2021; Stephan, 2019a;
Johri et al., 2022a, 2020). Indeed, the inference of the past demographic history of a species,
i.e. population expansion, contraction, or bottlenecks, extinction/colonisation, is not only
interesting in its own right, but also essential to calibrate genome-wide scans to detect genes
under ( e.g. positive or balancing) selection (Stephan, 2019a; Johri et al., 2021). A common
feature of inference methods that make full use of whole genome sequences is the underlying
assumption of a Kingman coalescent process (Kingman, 1982) to describe the genealogy
distribution of a sample. The Kingman coalescent process and its properties stem from
using the traditional forward-in-time Wright-Fisher (WF) model to describe the reproduction
mechanism of a population. Besides non-overlapping generations, a key assumption of
the neutral WF model is that an individual offspring chooses randomly (i.e. uniformly)
its parents from the previous generation. More precisely, each chromosome chooses a
parental chromosome from the previous generation. Therefore, an essential factor is how
many offspring parents can produce. In the Wright-Fisher (WF) model, because of binomial
sampling, the distribution of the number of offspring for each parent closely follows a Poisson
distribution where both the average and variance are one. This implies that parents will most
likely have zero, one, or two offspring individuals, but it is improbable that one parent would
have many offspring individuals (i.e. on the order of the population size, under the Wright-
Fisher haploid model the probability for a parent to have 10 or more offspring is ≈ 10−8). The
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assumption of small variance in offspring distribution between individual parents is realistic
for species with low juvenile mortality (so-called type I and II survivorship in ecology), such
as mammals.

As genome sequence data become available for a wide variety of species with different
biological traits and/or life cycles, the applicability of the Kingman coalescent relying on the
WF model can be questioned (Steinruecken et al., 2013; Arnason and Halldorsdottir, 2015;
Árnason et al., 2023; Niwa et al., 2016; Kato et al., 2017; Morales-Arce et al., 2020; Tellier
and Lemaire, 2014; Menardo et al., 2020; Freund et al., 2022). Indeed, for some species,
such as fish, with high fecundity and high juveniles mortality (type III survivorship), it is
expected that the variance in reproduction between parents can be much larger than under
the Poisson distribution (Tellier and Lemaire, 2014). The phenomenon is commonly referred
to as sweepstake reproduction Hedgecock and Pudovkin, 2011; Arnason and Halldorsdottir,
2015. Several neutral mechanisms, including pronounced seed banking Blath et al., 2020,
heightened fecundity with an imbalanced offspring distribution Hedgecock and Pudovkin,
2011; Eldon and Wakeley, 2006, intense and repeated bottlenecks Birkner et al., 2008;
Casanova et al., 2020, and potent selective forces (specifically positive selection) Durrett
and Schweinsberg, 2005; Brunet et al., 2006, 2007; Harris and Jensen, 2020; Árnason et al.,
2023, are theoretically identified as factors diverging from the conventional WF model. This
divergence is such that the associated genealogies don’t align with the Kingman coalescent
process. In these scenarios, an alternate set of processes emerges to characterize the genealogy
distribution. This set allows for the fusion of multiple individuals and/or the concurrent
occurrence of several notable coalescence events Sagitov, 2003; Mohle and Sagitov, 2001;
Donnelly and Kurtz, 1999; Sagitov, 1999; Pitman, 1999; Bolthausen and Sznitman, 1998.
This group of genealogical processes is widely recognized as the Multiple Merger Coalescent
(MMC). MMC models are more biologically appropriate than the Kingman coalescent to
study many species of fish (Eldon et al., 2015; Arnason and Halldorsdottir, 2015; Árnason
et al., 2023; Hedgecock and Pudovkin, 2011), invertebrates (insects, crustaceans, etc.), viruses
(Matuszewski et al., 2017), bacteria (Menardo et al., 2020; Neher and Hallatschek, 2013),
plants and their pathogens (Tellier and Lemaire, 2014). While we would like to assess
which population model best describes the species genealogy, field experiments to quantify
the underlying reproduction mechanism of a species can be costly and time consuming at
best, or intractable at worst. Therefore, an alternative solution is to use inference methods
based on genome data to identify which model best describes the genealogy of a given
species/population.

In this study we use the so-called 𝛽-coalescent, a specific class of MMC models. Unlike
under the WF model, under MMC models the ploidy level strongly affects the distribution
of genealogies (Birkner et al., 2013). For simplicity, in this study we focus on haploid
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organisms. The demonstrations shows that when the likelihood of a parent producing 𝑘

or more descendants aligns with 𝑘−𝛼, and 1 < 𝛼 < 2, the genealogy can be represented
using a Λ-coalescent (Schweinsberg, 2003). The latter is a general class of coalescent
process describing how and how fast ancestral lineages merge (Pitman, 1999; Sagitov, 1999).
When using the Beta(2 𝛼,𝛼) distribution as a probability measure for the Λ-coalescent, the
transition rates (i.e. coalescent rate) can be analytically obtained leading to the 𝛽-coalescent,
a specific MMC model.When 𝛼 approaches 2, the coalescent process transitions to resemble
a Kingman coalescent, adjusted by a scaling constant. (Birkner et al., 2013; Koskela,
2018; Koskela and Berenguer, 2019). If 𝛼 tends to one, the model tends to a Bolthausen-
Sznitman coalescent process (i.e. dominated by strong multiple merger events) (Bolthausen
and Sznitman, 1998). The 𝛽-coalescent has the property that the observed polarized Site
Frequency Spectrum (SFS) of a sample of single nucleotide polymorphisms (SNPs) exhibits
a characteristic U-shape with an excess of rare and high frequency variants (compared to
the Kingman coalescent) (Sargsyan and Wakeley, 2008). Current methods to draw inference
under MMC models leverage information from the summary statistics extracted from full
genome data such as Site Frequency Spectrum (SFS, or derived summary statistics) (Koskela
and Berenguer, 2019; Harris and Jensen, 2020; Sackman et al., 2019), minor allele frequency
(Rice et al., 2018) or copy number alteration (Kato et al., 2017). It is shown that the
SFS is robust to the effect of recombination (Koskela and Berenguer, 2019; Rice et al.,
2018) and its shape allows to discriminate between simple demographic models (population
expansion or contraction) under the Kingman coalescent and MMC models with constant
population size (Koskela and Berenguer, 2019; Koskela, 2018; Eldon et al., 2015). However,
methods relying on genome-wide SFS have two main disadvantages. First, in absence
of strong prior knowledge, they can suffer from non-identifiability (Johri et al., 2022a) as
several complex neutral demographic and/or selective models under the Kingman or MMC
models can generate similar SFS distributions. Second, as they summarize the collection of
underlying genealogies, they require high sample sizes (>50) to produce trustworthy results
(Koskela and Berenguer, 2019; Koskela, 2018; Eldon et al., 2015), relying on experimental
designs which are prohibitive for the study of non-model species. To tackle these limitations,
we develop two methods that integrate recombination events along the genome in order to
leverage more information from full genome data, thus requiring fewer samples.

In species undergoing sexual reproduction, recombination events break the genealogy of
a sample at different position of the genome (i.e. the genealogy of a sample varies along
the genome), leading to what is called the Ancestral Recombination Graph (ARG) (Hudson,
1983; Birkner et al., 2013). Because all the genealogical information is contained in the ARG,
in this study we aim at the interpretation of the ARGs to recover model parameters in presence
of multiple merger events. With the development of the sequentially Markovian coalescent
theory (McVean and Cardin, 2005; Marjoram and Wall, 2006; Wiuf and Hein, 1999), it
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becomes tractable to integrate linkage disequilibrium over chromosomes in inferences based
on the Kingman coalescent (Li and Durbin, 2011). Hence, we first develop an SMC approach
based on the 𝛽-coalescent named the Sequentially Markovian 𝛽 Coalescent (SM𝛽C). The 𝛽-
coalescent has the additional property that, under recombination, long range dependency can
be generated between coalescent trees along the genome if multiple-merger events happen
in a single generation (Birkner et al., 2013). In other words, coalescent trees which are
located at different places in the genome, and expected to be unlinked from one another
(Nelson et al., 2020), would show non-zero correlation in their topology and coalescent
times. This is because coalescent trees from different genomic regions may all be affected
by the same MMC event (merger event of multiple lineages in the past) which then leaves
traces in the genome at several loci (Birkner et al., 2008). To overcome the theoretically
predicted non-Markovian property of the distribution of genealogies along the genome under
the 𝛽-coalescent with recombination (Birkner et al., 2013), we develop a second method
based on deep learning (DL) trained from efficient coalescent simulations (Baumdicker et al.,
2022). In evolutionary genomics, DL approaches trained by simulations are shown to be
powerful inference tools (Sheehan and Song, 2016; Korfmann et al., 2023). Previous work
demonstrated that DL approach can help overcome problems mathematically insolvable or
computationally intractable in the field of population genetics (Sheehan and Song, 2016;
Battey et al., 2020; Wang et al., 2021; Yelmen et al., 2021a; Flagel et al., 2018; Chen et al.,
2018; Qin et al., 2022; Burger et al., 2022a; Isildak et al., 2021b). The novelty of our neural
network relies on its structure (Graph Neural Network, GNN) and its training algorithm based
on the ARG of a sample, or its tree sequence representation (Kelleher et al., 2018). GNNs are
an emerging category of DL algorithm (Bronstein et al., 2017; Xu et al., 2019; Cao et al., 2020;
Zhou et al.) that benefit by using irregular domain data (i.e. graphs). GNNs are designed
for the prediction of node features (Kipf and Welling, 2016; Yang et al., 2016), edge features
(link prediction) (Zhang and Chen, 2018; Schlichtkrull et al., 2017), or additional properties
of entire graphs (Ying et al.; Lee et al., 2018). Therefore, GNNs represent a new tool to
address the large dimensionality of ARGs, while simultaneously leveraging information from
the genealogy (namely topology and age of coalescent events) as a substantial improvement
over convolutions of genotype matrices, as currently done in the field (Sanchez et al., 2021b).

We first quantify the bias of previous SMC methods (MSMC and MSMC2 (Schiffels
and Durbin, 2014; Wang et al., 2020)) when performing inference of past population size
variation under the 𝛽-coalescent. We then describe our two methods, SM𝛽C and GNN𝑐𝑜𝑎𝑙,
and demonstrate their statistical power as well as their respective limitations. From simulated
tree-sequence (i.e. ARG) and sequence (i.e. SNPs) data, we assess the accuracy of both
approaches to recover the past variation of population size and the 𝛼 parameter of the Beta-
distribution. This parameter indicates how frequent and strong multiple merger events occur.
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We demonstrate that our approaches can infer the evolutionary mechanism responsible for
multiple merger events and distinguish local selection events from genome-wide effects of
multiple mergers. We highlight the limits of the Markovian property of SMC to describe
data generated under the 𝛽-coalescent. Finally, we show that both our approaches can model
and identify the presence of selection along the genome while simultaneously accounting for
non-constant population size, recombination, and skewed offspring distribution. Thus our
methods represents a major and necessary leap forward in the field of population genetic
inferences.

5.3 Materials and Methods

In our study we first assume the true ARG to be known. Hence, the ARG of the sample is
given as input to our methods to estimate recover model parameters of interest (e.g. the 𝛼

parameter and/or the past variation of population size). We then show the applicability of our
methods by using as input simulated sequence data (i.e. SNPs) and/or ARG inferred using
ARGweaver (Rasmussen et al., 2014a) from simulated sequence data.

5.3.1 SMC-based method

In this study, we use different SMC-based algorithms: two previously published, MSMC and
MSMC2 (Schiffels and Durbin, 2014; Wang et al., 2020), and the new SM𝛽C. In the latter, the
software backbone stems from our previous eSMC (Sellinger et al., 2020, 2021a) whilst the
theoretical framework originates from the MSMC algorithm (Schiffels and Durbin, 2014) (see
Supplementary Text 5.9). All approaches can use the ARG or sequence data as input. Giving
ARG as input for MSMC an MSMC2 is enabled by a re-implementation included in the R
package eSMC2 (Sellinger et al., 2021a). The MSMC2 algorithm focuses on the coalescence
time between two haploid samples along the genome. In the event of recombination, there is
a break in the current genealogy and the coalescence time consequently takes a new value.
A detailed description of the algorithm can be found in (et al, 2016; Wang et al., 2020). The
MSMC algorithm simultaneously analyses multiple sequences (up to 10) and follows the
distribution of the first coalescence event in a sample of size 𝑛 > 2 along the sequence based
on the Kingman coalescent (Kingman, 1982). A detailed description of MSMC can be found
in (Schiffels and Durbin, 2014).

Our new approach, SM𝛽C, is a theoretical extension of the MSMC algorithm, simultane-
ously analyzing multiple haploid sequences and focusing on the first coalescence event of a
sample size 3 or 4. The SM𝛽C follows the distribution of the first coalescence event of a
sample along sequences assuming a 𝛽-coalescent process. Therefore, our SM𝛽C allows for
more than two ancestral lineages to join the first coalescence event, or new lineages to join
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an already existing binary (or triple) coalescent event. Hence, the SM𝛽C extends the MSMC
theoretical framework by adding hidden states at which more than two lineages coalesce.
Currently, the SM𝛽C has been derived to analyze for up to 4 sequences simultaneously (due
to computational load and mathematical complexity). The emission matrix is similar to the
one of MSMC. As in the MSMC software, the population size is assumed piece-wise constant
in time and we discretize time in 40 bins throughout this study. A detailed description of
SM𝛽C can be found in Supplementary Text 5.9. To test and validate the theoretical accuracy
of our approach, we first study its best case convergence (introduced in Sellinger et al., 2021a)
which corresponds to the model’s performance when the true genealogy is given as input,
i.e. as if the hidden states are known. Additionally, we also validate the practical accuracy
of the SM𝛽C on simulated sequence data taking the same input as the MSMC software
(Schiffels and Durbin, 2014), or using the inferred ARGs by ARGweaver (Rasmussen et al.,
2014a). All SMC approaches used in this manuscript are found in the R package eSMC2
(https://github.com/TPPSellinger/eSMC2).

5.3.2 GNN𝑐𝑜𝑎𝑙 method

Inspired by results obtained from inferences based on tree sequence data (Gattepaille et al.,
2016; Sellinger et al., 2021a), we develop a graph neural network (GNN) taking tree sequence
data as input. Our GNN is designed to infer population size along with the 𝛼 parameter of the
Beta distribution describing the distribution of offspring production. In practice, the ARG is
reshaped into a sequence of genealogies (more precisely a sequence of undirected graphs),
and then given as input to the GNN (similar to what is described above for the SM𝛽C). In our
analyses, we fixed the batch size to 500. This value represents the number coalescence trees
being processed before updating parameters of the neural network. As batch size is fixed
to 500, only simulations displaying at least 500 recombination events are considered for the
training data sets. If more than 500 recombination events occur along the sequence, the ARG
is truncated and the GNN will only take as input the first 500 genealogies and remove the rest.
Thanks to the GNN architecture, the algorithm can account for the topology of the genealogy.
Hence, the GNN leverages information from coalescence time and branch lengths but also
from the topology of the ARG. This operation is known as a graph convolution. By doing so,
the GNN is capable of learning from local features of the ARG and extract information from
its complex structure. To learn from global genealogy patterns (which SMC-based methods
cannot do), an additional pooling strategy is implemented as part of the network (Ying et al.).
To do so, the ARG is broken into smaller ARGs (i.e. subgraphs) during the forward-pass
step. To illustrate the GNN strategy, we visualize the compression-like process, from the
coalescent trees (1) being processed by GNN𝑐𝑜𝑎𝑙 (2,3) to the inferred variable of interest (4,
5) in Figure 5.1.

https://github.com/TPPSellinger/eSMC2
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Figure 5.1 Schematic representation of GNN𝑐𝑜𝑎𝑙 processing an ARG Hierarchical pooling
compression of a sequence of coalescent trees into the inferred variable of interest (i.e. demographic
changes) using graph convolutions. Each coalescent ancestor or leaf node is initialized by a feature
vector (light grey boxes) (1). Sub-graphs are generated by a pooling network with updated feature
vectors and a final compression step is performed until ideally one node per graph remains (2-3). Lastly,
the column-wise mean is taken after applying a time mask (blue - based on number of coalescent
events), so that single feature vector remains (4-5). Detailed description of the graph convolution,
feature vector initialization, pooling methodology, coalescent time mask construction, and dataset
generation can be found in Supplementary Text 5.10.

To infer parameters from our neural network, we need to define an objective function
to be optimized. We use a masked root-mean-squared error (RMSE) loss function as ob-
jective function which is computed for each inputted ARG (i.e. minimizing the average
square difference between predicted and true parameter value). In practice, time is dis-
cretized (as for the SM𝛽C) and time windows are defined. The true 𝛼 value and true
demography at 60 predefined time points are given as input to the GNN to compute the
loss function. The GNN captures the stochastic complexity arising from the underlying
demographic scenario and model parameters. Furthermore, our algorithm naturally de-
fines an appropriate time window to have sufficient observation at each time point. A
more detailed description of the GNN𝑐𝑜𝑎𝑙 can be found in Supplementary Text 5.10.
The code of the model architecture is implemented in Pytorch (Paszke et al., 2017) us-
ing the extension Pytorch Geometric (Fey and Lenssen). The model is available with
the simulated training dataset at https://github.com/kevinkorfmann/GNNcoal and
https://github.com/kevinkorfmann/GNNcoal-analysis.

https://github.com/kevinkorfmann/GNNcoal
https://github.com/kevinkorfmann/GNNcoal-analysis
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5.3.3 ARGweaver

As the ARG is not known in practice, it needs to be inferred from sequence data. ARGweaver
displays the best performance at recovering the ARG from whole genome polymorphism data
at the sample sizes employed in this study (i.e. « 50) (Rasmussen et al., 2014a; Brandt et al.,
2022). Briefly, ARGweaver samples the ARG of 𝑛 chromosomes/scaffolds conditional on
the ARG of 𝑛 − 1 chromosomes/scaffolds. To this aim, ARGweaver relies on hidden Markov
models while assuming a sequentially Markov coalescent process and a discretization of time,
similarly to the SMC-based methods previously described. For a more detail description of
the algorithm, we refer the reader to the supplementary material of (Rasmussen et al., 2014a).

5.3.4 Simulation of data

Validation dataset for both methods The ARG is given as input to the DL approach and the
SM𝛽C (see (Sellinger et al., 2021a)). We use msprime (Baumdicker et al., 2022) to simulate
the ARG of a sample (individuals are assumed to be haploid) under the 𝛽-coalescent based on
(Schweinsberg, 2003; Birkner et al., 2013) or under the Kingman coalescent (under neutrality
or selection). We simulate 10 sequences of 100 Mbp under five different demographic
scenarios: 1) Constant population size; 2) Bottleneck with sudden decrease of the population
size by a factor 10 followed by a sudden increase of population by a factor 10; 3) Expansion
with sudden increase of the population size by a factor 10, 4) Contraction with sudden
decrease of the population size by a factor 10; and 5) "Saw-tooth" with successive exponential
decreases and increases of population size through time, resulting in continuous population
size variation (as shown in (Terhorst et al., 2017; Schiffels and Durbin, 2014; Sellinger et al.,
2021a)). We simulate data under different 𝛼 values (i.e. parameters of the 𝛽-distribution)
including values of 1.9 (almost no multiple merger events), 1.7, 1.5, and 1.3 (frequent
and strong multiple merger events). Mutation and recombination rate (respectively ` and
𝑟) are set to 10−8 per generation per bp in order to obtain the best compromise between
realistic values and number of SNPs. When specified, some specific scenarios assume
recombination and mutation rate set to produce sufficient data or to avoid violation of the
finite site hypothesis. All python scripts used to simulate data sets are available at https:
//github.com/kevinkorfmann/GNNcoal-analysis.

Additionally, to generate sequence data, we simulate 10 sequences of 10 Mbp under the
five different demographic scenarios described above and for the same 𝛼 values. For each
scenario, 10 replicates are simulated. In order to obtain sufficient SNPs for inference, we
simulate sequence data with mutation and recombination rate (respectively ` and 𝑟) of 10−8

per generation per bp when 𝛼 is set to 1.9 and 1.7, 10−7 per generation per bp when 𝛼 is set
to 1.5, and 10−6 per generation per bp when 𝛼 is set to 1.3.

https://github.com/kevinkorfmann/GNNcoal-analysis
https://github.com/kevinkorfmann/GNNcoal-analysis
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Training dataset for the GNN𝑐𝑜𝑎𝑙

In our study we train two GNNs, one to infer past variation of population size through
time along with 𝛼, and one for model selection. The training dataset used for both GNNs is
described below.

Training dataset for the GNN inferring 𝛼 and demography

We generate an extensive number of ARGs to train our GNN. The ARGs are simulated
under many demographic scenarios and 𝛼 values. The model parameters are updated in
supervised manner. The loss function is calculated for each batch with respect to how much
the machine-learning estimates differ from to the true parameters used for simulation. The
simulations strategy to recover past demographic history is based on the strategy described
and used in (Boitard et al., 2016; Sanchez et al., 2021b). The idea of this approach is to
generate a representative set of demographic scenarios over which the network generalizes to
consequently infer similar demographic changes after training. More details on the training
strategy can be found in Supplementary Text 5.10.

To improve the outputted demographic history, we introduce a smoothing of the demog-
raphy allowing to infer continuous variation of population size through time. We do so by
interpolating 𝐼 time points cubically, and choosing 𝑤 (set to 60) uniformly spaced new time
points of the interpolation in log space. All time points more recent than ten generations in
the past are discarded, since inference is too imprecise in the very recent present under our
models. An example of this process can be seen in Supplementary Text 5.10.

Training dataset to disentangling coalescent and selection signatures

Beyond parameter inference, deep learning approaches can also be used for clustering.
Hence, we train a GNN to disentangle between different scenarios and models. In total,
we define eight classes, namely K (S0) (Kingman, no selection), K (WS) (Kingman, weak
selection), K (MS) (Kingman, medium selection), K (SS) (Kingman, strong selection) and
four different 𝛽-coalescent classes (]2.0-1.75], ]1.75-1.5], ]1.5-1-1.25], ]1.25-1.01]) without
selection. The three different selection regimes are defined, corresponding to 𝑁𝑒× 𝑠 in: [0.1,
0.01[ for SS, [0.01, 0.001[ for MS, [0.001, 0.0001[ for WS and [0] for absence of selection.
Demography is kept constant and set to 105 individuals and sequence length is set to 105 bp.
The simulation is discarded if it resulted in less than 2,000 obtained trees and is rerun with
twice the sequence length until the tree number required is satisfied. This procedure avoids
simulating large genome segments of which only a small fraction of trees is used for the given
scenario during training and inference. The selection site is introduced in the centre of the
respective sequence, so that 249 trees left and 250 right of the middle tree under selection
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form a training sample, using 500 trees for each sample. One hundred replicates are generated
for each training sample. The complete training dataset consists of 1,000 parameter sets, 500
for the Kingman cases and 500 for the 𝛽-coalescent cases, with approximately 125 parameter
sets per class. The model itself is trained on one epoch (number of time the data is analyzed),
and the evaluation performed afterwards on 1,000 randomly generated parameter sets, with
one replicate per parameter set. The same architecture used for demography estimation is
employed with additional linear layers to reduce the number of output dimensions from 60
to 8. The loss function is set to a Cross-Entropy-Loss for the network to be trainable for
categorical labels. Otherwise all architecture and training parameters is the same as described
above and detailed in Supplementary Text 5.10.

5.4 Results

5.4.1 Inference bias under the wrongly assumed Kingman
coalescent

We first study the effect of assuming a Kingman coalescent when the underlying true model
is a 𝛽-coalescent (i.e. in presence of multiple merger events) by applying MSMC and
MSMC2 to our simulated data. The inference results from MSMC and MSMC2 when the
population undergoes a sawtooth demographic scenario are displayed in Figure 5.2. For
𝛼 > 1.5 the shape of the past demography is fairly well recovered. Decreasing the parameter
𝛼 of the 𝛽-coalescent (i.e. higher probability of multiple merger events occurring) increases
the variance of inferences and flattens the demography. Yet, both methods fail to correctly
infer the correct population size, due to the scaling discrepancy between the Kingman and
𝛽-coalescent. Hence, we perform the same analysis and correct for the scaling effect of the
MMC versus a Kingman coalescent in order to better capture the specific effects of assuming
binary mergers only. The results are displayed in Figure 5.11. For 𝛼 > 1.5 the demography
is accurately recovered providing we know the true value of 𝛼 to adjust the y-axis (population
size) scale. However, for smaller 𝛼 values the observed variance is extremely high and a
flattened past variation of population size is observed.
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Figure 5.2 Performance of MSMC and MSMC2 under a 𝛽-coalescent. Averaged estimated
demographic history by MSMC (blue) and MSMC2 (red) based on 10 sequences of 100 Mb with
` = 𝑟 = 10−8 per generation per bp over ten repetitions (while analyzing simultaneously 3 sequences,
noted by M=3). Each repetition result is represented in light red (PSMC/MSMC2) or in light blue
(MSMC). Population undergoes a sawtooth demographic scenario (black) for A) 𝛼 = 1.9, B) 𝛼 = 1.7,
C) 𝛼 = 1.5, and D) 𝛼 = 1.3.

5.4.2 The limit of the Markovian hypothesis

As SMC approaches rely on the hypothesis of Markovian change in genealogy along the
genome, we study the effect of 𝛼 on the linkage disequilibrium of pairs of SNPs (𝑟2, (Rogers
and Huff; Miles et al.)) in data simulated under the Kingman Coalescent or the 𝛽-coalescent
(with 𝛼 = 1.5 and 𝛼 = 1.3) and constant population size (Figure 5.3). Linkage monotonously
decreases with distance under the Kingman coalescent. Under the 𝛽-coalescent a similar
distribution is observed but with higher amount of LD. We find a higher variance in LD
for smaller 𝛼 values. More precisely, this increased variance results in the occurrence of
high spikes of linkage disequilibrium along the genome (e.g. Figure 5.3 B). This stochastic
increase of linkage along the genome demonstrates that the Markovian hypothesis used to
model genealogies along the genome is violated under the 𝛽-coalescent due to the long range
effect of strong multiple merger events (Birkner et al., 2013).
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Figure 5.3 Linkage disequilibrium under a Kingman and 𝛽-coalescent. Pairwise linkage dise-
quilibrium between SNPs (𝑟2) under a Kingman and 𝛽-coalescent with 𝛼 = 1.5 and 𝛼 = 1.3 using 50
sequences of length A) 0.1 Mb, B) 1Mb, and C) 5Mb. The population size is constant at 𝑁 = 104

for the Kingman model and 𝑁 = 106 for the 𝛽-coalescent, with ` = 2 × 10−7 and 𝑟 = 2 × 10−8 per
generation per bp. For each LD analysis, the linkage disequilibrium is calculated by averaging it over
a window of size 103, 104 and 5 × 104 bp respectively in A), B) and C).

We further investigate the effect of multiple merger events on linkage disequilibrium.
To do so, we first assume an SMC framework (e.g. MSMC2 or eSMC) to predict the
transition matrix (i.e. matrix containing the probabilities for the coalescent time to change
to another value along the genome) and looking at the absolute difference between the
observed transition events. Under the Kingman coalescent, the distribution of coalescent
times between two positions in a sample of size two (𝑛 = 2) is well approximated by the
SMC as shown in Figure 5.12 (i.e. absence of structured difference between observed and
predicted). However, under the 𝛽-coalescent (with 𝛼 = 1.3) we observe significant and
structured differences between observed and predicted at times points where multiple merger
events occur (Figure 5.13). In practice multiple merger events do not occur at each time point
(as they remain rare events), unveiling a discrepancy between the expectation from the SMC
(i.e. approximating the distribution of genealogies along the genome by a Markov chain) and
the simulated data. This discrepancy does not stem from the simulator, because it correctly
generates ARG under the 𝛽-coalescent model (Birkner et al., 2013; Baumdicker et al., 2022),
but from the limits of the SMC approximation to model events with long range effects on the
ARG (Figure 5.13).

5.4.3 Inferring 𝛼 and past demography on ARG

To test if our two approaches (GNN𝑐𝑜𝑎𝑙 and SM𝛽C) can recover the past variation of
population size and the 𝛼 parameter, we run both methods on simulated tree sequences under
different 𝛼 values and demographic scenarios. Figure 5.4 displays results for data simulated
under a sawtooth past demography and for 𝛼 ranging from 1.9, 1.7, 1.5 to 1.3. In all cases, the
DL approach exhibits high accuracy and low variance to infer the variation of population size.
For high 𝛼 values (>1.5), the shape of population size variation is well recovered by SM𝛽C.
However, for smaller values, an extremely high variance is observed which demonstrates the
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limits of SMC inferences. On average, both approaches seem to recover fairly well the true
𝛼 value (Figure 5.4 and Table 5.3), especially GNN𝑐𝑜𝑎𝑙 which performs well by displaying
high accuracy and lower standard deviation. We note that the variance in the estimation of
𝛼 increases with diminishing 𝛼 value. Moreover, increasing the number of simultaneously
analyzed sequences by SM𝛽C does not seem to improve the inferred 𝛼 value (Table 5.3).
These conclusions are also valid for the results in Figures 5.14-5.17 and Table 5.3 based on
inference under four additional demographic scenarios: constant population size, bottleneck,
sudden increase and sudden decrease of population size.
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Figure 5.4 Best-case convergence estimations of SM𝛽C and GNN𝑐𝑜𝑎𝑙 under a 𝛽-coalescent.
Estimations of past demographic history by SM𝛽C in red (median) and by GNN𝑐𝑜𝑎𝑙 in blue (mean
and 95% confidence interval, CI95; while analyzing simultaneously 3 or 10 sequences, noted by M=3
or M=10) when population undergoes a sawtooth demographic scenario (black) under A) 𝛼 = 1.9, B)
𝛼 = 1.7, C) 𝛼 = 1.5 and D) 𝛼 = 1.3. SM𝛽C runs on 10 sequences and 100 Mb, GNN𝑐𝑜𝑎𝑙 runs on 10
sequences and 500 trees, and ` = 𝑟 = 10−8 per generation per bp.

Because when 𝛼 diminishes, the effective population size decreases as well (i.e. the
population size calculated from SNPs assuming a Wright-Fisher model), the number of
recombination events plummets for small values of 𝛼 < 1.5. To demonstrate the theoretical
accuracy of the SM𝛽C, i.e. the convergence to the correct values, we run SM𝛽C on data
simulated with mutation and recombination rate fifty times higher under similar scenarios
as in Figure 5.4, namely to increase the amount of data (SNPs and number of independent
coalescent trees by recombination). Results of SM𝛽C for 𝛼 values of 1.7, 1.5 and 1.3 are
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displayed on Table 5.4, where it appears that that SM𝛽C can recover 𝛼 with higher accuracy
when given more data (i.e. recombination events).
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Figure 5.5 Estimated values of 𝛼 by SM𝛽C and GNN𝑐𝑜𝑎𝑙 over ten repetitions using 10 sequences
of 100 Mb with ` = 𝑟 = 10−8 per generation per bp under a 𝛽-coalescent process (with different 𝛼
parameter). The analysis are run on five different demographic scenarios (Constant population size,
Bottleneck, Sudden increase, Sudden decrease and a Sawtooth demography) using a sample size 𝑛 = 3
for A) and C), 𝑛 = 4 for B), and 𝑛 = 10 for D). Grey dashed lines indicate the true 𝛼 values.

Although 10 sequences are given to the SM𝛽C in the previous analyses, the method can only
analyze three or four simultaneously. However, the GNN𝑐𝑜𝑎𝑙 approach can simultaneously
analyze 10 sequences, that is the whole simulated ARG. As we observe that GNN𝑐𝑜𝑎𝑙 has
a higher performance than SM𝛽C we wish to test whether the GNN𝑐𝑜𝑎𝑙 better leverages
information from the ARG or whether it benefits from simultaneously analyzing bigger
sample size. Thus, we run GNN𝑐𝑜𝑎𝑙 on the same dataset, but downsampling the coalescent
trees to a sample size three. Results are displayed in Figure 5.14 to Figure 5.17. Results
with sample size three of the GNN𝑐𝑜𝑎𝑙 approach are similar to results with sample size 10,
demonstrating that the GNNs can better leverage information from the ARG in presence of
multiple merger events (Figure 5.18).
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Additionally, we test if both approaches can recover a Kingman coalescent from the
ARG when data are simulated under the Kingman coalescent, namely both approach should
recover 𝛼 = 2. To do so, we simulate the same five demographic scenarios as above under
a Kingman coalescent and infer the 𝛼 parameter along with the past variation of population
size. Estimations of 𝛼 values are provided in Table 5.1 and are systematically higher than
1.85, suggesting mostly binary mergers (i.e an underlying Kingman coalescent process). The
associated inferred demographies are shown in Figures S9-S13. Both approaches correctly
infer the past demographic shape up to the scaling discrepancy between the Beta and the
Kingman coalescent mentioned above. Furthermore, we notice that the scaling effect only
affects the y-axis for the SM𝛽C but affect both axes for GNN𝑐𝑜𝑎𝑙.

As GNN𝑐𝑜𝑎𝑙 was not trained on data simulated under the Kingman coalescent (especially
with such high population size), some events fall beyond the scope of the GNN (due to
the scaling discrepancy between the Beta and Kingman coalescence). Hence, we run our
GNN𝑐𝑜𝑎𝑙 on data simulated under the Kingman coalescent but with smaller population size
(scaled down by a factor 100) to assure that all events fall within the scope of the GNN.
Values of 𝛼 inferred by the GNN𝑐𝑜𝑎𝑙 and the SM𝛽C under the five demographic scenarios
are available in Table 5.5. The associated inference of population size are plotted in Figure
5.19-5.23. Both approaches recover high 𝛼 values (i.e.>1.85) suggesting a genealogy with
almost exclusively binary mergers. In addition, both approaches accurately recover the shape
of the past variation of population size up to a scaling constant (but only on the population
size y-axis).

5.4.4 Inferring 𝛼 and past demography from simulated sequence
data

We first investigate results for both GNNcoal and SM𝛽C when the ARG is reconstructed with
ARGweaver (Rasmussen et al., 2014a), which is currently the best ARG inference approach
for sample size smaller than 20 (Brandt et al., 2022). Demographic inference results by both
approaches are displayed in Figure 5.11.1, and 𝛼 inference results in Table 5.6. GNN𝑐𝑜𝑎𝑙

does not manage to recover the shape of the demographic history from the inferred ARGs and
fails to recover 𝛼 by highly overestimating it. The 𝛼 inferences of SM𝛽C (when giving the
inferred ARG as input) are better than GNN𝑐𝑜𝑎𝑙 and hints toward the presence or absence
of multiple merger events although variance is high. SM𝛽C recovers the shape of the past
variation of population size for 𝛼 > 1.3 but displays extremely high variance for 𝛼 = 1.3.
Second, we run SM𝛽C on simulated sequence data and found that 𝛼 is well recovered on
average (Table 5.2) and results are similar to what is obtained when the true ARG is given.
Concerning inference of past variation of population size, the shape of the past variation
of population size is well recovered under the sawtooth demographic scenario for 𝛼 > 1.3
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(Figure 5.25). In the other four scenarios, the shape of the demography is recovered in
recent times, but underestimated in the past (Figure 5.26). Furthermore, as found above from
inputted ARG, the variance generally increases with diminishing 𝛼.

5.4.5 Inferring MMC and accounting for selection

As specific reproductive mechanisms and selection can lead to the occurrence of multiple
merger-like events, we train our neural network on data simulated under the 𝛽-coalescent, and
under the Kingman coalescent in presence or absence of selection. We then use the trained
GNN𝑐𝑜𝑎𝑙 to cluster and determine if multiple merger events originate from skewed offspring
distribution or positive selection, or if the data follows a neutral Kingman coalescent process.
The classification results are displayed in Figure 5.6 in the form of a confusion matrix, that is
the percentage of times the GNN𝑐𝑜𝑎𝑙 correctly assigns the true model shown on the diagonal
(evaluated on a test dataset of size 1,000 of known ARGs). Our approach can accurately select
the model except in two cases. Our approach shows limited power to distinguish strong from
average selection under the Kingman coalescent, as well as to distinguish the 𝛽-coalescent
with a small amount of multiple merger events (i.e. 𝛼>1.75) from the 𝛽-coalescent case with
1.75>𝛼>1.5.
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Figure 5.6 Confusion matrix for Kingman and 𝛽-coalescent classification model under varying
selection coefficients. Evaluation of classification accuracy for Kingman (K) and 𝛽-coalescent (B)
for no selection (S0), weak selection (SW), medium selection (SM) and strong selection (SS) using a
1,000 repetition validation dataset. Population size was kept constant at 𝑁 = 105 individuals, using a
sample size 𝑛 = 10 and 𝑟 = 10−8 per bp per generation.

To assess the effect of selection, we infer the 𝛼 along the genome with both approaches
from data simulated with strong positive selection or neutrality under a Kingman coalescent
with population size being constant through time. SM𝛽C infers 𝛼 on windows of 10kbp
along the genome, and GNN𝑐𝑜𝑎𝑙 infers 𝛼 every 20 trees along the genome. Results for the
GNN𝑐𝑜𝑎𝑙 approach and for the SM𝛽C are displayed in Figure 5.7. Both approaches recover
smaller 𝛼 value around the locus under strong selection. However under neutrality or weak
selection, inferred 𝛼 values remain high (>1.6) along the genome.
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Figure 5.7 Averaged estimations by GNN𝑐𝑜𝑎𝑙 and SM𝛽C under selection Estimations of 𝛼

along the genome by the GNN𝑐𝑜𝑎𝑙 approach and the SM𝛽C when population undergoes as strong
positive selective sweep event (at position 0.5 Mb) under different strengths of selection: A) 𝑠 = 0.01
, B)𝑠 = 0.001, C) 𝑠 = 0.0001, and D) 𝑠 = 0 meaning neutrality (mean and standard deviation for both
methods). The population size is constant and set to 𝑁 = 105 with ` = 𝑟 = 10−8 per generation per
bp. We hence have in A) 𝑁𝑒 × 𝑠 = 1000,B) 𝑁𝑒 × 𝑠 = 100, C) 𝑁𝑒 × 𝑠 = 10 and D) 𝑁𝑒 × 𝑠 = 0. SM𝛽C
uses 20 sequences of 1Mb (red) and GNN𝑐𝑜𝑎𝑙 uses 10 sequences through down-sampling the sample
nodes (blue)

Similarly, we run both approaches on data simulated under the 𝛽-coalescent (assuming
neutrality) and we infer the 𝛼 value along the genome. Inferred 𝛼 values by both approaches
are plotted in Figure 5.27. GNN𝑐𝑜𝑎𝑙 is able to recover the 𝛼 value along the genome (also
with overestimation due to tree sparsity), but the SM𝛽C systematically underestimate these
𝛼 values. However, unlike in presence of positive selection at a given locus, the inferred 𝛼

values are found in all cases to be fairly similar along the genome.

We finally simulate data under a strong selective sweeps or under neutrality and under a
sawtooth demographic scenario. Under neutrality, our approach recovers high 𝛼 value along
the genome and can accurately recover the past variation of population size (only up to a
scaling constant for GNN𝑐𝑜𝑎𝑙, since it was only trained on the 𝛽-coalescent) (Figure 5.8).
Similarly, when the simulated data contains strong selection, a small 𝛼 value is recovered at
the locus under selection and the past variation of population size is accurately recovered,
albeit with a small underestimation of population size in recent times for SM𝛽C (Figure 5.8).
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Figure 5.8 Simultaneous estimations of 𝛼 along the sequence under demographic change by
GNN𝑐𝑜𝑎𝑙 and SM𝛽C. Simultaneous estimation of 𝛼 along the genome under a partial sawtooth
scenario: A) and B) in the absence of selection (mean and standard deviation for both methods), and
C) and D) presence of selection with 𝑁𝑒𝑆 = 1, 000 (mean and CI95 for GNN𝑐𝑜𝑎𝑙 and median for
SM𝛽C). SM𝛽C uses 20 sequences of 1Mb (red) and GNN𝑐𝑜𝑎𝑙 uses 10 sequences through down-
sampling the sample nodes (blue), and ` = 𝑟 = 108 per generation per bp.

5.5 Discussion

With the rise of SMC approaches (Li and Durbin, 2011), most current methods leverage
information from whole genome sequences by simultaneously reconstructing a portion of the
ARG in order to infer past demographic history (Li and Durbin, 2011; Schiffels and Durbin,
2014; Terhorst et al., 2017; Upadhya and Steinrücken, 2021), migration rates (Kim et al., 2020;
Wang et al., 2020), variation in recombination and mutation along the genome (Barroso et al.,
2019; Barroso and Dutheil, 2021), as well as ecological life history traits such as selfing or
seed banking (Sellinger et al., 2020; Struett et al., 2022). However in previous studies
authors discussed uncoupling both steps, namely reconstructing the ARG and then inferring
parameters from its distribution (Sellinger et al., 2021a; Gattepaille et al., 2016; Rasmussen
et al., 2014a). Indeed, recent efforts have been made to improve approaches recovering the
ARG (Speidel et al., 2019; Kelleher et al., 2019; Hubisz and Siepel, 2020; Rasmussen et al.,
2014a; Mahmoudi et al., 2022a; Brandt et al., 2022), as well as its interpretation (Gattepaille
et al., 2013; Sellinger et al., 2021a). Our results on data simulated under the 𝛽-coalescent
clearly show the strong effect of multiple merger events on the topology and branch length
of the ARG. We find that the more multiple merger events occur, the more information
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concerning the past demography is lost. Both methods, whether given sequence data, the
true or inferred ARG, can recover the 𝛼 parameter and the variation of past population size
for 𝛼 values high enough (i.e. 𝛼 > 1.3), however for lower values of 𝛼 a larger amount
of data is necessary for any inference (which becomes nearly impossible when 𝛼 tends to
one). Both approaches can also recover the Kingman coalescent (i.e. 𝛼>1.8). We find the
GNN𝑐𝑜𝑎𝑙 approach outperforms the SM𝛽C approach in almost all cases when given the true
ARG, and one can use GNN𝑐𝑜𝑎𝑙 to disentangle (classify) between models of 𝛽-coalescent
and Kingman models with selection.

Overall, our results provide a qualitative increase in the developments of inference methods
for models with multiple merger events, a key step to understand the underlying reproduction
mechanism of a species. We first develop a new SMC method which takes simultaneously
three or four sequences to draw inference of the coalescent tree and transitions along the
genome. While fairly accurate, SM𝛽C is outperformed by GNN𝑐𝑜𝑎𝑙 when given true ARGs
as input. As we directly compare our theoretical SMC to the GNN based on the same
input data (coalescent trees), we are ideally placed to dissect the mechanisms underlying the
power of the GNN𝑐𝑜𝑎𝑙 method. We identify four main reasons for the difference in accuracy
between both methods in this specific case. First, the SM𝛽C approach suffers from the limit of
the sequential Markovian coalescent hypothesis along the genome when dealing with strong
multiple merger events (Birkner et al., 2013; Casanova et al., 2020). Second, most current
SMC approach rely on a discretization of the coalescent times into discrete hidden states,
meaning that simultaneous mergers of three lineages may not be easily distinguished from
two consecutive binary mergers occurring over a short period of time. Third, the SM𝛽C relies
on a complex hidden Markov model and due to computational and mathematical tractability,
it cannot leverage information on a whole genealogy (as MSMC, SM𝛽C only focuses on the
first coalescent event) and cannot simultaneously analyze large sample size. Furthermore,
the SM𝛽C approach leverages information from the distribution of genealogies along the
genome. It means that in the near absence of recombination events, both approaches cannot
utilize any information from the genealogy itself. However, the GNN𝑐𝑜𝑎𝑙 approach can
overcome this by increasing sample size. Fourth, the SM𝛽C is based on a coalescent model
where 𝛼 is constant in time. Yet multiple merger events do not appear regularly across the
genealogical timescale, but occur at few random time points. Hence, the SMC approach
suffers from a strong identifiability problem between the variation of population size and
the 𝛼 parameter (for low 𝛼 values). As for example, if during one hidden state one strong
multiple merger event occurs, multiple merger events are seldom observed and SM𝛽C may
rather assume a small population size at this time point (hidden state). This may explain the
high variance of inferred population sizes under the 𝛽-coalescent.
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By contrast, the GNN𝑐𝑜𝑎𝑙 approach makes use of the whole ARG, and can easily scale
to big sample size (>10), although it recovers 𝛼 with high accuracy with sample size 3 only.
Our interpretation is thus that the GNN𝑐𝑜𝑎𝑙 is able of simultaneously leveraging information
from topology and the age of coalescent events (nodes) across several genealogies (here
500). The GNN𝑐𝑜𝑎𝑙 approach ultimately leverages information from observing recurrent
occurrences of the same multiple merger events at different locations on the genome, while
being aware of true multiple merger events from rapid successive binary mergers. We believe
that our results pave the way towards the interpretability of GNN and DL methods applied to
population genetics.

When applying both approaches to simulated sequence data (and not to true ARGs),
both approaches behave differently. The GNN𝑐𝑜𝑎𝑙 is not capable to accurately infer model
parameter whether it is past variation of population size or 𝛼. In contrast, we find the SM𝛽C
to perform better than the GNN𝑐𝑜𝑎𝑙 when dealing with sequence data (and not true ARG).
SM𝛽C is capable of recovering 𝛼 and the shape of the demographic scenario in recent times
irrespective of whether sequence data or ARG inferred by ARGweaver is given as input.
This is most likely due to the fact that the statistic used by the SM𝛽C (i.e. first coalescent
event in discrete time) is more coarse than the statistic used by the GNN𝑐𝑜𝑎𝑙 (i.e. the exact
ARG). We therefore speculate that the theoretical framework of the SM𝛽C, although being
in theory less accurate than GNN𝑐𝑜𝑎𝑙, is more robust and suited for application to sequence
data. More specifically the issue being faced by the GNN𝑐𝑜𝑎𝑙 is known as out-of-distribution
inference (Hüllermeier and Waegeman, 2021), which requires the network to generalize over
an untrained data distribution. More precisely, this happens because GNN𝑐𝑜𝑎𝑙 is not trained
using ARG inferred by ARGweaver. Building a training data set for GNN𝑐𝑜𝑎𝑙 to overcome
this issue is currently impractical due to the inference speed of ARGweaver (very slow).
However, future work will aim on increasing robustness of GNN inferences (e.g. by adding
uncertainty or multiple models during the training process). Improving the performance of
GNN𝑐𝑜𝑎𝑙 on sequence data requires a more suitable ARG inference methods (i.e. efficient
and accurate), which can be used on a broad spectrum of data sets (i.e. under a more general
class of model to avoid bias from potential hypothesis violations of the chosen ARG inference
approach).

Among the major forces driving the genome evolution there are the past demographic
history, the reproductive mechanisms and natural selection (Johri et al., 2022a). Hence, in
the second part of this manuscript we focus on integrating selection in both approaches.
Currently, no method (especially if relying only on SFS information) can account for the
presence of selection, linkage, non-constant population size and multiple merger events
(Johri et al., 2022a) although recent theoretical framework might render this possible in the
future (Alberti et al., 2021). As a first step to fill this gap, we demonstrate that the GNN𝑐𝑜𝑎𝑙
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approach can be used for model selection (classification), reducing the number of potential
hypotheses. Determining which evolutionary forces are driving the genome evolution is key,
as only under the appropriate neutral population model can results of past demography and
selection scans be correctly interpreted (Johri et al., 2022a, 2021). The high accuracy of the
GNN𝑐𝑜𝑎𝑙 approach in model selection is promising, especially as other methods based on
the SFS alone (Koskela and Berenguer, 2019; Kato et al., 2017) have limits in presence of
complex demographic scenarios which the GNN can possibly overcome, as it is easier to scale
the GNN to estimate more parameters. We follow a thread of previous work (Sackman et al.,
2019; Hejase et al., 2022; Bisschop et al., 2021a), by integrating and recovering selection,
multiple merger and population size variation by simply allowing each (fixed) region in the
genome to have its own 𝛼 parameter. In presence of strong selection, we find lower 𝛼 value
around the selected loci and high 𝛼 value in neutral neighbouring regions. In presence of
weak selection, no effect on the estimated 𝛼 value is observed, demonstrating that weak
selection can be modeled by binary merger (no multiple merger) and only has a local effect
on the branch length (i.e. by shortening it). Hence, our results point out that strong selection
can indeed be seen/modeled as a local multiple merger event (see (Durrett and Schweinsberg,
2005; Bisschop et al., 2021a; Sackman et al., 2019)). In theory, both approaches could
be able to infer the global 𝛼 parameter linked to the reproductive mechanism, the local 𝛼
parameter resulting from selection jointly with the variation of population size. However the
absence of a simulator capable of simulating data with selection and non-constant population
size under a 𝛽-coalescent model prevents us from delivering such proofs. We show strong
evidence that under neutrality our approaches can recover a constant (and correct) 𝛼 along
the genome as well as the past variation of the population size. We further predict, that
while selective processes favor coding regions, local variations in 𝛼 as a consequence of
sweepstake events should be indifferent to coding or non-coding regions. Hence, we suggest
that current sequence simulators (Baumdicker et al., 2022; Haller et al., 2019a) could be
extended to include the aforementioned factors and de facto facilitate the development of
machine learning approaches.

Our study is unique in developing a new state of the art SMC approach to demonstrate that
computational and mathematical problems can be overcome by DL (here GNN) approaches.
The GNN𝑐𝑜𝑎𝑙 approach is, in principle, not limited to the 𝛽-coalescent, and should work for
other multiple merger models (e.g. Dirac coalescents (Eldon and Wakeley, 2006) ) with the
appropriate training. Furthermore, our SM𝛽C approach is the first step to build a full genome
method with an underlying model accounting for positive selection. In the future, further
implementations may be added for a more realistic approach. The 𝛼 parameter should be
varying along the genome (as a hidden state), as the recombination rate in the iSMC (Barroso
et al., 2019). This would allow to account for the local effect of strong and weak selection
(Alberti et al., 2021). The effect of the 𝛼 parameter could be also changing through time to
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better model the non uniform occurrence of multiple merger events through time. Although
it is mathematically correct to have 𝛼 as a constant in time, it is erroneous in practice (5.12).
We speculate that those additional features will allow to accurately model and infer multiple
merger events, variation of population size, and selection at each position on the genome.
We believe the DL approach could also be improved to recover more complex scenarios,
providing in depth development on the structure of the graph neural networks, for example,
by accounting for more features. At last, further investigation are required to make progress in
the interpretability of the GNN methods, namely which statistics and convolution of statistics
are used by GNN𝑐𝑜𝑎𝑙 to infer which parameters.

Currently, the applications of our methods are constrained by the assumptions of haploidy.
Throughout the study we have assumed haploid data, but the GNN𝑐𝑜𝑎𝑙 and SM𝛽C approach
can easily be extended to diploidy (Birkner et al., 2013). Our results on inferred ARGs
stress the need for efforts to be made on improving ARG inference (Brandt et al., 2022).
Thanks to the SMC we are close to model the ARG allowing to infer demographic history,
selection and specific reproductive mechanism. Moreover, the comparison of DL approaches
with model driven ad hoc SMC methods may have the potential to help us solve issues
(e.g. simultaneously inferring and accounting for recombination, variation of population
size, different type of selection, population structure and the variation of the mutation and
recombination rate along the genome) which have puzzled theoreticians and statisticians since
the dawn of population genetics (Johri et al., 2022a).

On a final note, as environmental considerations hit us all, we suggest that decreasing the
computer and power resources needed to perform DL/ GNN analyses should be attempted
(Sapoval et al., 2022). Based on our study, we suggest that population genetics DL methods
could be built as a two step process: 1) inferring ARGs, and 2) inferring demography and
selection based on the ARGs. We speculate that general training sets based on ARGs could
be build and be widely applicable for inference across many species with different life cycles
and life history traits, while the inference of ARGs could be undertaken by complementary
DL or Hidden Markov methods.
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5.6 Tables

scenario True 𝛼 𝛼:SM𝛽C,M=3 𝛼:SM𝛽C,M=4 𝛼 : GNN, M=3 𝛼 : GNN, M=10
Constant 2 1.97 (0.005) 1.97 (0.008) 1.99 (0.002) 1.99 (0.003)
Sawtooth 2 1.94 (0.017) 1.87 (0.019) 1.99 (0.002) 1.99 (0.003)

Bottleneck 2 1.97 (0.01) 1.97 (0.009) 1.99 (0.003) 1.99 (0.004)
Decrease 2 1.97 (0.007) 1.97 (0.008) 1.99 (0.003) 1.99 (0.004)
Increase 2 1.97 (0.007) 1.97 (0.008) 1.99 (0.004) 1.99 (0.002)

Table 5.1 Average estimated values of 𝛼 by SM𝛽C and GNN𝑐𝑜𝑎𝑙 over ten repetitions under the
Kingman coalescent using 10 haploid sequences of 10 Mb and ` = 𝑟 = 10−8 per generation per bp.
The standard deviation is indicated in brackets.

scenario True 𝛼 𝛼∗:SM𝛽C,M=3
Constant 1.9 1.86 (0.16)

Bottleneck 1.9 1.89 (0.09)
Increase 1.9 1.93 (0.07)
Decrease 1.9 1.96 (0.04)
Sawtooth 1.9 1.76 (0.17)
Constant 1.7 1.82 (0.10)

Bottleneck 1.7 1.64 (0.23)
Increase 1.7 1.82 (0.10)
Decrease 1.7 1.89 (0.13)
Sawtooth 1.7 1.71 (0.27)
Constant 1.5 1.52 (0.30)

Bottleneck 1.5 1.64 (0.33)
Increase 1.5 1.57 (0.24)
Decrease 1.5 1.60 (0.18)
Sawtooth 1.5 1.66 (0.14)
Constant 1.3 1.31 (0.20)

Bottleneck 1.3 1.2 (0.17)
Increase 1.3 1.24 (0.13)
Decrease 1.3 1.57 (0.11)
Sawtooth 1.3 1.37 (0.16)

Table 5.2 Average estimated 𝛼 values by SM𝛽C on simulated sequence data over ten repetitions using
10 sequences of 10 Mb with recombination and mutation rate set to 1×10−8 for 𝛼 1.9 and 1.7, 1×10−7

for 𝛼 1.5 and 1×10−6 for 𝛼 1.3 per generation per bp under a Beta coalescent process. The analysis are
run on five different demographic scenarios (Constant population size, Bottleneck, Sudden increase,
Sudden decrease and a Sawtooth demography).

5.7 Data availability

Code used to generate the simulated data for analysis, training and validation alongside
(trained) deep learning models can be found at https://github.com/kevinkorfmann/
GNNcoal and https://github.com/kevinkorfmann/GNNcoal-analysis. Code
for SMC approaches used in this manuscript are available in the R package eSMC2 https:
//github.com/TPPSellinger/eSMC2.

https://github.com/kevinkorfmann/GNNcoal
https://github.com/kevinkorfmann/GNNcoal
https://github.com/kevinkorfmann/GNNcoal-analysis
https://github.com/TPPSellinger/eSMC2
https://github.com/TPPSellinger/eSMC2
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5.9 Supplementary Material: The Sequentially Markovian
𝛽 Coalescent

5.9.1 SM𝛽C

The Sequentially Markovian 𝛽 Coalescent is a Hidden Markov Model based on the Multiple
Sequentially Markovian Coalescent (MSMC) where Multiple Merger event are allowed to
occur under the 𝛽 coalescent.

To define our Hidden Markov Model (HMM) we need to define :

• Hidden States

• The signal (observed data)

• A Transition matrix (Probability of passing from one state to another)

• An Emission matrix (Probability of observing the signal conditional to the hidden state)

• An Initial probability (Probability of hidden states at the first position of the sequence)

Notations and Assumptions

We here define the different notations used and their meaning:

• 𝑟 : recombination rate per nucleotide

• ` : Mutation rate per nucleotide

• 𝑢 : recombination time, follows a continuous uniform distribution between 0 and first
coalescent time.
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• b𝑡 : Scaled population size at time t (𝑁𝑡 = b𝑡𝑁0)

• 𝜒𝑡 = b
𝛽−1
𝑡

• 𝑀 : Number of analyzed haploid sequences (or haploid individuals)

• 𝛽 : The multiple merger parameter

The model’s assumptions are :

• (𝜒𝑡)𝑡≥0 is piece-wise constant (intervals are specified in the following)

We first define the transition rates of the Beta 𝑛-coalescent (Kersting et al., 2014). The rate
of transition from a state with 𝑏 lineages to 𝑏 − 𝑛 + 1 lineages, i.e. a merger of 𝑛 lineages is

_𝑏,𝛽,𝑏−𝑛+1 =
𝐵(𝑛 − 𝛽, 𝑏 − 𝑛 + 𝛽)

Γ(2 − 𝛽)Γ(𝛽) . (5.1)

Λ𝑏,𝛽,𝑏−𝑛+1 =

(𝑏
𝑛

)
𝐵(𝑛 − 𝛽, 𝑏 − 𝑛 + 𝛽)
Γ(2 − 𝛽)Γ(𝛽) . (5.2)

Thus, the total rate is

_𝑏,𝛽 =

𝑏∑︁
𝑘=2

(𝑏
𝑘

)
𝐵(𝑘 − 𝛽, 𝑏 − 𝑘 + 𝛽)
Γ(2 − 𝛽)Γ(𝛽) (5.3)

Waiting times are exponentially distributed in the coalescent for population size constant
in time. For time-varying population sizes, we define the time-changed Λ-𝑛-coalescent as the
(rescaled) genealogy limit from a Wright-Fisher type Cannings model with skewed offspring
distributions as introduce in (Schweinsberg, 2003), which leads to a time-change waiting
time for coalescence events: If a waiting time has rate _ in the standard Beta 𝑛-coalescent
(started at some time 𝑡0), it has a waiting time density of

𝑓 (𝑡) = _

𝜒(𝑡) 𝑒
−
∫ 𝑡

𝑡0
_

𝜒 (𝑠) 𝑑𝑠, (5.4)

which follows as described in (Freund, 2020).

Hidden States

Our hidden states at one position are the first coalescent time 𝑡 > 0 at that position and which
individuals 𝑖 := (𝑖1, . . . , 𝑖𝑛) coalesce in the corresponding coalescence. A transition from
coalescent time s to time t or a change in the index 𝑖 can only occur when a recombination
happens.

Observations

The observation signal is the comparison of the M analyzed sequences. Thus the signal is a
series of number indicating the allelic state of the sequences at each position. For M=3, under
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the infinite site model hypothesis, only 4 different state can be observed along the sequence.
All sequences are the same at this position (indicated by a 0), or one of the three sequences is
different from the two other (indicated by i, if the sequence i is different from the two other).

Transition Matrix

Five transitions are possible, we transition from (𝑠, 𝑗) to (𝑡, 𝑖). Here we assume that t and s
are in interval time 𝛼 and 𝛾. At indices 𝑖 and 𝑗 , 𝑛 and 𝑚 individuals coalesce. In addition,
recombination occurs with probability :

𝑃(𝑟𝑒𝑐 |𝑠) = 1 − 𝑒−𝑟𝑀𝑠 (5.5)

We assume that only a single recombination event can happen before a merger. A recom-
bination event of one of 𝑀 lineages splits one ancestral lineage in two (backwards in time).
The additional lineage is not yet described by the coalescent without the recombination event,
we call this free. It can merge with any of the remaining 𝑀 lineages, but also with the second
parental ancestral lineage (i.e. the second split lineage from the recombination event). The
transition probabilities/rates conditional on the (known) behaviour of the other lineages are as
described in Dhersin et al., 2013, Sect. 5: Conditional on the mergers of the 𝑀 other lineages,
a binary merger of the "freed" lineage appears with rate 𝑀_𝑀+1,𝛽,𝑀 and it joins an existing
merger of 𝑚 lineages at some time 𝑡 with probability 1 − _𝑀+1,𝛽,𝑀+1−𝑚+1

_𝑀,𝛽,𝑀−𝑚+1
=

_𝑀+1,𝛽,𝑀+1−𝑚
_𝑀,𝛽,𝑀−𝑚+1

, where
the second equation is due to the consistency of rates in Λ-𝑛-coalescents. In the following,
we derive conditional probabilities and/or conditional densities for certain events.

t<s

For this to happen, a recombination must occur before time 𝑡. The new number of
individuals first coalescing is now 𝑛 = 2, and the recombination event needs to affect one of
these two individuals 𝑖 = {𝑖1, 𝑖2} (which happens with probability 2/𝑀), splitting one lineage
in two. Then, we just multiply the density of a binary merger of the free lineage with any of
the other 𝑀 lineages in the time-changed coalescent, which is Eq. (5.4) with rate 𝑀_𝑀+1,𝛽,𝑀

and the probability that the first merger is indeed merging 𝑖, which is 1
𝑀

(we pick the second
lineage of 𝑖 at random from 𝑀 lineages):

𝑓 (𝑡, 𝑖 |𝑠, 𝑗 , 𝑢) =
2_𝑀+1,𝛽,𝑀

𝑀𝜒𝑡
𝑒
−
∫ 𝑡

𝑢

𝑀_𝑀+1,𝛽,𝑀
𝜒𝑣

𝑑𝑣 (5.6)

t=s

Case 1: a non coalescing individual joins the coalescent event 𝑗 = { 𝑗1, . . . , 𝑗𝑛}. For this
to happen, the recombination event must occur before time s in a non coalescing branch,
which happens with probability 𝑀−𝑛

𝑀
. Then, the newly split second ancestral lineage of 𝑖 need

to not coalesce in a binary collision until time 𝑠, which equals exp(−
∫ 𝑠

𝑢

𝑀_𝑀+1,𝛽,𝑀
𝜒𝑣

𝑑𝑣) (by
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integrating Eq. (5.4) with rate 𝑀_𝑀+1,𝛽,𝑀). Finally, it then needs to join in the coalescent
event 𝑗 , which happens with probability _𝑀+1,𝛽,𝑀+1−𝑚

_𝑀,𝛽,𝑀−𝑚+1
. This shows that

𝑃(𝑠, 𝑖 |𝑠, 𝑗 , 𝑢) =
(𝑀 − 𝑛)_𝑀+1,𝛽,𝑀+1−𝑚

𝑀_𝑀,𝛽,𝑀−𝑚+1
𝑒
−
∫ 𝑠

𝑢

𝑀_𝑀+1,𝛽,𝑀
𝜒𝑣

𝑑𝑣 (5.7)

for 𝑖 = 𝑗 ∪ {𝑖}.
Case 2: Recombination occurs in a coalescing individual 𝑖 ∈ 𝑗 = { 𝑗1, . . . , 𝑗𝑛} of a multiple

merger event with 𝑛 > 2 (happens with probability 1
𝑛
). The new lineage then coalesces higher

in time, i.e. it does neither coalesce in a binary merger before 𝑠 (as in case 1) nor in the
collision at 𝑠 (which is the complementary event from case 1). As above, this leads to

𝑃(𝑠, 𝑖 |𝑠, 𝑗 , 𝑢) =
_𝑀+1,𝛽,𝑀+1−𝑚+1

𝑛_𝑀,𝛽,𝑀−𝑚+1
𝑒
−
∫ 𝑠

𝑢

𝑀_𝑀+1,𝛽,𝑀
𝜒𝑣

𝑑𝑣 (5.8)

for 𝑖 = 𝑗 \ {𝑖}
Case 3: Nothing changes. This happens if a) there is no recombination event (so 𝑢 > 𝑠),

b) the lineage split makes a binary merger between the two lineages resulting from the split
("self-coalesce") before 𝑠, c) recombination splits a lineage merged at the coalescence event
at 𝑠, but that the second ancestral lineage from the split joins the merger.
a) happens with probability 1 if 𝑢 > 𝑠, b) has conditional density as in Eq. 5.6 without the fac-
tor 2/𝑀 , integrating over [𝑢, 𝑠] yields the probability (1− (1/𝑀) exp(−

∫ 𝑡

𝑢

𝑀_𝑀+1,𝛽,𝑀
𝜒𝑣

𝑑𝑣) and
c) follows as case 2, only we need the recombination event on a lineage already participating
in the merger at time 𝑠 (so just replacing 𝑀 − 𝑛 with 𝑛 in Eq. (5.8)).

t>s
For this to happen, a recombination must occur before time 𝑠 and break a coalescent event

of only two individuals ( 𝑗1, 𝑗2) (w. probability 2/𝑀). Assume without restriction 𝑗1 was
affected by recombination. For (the new ancestral lineage of) 𝑗1 to coalesce at time 𝑡, it must
not coalesce until time s, then not coalesce in the former coalescent event and then the next
coalescence event happens at time 𝑡. The next coalescence event can take any form and does
not need to merge 𝑗1. Additionally, we just need to keep track of the 𝑀 − 1 non-recombining
lineages and 𝑗1, since we are not conditioning on the behaviour after 𝑠 and thus both self-
coalescence and the coalescence of the second split lineage (not 𝑗1) can be ignored. Thus,
to compute the conditional rate for merging into 𝑖, we first compute the probability that the
new ancestral lineage representing 𝑗1 in the new DNA segment does not coalesce until time
𝑠, given by Eq. (5.8) with 𝑛 = 2, and multiply this by the conditional density for merging into
any 𝑖 of M lineages afterwards. Thus, this is just Eq. (5.4) with rate _𝑀,𝛽 multiplied with
_𝑀,𝛽,𝑀−𝑛+1

_𝑀,𝛽
. This leads to

𝑓 (𝑡, 𝑖 |𝑠, 𝑗 , 𝑢) =
2_𝑀+1,𝛽,𝑀

𝑀_𝑀,𝛽,𝑀−1
𝑒
−
∫ 𝑠

𝑢

𝑀_𝑀+1,𝛽,𝑀
𝜒𝑣

𝑑𝑣 _𝑀,𝛽,𝑀−𝑛+1

𝜒𝑡
𝑒
−
∫ 𝑡

𝑠

_𝑀,𝛽

𝜒𝑣
𝑑𝑣 (5.9)
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for 𝑖 = {𝑖1, . . . , 𝑖𝑛}.

Full transition probability

𝑝(𝑡, 𝑖 |𝑠, 𝑗 , 𝑢) =

(1 − 𝑒−𝑀𝑟𝑠) 2_𝑀+1,𝛽,𝑀
𝜒𝑡𝑀

𝑒
−
∫ 𝑡

𝑢

𝑀_𝑀+1,𝛽,𝑀
𝜒𝑣

𝑑𝑣
𝑢 < 𝑡 < 𝑠

𝑒−𝑀𝑟𝑠 + (1 − 𝑒−𝑀𝑟𝑠) (
∫ 𝑠

𝑢

𝑒

∫ 𝑘
𝑢 −

𝑀_𝑀+1,𝛽,𝑀
𝜒𝑣

𝑑𝑣

𝜒𝑘
𝑑𝑘 + (𝑀−𝑛)_(𝑛+1) ,𝛽,2

𝑀_(𝑛+1) ,𝛽,2+_(𝑛+1) ,𝛽,1
𝑒

∫ 𝑡

𝑢
−

𝑀_𝑀+1,𝛽,𝑀
𝜒𝑣

𝑑𝑣) 𝑡 = 𝑠, 𝑚 = 𝑛

(1 − 𝑒−𝑀𝑟𝑠) (𝑀−𝑛)_(𝑛+1) ,𝛽,1𝑒
−
∫ 𝑠
𝑢

𝑀_𝑀+1,𝛽,𝑀
𝜒𝑣

𝑑𝑣

𝑀 (_(𝑛+1) ,𝛽,2+_(𝑛+1) ,𝛽,1 ) 𝑡 = 𝑠, 𝑚 = 𝑛 + 1

(1 − 𝑒−𝑀𝑟𝑠) 1
𝑛

_(𝑛+1) ,𝛽,2𝑒
−
∫ 𝑠
𝑢

𝑀_𝑀+1,𝛽,𝑀
𝜒𝑣

𝑑𝑣

𝑠 (_(𝑛+1) ,𝛽,2+_(𝑛+1) ,𝛽,1 ) 𝑡 = 𝑠, 𝑚 + 1 = 𝑛

(1 − 𝑒−𝑀𝑟𝑠) _𝑀,𝛽, (𝑀−𝑚+1)

(𝑀𝑚)𝜒𝛼

𝑒
−
∫ 𝑡

𝑠

_𝑀,𝛽

𝜒𝑣
𝑑𝑣
𝑒
−
∫ 𝑠

𝑢

𝑀_𝑀+1,𝛽,𝑀
𝜒𝑣

𝑑𝑣 2_(𝑛+1) ,𝛽,2
𝑀 (_(𝑛+1) ,𝛽,2+_(𝑛+1) ,𝛽,1 ) 𝑡 > 𝑠, 𝑖 = 𝑙, 𝑗 = 𝑘

(5.10)

As explained before, the state space must be finite. We therefore discretized time in k intervals. At
one point the hidden state is 𝛼 if 𝑡 ∈ [𝑇𝛼, 𝑇𝛼+1], where 𝛼 ∈ [0, (𝑛 − 1)]. We define 𝑇𝛼 :

𝑇𝛼 =
− ln(1 − 𝛼

𝑛
)

_𝑀,𝛽

(5.11)

We therefore have:
𝑝(𝛼, 𝑖 |𝑠, 𝑗) =

∫ 𝑇𝛼+1

𝑇𝛼

𝑝(𝑡, 𝑖 |𝑠, 𝑗)𝑑𝑡 (5.12)

Note: Because time is discretized, if the first coalescent time is bigger than𝑇(𝑛−1) , then all individual
coalesce.

Initial Probability

We use the equilibrium probability as initial probability while assuming m individual coalesce.
The equilibrium probability is given by :

𝑞𝑜 (𝛼, 𝑖) =
∫ 𝑇𝛼+1

𝑇𝛼

_𝑀,𝛽, (𝑀−𝑚+1)

𝜒𝛼

(𝑀
𝑚

) 𝑒
−
∫ 𝑡

0
_𝑀,𝛽

𝜒𝑣
𝑑𝑣
𝑑𝑡

=
_𝑀,𝛽, (𝑀−𝑚+1)𝑒

∑𝛼−1
[=0

_𝑀,𝛽

𝜒[
Δ[(𝑀

𝑚

)
_𝑀,𝛽

(1 − 𝑒
−Δ𝛼

_𝑀,𝛽

𝜒𝑡 )

(5.13)

Where :

Δ𝛾 = 𝑇𝛾+1 − 𝑇𝛾 (5.14)

Calculation of 𝑡𝛾, 𝑗 Assuming 𝑛 individual coalesces.
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𝑡𝛾, 𝑗 = 𝐸 [Coalescent time|𝛾, 𝑗] = 𝐸 [Coalescent time ∩ 𝛾, 𝑗]
𝑃(𝛾, 𝑗) =

∫ 𝑇𝛾+1
𝑇𝛾

𝑡_𝑀,𝛽, (𝑀−𝑛+1)𝑒
−
∫ 𝑡

0
_𝑀,𝛽

𝜒𝑣
𝑑𝑣(𝑀

𝑛

)
𝑞0(𝛾, 𝑗)

𝑑𝑡

=
𝑇𝛾 − 𝑇𝛾+1𝑒

−Δ𝛾

_𝑀,𝛽

𝜒𝛾

(1 − 𝑒
−Δ𝛾

_𝑀,𝛽

𝜒𝛾 )
+

𝜒𝛾

_𝑀,𝛽

(5.15)

Where :

Δ𝛾 = 𝑇𝛾+1 − 𝑇𝛾 (5.16)

We note that 𝑡𝛾, 𝑗 is independent of 𝑗 , thus 𝑡𝛾, 𝑗 = 𝑡𝛾 .

Calculation of 𝑝(𝛼, 𝑖 |𝛾, 𝑗)

𝛼 < 𝛾

We here calculate the transition probability from the state 𝛾 to a time t in the time interval 𝛼.

𝑃(𝑡, 𝑖 |𝑡𝛾 , 𝑗) =
𝑃𝛾

𝑡𝛾

∫ 𝑡

0

2_𝑀+1,𝛽,𝑀

𝜒𝑣𝑀
𝑒
−
∫ 𝑡

𝑢

𝑀_𝑀+1,𝛽,𝑀
𝜒𝑣

𝑑𝑣
𝑑𝑢

=
𝑃𝛾

𝑡𝛾
(
𝛼−1∑︁
[=0

∫ 𝑇[+1

𝑇[

2_𝑀+1,𝛽,𝑀

𝜒𝑣𝑀
𝑒
−
∫ 𝑡

𝑢

𝑀_𝑀+1,𝛽,𝑀
𝜒𝑣

𝑑𝑣
𝑑𝑢 +

∫ 𝑡

𝑇𝛼

2_𝑀+1,𝛽,𝑀

𝜒𝑣𝑀
𝑒
−
∫ 𝑡

𝑢

𝑀_𝑀+1,𝛽,𝑀
𝜒𝑣

𝑑𝑣
𝑑𝑢)

=
𝑃𝛾

𝑡𝛾
(
𝛼−1∑︁
[=0

∫ 𝑇[+1

𝑇[

2_𝑀+1,𝛽,𝑀

𝜒𝛼𝑀
𝑒
−
∫ 𝑇𝛼

𝑇[+1

𝑀_𝑀+1,𝛽,𝑀
𝜒𝑣

𝑑𝑣
𝑒
−
∫ 𝑡

𝑇𝛼

𝑀_𝑀+1,𝛽,𝑀
𝜒𝑣

𝑑𝑣
𝑒
−
∫ 𝑇[+1
𝑢

𝑀_𝑀+1,𝛽,𝑀
𝜒𝑣

𝑑𝑣
𝑑𝑢+∫ 𝑡

𝑇𝛼

2_𝑀+1,𝛽,𝑀

𝜒𝛼𝑀
𝑒
−(𝑡−𝑢)

𝑀_𝑀+1,𝛽,𝑀
𝜒𝛼

𝑑𝑣
𝑑𝑢)

=
𝑃𝛾

𝑡𝛾

2_𝑀+1,𝛽,𝑀

𝜒𝛼𝑀
(
𝛼−1∑︁
[=0

∫ 𝑇[+1

𝑇[

𝑒
−∑𝛼−1

Z=[+1 ΔZ

𝑀_𝑀+1,𝛽,𝑀
𝜒Z 𝑒

−(𝑡−𝑇𝛼 )
𝑀_𝑀+1,𝛽,𝑀

𝜒𝛼 𝑒
−(𝑇[+1−𝑢)

𝑀_𝑀+1,𝛽,𝑀
𝜒[ 𝑑𝑢

+ (1 − 𝑒
−(𝑡−𝑇𝛼 )

𝑀_𝑀+1,𝛽,𝑀
𝜒𝛼 )

𝑀_𝑀+1,𝛽,𝑀
𝜒𝛼

)

=
𝑃𝛾

𝑡𝛾

2_𝑀+1,𝛽,𝑀

𝜒𝛼𝑀
(
𝛼−1∑︁
[=0

𝑒
−∑𝛼−1

Z=[+1 ΔZ

𝑀_𝑀+1,𝛽,𝑀
𝜒Z 𝑒

−(𝑡−𝑇𝛼 )
𝑀_𝑀+1,𝛽,𝑀

𝜒𝛼
(1 − 𝑒

−Δ[

𝑀_𝑀+1,𝛽,𝑀
𝜒[ )

𝑀_𝑀+1,𝛽,𝑀
𝜒[

+ (1 − 𝑒
−(𝑡−𝑇𝛼 )

𝑀_𝑀+1,𝛽,𝑀
𝜒𝛼 )

𝑀_𝑀+1,𝛽,𝑀
𝜒𝛼

)

(5.17)

We then have to integrate of the time interval alpha to have the transition probability from the state
𝛾 to the state 𝛼.
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𝑃(𝛼, 𝑖 |𝛾, 𝑗) =
∫ 𝑇𝛼+1

𝑇𝛼

𝑃𝛾

𝑡𝛾

2_𝑀+1,𝛽,𝑀

𝜒𝛼𝑀
(
𝛼−1∑︁
[=0

𝑒
−∑𝛼−1

Z=[+1 ΔZ

𝑀_𝑀+1,𝛽,𝑀
𝜒Z 𝑒

−(𝑡−𝑇𝛼 )
𝑀_𝑀+1,𝛽,𝑀

𝜒𝛼
(1 − 𝑒

−Δ[

𝑀_𝑀+1,𝛽,𝑀
𝜒[ )

𝑀_𝑀+1,𝛽,𝑀
𝜒[

+ (1 − 𝑒
−(𝑡−𝑇𝛼 )

𝑀_𝑀+1,𝛽,𝑀
𝜒𝛼 )

𝑀_𝑀+1,𝛽,𝑀
𝜒𝛼

)𝑑𝑡

=
𝑃𝛾

𝑡𝛾

2_𝑀+1,𝛽,𝑀

𝜒𝛼𝑀
(
𝛼−1∑︁
[=0

𝑒
−∑𝛼−1

Z=[+1 ΔZ

𝑀_𝑀+1,𝛽,𝑀
𝜒Z

(1 − 𝑒
−Δ𝛼

𝑀_𝑀+1,𝛽,𝑀
𝜒𝛼 )

𝑀_𝑀+1,𝛽,𝑀
𝜒𝛼

(1 − 𝑒
−Δ[

𝑀_𝑀+1,𝛽,𝑀
𝜒[ )

𝑀_𝑀+1,𝛽,𝑀
𝜒[

+
(Δ𝛼 − (1−𝑒−(Δ𝛼

𝑀_𝑀+1,𝛽,𝑀
𝜒𝛼 )

𝑀_𝑀+1,𝛽,𝑀
𝜒𝛼

)

𝑀_𝑀+1,𝛽,𝑀
𝜒𝛼

)

=
𝑃𝛾

𝑡𝛾

2
𝑀2 (

𝛼−1∑︁
[=0

𝑒
−∑𝛼−1

Z=[+1 ΔZ

𝑀_𝑀+1,𝛽,𝑀
𝜒Z (1 − 𝑒

−Δ𝛼

𝑀_𝑀+1,𝛽,𝑀
𝜒𝛼 ) (1 − 𝑒

−Δ[

𝑀_𝑀+1,𝛽,𝑀
𝜒[ )

𝑀_𝑀+1,𝛽,𝑀
𝜒[

+(Δ𝛼 − (1 − 𝑒
−(Δ𝛼

𝑀_𝑀+1,𝛽,𝑀
𝜒𝛼 )

𝑀_𝑀+1,𝛽,𝑀
𝜒𝛼

))

(5.18)

Where the recombination probability if defined as:

𝑃𝛾 = (1 − 𝑒−𝑀𝑟𝑡𝛾 ) (5.19)

𝛾 < 𝛼 We here calculate the transition probability from the state 𝛾 to a time t in the time interval 𝛼.

𝑃(𝑡, 𝑖 |𝑡𝛾 , 𝑗) =
∫ 𝑡𝛾

0

𝑃𝛾

𝑡𝛾

_𝑀,𝛽, (𝑀−𝑚+1)(𝑀
𝑚

)
𝜒𝛼

𝑒
−
∫ 𝑡

𝑡𝛾

_𝑀,𝛽

𝜒𝑣
𝑑𝑣
𝑒
−
∫ 𝑡𝛾

𝑢

𝑀_𝑀+1,𝛽,𝑀
𝜒𝑣

𝑑𝑣 2_ (𝑛+1) ,𝛽,2

𝑀 (_ (𝑛+1) ,𝛽,2 + _ (𝑛+1) ,𝛽,1)
𝑑𝑢

=
𝑃𝛾

𝑡𝛾

_𝑀,𝛽, (𝑀−𝑚+1)(𝑀
𝑚

)
𝜒𝛼

(
𝛾−1∑︁
[=1

∫ 𝑇[+1

𝑇[

𝑒
−
∫ 𝑡

𝑡𝛾

_𝑀,𝛽

𝜒𝑣
𝑑𝑣
𝑒
−
∫ 𝑇𝛾

𝑇[+1

𝑀_𝑀+1,𝛽,𝑀
𝜒𝑣

𝑑𝑣
𝑒
−
∫ 𝑡𝛾

𝑇𝛾

𝑀_𝑀+1,𝛽,𝑀
𝜒𝑣

𝑑𝑣

× 𝑒
−
∫ 𝑇[+1
𝑢

𝑀_𝑀+1,𝛽,𝑀
𝜒𝑣

𝑑𝑣 2_ (𝑛+1) ,𝛽,2

𝑀 (_ (𝑛+1) ,𝛽,2 + _ (𝑛+1) ,𝛽,1)
𝑑𝑢

+
∫ 𝑡𝛾

𝑇𝛾

𝑒
−
∫ 𝑡

𝑡𝛾

_𝑀,𝛽

𝜒𝑣
𝑑𝑣
𝑒
−
∫ 𝑡𝛾

𝑢

𝑀_𝑀+1,𝛽,𝑀
𝜒𝑣

𝑑𝑣 2_ (𝑛+1) ,𝛽,2

𝑀 (_ (𝑛+1) ,𝛽,2 + _ (𝑛+1) ,𝛽,1)
𝑑𝑢)

=
𝑃𝛾

𝑡𝛾

2_ (𝑛+1) ,𝛽,2𝑒
−
∫ 𝑡

𝑡𝛾

_𝑀,𝛽

𝜒𝑣
𝑑𝑣

𝑀 (_ (𝑛+1) ,𝛽,2 + _ (𝑛+1) ,𝛽,1)
_𝑀,𝛽, (𝑀−𝑚+1)(𝑀

𝑚

)
𝜒𝛼

(
𝛾−1∑︁
[=1

𝑒
−∑𝛾−1

Z=[+1 ΔZ

𝑀_𝑀+1,𝛽,𝑀
𝜒Z

× 𝑒
−(𝑡𝛾−𝑇𝛾 )

𝑀_𝑀+1,𝛽,𝑀
𝜒𝛾

(1 − 𝑒
−Δ[

𝑀_𝑀+1,𝛽,𝑀
𝜒[ )

𝑀_𝑀+1,𝛽,𝑀
𝜒[

+ (1 − 𝑒
−(𝑡𝛾−𝑇𝛾 )

𝑀_𝑀+1,𝛽,𝑀
𝜒𝛾 )

𝑀_𝑀+1,𝛽,𝑀
𝜒𝛾

) (5.20)
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We then have to integrate of the time interval alpha to have the transition probability from the state
𝛾 to the state 𝛼.

𝑃(𝛼, 𝑖 |𝛾, 𝑗) =
∫ 𝑇𝛼+1

𝑇𝛼

𝑃𝛾

𝑡𝛾

2_ (𝑛+1) ,𝛽,2𝑒
−
∫ 𝑡

𝑡𝛾

_𝑀,𝛽

𝜒𝑣
𝑑𝑣

𝑀 (_ (𝑛+1) ,𝛽,2 + _ (𝑛+1) ,𝛽,1)
_𝑀,𝛽, (𝑀−𝑚+1)(𝑀

𝑚

)
𝜒𝛼

(
𝛾−1∑︁
[=1

𝑒
−∑𝛾−1

Z=[+1 ΔZ

𝑀_𝑀+1,𝛽,𝑀
𝜒Z 𝑒

−(𝑡𝛾−𝑇𝛾 )
𝑀_𝑀+1,𝛽,𝑀

𝜒𝛾
(1 − 𝑒

−Δ[

𝑀_𝑀+1,𝛽,𝑀
𝜒[ )

𝑀_𝑀+1,𝛽,𝑀
𝜒[

+ (1 − 𝑒
−(𝑡𝛾−𝑇𝛾 )

𝑀_𝑀+1,𝛽,𝑀
𝜒𝛾 )

𝑀_𝑀+1,𝛽,𝑀
𝜒𝛾

)𝑑𝑡

=

∫ 𝑇𝛼+1

𝑇𝛼

𝑃𝛾

𝑡𝛾

2_ (𝑛+1) ,𝛽,2𝑒
−
∫ 𝑇𝛼

𝑡𝛾

_𝑀,𝛽

𝜒𝑣
𝑑𝑣
𝑒
−
∫ 𝑡

𝑇𝛼

_𝑀,𝛽

𝜒𝑣
𝑑𝑣

𝑀 (_ (𝑛+1) ,𝛽,2 + _ (𝑛+1) ,𝛽,1)
_𝑀,𝛽, (𝑀−𝑚+1)(𝑀

𝑚

)
𝜒𝛼

(
𝛾−1∑︁
[=1

𝑒
−∑𝛾−1

Z=[+1 ΔZ

𝑀_𝑀+1,𝛽,𝑀
𝜒Z 𝑒

−(𝑡𝛾−𝑇𝛾 )
𝑀_𝑀+1,𝛽,𝑀

𝜒𝛾
(1 − 𝑒

−Δ[

𝑀_𝑀+1,𝛽,𝑀
𝜒[ )

𝑀_𝑀+1,𝛽,𝑀
𝜒[

+ (1 − 𝑒
−(𝑡𝛾−𝑇𝛾 )

𝑀_𝑀+1,𝛽,𝑀
𝜒𝛾 )

𝑀_𝑀+1,𝛽,𝑀
𝜒𝛾

)𝑑𝑡

=
𝑃𝛾

𝑡𝛾

2_ (𝑛+1) ,𝛽,2𝑒
−
∫ 𝑇𝛼

𝑡𝛾

_𝑀,𝛽

𝜒𝑣
𝑑𝑣 (1 − 𝑒

−Δ𝛼

_𝑀,𝛽

𝜒𝛼 )
𝑀 (_ (𝑛+1) ,𝛽,2 + _ (𝑛+1) ,𝛽,1)

_𝑀,𝛽, (𝑀−𝑚+1)(𝑀
𝑚

)
_𝑀,𝛽

(
𝛾−1∑︁
[=1

𝑒
−∑𝛾−1

Z=[+1 ΔZ

𝑀_𝑀+1,𝛽,𝑀
𝜒Z 𝑒

−(𝑡𝛾−𝑇𝛾 )
𝑀_𝑀+1,𝛽,𝑀

𝜒𝛾
(1 − 𝑒

−Δ[

𝑀_𝑀+1,𝛽,𝑀
𝜒[ )

𝑀_𝑀+1,𝛽,𝑀
𝜒[

+ (1 − 𝑒
−(𝑡𝛾−𝑇𝛾 )

𝑀_𝑀+1,𝛽,𝑀
𝜒𝛾 )

𝑀_𝑀+1,𝛽,𝑀
𝜒𝛾

)

(5.21)

𝛾 = 𝛼, 𝑚 = 𝑛 + 1
For a multiple merger event to happen, there are three possibilities. A non coalescing branch join

the coalescent event, or it coalesces in the same hidden state (before or after the coalescent event).

𝑃(𝛾, 𝑖 |𝛾, 𝑗) =
𝑃𝛾

𝑡𝛾

∫ 𝑡𝛾

0

(𝑀 − 𝑛)_ (𝑛+1) ,𝛽,1𝑒
−
∫ 𝑡𝛾

𝑢

𝑀_𝑀+1,𝛽,𝑀
𝜒𝑣

𝑑𝑣

𝑀 (_ (𝑛+1) ,𝛽,2 + _ (𝑛+1) ,𝛽,1)
𝑑𝑢 + 𝑃𝑐1 + 𝑃𝑐2

=
𝑃𝛾

𝑡𝛾

(𝑀 − 𝑛)_ (𝑛+1) ,𝛽,1

𝑀 (_ (𝑛+1) ,𝛽,2 + _ (𝑛+1) ,𝛽,1)
(
𝛾−1∑︁
[=1

∫ 𝑇[+1

𝑇[

𝑒
−
∫ 𝑇[+1
𝑢

𝑀_𝑀+1,𝛽,𝑀
𝜒𝑣

𝑑𝑣
𝑒
−
∫ 𝑡𝛾

𝑇[+1

𝑀_𝑀+1,𝛽,𝑀
𝜒𝑣

𝑑𝑣
𝑑𝑢

+
∫ 𝑡𝛾

𝑇𝛾

𝑒
−
∫ 𝑡𝛾

𝑢

𝑀_𝑀+1,𝛽,𝑀
𝜒𝑣

𝑑𝑣
𝑑𝑢) + 𝑃𝑐1 + 𝑃𝑐2

=
𝑃𝛾

𝑡𝛾

(𝑀 − 𝑛)_ (𝑛+1) ,𝛽,1

𝑀 (_ (𝑛+1) ,𝛽,2 + _ (𝑛+1) ,𝛽,1)
(
𝛾−1∑︁
[=1

(1 − 𝑒
−Δ[

𝑀_𝑀+1,𝛽,𝑀
𝜒[ )

𝑀_𝑀+1,𝛽,𝑀
𝜒[

𝑒
−
∫ 𝑡𝛾

𝑇[+1

𝑀_𝑀+1,𝛽,𝑀
𝜒𝑣

𝑑𝑣

+ (1 − 𝑒
−(𝑡𝛾−𝑇𝛾 )

𝑀_𝑀+1,𝛽,𝑀
𝜒𝛾 )

𝑀_𝑀+1,𝛽,𝑀
𝜒𝛾

) + 𝑃𝑐1 + 𝑃𝑐2

=
𝑃𝛾 (𝑀 − 𝑛)_ (𝑛+1) ,𝛽,1

𝑡𝛾𝑀 (_ (𝑛+1) ,𝛽,2 + _ (𝑛+1) ,𝛽,1)
(
𝛾−1∑︁
[=1

(1 − 𝑒
−Δ[

𝑀_𝑀+1,𝛽,𝑀
𝜒[ )

𝑀_𝑀+1,𝛽,𝑀
𝜒[

𝑒
−∑𝛾−1

Z=[+1
ΔZ 𝑀_𝑀+1,𝛽,𝑀

𝜒Z 𝑒
−(𝑡𝛾−𝑇𝛾 )

𝑀_𝑀+1,𝛽,𝑀
𝜒𝛾

+ (1 − 𝑒
−(𝑡𝛾−𝑇𝛾 )

𝑀_𝑀+1,𝛽,𝑀
𝜒𝛾 )

𝑀_𝑀+1,𝛽,𝑀
𝜒𝛾

) + 𝑃𝑐1 + 𝑃𝑐2 (5.22)
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𝑃𝑐1 is the probability that a recombination happens before the first coalescent event in the non
coalescing branch, it then coalesce before the current first coalescent event but in the same hidden
state (resulting in a multiple merger coalescent because of the discretized time)

𝑃𝑐2 is the probability that a recombination happens before𝑇𝛾+1 in the non coalescing branch, it then
coalesce after the current first coalescent event but in the same hidden state (resulting in a multiple
merger coalescent because of the discretized time)

𝑃𝑐1 =

∫ 𝑡𝛾

𝑇𝛾

𝑃𝛾

𝑡𝛾

_2,𝛽

𝜒𝛾𝑀
(
𝛾−1∑︁
[=0

𝑒
−∑𝛾−1

Z=[+1 ΔZ

𝑀_𝑀+1,𝛽,𝑀
𝜒Z 𝑒

−(𝑡−𝑇𝛾 )
𝑀_𝑀+1,𝛽,𝑀

𝜒𝛾
(1 − 𝑒

−Δ[

𝑀_𝑀+1,𝛽,𝑀
𝜒[ )

𝑀_𝑀+1,𝛽,𝑀
𝜒[

+ (1 − 𝑒
−(𝑡−𝑇𝛾 )

𝑀_𝑀+1,𝛽,𝑀
𝜒𝛾 )

𝑀_𝑀+1,𝛽,𝑀
𝜒𝛾

)𝑑𝑡

=
𝑃𝛾

𝑡𝛾

_2,𝛽

𝜒𝛾𝑀
(
𝛾−1∑︁
[=0

𝑒
−∑𝛾−1

Z=[+1 ΔZ

𝑀_𝑀+1,𝛽,𝑀
𝜒Z

(1 − 𝑒
−(𝑡𝛾−𝑇𝛾 )

𝑀_𝑀+1,𝛽,𝑀
𝜒𝛾 )

𝑀_𝑀+1,𝛽,𝑀
𝜒𝛾

(1 − 𝑒
−Δ[

𝑀_𝑀+1,𝛽,𝑀
𝜒[ )

𝑀_𝑀+1,𝛽,𝑀
𝜒[

+
((𝑡𝛾 − 𝑇𝛾) − (1−𝑒−(𝑡𝛾−𝑇𝛾 )

𝑀_𝑀+1,𝛽,𝑀
𝜒𝛾 )

𝑀_𝑀+1,𝛽,𝑀
𝜒𝛾

)

𝑀_𝑀+1,𝛽,𝑀
𝜒𝛾

)

=
𝑃𝛾

𝑡𝛾

1
𝑀2 (

𝛾−1∑︁
[=0

𝑒
−∑𝛾−1

Z=[+1 ΔZ

𝑀_𝑀+1,𝛽,𝑀
𝜒Z (1 − 𝑒

−(𝑡𝛾−𝑇𝛾 )
𝑀_𝑀+1,𝛽,𝑀

𝜒𝛾 ) (1 − 𝑒
−Δ[

𝑀_𝑀+1,𝛽,𝑀
𝜒[ )

𝑀_𝑀+1,𝛽,𝑀
𝜒[

+((𝑡𝛾 − 𝑇𝛾) −
(1 − 𝑒

−(𝑡𝛾−𝑇𝛾 )
𝑀_𝑀+1,𝛽,𝑀

𝜒𝛾 )
𝑀_𝑀+1,𝛽,𝑀

𝜒𝛾

))

(5.23)

𝑃𝑐2 =

∫ 𝑇𝛾+1

𝑡𝛾

𝑃𝛾

𝑡𝛾

_ (𝑛+1) ,𝛽,2𝑒
−
∫ 𝑡

𝑡𝛾

_2,𝛽
𝜒𝛾

𝑑𝑣

𝑀 (_ (𝑛+1) ,𝛽,2 + _ (𝑛+1) ,𝛽,1)
_2,𝛽

𝜒𝛾

(
𝛾−1∑︁
[=1

𝑒
−∑𝛾−1

Z=[+1 ΔZ

𝑀_𝑀+1,𝛽,𝑀
𝜒Z 𝑒

−(𝑡𝛾−𝑇𝛾 )
𝑀_𝑀+1,𝛽,𝑀

𝜒𝛾
(1 − 𝑒

−Δ[

𝑀_𝑀+1,𝛽,𝑀
𝜒[ )

𝑀_𝑀+1,𝛽,𝑀
𝜒[

+ (1 − 𝑒
−Δ𝛾

𝑀_𝑀+1,𝛽,𝑀
𝜒𝛾 )

𝑀_𝑀+1,𝛽,𝑀
𝜒𝛾

)𝑑𝑡

=
𝑃𝛾

𝑡𝛾

_ (𝑛+1) ,𝛽,2(1 − 𝑒
−(𝑇𝛾+1−𝑡𝛾 )

_2,𝛽
𝜒𝛾 )

𝑀 (_ (𝑛+1) ,𝛽,2 + _ (𝑛+1) ,𝛽,1)

(
𝛾−1∑︁
[=1

𝑒
−∑𝛾−1

Z=[+1 ΔZ

𝑀_𝑀+1,𝛽,𝑀
𝜒Z 𝑒

−(𝑡𝛾−𝑇𝛾 )
𝑀_𝑀+1,𝛽,𝑀

𝜒𝛾
(1 − 𝑒

−Δ[

𝑀_𝑀+1,𝛽,𝑀
𝜒[ )

𝑀_𝑀+1,𝛽,𝑀
𝜒[

+ (1 − 𝑒
−Δ𝛾

𝑀_𝑀+1,𝛽,𝑀
𝜒𝛾 )

𝑀_𝑀+1,𝛽,𝑀
𝜒𝛾

)

(5.24)

𝛾 = 𝛼, 𝑚 = 𝑛 − 1
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𝑃(𝛾, 𝑖 |𝛾, 𝑗) =
𝑃𝛾

𝑡𝛾

∫ 𝑡𝛾

0

_ (𝑛+1) ,𝛽,2𝑒
−
∫ 𝑡𝛾

𝑢

𝑀_𝑀+1,𝛽,𝑀
𝜒𝑣

𝑑𝑣

𝑛(_ (𝑛+1) ,𝛽,2 + _ (𝑛+1) ,𝛽,1)
𝑑𝑢

=
𝑃𝛾

𝑡𝛾

_ (𝑛+1) ,𝛽,2

𝑛(_ (𝑛+1) ,𝛽,2 + _ (𝑛+1) ,𝛽,1)
(
𝛾−1∑︁
[=1

∫ 𝑇[+1

𝑇[

𝑒
−
∫ 𝑇[+1
𝑢

𝑀_𝑀+1,𝛽,𝑀
𝜒𝑣

𝑑𝑣
𝑒
−
∫ 𝑡𝛾

𝑇[+1

𝑀_𝑀+1,𝛽,𝑀
𝜒𝑣

𝑑𝑣
𝑑𝑢

+
∫ 𝑡𝛾

𝑇𝛾

𝑒
−
∫ 𝑡𝛾

𝑢

𝑀_𝑀+1,𝛽,𝑀
𝜒𝑣

𝑑𝑣
𝑑𝑢)

=
𝑃𝛾

𝑡𝛾

_ (𝑛+1) ,𝛽,2

𝑛(_ (𝑛+1) ,𝛽,2 + _ (𝑛+1) ,𝛽,1)
(
𝛾−1∑︁
[=1

(1 − 𝑒
−Δ[

𝑀_𝑀+1,𝛽,𝑀
𝜒[ )

𝑀_𝑀+1,𝛽,𝑀
𝜒[

𝑒
−
∫ 𝑡𝛾

𝑇[+1

𝑀_𝑀+1,𝛽,𝑀
𝜒𝑣

𝑑𝑣 + (1 − 𝑒
−(𝑡𝛾−𝑇𝛾 )

𝑀_𝑀+1,𝛽,𝑀
𝜒𝛾 )

𝑀_𝑀+1,𝛽,𝑀
𝜒𝛾

)

=
𝑃𝛾

𝑡𝛾

_ (𝑛+1) ,𝛽,2

𝑛(_ (𝑛+1) ,𝛽,2 + _ (𝑛+1) ,𝛽,1)
(
𝛾−1∑︁
[=1

(1 − 𝑒
−Δ[

𝑀_𝑀+1,𝛽,𝑀
𝜒[ )

𝑀_𝑀+1,𝛽,𝑀
𝜒[

𝑒
−∑𝛾−1

Z=[+1 ΔZ

𝑀_𝑀+1,𝛽,𝑀
𝜒Z 𝑒

−(𝑡𝛾−𝑇𝛾 )
𝑀_𝑀+1,𝛽,𝑀

𝜒𝛾

+ (1 − 𝑒
−(𝑡𝛾−𝑇𝛾 )

𝑀_𝑀+1,𝛽,𝑀
𝜒𝛾 )

𝑀_𝑀+1,𝛽,𝑀
𝜒𝛾

)

(5.25)

𝛾 = 𝛼, 𝑚 = 𝑛

𝑃(𝛾, 𝑗 |𝛾, 𝑗) = 1 −
∑︁

𝛼≠𝛾,𝑖≠ 𝑗

𝑃(𝛼, 𝑖 |𝛾, 𝑗) (5.26)

Emission Matrix

To compute the emission probabilities, we need the external branch length at each position of the
genome (noted as 𝑇𝑠). 𝑇𝑠 is estimated with an additional HMM as described in (Schiffels and Durbin,
2014).

M=3

One can only observe 4 possibilities. Observation 0, no mutation within the 3 individual. Obser-
vation 1 (2,3), individual 1 (2,3) is different from individual 2 and 3 (1 and 3 , 1 and 2).

if the first coalescent event involves 2 individuals we have :

𝑃(0|𝛾) = 𝑒−` (𝑇𝑠) (5.27)

𝑖 ∈ 1, 2, 3. Mutation occurred and did not occurred in the first coalescent event.

𝑃(𝑖 |𝛾, 𝑖) = (1 − 𝑒−` (𝑇𝑠−2𝑡𝛾 ) ) (5.28)

𝑖 ∈ 1, 2, 3; 𝑖 ≠ 𝑖. Mutation occurred and is in the first coalescent event.

𝑃(𝑖 |𝛾, 𝑖) = (1 − 𝑒−` (2𝑡𝛾 ) ) (5.29)
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if the first coalescent event involves 3 individuals we have :

𝑃(0|𝛾) = 𝑒−` (3𝑡𝛾 ) (5.30)

𝑖 ∈ 1, 2, 3
𝑃(𝑖 |𝛾) = 1 − 𝑒−` (3𝑡𝛾 ) (5.31)

M=4

One can only observe 8 possibilities as we only focus on SNPs. Observation 0, no mutation within
the 4 individual. Observation 1 (2,3,4), individual 1 (2,3,4) is different from all other individual.
Observation 5 to 7 , two individual are different from the other two.

if the first coalescent event involves 4 individuals:

𝑃(0|𝛾) = 𝑒−` (4𝑡𝛾 ) (5.32)

𝑖 ∈ 1, 2, 3, 4
𝑃(𝑖 |𝛾) = 1 − 𝑒−` (4𝑡𝛾 ) (5.33)

if the first coalescent event involves 3 individuals:

𝑃(0|𝛾) = 𝑒−` (𝑇𝑠) (5.34)

𝑖 ∈ 1, 2, 3, 4
𝑃(𝑖 |𝛾, 𝑖) = (1 − 𝑒−` (𝑡𝛾 ) ) (5.35)

𝑖 ∈ 1, 2, 3, 4
𝑃(𝑖 |𝛾, 𝑖) = (1 − 𝑒−` (𝑇𝑠−3𝑡𝛾 ) ) (5.36)

if the first coalescent event involves 2 individuals:

No mutation occurred.
𝑃(0|𝛾) = 𝑒−` (𝑇𝑠) (5.37)

𝑖 ∈ 1, 2, 3, 4 and mutation is within on one of the individual that coalesce.

𝑃(𝑖 |𝛾) = (1 − 𝑒−` (𝑡𝛾 ) ) (5.38)

𝑖 ∈ 1, 2, 3, 4 and mutation is not on one of the individual that coalesce.

𝑃(𝑖 |𝛾) = (1 − 𝑒−` (
(𝑇𝑠−4𝑡𝛾 )

2 +𝑡𝛾 ) ) (5.39)

𝑖 ∈ 5, 6, 7 and the two individual coalescing are identical.

𝑃(𝑖 |𝛾) = 𝑒−` (𝑇𝑠) (5.40)
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𝑖 ∈ 5, 6, 7 and the two individual coalescing are different,then two mutation must occur, which has
probability 0.

𝑃(𝑖 |𝛾) = 0 (5.41)

5.10 Supplementary Material: Description of the Graph
Neural Network Approach (GNN𝑐𝑜𝑎𝑙)

The following part contains a detailed description of the graph neural net approach.

5.10.1 Brief Introduction to neural network

We wish to define a neural network that has some learnable parameters (i.e. weights) to predict
parameters of interest. In this study, we focus on the past variation of population size and on the 𝛼

parameter of the Beta distribution shaping the offspring distribution (Schweinsberg, 2003). To define
a neural network, we first generate a training dataset, i.e. a dataset containing information to learn
from (the ancestral recombination graph) and predictive variables of interest (past demography and 𝛼

parameter). We then process inputs through the neural network and compute the loss, which evaluates
the distance between predictions and ground truth. Afterwards, we propagate gradients back into the
network’s parameters and update its weights. We now describe further details of this procedure.

5.10.2 Datasets

Set 1: Variable demography and MMC

To build our training data set, we rely on the efficient coalescent and sequence simulator msprime
(Baumdicker et al., 2022; Kelleher et al., 2018). We simulated 10 haploid genomes for a total of 2×104

demographic scenarios with 100 replicates each. We followed the procedure outlined in Figure 5.9
(see below) to define our scenarios. To ensure that each simulation contains sufficient data points, we
imposed that 95% of the 100 replicates had to contain at least 500 trees. This procedure resulted in
a training data set containing between 9.5 × 108 and 1 × 109 coalescent trees. Each simulated data
point was stored as a tree sequence and converted into the graph format (i.e. Pytorch Geometric data
object for the forward pass. This procedure drastically decreased the storage space requirements at
the marginal cost of training speed. Furthermore, we trained our network over a range of the multiple
merger parameter 𝛼 from 1.01 to 1.99.
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Figure 5.9 Demography sampling process Population size (y-axis) changes through time in gen-
erations (x-axis). Demography sampling process according to (Boitard et al., 2016; Sanchez et al.,
2021b) (A) and cubic interpolation (B), and re-sampling for 60 uniformly spaced points. The sampling
process is repeated if any population size is outside the 104 and 107 population size window.

Set 2: MMC versus selection under constant population size

To discern between multiple merger and selection, we simulated 1000 replicates under constant
population size (𝑁𝑒 = 105) by randomly choosing between Kingman and 𝛽-coalescent models.
Additionally, we randomly chose one of the selection regimes when a Kingman coalescent scenario
was drawn. For each scenario, we simulated 100 replicates with 99% of each replicate containing
at least 2,000 trees (i.e. a batch size of 2000). This procedure resulted in a training data set of
more than 1.98 × 108 coalescent trees. An additional validation dataset was generated consisting of
1,000 simulations under the same scenarios. A script for replicating these simulations is available at
https://github.com/kevinkorfmann/GNNcoal-analysis.

5.10.3 Training

The demography inference model was trained for two epochs, an epoch being defined by iterating
one time over the training dataset. i.e. the data is processed twice, once by the untrained neural
network and a second time after the first epoch. The model to infer the 𝛼 parameter was trained
on 10% of the dataset used for demography inference as we found the procedure to be sufficient for
accurate estimates. We set the batch size to 500 (i.e. number of trees processed before updating
the neural network parameters). Jupyter notebooks to perform the training are accessible at https:
//github.com/kevinkorfmann/GNNcoal-analysis.

5.10.4 Neural network

The neural network is implemented in PyTorch (Paszke et al., 2017) using the extension Pytorch
Geometric for the graph convolution operation and differential hierarchical pooling strategy (Fey and
Lenssen; Kipf and Welling, 2016; Ying et al.). For training and inference, each coalescent tree was
interpreted as an undirected graph, with each ancestral node or leaf having edges to their parent or
children, and vice versa. Each node 𝑖 contains a feature vector (a feature vector being the predicted
values by the neural network) xi of size 60 (number of desired estimated parameters), which are
horizontally stacked into a feature vector matrix (i.e. each node/coalescent event has feature vector) X
and initialized with ones on the diagonal and zeros everywhere else. Each feature vector are unique.

https://github.com/kevinkorfmann/GNNcoal-analysis
https://github.com/kevinkorfmann/GNNcoal-analysis
https://github.com/kevinkorfmann/GNNcoal-analysis
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As mentioned above, we chose a feature vector of size 60, which corresponds to the final output
dimension of the demography network. A convolution of an individual feature vector xi of node 𝑖 is
computed following (Kipf and Welling, 2016):

x′𝑖 = 𝚯⊤
∑︁

𝑗∈N(𝑣)∪{𝑖}

𝑒 𝑗 ,𝑖√︃
𝑑 𝑗𝑑𝑖

x 𝑗 (5.42)

With 𝑑𝑖 = 1 + ∑
𝑗∈N(𝑖) 𝑒 𝑗 ,𝑖 and 𝑒 𝑗 ,𝑖 being the pivot edge from 𝑗 to 𝑖. The node features xi are

transformed by a learnable weight matrix Θ, normalized according to the degrees of the respective
nodes, and summed over the neighboring nodes. Alongside this node-wise formulation, the same
computation can be written as matrix-operations. The latter will be the notation used to explain the
following pooling strategy:

X′ = D̂−1/2ÂD̂−1/2X𝚯, (5.43)

Where Â = A + I represents the adjacency matrix and �̂�𝑖𝑖 =
∑

𝑗=0 �̂�𝑖 𝑗 , represent the diagonal
degree matrix. Here, the edge information enters the convolution as part of the values of the adjacency
matrix. Both representations are valid descriptions of the same convolution (Fey and Lenssen).

We defined our GNN as a series of three consecutive graph convolutions, with input, hidden and
output dimensions of size 60, each convolution separated by a one-dimensional batch normalization
step. Increasing the number of convolutions above a certain value will lead to a 𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔 of the
feature vectors, as the information of more distant neighbours will be taken into account for each
node (Kipf and Welling, 2016). The output of each convolution is then concatenated and passed
through-linear activation and ReLu-function (𝑅𝑒𝑙𝑢(𝑧) = 𝑚𝑎𝑥(0, 𝑧)). The complete implementation
is available at https://github.com/kevinkorfmann/GNNcoal.

Because each node has a feature vector (i.e. each coalescent event of a coalescent tree lead to a
specific prediction), the feature vector matrix (i.e. the collection of estimated demography parameters
from a coalescent tree) needs to be processed to obtain a consensus predicted demography. This step
is called the pooling strategy. A detailed description of the pooling strategy used in our study is
formulated in (Ying et al.) and short description can be found below.

We compress the number of nodes hierarchically in a step-wise manner, from the 𝑙 state to 𝑙 + 1
state. Close nodes in the original graph are summarized by a supernode in a new smaller graph, ideally
having only one supernode at the end with one feature vector, containing our variables of interest.
Thus, this downsizing can be formulated as decreasing the original adjacency matrix A of a given
genealogy to a smaller subgraph A𝑙+1 (A ∈ ℝ𝑛×𝑛 → A𝑙+1 ∈ ℝ𝑚×𝑚 with 𝑛, 𝑚 being the number of
nodes in each graph and Z ∈ ℝ𝑛×𝑑 → Z𝑙+1 ∈ ℝ𝑚×𝑑 with condition of 𝑚 < 𝑛; here 𝑑 being the length
of the feature vector). To achieve this, we cluster a set of nodes in the original genealogy into a smaller
subset of supernodes. A cluster assignment matrix S ∈ ℝ𝑛𝑙×𝑛𝑙+1 (with 𝑛𝑙 is the number of clusters in
the current step and 𝑛𝑙+1 the number of clusters in the next step). In the first iteration, the number of
clusters 𝑛𝑙 is equal to the number of nodes, and it is 𝑙𝑒𝑎𝑟𝑛𝑒𝑑 using an 𝐺𝑁𝑁𝑝𝑜𝑜𝑙. This means that the
criterion to compress individual nodes is dependent on the overall objective of network, which is to

https://github.com/kevinkorfmann/GNNcoal
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reduce the loss function with respect to predicting parameters of interest. The specific computation
using two GNNs ((𝐺𝑁𝑁𝑝𝑜𝑜𝑙 and 𝐺𝑁𝑁𝑒𝑚𝑏𝑒𝑑)) is explained in the following:

1. We compute the feature vectors Zl using 𝐺𝑁𝑁𝑒𝑚𝑏𝑒𝑑 at step 𝑙 (equation (5.44)).

Z𝑙 = 𝐺𝑁𝑁𝑙,𝑒𝑚𝑏𝑒𝑑 (A𝑙,X𝑙) (5.44)

2. Next we compute the cluster assignment matrix, by computing "feature vectors" and applying
the row-wise softmax function (𝜎(𝑧𝑖) = 𝑒𝑧𝑖∑𝑑

𝑗=1 𝑒
𝑧 𝑗

𝑓 𝑜𝑟 𝑖 = 1, 2, . . . , 𝑑) as normalization step. This
results is a probability distribution of each node to be part of the next cluster.

S𝑙 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝐺𝑁𝑁𝑙, 𝑝𝑜𝑜𝑙 (A𝑙,X𝑙)) (5.45)

3. Lastly, the new adjacency matrix A𝑙+1 and corresponding feature vector matrix X𝑙+1 are calculated
( (5.46) and (5.47)). Notably, in equation Al is multiplied twice with S to ensure that A𝑙+1 is square
(i.e. the number of columns is equal to the number of rows).

X𝑙+1 = S𝑙𝑇Z𝑙 → ℝ𝑛𝑙+1×𝑑 (5.46)

A𝑙+1 = S𝑙𝑇AlS𝑙 → ℝ𝑛𝑙+1×𝑛𝑙+1
(5.47)

In our approach, we used three consecutive pooling iterations 𝑙 = 1, ..., 3. At each iteration, a graph
is compressed down to 30% of the remaining nodes. In total, six GNNs (three embedding GNNs
and three pooling GNNs) contribute to the number of learnable parameters, followed by two linear
layers with interspaced ReLU-activation to compress the output into the desired demographic-time
window dimension. The demography model implementation can be found at https://github.
com/kevinkorfmann/GNNcoal.

We now focus on the 𝛼 inference and the classification. The model for inferring the 𝛼 parameter
adds three linear layers to the demography network model, while the classification model adds two
linear layers. To illustrate the simplicity to estimate 𝛼 and classify models, we show the code for
reducing the number of dimensions below.

𝛼 inference model:

class AlphaInferenceModel(nn.Module):

def __init__(self, DemographyNet, time_window=60):

super().__init__()

self.l1 = nn.Linear(time_window, time_window//2)

self.l2 = nn.Linear(time_window//2, time_window//4)

self.l3 = nn.Linear(time_window//4, 1)

self.DemographyNet = DemographyNet

def forward(self, batch):

x = self.DemographyNet(batch)

return self.l3(F.relu(self.l2(F.relu(self.l1(x)))))

Classification model:

https://github.com/kevinkorfmann/GNNcoal
https://github.com/kevinkorfmann/GNNcoal
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class ClassificationModel(nn.Module):

def __init__(self, DemographyNet, num_classes, time_window=60):

super().__init__()

self.l1 = nn.Linear(time_window, time_window//2)

self.l2 = nn.Linear(time_window//2, num_classes)

self.DemographyNet = DemographyNet

def forward(self, batch):

x = self.DemographyNet(batch)

return self.l2(F.relu(self.l1(x)))

5.10.5 Time window

The output of the neural network is a fixed-size vector containing the values of inferred population
size. However, not all trees contain coalescent events falling into these pre-specified time-bins. As a
consequence, the population size can only be inferred for simulations where trees contain coalescence
events in those specific bins. A multi-step heuristic has been developed to obtain an estimate of the
inference window for each simulation, respectively. The procedure is summarized as:

1. Simulate 100 repetitions for a demographic parameter set.

2. Count number of coalescent events for first 500 trees for each simulation.

3. Smoothen coalescent event vectors with sliding window*.

4. Only retain the largest consecutive coalescent time-window per repetition.

5. Create Boolean mask by retaining the time-windows with at least X coalescent events

along repetition axis.

*Sliding window: If left and right of pivot element up to Y coalescent events

are present, retain the pivot element, move one step to the right and repeat.

This heuristically constructed mask is used to zero out all inferences outside of the coalescent
events before computing the RMSE-loss function and back-propagating the weights (avoiding under-
and over-fitting). In practice, a single row of the mask, is multiplied into a matrix of dimensions equal
to the number of trees times the number of windows (here: 500x60). With this procedure, each tree
receives the same masked loss based on all repetitions (to balance the training data set). Coalescent
events and masks for constant demography of size 106 are provided in Figure 5.10 below.
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Figure 5.10 Coalescent events and boolean masks A)-D) The number of coalescent events for
100 repetitions (y-axis) across the first 500 trees of a simulation for 60 time windows (x-axis). E)-
H): Boolean mask after applying a heuristic to determine a suitable time-window for demography
inference.

During the inference, when only one sample is available, the masking procedure was approximated
by calculating the mean of the log-scaled node times of the first 500 trees and by taking two standard
deviations at both sides from the mean to form a similar time-window even if only one repetition is
available (see below).

def alternative_coalescent_mask(ts, population_time, x_times_std=2, n_trees=500):

trees = ts.aslist()[0:n_trees]

nodes_n_trees = []

for tree in trees:

nodes_n_trees += list(tree.nodes())

node_times = [ts.get_time(node.id) for node in ts.nodes() if node.id >= ts.num_samples and

node.id in nodes_n_trees]

log_node_times = np.log(node_times)

mean = log_node_times.mean()

std = log_node_times.std()

lowerbound = np.exp(mean-x_times_std*std)

upperbound = np.exp(mean+x_times_std*std)

mask1 = population_time > lowerbound

mask2 = population_time < upperbound

mask = np.logical_and(mask1, mask2)

return mask
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5.11 Supplementary Figures and Tables: Simultaneous
Inference of Past Demography and Selection from
the Ancestral Recombination Graph under the Beta
Coalescent

The following part contains all additional supplementary figures and tables, which are not part of the
main text.

5.11.1 Supplementary Figures
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Figure 5.11 Estimated demographic history by MSMC (blue) and MSMC2 (red) from the true ARG
using 10 sequences of 100 Mb when population undergoes a sawtooth demographic scenario (black) for
different𝛼 values: A) 1.9, B) 1.7, C) 1.5,and D) 1.3. The estimated population size is corrected in order
to mask the scaling difference between the Kingman coalescent and the Beta coalescent (i.e. 𝑁𝑒 =

(((𝑚𝑢𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑/𝑚𝑢𝑟𝑒𝑎𝑙)/𝑠𝑐𝑎𝑙𝑒) (1/(𝑎𝑙 𝑝ℎ𝑎−1))), where 𝑚 = 1+ (1/((2(𝑎𝑙 𝑝ℎ𝑎−1)) ∗ (𝑎𝑙 𝑝ℎ𝑎−1))),
𝑠𝑐𝑎𝑙𝑒 = (𝑚𝑎𝑙𝑝ℎ𝑎)/(𝑎𝑙 𝑝ℎ𝑎∗𝑏𝑒𝑡𝑎(2−𝑎𝑙 𝑝ℎ𝑎, 𝑎𝑙 𝑝ℎ𝑎)) and𝑚𝑢𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 = \

( (2∗𝑠𝑢𝑚(1/(1:(𝑛𝑏𝑖𝑛𝑑−1) ) ) )∗𝐿) ).
The recombination and mutation rate are set to 1 × 10−8 per generation per bp.
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Figure 5.12 Difference between the observed transition matrix and the theoretical prediction under
the eSMC2 under a constant population size under the Kingman Coalescent
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Figure 5.13 Difference between the observed transition matrix and the theoretical prediction under
the eSMC2 under a constant population size under the Beta Coalescent with 𝛼 = 1.3
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Figure 5.14 Best-case convergence estimations of SM𝛽C and GNN𝑐𝑜𝑎𝑙 under a Beta coalescent.
Estimations of past demographic history by SM𝛽C using 10 sequences and 100 Mb in red (median)
and by GNN using 10 sequences and 500 trees in blue (mean and CI95) when population undergoes
a "constant" demographic scenario (black) under 4 different 𝛼 values 1.9,1.7,1.5 and 1.3, respectively
in A),B),C) and D). The recombination and mutation rate are set to 1 × 10−8 per generation per bp.
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Figure 5.15 Best-case convergence estimations of SM𝛽C and GNN𝑐𝑜𝑎𝑙 under a Beta coalescent.
Estimations of past demographic history by SM𝛽C using 10 sequences and 100 Mb in red (median)
and by GNN using 10 sequences and 500 trees in blue (mean and CI95) when population undergoes
a "bottleneck" demographic scenario (black) under 4 different 𝛼 values A) 1.9, B) 1.7, c) 1.5 and D)
1.3. The recombination and mutation rate are set to 1 × 10−8 per generation per bp.
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Figure 5.16 Best-case convergence estimations of SM𝛽C and GNN𝑐𝑜𝑎𝑙 under a Beta coalescent.
Estimations of past demographic history by SM𝛽C using 10 sequences and 100 Mb in red (median)
and by GNN using 10 sequences and 500 trees in blue (mean and CI95) when population undergoes a
"increase" demographic scenario (black) under 4 different 𝛼 values A) 1.9, B) 1.7, c) 1.5 and D) 1.3.
The recombination and mutation rate are set to 1 × 10−8 per generation per bp.
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Figure 5.17 Best-case convergence estimations of SM𝛽C and GNN𝑐𝑜𝑎𝑙 under a Beta coalescent.
Estimations of past demographic history by SM𝛽C using 10 sequences of 100 Mb in red (median)
and by GNN using 10 sequences and 500 trees in blue (mean and CI95) when population undergoes a
"decrease" demographic scenario (black) under 4 different 𝛼 values A) 1.9, B) 1.7, c) 1.5 and D) 1.3.
The recombination and mutation rate are set to 1 × 10−8 per generation per bp.
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Figure 5.18 Best-case convergence estimations of two GNNs under a Beta coalescent Estimations
of past demographic history by GNN𝑐𝑜𝑎𝑙 using 10 sequences in blue and by a GNN𝑐𝑜𝑎𝑙 using 3
sequences in ice blue when population undergoes a "Sawtooth" demographic scenario (black) under 4
different 𝛼 values A) 1.9, B) 1.7, c) 1.5 and D) 1.3 (mean and CI95). The recombination and mutation
rate are set to 1 × 10−8 per generation per bp.
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Figure 5.19 Best-case convergence estimations of SM𝛽C and GNN𝑐𝑜𝑎𝑙 under a Kingman
coalescent. Estimations of past demographic history by SM𝛽C using 10 sequences and 10 Mb in red
(median) and by GNN using 10 sequences and 500 trees in blue (mean and CI95) when population
undergoes a "sawtooth" demographic scenario (black) under 2 different population sizes A) 𝑁𝑒 = 104

and B) 𝑁𝑒 = 106. The recombination and mutation rate are set to 1 × 10−8 per generation per bp.
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Figure 5.20 Best-case convergence estimations of SM𝛽C and GNN𝑐𝑜𝑎𝑙 under a Kingman
coalescent. Estimations of past demographic history by SM𝛽C using 10 sequences and 10 Mb in red
(median) and by GNN using 10 sequences and 500 trees in blue (mean and CI95) when population
undergoes a "constant" demographic scenario (black) under 2 different population sizes A) 𝑁𝑒 = 104

and B) 𝑁𝑒 = 106. The recombination and mutation rate are set to 1 × 10−8 per generation per bp.

101 103 105 107

time [generations]

103

104

105

106

107

108

109

po
pu

la
tio

n 
siz

e 
[N

]

A) Kingman N =10

GNNcoal (M10)
SM C (M3)

101 103 105 107

time [generations]

B) Kingman N =10

GNNcoal (M10)
SM C (M3)

Figure 5.21 Best-case convergence estimations of SM𝛽C and GNN𝑐𝑜𝑎𝑙 under a Kingman
coalescent. Estimations of past demographic history by SM𝛽C using 10 sequences and 10 Mb in red
(median) and by GNN using 10 sequences and 500 trees in blue (mean and CI95) when population
undergoes a "bottleneck" demographic scenario (black) under 2 different population sizes A) 𝑁𝑒 = 104

and B) 𝑁𝑒 = 106. The recombination and mutation rate are set to 1 × 10−8 per generation per bp.
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Figure 5.22 Best-case convergence estimations of SM𝛽C and GNN𝑐𝑜𝑎𝑙 under a Kingman
coalescent. Estimations of past demographic history by SM𝛽C using 10 sequences and 10 Mb in red
(median) and by GNN using 10 sequences and 500 trees in blue (mean and CI95) when population
undergoes a "increase" demographic scenario (black) under 2 different population sizes A) 𝑁𝑒 = 104

and B) 𝑁𝑒 = 106. The recombination and mutation rate are set to 1 × 10−8 per generation per bp.
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Figure 5.23 Best-case convergence estimations of SM𝛽C and GNN𝑐𝑜𝑎𝑙 under a Kingman
coalescent. Estimations of past demographic history by SM𝛽C using 10 sequences and 10 Mb in red
(median) and by GNN using 10 sequences and 500 trees in blue (mean and CI95) when population
undergoes a "decrease" demographic scenario (black) under 2 different population sizes A) 𝑁𝑒 = 104

and B) 𝑁𝑒 = 106. The recombination and mutation rate are set to 1 × 10−8 per generation per bp.



5 Simultaneous Inference of Demography and Selection under the Beta coalescent from the An-
cestral Recombination Graph

162

103

104

105

106

107

108

109

po
pu

la
tio

n 
siz

e 
[N

]

A) =1.9, r
m = 10 8

10 8

GNNcoal (M10)
SM C (M3)

B) =1.7, r
m = 10 8

10 8

GNNcoal (M10)
SM C (M3)

101 102 103 104 105 106 107

time [generations]

103

104

105

106

107

108

109

po
pu

la
tio

n 
siz

e 
[N

]

C) =1.5, r
m = 10 7

10 7

GNNcoal (M10)
SM C (M3)

101 102 103 104 105 106 107

time [generations]

D) =1.3, r
m = 10 6

10 6

GNNcoal (M10)
SM C (M3)

Figure 5.24 Demographic inference estimations of SM𝛽C and GNN𝑐𝑜𝑎𝑙 using ARGweaver
output under a sawtooth scenario.. Estimations of the ARG is first performed by ARGweaver using
10 sequences of10 Mb. Estimations of past demographic history is then performed on the inferred
ARG by SM𝛽C in red (median) and by GNN using 10 sequences and 500 trees in blue (mean and
CI95) when population undergoes a "sawtooth" demographic scenario (black). The recombination
and mutation rate per generation per bp are set to 1 × 10−8 for 𝛼 equal to 1.9 and 1.7 , 1 × 10−7 for 𝛼
equal to 1.5 and set to 1 × 10−6 for 𝛼 equal to 1.3.
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Figure 5.25 Demographic inference estimations of SM𝛽C on simulated data under a sawtooth
demographic scenario.Estimated population size by SM𝛽C from simulated sequence data under a
sawtooth demographic scenario (black) and the Beta coalescent. Estimations of past demographic
history by SM𝛽C using 10 sequences of 10 Mb under different 𝛼 values ( 1.9 in red, 1.7 in orange,
1.5 in green and 1.3 in blue. The recombination and mutation rate per generation per bp are set to
1× 10−8 for 𝛼 equal to 1.9 and 1.7 , 1× 10−7 for 𝛼 equal to 1.5 and set to 1× 10−6 for 𝛼 equal to 1.3 .
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Figure 5.26 Demographic inference estimations of SM𝛽C on simulated data under 4 difference
demographic scenarios.Estimated population size by SM𝛽C from simulated sequence data under 4
demographic scenarios (black) (Constant population size in A, Bottleneck in B, Sudden increase of
population size in C, and sudden decrease in D). Sequences are simulated under the Beta coalescent.
Estimations of past demographic history by SM𝛽C using 10 sequences of 10 Mb under different 𝛼
values ( 1.9 in red, 1.7 in orange, 1.5 in green and 1.3 in blue. The recombination and mutation rate
per generation per bp are set to 1 × 10−8 for 𝛼 equal to 1.9 and 1.7 , 1 × 10−7 for 𝛼 equal to 1.5 and
set to 1 × 10−6 for 𝛼 equal to 1.3 .
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Figure 5.27 Averaged estimations of 𝛼 by the GNN𝑐𝑜𝑎𝑙 approach and the SM𝛽C along the
sequence Estimations of 𝛼 by SM𝛽C using 20 sequences 1 Mb in red and blue by GNN𝑐𝑜𝑎𝑙 using
10 sequences and in blue under 4 different 𝛼 values 1.9,1.7,1.5 and 1.3 for a constant demography of
size 106 in A),B),C) and D) (mean and standard deviation for both methods). The GNN𝑐𝑜𝑎𝑙 used at
most 20 coalescent trees per batch along the sequence. Both methods used a window size of 103 bp.
The recombination and mutation rate are set to 1 × 10−8 per generation per bp.
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5.11.2 Supplementary Tables

scenario True 𝛼 𝛼∗:SM𝛽C,M=3 𝛼∗:SM𝛽C,M=4 𝛼∗ : GNN, M=3 𝛼∗ : GNN, M=10
Constant 1.9 1.88 (0.04) 1.84 (0.1) 1.90 (0.03) 1.88 (0.03)

Bottleneck 1.9 1.86 (0.07) 1.82 (0.16) 1.91 (0.03) 1.91 (0.02)
Increase 1.9 1.88 (0.05) 1.86 (0.12) 1.91 (0.03) 1.88 (0.02)
Decrease 1.9 1.89 (0.02) 1.88 (0.07) 1.93 (0.03) 1.88 (0.04)
Sawtooth 1.9 1.84 (0.06) 1.74 (0.11) 1.96 (0.02) 1.94 (0.02)
Constant 1.7 1.53 (0.12) 1.63 (0.09) 1.78 (0.03) 1.77 (0.03)

Bottleneck 1.7 1.67 (0.14) 1.57 (0.09) 1.78 (0.04) 1.76 (0.03)
Increase 1.7 1.57 (0.14) 1.63 (0.17) 1.77 (0.01) 1.74 (0.03)
Decrease 1.7 1.54 (0.15) 1.57 (0.14) 1.80 (0.04) 1.78 (0.04)
Sawtooth 1.7 1.67 (0.14) 1.60 (0.19) 1.81 (0.02) 1.74 (0.03)
Constant 1.5 1.58 (0.10) 1.56 (0.14) 1.61 (0.02) 1.56 (0.02)

Bottleneck 1.5 1.53 (0.11) 1.55 (0.19) 1.58 (0.02) 1.53 (0.03)
Increase 1.5 1.50 (0.12) 1.52 (0.14) 1.64 (0.05) 1.61 (0.03)
Decrease 1.5 1.57 (0.17) 1.55 (0.14) 1.60 (0.03) 1.55 (0.03)
Sawtooth 1.5 1.47 (0.11) 1.55 (0.19) 1.61 (0.04) 1.56 (0.02)
Constant 1.3 1.40 (0.13) 1.45 (0.14) 1.39 (0.03) 1.33 (0.03)

Bottleneck 1.3 1.43 (0.13) 1.48 (0.20) 1.34 (0.02) 1.28 (0.04)
Increase 1.3 1.45 (0.14) 1.51 (0.24) 1.42 (0.02) 1.38 (0.02)
Decrease 1.3 1.44 (0.16) 1.50 (0.12) 1.4 (0.02) 1.30 (0.03)
Sawtooth 1.3 1.39 (0.09) 1.39 (0.07) 1.41 (0.03) 1.36 (0.05)

Table 5.3 Average estimated values of 𝛼 by SM𝛽C and the GNN𝑐𝑜𝑎𝑙 approach over ten repetitions
using the true ARG of 10 sequences of 100 Mb with recombination and mutation rate set to 1 × 10−8

per generation per bp under a Beta coalescent process (with different 𝛼 parameter). The analysis were
run on five different demographic scenarios (Constant population size, Bottleneck, Sudden increase,
Sudden decrease and a Sawtooth demography). The standard deviation is indicated in brackets. These
results complement the demographic estimates from Figures 5.4 and 5.5, as well as 5.14 to 5.17

scenario True 𝛼 𝛼∗:SM𝛽C,M=3 𝛼∗:SM𝛽C,M=4
Constant 1.7 1.64 (0.12) 1.56 (0.11)

Bottleneck 1.7 1.59 (0.15) 1.55 (0.12)
Increase 1.7 1.65 (0.10) 1.61 (0.15)
Decrease 1.7 1.71 (0.10) 1.67 (0.12)
Sawtooth 1.7 1.60 (0.18) 1.51 (0.20)
Constant 1.5 1.46 (0.11) 1.51 (0.16)

Bottleneck 1.5 1.50 (0.14) 1.45 (0.16)
Increase 1.5 1.56 (0.13) 1.47 (0.15)
Decrease 1.5 1.51 (0.11) 1.47 (0.12)
Sawtooth 1.5 1.40 (0.13) 1.44 (0.17)
Constant 1.3 1.38 (0.15) 1.37 (0.08)

Bottleneck 1.3 1.34 (0.10) 1.34 (0.06)
Increase 1.3 1.34 (0.08) 1.46 (0.17)
Decrease 1.3 1.41 (0.15) 1.44 (0.09)
Sawtooth 1.3 1.35 (0.07) 1.34 (0.05)

Table 5.4 Average estimated values of 𝛼 by SM𝛽C over ten repetitions using simulated sequence
data of 10 sequences of 100 Mb with recombination and mutation rate set to 5 × 10−8 for 𝛼 = 1.7
per generation per bp and 5 × 10−7 for 𝛼 equal to 1.5 and 1.3 under a Beta coalescent process (with
different 𝛼 values). The coefficient of variation is indicated in brackets..
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scenario True 𝛼 𝛼∗:SM𝛽C,M=3 𝛼∗:SM𝛽C,M=4 𝛼∗ : GNN, M=3 𝛼∗ : GNN, M=10
Constant 2 1.98 (0.023) 1.97 (0.023) 1.99 (0.002) 1.99 (0.005)
Sawtooth 2 1.96 (0.027) 1.87 (0.064) 1.98 (0.003) 1.99 (0.005)

Bottleneck 2 1.96 (0.047) 1.96 (0.04) 1.99 (0.002) 1.99 (0.003)
Decrease 2 1.98 (0.022) 1.99 (0.012) 1.98 (0.009) 1.99 (0.005)
Increase 2 1.97 (0.020) 1.97 (0.025) 1.99 (0.002) 1.99 (0.004)

Table 5.5 Average estimated values of 𝛼 by SM𝛽C and the GNN𝑐𝑜𝑎𝑙 approach over ten repetitions
using the true ARG of 10 sequences of 100 Mb for SM𝛽C and at 500 trees for the GNN𝑐𝑜𝑎𝑙 with
recombination and mutation rate set to 1× 10−8 per generation per bp under a Beta coalescent process
(with different 𝛼 parameter) with 𝑁𝑒 = 104 at generation 0. The standard deviation is indicated in
brackets. These results complement the estimations of demography from Figure 5.19 to Figure 5.23 .

scenario True 𝛼 𝛼∗:SM𝛽C,M=3 𝛼∗:SM𝛽C,M=4 𝛼∗ : GNN, M=3 𝛼∗ : GNN, M=10
Sawtooth 1.9 1.77 (0.05) 1.86 (0.05) 1.55 (0.08) 2.05 (0.01)
Sawtooth 1.7 1.56 (0.13) 1.79 (0.1) 1.7 (0.11) 2.00 (0.06)
Sawtooth 1.5 1.66 (0.11) 1.92 (0.07) 1.61 (0.07) 1.96 (0.04)
Sawtooth 1.3 1.41 (0.13) 1.53 (0.20) 1.30 (0.06) 1.78 (0.08)

Table 5.6 Average estimated values of 𝛼 by SM𝛽C and the GNN𝑐𝑜𝑎𝑙 approach using ARG inferred
by ARGweaver over ten repetitions using 10 simulated sequences of 10 Mb with recombination and
mutation rate set to 1 × 10−8 per generation per bp under a Beta coalescent process (with different 𝛼
parameter). The analysis were run under Sawtooth demographic scenario. The standard deviation is
indicated in brackets. These results complement the demographic estimates from Figure 5.11.1
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6 General Discussion

Before moving on to the placement of our work into the broader research context, highlighting the
current limitations, and providing references to future work, we start by giving a summary of the main
results of each individual Chapter starting with the Introduction.

6.1 Summary

We opened the thesis by highlighting the vast stochastic complexity underlying the evolutionary
processes, and by providing a short historical overview of the theoretical groundwork, which gave
rise to the field of population genetics. We then went on to call attention to perspective shift and
the importance of Coalescent Theory, both with regards to providing a framework for understanding
evolution as well as for bestowing the means for large-scale simulations. Afterward, we went on to
give an in-depth overview of DL methods and their promise to conquer some of the natural complexity
in the field through the gradient-based approximation and deduction through thousands of trainable
parameters of the networks. This point of view can be regarded as a kind of top-down approach,
where understanding the genomic signatures are outsourced to the DL algorithm of choice. The other
bottom-up direction is described through modeling a process of interest directly either mathematically
or through simulations. Especially in the later case of stochastic simulations extending the model
is often more straightforward since through a detailed and precise understanding of the biology, i.e.
life-cycle, simulation code can often be extended intuitively. The resulting signatures are then captured
and described in the form of popular summary statistics or measurements that trace individual alleles.
In Chapters 2 and 3 we used this simulation-based modeling approach to push our understanding of
the biological traits of dormancy and variations of the offspring distribution both under the influence
of positive selection. Our studies of the weak dormancy model of Kaj and colleagues confirmed
previously known scaling expectations of the Coalescent accompanied by the expected decrease of
genetic drift proportional to the inverse quadratic of the germination rate and a respective linear scaling
of the recombination rate due to the assumed inability of recombination gametes in the dormant stage
(Kaj et al., 2001; Koopmann et al., 2017; Živković and Tellier, 2018). We went on to show that
the probability of fixation of a positively segregating allele is unaffected by the germination rate and
therefore strength of the seed bank. However, the time scales equally to the scaling of the coalescence
events, namely also quadratically, of which the stochastic phases, where the allele is either at low or very
high frequencies, contribute a disproportional amount of time. Lastly, we showed the implications for
the expected hard sweep signatures and their inherent detectability. As announced through increased
linkage decay in one of the introductory measurements of the chapter, the sweep appears narrower
as well as deeper due to the high diversity gradient in seed banks, which was shown to improve the
detection possibility.



6 General Discussion

170

In Chapter 3 we extend our perspective and conceptualize a picture of the life-cycle in which both
dormancy as an effective measure of the lifespan extension or general viability as well as the fecundity
phase can be embedded. In that concept, it becomes important to be aware of the underlying biological
implications of certain model choices. For example, the placement of mutations can fall on the parents
and thus be heritable or onto the individual offspring themselves, creating a new level of diversity
between each descendent of the same parent. Here we observed that the expected number of mutations
is always tied to the population size, but the variance increases under strong sweepstakes if mutations
occur in the parent generation. Going back to the life-cycle concept, we directly can compare the
antagonistic relationship between dormancy and offspring distribution changes. While the former is
observed to have a stabilizing effect on drift (decreasing the randomness of the system and maintaining
variation) the opposite is the case for species with sweepstake events. Genetic drift is increased, the
stronger the frequency of the occurrences of the sweepstakes becomes, leading to the increase in
fixation probability of neutral alleles and a decrease for selective alleles. In contrast to the increase in
fixation time for the dormancy trait, sweepstakes have the opposite effect of decreasing the time and
thus making it possible to push an allele to fixation sometimes multiple orders of magnitude faster
than under low variance offspring distributions. Fluctuation conditions for selective alleles seemed to
rely mostly on the initial phase, while population size changes only had a negligible effect on fixation
times or probabilities. Selection on the fecundity was shown to be more important with regard to
fixation probability on the high sweepstake spectrum, while our viability selection model became
more important during the low sweepstake spectrum. And lastly, both selection models showed a
synergistic non-additive effect during a strong selection regime. The insights from Chapter 3 extended
our understanding of adaptation capability through the ways in which stochasticity is increased and
painted a more complete picture of the importance of life-cycle modeling.
In the next part, Chapter 4, we switched from simulations to inference placing the 𝛽-Coalescent as a
backward in-time model, which describes large offspring variance, at the center of our investigations.
Here, we developed the SM𝛽C method, alongside a DL-based approach, with the aim of increasing
our understanding of necessary model assumptions for the estimation of parameters when being
confronted with real data. We started by providing fine-scaled demographic inferences using our
methods and went on to estimate the strength of the sweepstakes globally and locally along the
genome by capturing the 𝛼 parameter of the 𝛽-Coalescent, as a proxy for the scale of the strength of
multiple multiple merger events. In doing so, we differentiated the capabilities of both methods and
their respective distinctness, i.e. the DL method is flexible and fast to be trained on different sample
sizes and can more easily capture larger parts of the ARG, while SM𝛽C is only formulated up to a
sample size of four. But the most striking difference is the implicit Markovian assumption of the
SMC, a property which especially doesn’t hold under multiple merger conditions and thus requires
better modeling approaches to capture long-range correlations. Lastly, we highlight the similarities
of selection and neutrally occurring sweepstake events and provide a proof of concept, which allows
us to look for variations of local changes in 𝛼 as an estimator for selection events, specifically but
not limited to species with rather low offspring variances, as the power is expected to decrease when
mixing both processes because an issue of non-identifiability could arise.
We now will continue by placing our methods into the broader research context by highlighting
adjacent studies immediately to be relevant to our results.
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6.2 Contemporary and adjacent research landscape

Integrating life history traits into models remains to be an open frontier, necessary to overcome for
accurate non-human model inferences. The behavior of species altered by the expression of the trait has
proven to shape the underlying genomic architecture and continues to be a source of complexity which
requires to be carefully accounted for when planning to understand and predict complex signatures on
the genetic level and beyond.
With regards to dormancy, the complexity of the trait arises mainly due to its simple abstractable
formulation of having a population that is active and a population that is dormant with some migration
in between. Lennon and colleagues highlight the generalizable properties of this trait and give a
detailed overview with relevance ranging from something as small as transcriptional regulation of
genes (Dworkin and Losick, 2005), to cells including cancer (Phan and Croucher, 2020), to plants and
entire ecosystems (Lamont et al., 2020; Lennon et al., 2021b). However, since this thesis only looked
at one of such dormancy models (weak dormancy by Kaj et al., 2001), it is relevant to mention the
strong counterpart (Blath et al., 2015, 2016), whose interaction with selection remains unexplored,
but interestingly is predicted to have the capacity of generating long-range genomic signals, due to
the model’s capability of generating star-shaped genealogies (Cordero et al., 2022). Further models
introduce or study the notion of metapopulations and their mathematical properties in combination with
dormancy (Louvet, 2022) or highlight the necessity to account for traits with regards to demographical
inference (Živković and Tellier, 2012; Sellinger et al., 2020).
Switching for a moment away from the lifespan to the offspring generation phase, whose relevance
and pervasiveness have been thoroughly justified by the review article of Eldon, 2020b, increasing
attention has been crystallized into fitting multiple merger coalescence processes to real data. On
the one hand sweepstakes offer an explanation of the prevalent U-shape SFS found across many
species (Freund et al., 2023), and on the other hand it becomes more and more necessary to be able
to distinguish between neutral sweepstake processes or selectively driven processes in the genome,
both of which yield similar signatures of decreased genetic diversity and therefore run into issues of
model differentiation (Korfmann et al., 2022b). Having an estimate of the strength of the underlying
sweepstake capability of a species may prove as an important initial step to the assessment of putative
regions under selections, similar to how demographic estimates are important to be excluded a priori
before rushing to conclusions about non-neutral evolutionary pressures shaping the genome (Korfmann
et al., 2022b; Miró Pina et al., 2023).
Following up on selection and going beyond diversity or SFS-based statistics for selective sweep
detection, we emphasize, that more complicated approaches for selection detection may be necessary,
including a range of summary statistics or machine learning-based approaches to cope with biases
of synonymous and non-synonymous loci, that may occur under frequent sweepstakes or vice versa
establish a way of quantifying the emerging bias to learn something about the strength of suggested
sweepstakes. Last by not least we highlight again the importance of phylogenetic dating in the light of
sweepstake organisms as our findings indicate that solely relying on substitution rate may be biased,
but needs to be assessed, i.e. through simulations, to understand the scope of the arising error when
neglecting offspring variations (Zuckerkandl and Pauling, 1965; dos Reis et al., 2016).
After shining a spotlight on a by no means exhaustive list of adjacent articles, we continue by naming
limits of both evolutionary simulations and inferences as deployed throughout the projects.
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6.3 Limitations of simulations and inferences

Since the stochasticity of nature is endless and computational resources are limited, it is always an
open question of how much model complexity is required to capture most of the variation of a piece of
genome sequence. Additionally, multiple processes lead to similar signatures, either locally or globally
or both, and may require multiple data layers to disentangle them. Therefore, it becomes necessary to
investigate the full range of possible scenarios explaining the given observation. Johri et al., 2022a
argued to follow a flow-chart-like approach for population genetic inference, which described an ABC
strategy for the disentanglement of a set of hypotheses. However, the models analyzed were relatively
simple comparing neutral models to sweeps and bottlenecks and when uncertainty may increase,
could benefit state-of-the-art DL approaches, which ideally incorporate the advantages of ABC, i.e.
giving distributional rather than point-estimates and therefore an insight into parameter uncertainty.
Though DL alone certainly will not easily solve to overwhelming complexity it may serve here as a
valuable tool, when applied carefully to capture a large part of the variance without relying on random
ABC-like exploration of the parameter space (Cranmer et al., 2020b).
Another yet fundamental limitation is the speed of simulation. When considering an individual-
based approach, exploring variations of multiple replicates is limited by the Markovian dependency
of simulating each generation sequentially. The Coalescent elegantly approximates this process, but
it is less accessible due to its reliance on the rigorous mathematical description required, which
becomes quickly complex when adding a few fundamental processes, in the form of recombination,
demography, migration, selection, or variations of the offspring distribution. Therefore, a popular
approach has taken shape in combining both perspectives, simulating only part of the more complex
and difficult-to-model process forward in time and attaching a neutral coalescence part to the initial
simulations in a post-processing step (Kelleher et al., 2018; Haller et al., 2019a).
A new generative kind of paradigm is beginning to emerge which could address issues of simulation
speed through learning the underlying distribution of the simulations with generative networks and
(after training) producing new samples following the same approximated data distribution. This
approach is similar to older naive versions of resampling an original dataset, with the difference that the
DL algorithm would be expected to create more realistic samples by learning any kind of interactions
between the samples and making estimations of the underlying parameter space. Interesting results
that validate this approach have come forward in the form of generating new samples from real genomic
datasets, i.e. to preserve privacy in medical contexts, and could show that summary statistics remain
preserved in newly generated data (Yelmen et al., 2021b, 2023; Booker et al., 2023; Yelmen and Jay,
2023).
Another limitation manifesting itself in the field of population genetics is the lack of benchmarks
when developing inference algorithms. The usual procedure involves training networks on some
unique custom dataset, and evaluating it separately on a unique dataset created by the same group,
that developed the inference algorithm. This modus operandi is susceptible to unconscious bias
during the creation of the datasets and may lead to the neglect of biological or technical sources
of variation. Therefore, evaluating datasets on reoccurring tasks of for example the inference or
introduced loss of power through selection may be best assessed by external and carefully created
simulated datasets as provided by the stdpopsim consortium. However, it is important to highlight that
the main objective should always be the scientific knowledge discovery through our created methods,
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rather than marginal performance increase over previous methods. Nevertheless, having a standardized
way of method evaluation is needed in the field to be able to quantify methodological progress.
After mentioning the limiting factors, we now continue onward to the description of future research
directions.

6.4 Future work
In addition to focusing on novel or adjacent research directions, we continue by highlighting some of
the more straightforward extensions of the individual Chapters.
Starting with our effective lifespan-extending trait of dormancy. A natural extension that remains to
be explored either mathematically or by simulations is the degree to which the weak and strong models
overlap in their respective signatures or expressed differently where the edge cases of both models
could lead to issues of model identification. If in fact, the weak dormancy model is either part of the
strong version or if a new model can be formulated that incorporates both models are still open and
unanswered questions. Likewise, how positive selection affects the strong version still requires to be
thought of, possibly in concert with other types of selection. Simultaneously the questions if and when
mutations occur in the seed bank could be explored again in light of new and emerging experimental
evidence. One likely model choice may be through letting mutations occur at two different rates.
Continuing with the simulation or modeling part, concurrently building dormancy and variations
of offspring into the same model likewise can be worthy of exploration. As a baseline model for
comparison, it may be further interesting to compare not only to Wright-Fisher-Model but also the
Moran model, because of its inherent age structure and known expectations.
Making the models more realistic will also become more important, of which the most immediate step
is to assess linkage effects between sites, and by extension having a detailed idea of the underlying
recombination map is necessary.
On the inference side, two routes remain to be explored. One of each is to address questions of
possible neural network interpretability enabled through the usage of graphs as input over genotype
matrices and to figure out how additions of attention modules could create the possibility of scientific
knowledge discovery while adding methodological improvements (Vaswani et al., 2017). The second
route aims to add the possibility of robust data application, ideally through an end-to-end learnable
framework. Here inferring the ARG itself would be outsourced to a generative network, rather than
using any of the existing non-DL ARG algorithms, continuously improving the ARG or ARG-like
generative output, while inferring any parameter of interest by a second parameter-estimation network,
like GNN𝑐𝑜𝑎𝑙 or future more efficient iterations.
Even though this was all but a brief outline of possible directions, it may serve as a reference point,
when revisiting the individual Chapters.

6.5 Conclusion
While we showed the extended promises and powers of simulation-based modeling for answering open
questions of population genetics, fitting our insights to real biological data will become non-trivial.
However, through the ongoing computational progress both on the software side, i.e. in the form of
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libraries like tskit (Kelleher et al., 2018) or PyTorch (Paszke et al., 2017) or ever-increasing hardware
capabilities, research questions may be addressed in an ever-increasing speed and the stochasticity
of nature and its current accompanied post-modern sentiment (Koonin, 2009; Stoltzfus, 2017) of
insurmountably will become a feeling of the past.
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