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Abstract 
The integration of information technology into the architecture, engineering, and construction (AEC) 

industries has revolutionized architectural processes with automation techniques. Computer-aided 

design (CAD) tools have brought geometric precision and efficiency, transforming architectural 

production. Tasks related to CAD drawings, such as conversion, reconstruction, detection, 

recognition, generation, and synthesis, pose challenges for researchers. These tasks often require 

significant labor and time resources, making manual solutions impractical, particularly for large-

scale projects.  

Data-driven methods, particularly deep learning, offer promise due to their robustness and 

adaptability. However, current methods lack a proper CAD drawing representation method and 

neural network architecture tailored to AEC tasks, which could fully embed the features in CAD 

drawing data. To tackling this problem, an approach is proposed based on line graphs and planar 

graphs with graph convolutional modules and is validated its effectiveness for floorplan detection 

and generation, which demonstrates superior performance compared to current methods. 

This research contributes to advancing automation in architectural applications, providing a 

representation learning method as well as a general backbone structure for AI tasks in floorplan 

CAD drawings. This research centers on the advancement of floorplan CAD drawing representation 

through the application of neural networks, particularly in the domains of floorplan detection and 

generation. In this pioneering work, a novel graph-based representation methodology is introduced, 

along with a sophisticated backbone network structure for convolutions. These innovations are 

designed to significantly enhance the integration of essential geometric and topological features 

derived from real-world data. 

The study's rigorous methodology includes a comprehensive series of experiments, meticulously 

designed to validate both the efficiency and precision of the proposed approach. The results 

underscore the remarkable performance and potential of the method, showcasing its robustness in 

various ablation scenarios. Furthermore, these findings highlight the far-reaching implications of 

this research, demonstrating its applicability to a broad spectrum of AEC applications beyond 

floorplan CAD. 
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1 Introduction  

1.1 Background 

Ever since the integration of information technology in the architecture, engineering, and 

construction (AEC) industries, automation techniques have become a cornerstone of architectural 

applications for visualization, designing, simulation, and management. The implementation of 

computer-aided design (CAD) and computer-aided manufacture (CAM) have brought about 

unparalleled levels of geometric precision and speed, which have transformed the process of 

architectural production and construction. The use of CAD and CAM software has boosted 

efficiency and performance to new heights. In the realm of management, professional software has 

made planning and scheduling far more accurate, flexible, and transparent, leading to significant 

savings in both time and funds. 

In the initial phase, digital models were primarily used for depicting geometry in architecture. 

However, with the advancement of CAD, these models became more versatile and were used for 

visualizing, calculating, and simulating. CAD drawings no longer just contain geometric 

information; they also store semantic data for various practical applications. For instance, in a 

floorplan CAD drawing, the architectural elements' geometrical entities are saved in layers with a 

hierarchical structure. Additionally, the floorplan CAD drawing also contains other crucial details 

such as annotations, hatching, text, axis, and construction details.  

As automation technology becomes increasingly integrated into architecture design and modeling, 

researchers are exploring algorithms to accomplish basic tasks in the production process.  The tasks 

related to CAD drawings can be roughly classified as conversion and reconstruction (Filipski and 

Flandrena 1992, Noack 2001, Intwala 2020), detection and recognition (Truong et al. 2012, Ernst and 

Roddis 1994, Vosniakos 1992, Koutamanis and Mitossi 1992), generation (Yin et al. 2008, Barki et al. 

2015, Yang et al. 2020), and synthesis (Dori and Tombre 1995, Li et al. 2022). In recent decades, 

developing reliable algorithms for improving production in AEC applications has always been a 

topic with a high level of interest in Computer graphics (CG) and AEC communities. 

These basic tasks share some similarities. They do not involve advanced creativity or 

communication ability. In fact, a senior architectural student may complete some of the tasks, such 

as modeling with 3D software or drawing simple floorplans. For example, a worker with short-term 

training has the competent to the work of annotating semantic labels for CAD drawings with proper 

tools (Fan et al. 2021). However, a large amount of demand makes manual solutions almost 

impossible. The single-building-level projects may be handled with manual labor. But on city-scale 

hiring experts to manually process many buildings is an enormous project. The great number of 

labor requirements also reflected on the time. Some of the tasks are iterative processes (Nauata et 

al. 2021). A design project usually needs to be modified several turns between architects and 

customers and be developed with the coordination among many professions in different stages. Thus, 

these features promote automatic algorithms for these basic tasks, so that the relevant human labor 
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and time can be saved. 

Meanwhile, some tasks are not so easy even for human designers, which are still non-trivial 

problems to develop a fully automatic method to solve the problems (Yin et al. 2008). Another 

feature of these basic tasks is that the specific conditions of practical problems are usually very 

complicated (Yin et al. 2008). There are two types of this complexity. On the one hand, for some 

tasks, although each specific case can be defined as a well-studied problem with clear conditions, 

the large number of cases makes the case-by-case solution a super complicated system (Lim et al. 

201). On the other hand, some tasks seem easy but are hard to find reliable solutions (Dominguez 

et al. 2012 and Dosch et al. 2000). The main challenges to the promoting automatic method are the 

robustness and constraints in different applications. 

Compared with the traditional rule-based algorithms, data-driven methods naturally have 

advantages in robustness. The basic idea of data-driven methods is to figure out the interpolation in 

the sample space. With proper base functions, the closer the sample space is to the data in real 

practice, the better the performance of the approximation. Compared to interpolation with traditional 

base functions, deep learning methods shows overall better performance on almost all tasks. 

Theoretically, with sufficient samples, the target function can be well approximated with higher 

robustness using proper deep learning methods.  

As deep learning technology flourishes in computer vision (CV), many researchers try to introduce 

classic neural networks to solve the problems in AEC industries (Liu et al. 2017, Wu et al. 201). 

Although these attempts are validated to have better performance than traditional methods on some 

certain tasks. However, some of the research just convert AEC problems into CV problems and 

apply mature networks on customized datasets (Xiao et al. 2020, Huang and Zheng 2018). Usually, 

part of the information would be missed during this simple data conversion. Also, the universal data 

representation does not always fit the requirements of the AEC practice. 

In this research, the topic focuses on how to define a proper CAD drawings representation method 

for deep learning method as well as the responding backbone neural network structure, which can 

be applied to other floorplan CAD drawing based problems. With analysis of the features of the 

CAD drawing data as well as the requirements in practical applications, the author proposes an 

approach to represent floorplan CAD drawings with line graphs and planar graphs and conduct 

corresponding graph convolutional modules. To validate the effectiveness of the proposed method, 

the representation is applied with two popular tasks, i.e., floorplan detection and floorplan 

generation. With abundant experiments and ablations, the results show that the proposed method 

solves these tasks with better performance and is closer to the practice requirements compared with 

the current deep learning methods. 

1.2 CAD drawing representation 

Computer-aided design (CAD) is already one of the basic technologies in designing and 

manufacturing, in which computers are used to generate digital prototypes of a product and play an 
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important role in the creation, modification, analysis, and optimization processes. Although the 

products in the real world are 3D geometries, 2D CAD drawing is the more common representation 

of research documents in practice (Kanungo et al. 1995). For the buildings built in the past 20 years, 

research plans dominated the architectural workflow (Yin et al. 2008). 2D CAD drawings usually 

convey accurate geometry, rich semantics, and domain-specific knowledge of a product design, with 

basic geometric primitives, such as segments, arcs, circles, and ellipses. 

In architectural projects, a set of technical documentation of one building usually contains floorplans, 

facades, sections, and other detail diagrams. The 3D geometric information of the building is 

projected into orthogonal planes on different positions. The depth in the 2D scene is represented by 

different line types. All elements in the CAD drawing are drawn with vector primitives with 

geometric constraints in order to keep the accuracy in manufacturing. The primitives describe the 

shape, orientation, location, and size of the architectural elements and the geometric constraints 

depict the topological relationship among the primitives. Although this implicit geometric 

representation may not be direct for visualization, simulation, and rendering, it has the obvious 

advantage of keeping higher precision.  

Besides the geometry information, various types of annotations are set around primitives to enrich 

the semantics in the 2D CAD drawing files. Similar to geometric information, semantic information 

has different detail levels in different design stages. The basic semantic information is usually the 

labels of each geometric primitive indicating the element type. With the project development, more 

semantic information about elements is enriched in the CAD files, including sizes, materials, text, 

and constructive details. Usually, this category information of the primitives is stored in the 

hierarchical structure layers and the descriptive information is stored as text attached in CAD 

drawing files. 

Compared with the facades and sections, floorplans usually contain more architectural information, 

since the floorplan illustrated the locations, relationships, and usages of all rooms in one layer.  

Meanwhile, the structure for bearing loads in one building, i.e., columns, beams, and walls, usually 

corresponded in different layers, due to the vertical mechanical properties. A building with a regular 

shape could be roughly reconstructed with floorplans of one or several layers. A fine architectural 

model could be constructed by combining other information retrieved in sections and facades, e.g., 

heights and openings. 

There are many tasks based on floorplan CAD drawings, e.g., architectural elements detection on 

the floorplan and floorplan generation. Although these tasks have different requirements, the deep 

learning methods tackling them have similar architecture, with a generic backbone and special heads 

and objective functions (Zhu et al. 2020, Khan et al. 2021). The priority is the way to represent 

CAD drawings and the corresponding neural network backbone. By observation of floorplan CAD 

files in public datasets and documents in real projects, the author inducts the features of floorplan 

CAD drawings and propose proper graph-based CAD drawings representation methods facing deep 

learning methods. Although the method is only tested on several tasks, it may be extended to other 

problems based on CAD drawings in AEC industries, such as neighborhood design in urban 

planning and the detection and generation of facades. 
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Besides applications in AEC industries, this deep learning method contrary to CAD drawings has 

wide usage in other fields. In the field of computer graphics (CG) and computer vision (CV), there 

are some similar detection and generation tasks. For example, high level-of-details city information 

model may require detecting elements on facades. City scene generation and synthesizing in the 

game industry may also achieve high performance with the proposed method in this dissertation.  

1.3 Related applications 

As mentioned in the background, there are lots of applications based on floorplan CAD drawings. 

Among them,   are the two most popular tasks, which are studied from rule-based algorithms to deep 

learning methods, since they have big commercial usage in practices (Huang and Zheng 2018). In 

this research, these two tasks are taken as examples for applying the proposed CAD drawings 

representation method and related graph convolution structures.  

1.3.1 Floorplan detection 

In the field of AEC fields, floorplan detection problems are studied during building modeling. As 

the rising demands on modeling of existing buildings, approaches are proposed with different types 

of sources data, including images, pointcloud, and CAD documents. Compared with other data 

obtained with optical devices, geometric data contained in CAD files is more accurate. However, 

unlike the geometric information, semantic errors are not so obvious and may be reserved in the 

camera-ready version data. This phenomenon mentioned in PanoCAD (Fan et al. 2021) may be even 

worse if a project is subcontracted several times. Traditionally, the data-cleaning process of 

alignment of correct semantic tags to corresponding geometric primitives still requires human labor, 

which restricts larger-scale applications with a high level of detail. 

Floorplan detection is an interesting task for many decades in communities of many subjects. In the 

field of CV, the floorplan detection problem is studied as an optical character recognition problem, 

in which CAD drawings are treated as raster images. Spotting and recognizing symbols from CAD 

drawings is the first step towards understanding their content, which is crucial to many real-world 

industrial applications, see Figure 1. For example, 3D digital building modeling with semantic has 

a growing demand in various architecture engineering areas such as pipe arrangement, construction 

inspection, and equipment maintenance. A floorplan usually contains complete details of a floor in 

an orthogonal top-down view. By developing efficient perception algorithms on CAD drawings, a 

huge amount of labor and time could be saved for creating digital models. 

In document analysis and recognition, symbol spotting refers to locating and recognizing graphic 

symbols embedded in the document, e.g., circuit diagram and floor plan. Previous methods usually 

format the process into two stages: spotting the target symbol first, then classifying it. Typical non-

data-driven approaches are conducted in a query-by-example fashion. However, the query template 

is not always available and symbols representing the same object may vary dramatically, limiting 

their application in production. More recent data-driven methods leverage the power of deep 

learning and show better generalization ability. 
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Traditional symbol spotting usually deals with instance symbols representing countable things, like 

tables, sofas, and beds. Following the idea extended the definition by recognizing the semantics of 

uncountable stuff and named it panoptic symbol spotting. Therefore, all components in a CAD 

drawing are covered in one task altogether. For example, the wall represented by a group of parallel 

lines was properly handled, which however was treated as background. 

CAD drawings are vector graphics consisting of segments, arcs, circles, and ellipses, posing unique 

challenges to the symbol spotting problem. CAD drawings are vector graphics consisting of 

segments, arcs, circles, and ellipses, posing unique challenges to the symbol spotting problem. 

However, applying existing CNN-based algorithms on rendered CAD images will lose the topology 

and accuracy required in following applications like 3D model reconstruction. 

 

Figure 1 3D model of a residual building from 2D floorplan CAD drawings. This research focuses on the 

first step, which is detecting all architectural elements in the CAD drawing of floorplans. 

Facing the above challenges, a solution is provided in this research with deep learning methods 

combined with architectural knowledge. The author proposes a network namely CAD-GATnet 

(Zheng et al. 2022) on the representation ability of feature space with additional regularity terms and 

gets better results on parts of classes. Although there is research using the GNN network to detect 

the lines of walls in CAD drawings, walls cannot be reconstructed only using labeled segments. 

Vector graphs are converted to triangulars and then combined CNN-based wall prediction to a 

generated clean polygon of walls, which could be used for other applications. 
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1.3.2 Floorplan generation 

Floorplan design is a vital process in building design projects, in which the functions and relations 

of architectural space are approximately established. In most cases, floorplan design is a process 

that costs highly both on time and funds. On one hand, a proper floor plan requires massive iterative 

modification and development under the communication between architects and customers. On 

another hand, concreting the idea from customers into the floorplan drawings asked architects to 

have rich experience as well as professional knowledge. 

As mentioned in HouseGAN (Nauata et al. 2021), in the North American residual building design 

market, only a small part of users could afford a high-quality personalized house design service. 

This potential market promotes automatic floorplan generation algorithms developing for decades, 

which should quickly generate floorplan drawings with given input proposals from users as well as 

have flexibility on demands expansibility. 

In traditional architectural design methods, the floorplan design task is usually a hierarchical design 

process, which could be divided into several sub-tasks, including room layout design, entrance 

design, window design, and door design. According to the logic of architectural design, entrances, 

windows, and other architectural elements in floor plan drawings are sub-attributions of walls. Thus, 

room layout design is usually the upstream task for other tasks during floorplan design.  

 

Figure 2 Hierarchical floorplan design process, in which the room layout design is the up-stream task. 

(a) Bubble diagram. (b) Room layout design. (c) Entrance design. (d) Window design. (e) Door design. 

(f) Fine drawn floorplan.   

In this dissertation, the author presents a novel neural-guided method to automatically generate 

orthogonal room layouts with plausible shapes and the same topology compared with the given 

bubble diagrams. In former research, a type of graph data, namely bubble diagram, is frequently 

used to describe the user preference for architecture design, in which a vertex with position and type 
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attribution represents a certain room in floorplans and an edge connects two vertices if two rooms 

are adjacent. With such input data, the generated room layout results should have reasonable shapes 

and satisfy all requirements in the given bubble diagrams.  

The metrics for requirements in the given bubble diagrams are well-defined, but the reasonable 

shape is a rough notion, that refers to the room sizes and shapes that conform to common sense in 

architectural design. For architects, the room layout design with given bubble diagrams for residual 

buildings may be a basic task even senior architecture undergraduates could accomplish it. However, 

formulating this task and conducting an algorithm to generate a proper room layout is a non-trivial 

problem.  

Several works made attempts to solve this problem from using traditional optimization methods 30 

years ago to deep learning techniques recently. Graph-based optimization method could figure out 

topological consistent rectangle room layouts. However, these methods can only generate the 

topological equivalence class of the given bubble diagram, and the realistic shape of rooms is not 

guaranteed. By programming shapes grammar into an iterative optimization, Wang can generate 

some complex cases with better shapes but still fail on keeping topological consistency.  The 

development of deep learning techniques uses image generation networks to obtain plausible room 

layouts with higher robustness on the given input constraints. However, the network architectures 

of these methods restrict deep learning methods from generating a completely correct topology.  

Overall, none of the existing algorithms meets the requirement, especially on topological 

consistency. 

To tackle the above difficulty, the author proposes a novel neural-guided planar graph drawing 

method for room layout generation by combining the advantages both of deep learning and 

optimization methods, so that the generated room layouts hold similarity on both shape and topology 

levels. In this method, a dual-graph-based neural network is used to generate realistic shapes by 

predicting the topology and geometry of targeting room layouts. Instead of designing a generative 

network to satisfy the planar and orthogonal constraints, an additional post-process optimization 

stage is added to obtain the results. In this stage, the orthogonal planar graph drawing problem is 

formulated as a minimum-cost flow problem and solved it in pseudo-polynomial time. 

1.4 Overview 

1.4.1 Research questions 

The overall research topic is developing graph-based representation learning methods for CAD 

drawings and conducting related neural network structures. Two applications in this dissertation 

were derived from a real problem in the industry during the author’s research internship at Alibaba 

Inc. The floorplan detection problem is a demand to develop a high-level automatic approach to 

reconstruct 3D digital models of several blocks in the Xiong'an New Area. Until now, part of the 

work is applied in production. And floorplan generation is an open problem in CV and AEC 

communities, derived from the actual needs in practical applications. With the consideration that the 
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problem is based on real projects, the following research questions arise: 

⚫ How to represent a CAD drawing? 

⚫ How to conduct a suitable backbone network for CAD-drawing-based tasks? 

⚫ How to detect element instances in a graph during floorplan detection? 

⚫ How to keep topology consistent during floorplan generation? 

The thesis focuses on developing a methodology for using deep learning methods on CAD-drawing-

based tasks. Although mature deep learning methods built for classical problems in CV are borrowed 

to solve these problems by converting CAD drawings as raster images, the performance is not so 

satisfying. In this research, the author meticulously analyzes the unique characteristics of the CAD 

drawing data and propose two graph-based data structures to describe the floorplan drawings.  

Meanwhile, floorplans are artificial patterns, which have large differences from natural images. 

Usually, there are strong regularities in floorplans, such as parallelism, orthogonality, and duality. 

The author also inducts these properties and improve or propose novel network structures which 

could remarkably improve the performance of these tasks. 

The rest part of the research could be separated into the detection part and the generation part. In 

the floorplan detection part, the symbol spotting problem integrated with symbol recognition and 

instance detection is solved with an end-to-end network. In the floorplan generation task, the 

floorplan generation with frequently used constraints is solved with a hybrid method, in which the 

topology and the geometry are predicted with a dual graph-based neural network, and an 

optimization method is introduced to process the predicted results under the given constraints. 

1.4.2 Main Challenges 

The main challenges are partly reflected literally in the research questions. The main challenges are 

three-fold: 

⚫ The data processing and representation. 

⚫ How to define convolution structure to the proposed representation?  

⚫ How to deploy the representation method to detection and generation tasks? 

The data challenge would be faced in almost all data-driven problems. In the detection problem, the 

input data used in the project is raw CAD drawings provided by the architecture owners, which are 

mainly as-built CAD drawings. Since the scale of the building ranges from houses to large public 

architectures, it is difficult to feed the neural networks with whole floorplans. Meanwhile, although 

all geometric primitives in floorplan dataset are well annotated by human expert, it is necessary to 
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conduct rules to convert raw files to vectors graphics for deep learning methods. For the dataset is 

established by extracting floorplans on brochures, the raster images still need to be processed into 

vector data, then to related graph-based representations. Techniques about computer graphics and 

image processing are involved in this stage.  

With the proper graph representations, the corresponding convolution structures are also required 

to be designed. Usually, the feature is defined on vertex space in common graph data. In the 

proposed graph representations, features are also defined in edge and face space. The challenge is 

about how to design a graph-based neural network structure, which could make fully use of the input 

information.   

The detection and generation problem are well studied in raster images and solved by treating CAD 

drawings as raster images and direct borrowing the mature detection and generation neural networks 

designed for natural images. In this research, line graphs are used to describe the CAD drawings, 

since they are native vector graphics. The reason and the analysis are detailed in the methodology 

section. However, there are still problems when deploy the representation to the specific applications. 

In floorplan detection, although there are node and edge classification tasks on classic graphic data, 

there are few tasks aiming to detect the instances. To figure out each architectural element in 

floorplan CAD drawings, the instance detection problem needs to be further defined. In floorplan 

generation, classic graph generation only cares about the topology generation rather than the 

embedded shape of the graph. Thus, there is also a challenge on how to redefine the proposed 

floorplan graph generation task to meet the requirement in practical applications. 

1.4.3 Objectives of the thesis 

To tackle the proposed research questions, the author takes a hypothesis that using a deep learning 

method with a delicately designed representation method and neural network structure according to 

the features of floorplan CAD drawings data could the improve the performance compared with 

other current deep learning methods. The objectives of the thesis are listed as follows: 

⚫ Induct the feature of floorplan CAD drawing data. 

⚫ Define related problems on graph data. 

⚫ Propose feasible network structures for each task. 

⚫ Perform experiments to validate the proposed networks. 

⚫ Analyze and evaluate the results. 

Although one of the important usages of CAD drawings is visualization during each stage of 

architectural design n, a raster image is not the best way for representation. The performance of 

image-based solutions is restricted more or less by this pixel representation in the practical 

applications in AEC industries. Thus, the author analyzes CAD drawing files from the semantic and 
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geometric perspectives and induct the features which could be used to improve the performance. 

These induced features are described in the methodology section 0 and lead to a special graph-based 

representation for deep learning methods. 

Unlike the classic graph data, e.g., social networks or citation networks in the field of computer 

science, the graph representation of CAD drawings also has some special properties. Most buildings 

are man-made structures with strong regularities. This property reflected in floorplan CAD drawings 

are situations, including parallel and orthogonal walls, periodically occurred structural elements and 

furniture, and axis for alignment. A novel network backbone structure is also designed in this 

research, particularly toward these regularity features. This backbone is not just a case-by-case study 

result, but a structure that can be popularized for other tasks based on floorplan CAD drawing data. 

This motivation and insight into the designed network backbone structure are illustrated in the 

methodology section 0. 

0Only the backbone is not enough to solve the specific problems. Since the floorplans in diverse 

usages still have a different level of information, the author further analyzes the floorplans in the 

situations of detection and generation. The completed networks with the proposed backbone 

structure are introduced for the floorplan detection task and floorplan generation task respectively. 

These two networks are illustrated in section 3.3 and section 0 of the methodology. 

With the proposed networks, the author designs and performs adequate experiments to illustrate the 

performance of each task. Besides the proposed method, parallel experiments are also performed 

with state-of-the-art methods using similar and generic settings for a fair comparison. Qualitative 

and quantitative results and details in the experiments are illustrated in experiment section 0. 

More ablation studies are conducted for efficiency and the validation of the proposed method and 

network structures. Besides, the author also analyzes the results in the experiment section and point 

out the failed cases and limitations of the proposed method. 

1.4.4 Main contributions 

To tackle the above challenges, a novel method of graph-based representation learning for floorplan 

CAD drawings is proposed in this research. In general, the primary contributions of this study can 

be divided into two aspects in such interdisciplinary field of artificial intelligence in construction. 

In theoretical aspects: 

⚫ Common geometry and topology features in floorplans CAD drawings are decoupled for 

representations in deep learning. 

⚫ Line graph and planar graphs are used to depict floorplans CAD drawings features.  

⚫ Special-designed graph convolution are defined as common backbone to better embed features 

in line and planar graph. 
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In application aspects: 

⚫ Two specific network structures are deployed based on proposed backbone for applications in 

AEC industries. 

⚫ The customized algorithmic workflow produces results with topology consistency, which is 

closer to the practical demands of the construction industry. 

⚫ The proposed representation and structures have better performance in the detection and 

generation tasks compared with current methods. 

From the perspective of architecture, this study analyzes data features and demand characteristics, 

combining deep learning to propose efficient detection and generation algorithms. From an artificial 

intelligence standpoint, this study introduces an innovative and effective network architecture for 

defining graph convolutions. Further details regarding theoretical and technical innovations will be 

presented in the conclusions of the relevant chapters. 

1.4.5 Structure of the thesis 

This thesis consists of several parts. The main structure is shown as figure 3. 

 The introduction part (Chapter 1) is a general introduction, in which some concepts are introduced, 

and the objective is clearly defined. The upper-mentioned challenges would be illustrated 

elaborately as well as the corresponding methods proposed in this thesis. 

In the state-of-the-art section (Chapter 2), related works in both AEC and CV would be classified 

and enumerated. The relationship between related works and methods in this thesis would also be 

explained in this section. After that, content based on peer-reviewed publications is presented to 

respond to the questions put forward ahead. 

Chapter 3 is the methodology response to the CAD representation and corresponding network 

structures. The features of the floorplan CAD drawings are analyzed and inducted in 0. After that, 

the author proposes a generic backbone structure with such features in 0. Details and theories for 

floorplan detection and floorplan generation are illustrated in 3.3 and 0 respectively.  

Chapter 4 is the experiments for the proposed method. The experiments are conducted in two parts 

responding to the detection and generation tasks separately. The comparison experiments of 

floorplan detection are illustrated in 4.1 and the related experiments of floorplan generation are 

shown in 4.2. 

Chapter 5 discusses the results in the upper section. More ablation studies are conducted to analyze 

the insight of the proposed method and to validate the structures of the proposed networks. Similar 

to the upper chapter, detection, and generation are discussed separately in 5.1 and 5.2. 
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The thesis ends with Chapter 6, which summarizes the methodology as well as the experiments and 

makes an outlook on the related tasks and future work. 

 

Figure 3 The diagram of the dissertation structure.  
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2 State of the art  

This section briefly introduces the basic structure of the neural network, the classic deep learning 

tasks, and classic neural networks. After that, floorplan detection and generation are summarized 

from traditional solutions decades ago to deep learning methods in recent years.  

2.1 Deep learning methods 

 

Figure 4 A brief architecture illustration of a naïve neuaral network. With a given vector as input, a target 

vector is predicted. Each neural unite in the network is a nonlinear base function, which is trained with 

the backpropagation algorithm. 

Deep learning is a machine learning technique for representation learning, based on neural networks 

(Deng et al. 2014, Bengio et al. 2009, 2013, Lecun et al. 2015). As is shown in Figure 4, the structure 

of a neural network is composed of three types of layers, i.e., the input layer, hidden layer, and 

output layer.   Usually, neural networks with more than two hidden layers are called deep neural 

networks. 

Each node in the network imitates the neurons in the biological nervous system (Fukushima 1980), 

which is a composition of a linear function with learnable weights and bias, and a nonlinear function 

called the activation function. Forward propagation refers to the vector space of the input feature 

passing each layer and calculating the loss with a defined loss function. The update process of the 

parameter in neural networks uses a backpropagation algorithm (Werbos et al. 1974), which is a 

gradient decent algorithm to optimize the parameters in every node based on the chain rule. Thus, 

the activation function and the loss function should be differentiable. Although there are many 

optimizers for training networks, the most important hyperparameter is called the learning rate. This 

parameter is also called step length in the context of numerical optimization. 

With the growth of computing power, deep learning technique improves dramatically in nearly 

twenty years. Variants and complicated structures of neural networks are proposed and show better 

performance than traditional methods. Some of them even surpass human experts in certain tasks. 
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2.1.1 Convolution neural networks 

Convolutional neural network (CNN) is a class of artificial neural networks most applied to analyze 

visual imagery. CNNs use a mathematical operation called convolution in place of general matrix 

multiplication in at least one of their layers. They are specifically designed to process pixel data and 

are used in image recognition and processing. They have applications in image and video 

recognition, recommender systems, image classification, image segmentation, and natural language 

processing. A standard CNN is usually composed of several convolutional layers, pooling layers, 

and fully connected layers. The convolutional kernels in the convolutional layers usually have 

limited size which filters local features, while the global features are extracted with convolution 

layers going deeper and pooling layer halfling the size of the images.  

Although CNN was proposed in the early time (Fukushima 1980), it can only handle some toy tasks 

until the AlexNet (Krizhevky et al. 201). The following models (Zeiler et al. 2014, Szegedy et al. 

2015) improve the structure of CNN and have better performance. VGGNet (Simonyan et al.  2014) 

is another milestone eliminating the initial fully connecting layer and only takes 3 × 3 

convolutional kernel and 2 × 2 pooling size, which decrease the number of parameters and improve 

the efficiency of parallel computing. ResNet (He et al. 2016) introduce a shortcut in the different 

convolutional layers, which solves the problem of network degradation as the number of layers 

deepens.  

2.1.2 Generative network 

The generative network includes variational autoencoder networks (VAE) and generative 

adversarial networks (GAN). VAE is related to the autoencoder model because the two have a 

certain affinity in structure, but there is a big difference in goals and mathematical expressions. VAE 

belongs to the probability generation model, and the neural network is only one of its components, 

which can be divided into encoders and decoders according to different usages. An encoder maps 

input variables to a latent space corresponding to the parameters of a variational distribution so that 

multiple different samples from the same distribution can be produced. The decoder does the 

opposite, mapping from the latent space back to the input space to generate data points. Such models 

were originally designed for unsupervised learning but have also shown excellent effectiveness in 

semi-supervised (Dilokthanakul et al. 2016, Hsu et al. 2017) and supervised learning (Ehsan et al. 

2017, Xu et al. 2017). 

GAN learns through two neural networks playing games against each other. This method was 

proposed by Goodfellow et al. (2014). Generative adversarial networks consist of a generative 

network and a discriminative network. The generator network randomly samples from the latent 

space as input, and its output needs to approximate the distribution in the training set as much as 

possible. The input of the discriminative network is the real sample or the output of the generation 

network, and its purpose is to distinguish the output of the generation network, while the generative 

network should deceive the discriminative network as much as possible. The two networks fight 

against each other and constantly adjust the parameters. The goal is to make the discriminant 

network unable to judge whether the output of the generating network is true or not. Many popular 
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GANs (Goodfellow et al. 2020, Karras et al. 2017,2019), can already generate realistic results in 

generative tasks. 

2.1.3 Graph neural network 

There has been increasing interest in the extension of deep learning methods to graphs. Although 

traditional deep learning methods have been applied to extract features of Euclidean space data with 

great success, the data in many practical application scenarios are generated from non-Euclidean 

spaces, and traditional deep learning methods are not effective in processing non-Euclidean space 

data. Researchers drew on the ideas of convolutional networks, recurrent networks, and deep 

autoencoders to define and design a neural network structure for processing graph data. Graph 

neural networks have been widely used in the fields of computer vision, recommender systems, 

traffic, chemistry, and others. 

Graph neural networks can be roughly divided into three categories, graph convolution networks 

(GCN), graph attention networks (GAT), and graph autoencoders (GAE). GCNs fall into two 

categories, spectral and spatial-based methods. Spectral-based methods define graph convolutions 

by introducing filters from the perspective of graph signal processing, where graph convolution 

operations are interpreted as removing noise from graph signals in the research of Kipf et al. (2016). 

Spatial-based methods characterize graph convolutions as aggregating feature information from 

nearby neighbors (Gilmer et al. 2017). GAT proposed by Velickovic et al. (2017) replace the graph 

convolution with the learnable attention mechanism among the vertices in the graph and shows 

better performance compared with the vanilla GCN. GAEs are autoencoder networks based on 

graph data proposed by Kipf et al. (2016) and are usually used for the graph generation. 

2.1.4 Transformers and multi-modal 

Transformer, also known as self-attention, is a module of the network, firstly proposed in the field 

of natural language process (Vaswani et al. 2017), then shows great potential in the field of computer 

vision (Dosovitskiy et al. 2020, Liu et al. 2021). The insight of the transformer is inspired by the 

attention mechanism, using a learnable attention score matrix to represent the relationship intensity 

between every two tokens. Once the transformer showed great success on the task of English 

German translation task, many more upgrading networks occurred. Dai et al. (2019) used relative 

positional encoding rather than absolute positional encoding in long sequences. Zaheer et al.  (2020) 

found that the attention matrix in the long sequence is usually sparse and local-focused. Guo et al. 

(2021) proposed a star-satellite structure network to decrease the complexity from 𝒪(𝑛2) to 𝒪(𝑛). 

The query-key-value layers in transformer, naturally provided a good solution for the alignment of 

multi-modal. Carion et al. (2020) took embedded image patches as tokens and formulated the 

detection problem as a translation problem. As the permutation invariant of the transformer, for 

symmetric elements data (Maron et al. 2020), e.g., graph and point cloud, the transformer also has 

a good structure for aggregation and pooling (Ying et al. 2018). Velickovic et al. (2017) added a 

transformer structure on a graph neural network to aggregate neighbors to the center node. As the 

geometric primitives are usually different, compared with simple graphs, a heterogeneous graph 

could more precisely depict a CAD drawing. Hong et al. (2020) and Wang et al. (2019) added a 
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transformer structure on the graph constructed with a meta-path. Hu et al. (2020) projected different 

relationships into the same feature space, which replaces the meta-path with a transformer. 

2.2 CAD drawings representation 

Floorplan representation has been a fundamental issue in designing a floorplan (Yao et al. 2003). 

During production, the CAD drawings exported by professional software are usually saved in 

various generic data formats, such as DXF, ACIS, DWG, etc. However, the design-oriented files 

usually contain redundant information and require specific parsers to extract target content. Two 

frequently used representations of CAD drawing in recognition and generation tasks are introduced 

in this subsection. 

Image representation. Since the most common user interface of floorplan CAD drawings are 2D 

visualized canvas, i.e., monitors and research printings, the intuitive representation is raster images. 

The demand for using raster images to represent CAD drawings is twofold. Both of them originate 

from the practice scenes.  Although research drawings are already replaced with digital drawings in 

many scenarios, architectures-built decades ago only have printed CAD drawings. With digitizing 

processing of the documentation, many researchers try to conduct algorithms to vectorize the raster 

drawing images scanned from research documentation. Doshi et al. (2000) split the CAD images 

into simple patterns and merged the detection results. Or et al. (2005) propose a pipeline for 

converting CAD images to digital files and detecting walls in the drawings. Dominguez et al. (2012) 

and Zhu et al. (2014) use parallel pairs (PP) algorithms to detect wall segments. Combining image-

based neural networks, Huang and Zheng (2018) use a mature segmentation network to predict a 

label mask for the given room layouts. Li et al. (2017) and Zeng et al. (2019) propose originally 

designed neural network structures to predict the labels of each pixel in the raster CAD drawing 

images.  Another application is generating room layouts for illustration in real estate. One approach 

applies conditional generative adversarial networks (cGAN) to generate floorplan as raster images 

(Nauata et al. 2020,2021, Wu et al. 2019, Huang and Zheng 2018[57], Rahbar et al. 2019,2022).  

The shortages of image representation are obvious. Firstly, as mentioned in the above works, the 

geometry primitives are explicitly implied in the raster images. Secondly, many parameters are 

required during rendering. Some of the rule-based algorithms are very sensitive to rendering 

parameters, such as line weight and line type. Thirdly, the geometric constraints are not described 

in the raster images. 

Graph representation. Another commonly used representation for CAD drawings is the graph 

(Trudeau, 1993). In discrete mathematics, a graph is a structure composed of a set and the relationship 

among the elements in this set (West 2001, Tutte 2001[212]). In the past decades, graph theory has 

demonstrated that it has an effective tool for manipulating space diagram problems and floorplan 

design in both AEC and very large-scale integration (VLSI) (Zhi et al. 2003).  Huang et al. (2008) 

use the naturally defined graph to describe the geometry primitives in the floorplan CAD drawings 

for recognition, in which geometric vertices and lines are set as vertices and edges in the graph. 

Further, the binary tree was also widely used in mosaic or slicing floorplans, especially for the circuit 
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design, which has many variations with different combination numbers (Otten 1982, Knuth 1972, 

Guo et al. 1999, Hong et al. 2000). Other approaches generate floorplans with space diagrams 

describing the rooms and their inter-relationship, such as X-Y separated constrained graph (Schwarz 

et al.1994a,1994b), topology-geometry separated constraint graph (Levin 1964, Garson 1970, Roth 

et al. 1982). In deep learning approaches, the graph representation just inherits the naturally defined 

graph and applies to the vanilla graph neural networks (Hu et al. 2020, Sun et al. 2022). 

limitations in these graph-based representation methods are twofold. On one hand, graphs with 

complex structures are usually used in VLSI designs and require strict conditions. Due to the 

different practice scenarios, the conditions in VLSI are usually not held in AEC. On the other hand, 

the naturally defined graph on floorplan CAD drawings cannot fully describe the geometry 

information. Unlike other graph-based data, e.g., citation networks or social networks, the feature 

space is usually defined on the edge spaces instead of the vertex spaces.  

2.3 Related work in floorplan detection 

 

Figure 5 In many frameworks of 3D model reconstruction, the architectual elements on as-built floorplan 

CAD drawings are first dectected and than converted into 3D models.  

2.3.1 Tradition methods 

Before the appearance of deep learning methods, there are research using 2D architectural plans to 

generate massing shapes of 3D building models. Most methods at that time focused on model 

generation and annotated primitives with a high level of manual labor. So et al. (1998) proposed a 

pipeline with fully manual symbol recognition and automatic model generation. In the same year, 

Lewis and Sequin (1998) proposed a prototype system namely Building Model Generator, by 

automatically grouping geometries into specific layers and then manually mapping semantic names 

with corresponding layers. Lim et al. (2018) provided a method with a simplification process after 

manual annotation, improving the robustness of data. Although manual annotations show the best 

results, for most researchers, a process that could automatically detect all symbols is more attractive. 

Before the wide usage of deep learning in the field of computer graphics and computer-aided design, 

most researchers developed expert systems based on inducted empirical rules. Dosch et al. (2000), 
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firstly split raster images of architectural plans into overlapping tiles, then used a Hough transform-

based approach for segmentation and finally merged the tiles by Hausdorff distance defined on the 

pixel level. There are elements with explicit geometric features, which could be detected with 

handcraft symbol descriptors to describe the shape (Nguyen et al. 2008, 2009, Rusinol et al. 2010). 

In this research, query symbols and instances in documents are matched with window shifting. By 

considering some elements, e.g., wall and beam, are depicted as two parallel pairs (PPs) in 2D 

architecture plans, Lu et al. (2005), proposed an algorithm that detected structural entities. Lu et al. 

(2007), proposed a hierarchical SINEHIR model, which could recognize more complicated symbols, 

e.g., doors, windows, stairs, etc.  Or et al. (2005), provided an algorithm namely span list and take 

quarter circle representing doors as a priori, after detecting lines on raster images.   

Beside detection on raster images, Medjdoub et al. (2000) used graphs to depict the relationship 

between two primitives. Zhi et al. (2003) used planar graphs to describe the connection and location 

of walls and doors in plans, to figure out corridors by detecting loops in graphs. Instead of matching 

queries and keys on the pixel level, Dutta et al. (2013a, 2013b) proposed a series of algorithms that 

utilize graph matching for query target symbols in CAD drawings. Dominguez et al. (2012) detected 

walls with wall-adjacency graphs (WAGS) and gained better performance than detecting PPs.  

Almost all rule-based algorithms work well on simple and isolated symbols. When cases become 

complicated, such as symbols embedded in the background, these algorithms usually would fail. 

The reason is obvious, all rules are designed against some typical cases, making algorithms sensitive 

to noise and topology errors. 

2.3.2 Deep learning methods 

With the development of GPU, deep learning technique shows superior performance on computer 

vision tasks than traditional methods based on hand-crafted descriptors. Naturally, researchers 

attempted varied networks of symbol recognition. Due to the formation of embedded feature space 

of CAD data, networks could be roughly separated into two types, CNN-based networks, and GNN-

based networks. 

CNN is short for convolutional neural network, which is a typical network showing great 

performance on the tasks for raster images, including classification, detection, and segmentation 

(He et al. 2016, Long et al. 2016, He et al. 2017, Ren et al. 2015, Redmon et al. 2016). CNN could 

also be used for symbol recognition if rendering CAD drawings as raster images. With proper 

annotations, symbol recognition on vector graphs could be transferred into detection or instance 

segmentation on images. Besides, additional post-process is needed to map pixels back to the 

original primitives. 

In the field of computer vision, due to the lack of high-quality CAD drawings datasets, research on 

symbol recognition is usually based on floor plans and human sketches, which share similar 

properties. Sun et al. (2012) and Li et al. (2018) used CNN to align proper semantic labels for 

strokes in sketches. Huang et al. (2014) predicted labels for each pixel and figure out labels of stroke 

by voting. Compared with sketches, floorplans are more relevant to 2D CAD drawings.  Liu et al. 
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(2017) used masked CNN to detect the room and junctions of the wall, the 3D indoor scenes are 

reconstructed after a post-processing step. Zeng et al. (2019) used VGG as the backbone, with 

attention between the boundary detection heads and room-type prediction heads, solved cases that 

Liu cannot handle. 

GNN is short for graph neural networks. Compared with raster images, graphs are usually simple 

complex without Euclidean data for not having a certain structure among neighbors (Bornstein et 

al. 2017, Zhou et al. 2020). As graphs are a common data type that depicts the node and relationship 

among them, several outstanding networks work well on tasks for graphic data, including graph 

classification, node classification, link prediction, and graph generation (Defferrard et al. 2016, Kipf 

et al. 2016a, Atwood et al. 2016, Wang et al. 2019, Kipf et al. 2016b). Many researchers used graphs 

with primitives as nodes and relationships or adjacency as edges to optimize recognition results 

(Horna et al. 2009). Li et al. (2018) added a graph cut after image segmentation. Yang et al. (2020) 

proposed a mix pooing module which aggregates features of node level to stroke level and improved 

the performance a lot. Lambourne et al. (2021) took B-rep surfaces rather than vertices as nodes 

and proposed a network for 3D CAD model classification. Fan et al. (2021) combined CNN and 

GCN and proposed a network using GCN smoothing the features from CNN and improving the 

results. Also, they made great a contribution to proposing the FloorplanCAD dataset.   

Methods based on CNN share two vital shortages. One is different to determine super parameters 

when rendering CAD drawings to raster images. The primitives are varied in scale and not 

distributed in uniform densities. Another is that the overlapping primitives would hold the same 

features after rendering into images. In this research, CAD drawings are represented as 

heterogeneous graphs with regularity terms based on architectural design knowledge.  

2.4 Related work in floorplan generation 

 

Figure 6 In traditional building design processes (Lu et al. 2017, Merrall et al. 2010)), espectially in 

residual building design, the room functions and relative positions are determined with bubble diagram. 

All following steps are  designed with the requirements in the bubble diagram. 
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2.4.1 Traditional methods 

Traditional methods conduct rule-based algorithms or formulate optimization for structured data 

generation (Arvin et al. 2002, Medjdoub et al. 2000, Michalek et al. 2002, Liu et al. 2013). In early 

efforts, shape grammars are introduced to develop iterative algorithms for room layout generation. 

Further, Wang and Zhang (2020) use shape grammar to generate room boxes layout based on the 

room adjacency relationship. Rectangular drawing algorithms for planar graphs are also used to 

generate layouts, meanwhile, house owners’ preferences are considered as constraints (Nishizeki 

and Rahman, 2004, Yeap and Sarrafzadeh, 1993). With real-world data, Merrall et al. (2010) train a 

Bayesian network to generate room adjacency and obtain floorplan by stochastic optimization. Wu 

et al. (2018) propose a hierarchical framework to solve this task with mixed integer programming 

optimization.  

Although these methods may be applied in computer games, they still cannot meet the requirements 

of architectural design. These methods either need elaborately designed constraints or can only 

generate topological equivalent results, whose shape similarities are not guaranteed. 

2.4.2 Deep learning methods 

Since floorplans are commonly represented as images, it is intuitive to classify floorplan generation 

into image synthesis and generation problems. The most popular neural approaches are Generative 

Adversarial Networks (GANs) (Goodfellow et al. 2014, Karres et al. 2017, Zhang et al. 2019, Brock 

et al. 2018, Karres et al. 2019). Naturally, GANs are used on room layout generation tasks (Li et al. 

2020). Wu et al. (2019) predict walls by supervised learning component masks with a Convolutional 

Neural Network with given house boundaries. Their following by Sun et al. (2022) using GraphNet 

progressively draws walls with a parallel LabelNet, which requires no post-processing stage. 

Another influential work is the HouseGAN series by Nauata et al. (2020,2021), using conditional 

GAN to generate rooms one by one under bubble diagram constraints.  

Compared with traditional methods, these pixel-level methods show great superiority in realistic 

results as well as robustness to constraints.  Although the constraints are considered when designing 

network architecture, the deconvolution structure in these networks has fewer advantages on 

topology prediction. 

As bubble diagrams are usually described as graphs, variants of Graph Neural Networks (GNNs) 

(Kipf et al. 2016a, Zhang et al. 2018, Ying et al. 2018, Velickovic et al. 2017, Kipf et al. 2016b, 

Scarselli et al.2008) are used for network design and feature encoding. With the assumption that all 

rooms are rectangular, Graph2Plan by Hu et al.  (2020) takes given bubble diagram constraints as 

input and predicts the locations and sizes of the room boxes. Chen et al. (2020) generates room 

boxes from language descriptions with a graph convolutional network. Two upper methods require 

a post-processing stage to obtain desired floorplans. Para et al. (2021), propose a two-stage method, 

using GNN to predict room vertices and adjacency and optimize results with linear programming.   

These graph-based methods are usually less computationally intensive since the graph is a more 
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elegant and efficient representation of floorplan drawings. However, these methods cannot 

guarantee the generated floorplans conform to the given constraints. Furthermore, taking rectangles 

as the basic room shapes limits their ability to generate diverse room layouts. 

2.5 Summary  

2.5.1 Issues in floorplan detection  

 

Figure 7 One challenge is the difference in the same architectural elements type. For example, tables may 

have various drawing ways with simple or complicate geometry in different projects. 

 

Figure 8 Walls, windows, bay windows, and isolations has similar drawings. 

Another challenge is the similarities between different type architectural elements. This challege is 

threefold: 

⚫ Lacking primitive-grained instance segmentation methods 

⚫ Representation of the as-built floorplan CAD drawings 

⚫ To distinguish the difference between inner-class primitives and the similarity of inter-class 

primitives. 
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2.5.2 Issues in floorplan generation 

 

Figure 9 Generated floorplan (right) with wrong room topology (missing one room) . 

The main challenge in floorplan generation is the topological consistent. Current methods are either 

make errors in topology or generater unreal floorplans. Thus, a good method should satisfy the 

following properties: 

⚫ A method can generate vector graphics of room layout diagrams. 

⚫ Generating room layouts to satisfy all strict constraints in the input conditions. 
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3 Methodology  

Tasks like floorplan detection and floorplan generation are typical tasks, which require certain 

professional knowledge and high cost on time and human labor. An automatic method may complete 

these tasks with the help of computers. Since it is hard to establish a model-driven method with 

believable quantification of the parameters of architectural design, data-driven methods, especially 

deep learning methods are more suitable for these tasks. Reliable automatic methods with deep 

learning techniques may greatly improve efficiency and productivity.  

Existing deep learning methods in other related fields could complete these tasks to some extent by 

converting floorplan CAD drawings to other data formats. Compared with raster image data and 

graph data, CAD drawings data have special features, which are worth researching. Current 

Methods based on such converted data usually have some shortages in these tasks. An originally 

designed method developed with consideration of floorplan CAD drawings features may have better 

performance in floorplan detection and generation.  

The methodology section contains four parts. The theoretical analysis of basic features and 

backbone network structures are introduced in the first two sections. The following two sections 

separately illustrated the methods for floorplan detection and floorplan generation. 

In section 0, the floorplan CAD drawings in different architectural design stages are introduced. and 

the special properties of the CAD drawings are inducted from the perspective of geometry. 

Parameterization, regularity, planarity, and duality features of floorplan CAD drawings are 

introduced in detail. The approaches to constructing graphs for detection and generation tasks are 

illustrated in the last subsection. 

In section 0, two universal neural network structures are conducted with the graph representations 

of two tasks respectively. Two network structures are not specially designed for certain datasets but 

can be embedded as backbones in related research. The insight of the network structure designing 

is the notion of discrete differential geometry. Related mathematical concepts are also presented 

while introducing the neural network structures. 

In section 3.3, the complete method of floorplan detection based on the proposed network backbone 

is illustrated in detail. A clear definition of the detection task is provided as well as the initial features 

of the graph representation of the floorplan CAD drawings. After that, a novel network, namely 

CAD-GATnet, based on the author’s publication is introduced, including the network architecture 

as well as the objective functions of this task. 

In section 3.4. the complete method of floorplan generation with constraints, namely 

Dualgraph2Plan is illustrated. In the problem definition part, the formulation of the problem and the 

constraints are interpreted in detail. The overall architecture of the Dualgraph2Plan, as well as its 

three modules, are introduced in detail with the following four subsections. Besides, the additional 

operations for other optional constraints in floorplan generation are illustrated in the last subsection. 



31 

 

Although this research is based on floorplan CAD drawings, the proposed method can be applied to 

other data with similar geometric features.  

3.1 Features and graph-based representations 

Floorplan CAD drawings are usually saved as vector graphics. Although the floorplan CAD 

drawings are converted into raster images and graph data during visualization and production, there 

are special features in floorplan CAD drawings compared with raster images and graph data. The 

author analyzes the geometric features of floorplan CAD drawings in this section. The difference 

between raster image representation and vector graphics representation are compared in section 

3.1.1. Compared with generic graphs, there are additional geometric features in floorplan CAD 

drawings to describe the regularity patterns, which is introduced in section 3.1.2.  Besides, geometric 

features, floorplan CAD drawings also hold some special topology features. The topology features 

including planarity and duality are illustrated in section 0. Based on such features, two ways to 

construct graphs for floorplans in the detection and generation task are illustrated in section 0. 

 

Figure 10 Floorplans contain different levels of informantion in different architectual design stages. (a) 

Bubble diagram. (b) Sketches. (c) Room layout diagram. (d) Fine drawing floorplan. (e) As-built 

floorplan. 

As mentioned in the introduction section, floorplans usually contained different levels of both 

geometric and semantic information. As is shown in Figure 10, a floorplan usually origins from a 

bubble diagram (a) during the visual thinking process (Arnheim 1997), in which types and relations 

are illustrated. More specific floorplans based on the bubble diagrams are concreted by architects 

with hand-drawing sketches (b). Once the room layout is determined, a simple room layout diagram 

(c) is drawn for exhibition and sale. Based on the room layout diagram, a fine drawing floorplan (d) 

is developed with further details, such as furniture and structural elements. Before the building 

construction, an as-built floorplan (e) is proposed with complete information on other professions 

besides architecture as well as rich semantic annotations.  

Since the target floorplans are as-built CAD drawings (e) and room layout diagram (c) in floorplan 

detection and generation tasks respectively, the author focuses on these two floorplans during 

feature analysis. Although both two floorplans hold parameterization and regularity, there are still 

differences in planarity and duality features. 
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3.1.1 Parameterization of geometric primitives  

The geometric primitives refer to the basic geometric patterns composing a complicated floorplan 

CAD drawing. Usually, there are three frequently used geometric primitives in floorplan drawings, 

i.e., segments, arcs, and ellipses, see Figure 11. A Circle can be considered as a special case of 

ellipses. These basic primitives make up architectural elements first. Then the architectural elements 

compose a complete floorplan.  

These geometric primitives are usually represented as vector graphics during storage, in which each 

geometric primitive is a vertex, and the edges represent the relationships among the geometric 

primitives. Unlike other classic graph data, the attribution of elements in vector graphics usually 

contains positional information, which is used for illustrating the locations on the canvas. This 

representation is the so-called parameterization of geometric primitives. 

 

Figure 11 In one floorplan CAD drawing, architectual elements are usuallly composed of basic geometric 

primitives, such as segments, arcs and ellipses. 

Compared to raster image representation, parameterization is a more suitable way for manufacturing. 

As is shown in Figure 12, a raster image sampling on the canvas with fixed pixel size gets the value 

with an indicator function. This representation of floorplan CAD drawings is discrete and explicit. 

Unlike the continuous texture in natural images, the common geometric primitives in CAD drawings 

shown in Figure 11, are usually 1D curves. In practice, the indicator function is replaced with an 

approximation with hat function bases, to have more continuous visualized results.  

The advantages and disadvantages of the raster image representation are both obvious. Firstly, pixel-

based image is naturally suitable for visualization since it requires no sampling stage and can be 

zoomed in and out with mature algorithms in image processing. Secondly, pixel images are 

Euclidean structure data, which holds good properties in deep learning, such as translation 

invariance, regular grids, and similarity on different scales. The 2D convolutional kernel function 

can be easily defined on raster images, from the perspective of discrete convolution or Gaussian 

integral. The translation invariance ensures the features filtered unchanged with convolutional 

kernel consistent in different positions. The similarity on different scales fits the pyramid structure 

of the images in different resolutions, which could enlarge the receptive field of the kernel during 

convolution and pooling layers in a convolutional neural network. 
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Figure 12 The architectual elements are represented with parameterization of geometry primitives in 

CAD drawings, while in 2D raster images, ones are represented with pixels. 

The main shortage is the limited representation ability of vector graphics. Cases like overlapping 

primitives and primitives with large differences in scale are inappropriate with raster image 

representation. Firstly, the value on each pixel usually indicates whether the distance between the 

center of the pixel and the geometry primitives is lower than some certain threshold. The 

overlapping primitives have the same image as the single primitives. Representing overlapping 

primitives in different channels is also impossible. Usually, the number of channels is limited in a 

raster image, which can only represent limited close primitives. On the other hand, the channel for 

convolutional kernel definition has an order, which does not hold the permutation invariance for the 

overlapping primitives. Besides the geometric relationships are not suitable for explicit 

representation. For example, coincident primitives may have the same image as the close but not 

connected primitives. Meanwhile, it is hard to determine a threshold fitting primitive with a big 

difference in scale. Thus, information may also miss during zooming. 

On the contrary, the representation of vector graphics is called parameterization. The accurate notion 

of parameterization can be found in differential geometry (Budroni and Bohm 2009). As is shown 

in the right column of Figure 12, all points on one 1-d primitive are mapped to [0,1] ∈ 𝑅1. This 

function is a parameterization of one parameterization. Briefly speaking, all primitives are depicted 

with start and end points and additional parameters. For linear primitives, i.e., segments, no more 

additional parameters are needed. For arc and ellipse more parameters are used to depict the 

geometric information.  

The parameterization is an implicit representation. All primitives are described as geometric objects. 

Primitives with the same type are depicted with the same template and different attributions. The 

limitations of raster images are improved with the parameterization representation. Since there is no 

sampling in parameterization, the limitations of resolution and overlapping issues are eliminated. 

Besides, the geometric constraints, e.g., coincident, tangent, orthogonal, and mirror, can be easily 

represented with the relationships of two objects. 

However, there is no free lunch. The main issues brought by parameterization are also obvious. 

Compared with the regular grid in the data structure in raster images, the Euclidean structure does 

not exist in the parameterization of vector graphics. This type of data is called non-Euclidean data 

(Biljecki et al. 2015, Bronstein et al. 2017, Grover and Leskovec 2016). The convolution is hard to 
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define on non-Euclidean data. The expected convolution formulation should not only keep 

permutation invariance but also be integral to the geometric constraints. 

In this research, parameterization of the CAD drawings is used and represented as graphs. Current 

networks designed for non-Euclidean data take undirected or bidirected graphs to depict CAD 

drawings, which lack the utilization of unique features in architectural floor plan data and similar 

datasets. To tackle the upper issues, the author improves the networks for general non-Euclidean 

data with the geometric features of the floorplans in specific applications. Novel networks with 

efficient convolution definitions are illustrated in section 3.3 and section 0 respectively. Compared 

with image-based methods, the proposed methods have obvious advantages, since the proposed 

method direct completes the tasks on CAD drawings with no data conversion steps. This hypothesis 

is also validated with abundant experiments in Chapter 0. 

3.1.2  Regularity geometric constraints 

There is an obvious difference between natural images and CAD drawings. CAD drawings are 

composed with simple geometric primitives, instead of complicated texture and illumination. In the 

architectural industry, floorplan CAD drawings also have special features compared with other CAD 

drawing files. Since most architectures in real projects are regular shapes, the geometry primitives 

are constraints with regular geometric relations.  

 

Figure 13 A local floorplan CAD drawing without anonations. 

As is shown in Figure 13, these regularity geometric constraints are especially abundant in as-built 

floorplans. For better illustration, a local floorplan of a residual building is clipped and remove all 

irrelevant elements except geometric primitives. All regularity geometric constraints in this 

floorplan CAD drawing are colored with different colors, which represents the geometric relations 
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between two primitives.  

 

Figure 14 Geometric regularities in the floorplan CAD drawings. (a) Parallelism. (b) Co-linearity. (c) 

Duplication. (d) Tangentiality. (e) Coincidence. (f) Orthogonality. (g) Concentric. 

The common regularity geometric constraints in this floorplan CAD drawings are enumerated in 

Figure 14, which would be carefully introduced as follows: 

(a) Parallelism. Parallelism refers to two non-colinear line segments that share the same slope. 

This regularity geometric constraint is usually seen in patterns of walls, windows, and some 

rectangular furniture. 

(b) Co-linearity. Co-linearity refers to two parallelism segments on the same line. This regularity 

geometric constraint is usually seen in the patterns of the opening of walls and array-placed 

architectural elements.  

(c) Duplication. Duplication refers to two primitives with the same intrinsic features and different 

positions. This regularity geometric constraint is usually seen in the patterns of furniture, which 

is usually regularly recurring in floorplan CAD drawings.  

(d) Tangentiality. Tangentiality refers to the tangent segment and arc or ellipse. This regularity 

geometric constraint is usually seen in the patterns of staircases, doors, and some furniture. 

(e) Coincidence. Coincidence refers to two primitives sharing the same start point or end point. 

This regularity geometric constraint is usually seen in the patterns of two close primitives 

belonging to the same architectural element instance. 

(f) Orthogonality. Orthogonality refers to two orthogonal line segments. This regularity geometric 
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constraint is usually seen in the patterns of walls and windows. Furthermore, the two orthogonal 

line segments are horizontal and vertical in most Floorplan CAD drawings. 

(g) Concentric. Concentric refers to two arcs or ellipses sharing the same center and different radii. 

This regularity geometric constraint is usually seen in the patterns of furniture. 

These geometry constraints are necessary for production and can also be seen in most CAD drawing 

software. Since the floating-point precision of computers has limitations, without restricted 

geometric constraints, the pattern will lose accurate position and may lead to errors. For example, 

without coincidence constraints, two lines may seem connected on a small scale but non-intersected 

when zooming out. Besides, as is described in the upper gist, the occurrence scenes of regularity 

geometric constraints imply semantic information.  

Most regularity geometric constraints of two geometric primitives have transitivity so that the 

relationship of triple primitives can be also described with upper constraints. Meanwhile, as the 

content gets richer in the floorplans in different architectural design stages, the geometric constraints 

get more complicated. Since the geometric constraints depict the relationship of two primitives, the 

upper bound of the number of geometric constraints of n geometry primitives is 𝒏𝟐  in theory. 

However, in real cases, most geometry primitives are only constrained with their adjacent geometry 

primitives, and the magnitude of the geometric constraints is much lower than the theoretical upper 

limit. 

In the proposed research, these geometric constraints are integrated into the neural networks. All 

geometric constraints are embedded as edge features, such that relative position information can be 

fully used in the relevant tasks to improve performance. 

3.1.3 Planarity and duality 

Besides geometry features, there are also topology features in the floorplan CAD drawings. General 

graph data are composed of vertices and edges. Usually, the features are defined on the vertex space, 

and the edges are described with the adjacent matrix implying the topology of the graph.  

In floorplan CAD drawings, there are more properties compared with the general graph data. For 

the topology features of as-built floorplans in the detection task and the room layout diagram 

floorplans in the generation task, two graphs are introduced to represent the topology of the 

floorplans. 

3.1.3.1 Line graph 

The notion of a line graph comes from research by Harary and Norman (1960). In the graph theory, 

the line graph of an undirected graph is another graph that represents the adjacencies between edges 

in the original graph, which is constructed in the following ways: 
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(a) for each edge in the undirected graph is represented with a vertex in the line graph, 

(b) for every two edges have a vertex in common is the edge connected to the corresponding vertices 

in the line graph. 

 

Figure 15 A illustration of the line graph, which the original edges are treated as vertices. Two vertices 

of line graph are connected if their original edges share a same vertex. 

The construction process of the line graph is illustrated in Figure 15. The first graph is the original 

undirected graph, whose vertices are blue and labeled with 1 to 5. The second graph and the third 

graph show the vertex and edge construction from the undirected graph to its line graph, which is 

drawn with green color and dashed lines respectively.  By following the construction rule, the edges 

in the undirected graph are represented as vertices in the line graph and labeled with their endpoint 

label. And the two vertices in the line graph are connected if their corresponding original edges 

share the same vertices. The last graph is the constructed line graph. The construction process of the 

line graph is irreversible, and some graphs are not line graphs. One thing worth mentioning is that 

the line graph should also be an undirected graph, the labels of the vertices in the line graph are 

labels set without an order. In practice, the features of the line graph need to carefully design to 

eliminate the directions.  

Since all geometric primitives in floorplan CAD drawings are represented with two endpoints in 

parameterization representation, it is intuitively to construct a naïve undirected graph for the 

floorplan CAD drawings, by taking all endpoints as vertices and the primitives as the edges 

connecting them. Compared with this naïve undirected graph, its line graph is more suitable to 

represent the floorplan CAD drawings, since the parameters of the geometric primitives are defined 

on the edge space of the naïve undirected graph, instead of the vertex space, i.e., its endpoints. Thus, 

the line graph is used to represent the floorplan CAD drawings.   

3.1.3.2 Planar graph and dual graph 

Although most floorplans can be represented with line graphs, room layout diagrams have some 

better topology properties, which may improve the performance in generation tasks. This subsection 

introduces the notion of the planar graph and the dual graph to represent the room layout diagrams 

and the topology features.  
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In graph theory, a planar graph is a graph that can be embedded in a 2D plane. In other words, a 

planar graph can be drawn on a 2D canvas in such a way that its edges only intersect at their 

endpoints. Such a drawing is called a planar embedding of the graph. As is shown in Figure 16,  

 

Figure 16 A brief illustration of the planar graph. A planar graph can be embedded on a plane with no 

additional intersection points on edges. A planar graph must have no 𝐾3−3(middle) or 𝐾5(right) as minor 

graph. 

As is shown in Figure 17, a planar graph may have different planar embeddings. This is defined to 

distinguish the topology of different embeddings. The combinatorial embedding depicts the vertices 

of each face in the planar embeddings.  

 

Figure 17 Two different embeddings of a same planar graph. 

Take the two different planar embeddings for example, their combinatorial embeddings are shown 

as follows: 

𝑙𝑒𝑓𝑡 {

𝑓∞ ∶ [1,4,3]
𝑓1 ∶ [1,4,2]

𝑓2 ∶ [1,2,3]
𝑓3 ∶ [2,4,3]

                                 𝑟𝑖𝑔ℎ𝑡 {

𝑓∞ ∶ [1,3,2]
𝑓1 ∶ [1,4,2]

𝑓2 ∶ [1,3,4]
𝑓3 ∶ [2,4,3]

 

The author first constructs the naïve undirected graph with the upper section. All endpoints of 

primitives are set as vertices and the line segments are set as edges in this graph. Compared with 

the as-built floorplan CAD drawings, walls are usually drawn with single lines instead of two 

parallel lines. Meanwhile, this naïve undirected graph naturally conforms to the definition of the 

planar graph, with a feasible planar embedding.  

One of the topology features of the planar graph is very suitable to the proposed floorplan generation 
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tasks, namely dual graph. The notion of the dual graph in graph theory is defined as a corresponding 

graph of a given planar graph. By defining the planar graph as a 2-d oriented manifold, the vertices, 

edges, and faces are linear spaces with 0,1 and 2 dimensions. The definition of the dual graph is 

derived from taking the dual space of these linear spaces. 

 

Figure 18 A illustration of a planar graph (blue) and its dual graph (red). Once the embedding of a planar 

graph is fixed, its dual graph is also fixed, by taking the faces in planar graph as dual vertices and add 

corresponding dual edges. 

As is shown in Figure 18, the planar graph and the dual graph is drawn in blue and red. Unlike the 

line graph, the construction of a dual graph is bidirectional since the duality is a one-to-one 

corresponding mapping. The prime graph (blue) and the dual graph (red) are used to represent the 

planar graph and the dual graph respectively. The faces, edges, and vertices in the prime graph are 

one-to-one mapped to the vertices, edges, and faces in the dual graph.   

As mentioned in the introduction section, the floorplan generation task is usually asked to satisfy 

the given bubble diagram. Based on the definitions, the prime and dual graph is suitable to describe 

the bubble diagram and the room layout diagram. With such representations, the topology of the 

target floorplan is explicitly preserved during generation. Further details are introduced in the 

following sections. 

3.1.4 Graph representation of floorplans 

Based on the above geometry and topology features, two graph construction methods are introduced 

for as-built floorplans and room layout diagrams tackling the issues in the floorplan detection and 

floorplan generation tasks respectively.  

3.1.4.1 Graph construction for as-built floorplans 

As mentioned above, each primitive in the as-built floorplan CAD drawings is represented as 

vertices in the line graph. However, the original definition of the topology of the line graph is not 

enough in the as-built floorplans. With the consideration of the different regularity geometry 

constraints in as-built floorplan CAD drawings, a rule to construct the edges in the line graphs in 
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established.  

 

Figure 19 A graph of primtives in as-built CAD drawings is built with the notion of line graph. Since the 

edges has inconsistent attributions, this graph is a heterogenrous graph. 

As is shown in Figure 19, a local part of the floorplan is taken for example to illustrate the edge 

construction in the line graph. 𝑠 and 𝑎 with indexes are used to represent the segments and arcs in 

the CAD drawings. 𝑠0  is set as the center to show the structure in the line graph. All other primitives 

are the 1-ring neighbors and 2-ring neighbors of the center vertex. 

Although the coincidence conforms to the original definition of the line graph, other regularity 

geometry constraints should also be considered in building graphs. For different regularity geometry 

constraints, a threshold R is designed for edge construction. Before edge construction, the author 

first defines the distance of two primitives in the CAD drawings: 

𝑑𝑖𝑗 = min𝒑∈𝑣𝑖,𝒒∈𝑣𝑗|𝒑 − 𝒒|. 

In this research, the distance of two primitives is defined as the minimal Euclidean distance of the 

points in two primitives respectively. With such a definition, the radius of the receptive field can 

increase fast with the radius in graph growth.  

As the primitives and edges have more than one type, here the author borrows the notion of 

heterogeneous graph provided by Sun et al.: A graph denoted as 𝒢 = (𝝂, 𝜺), consists of vertex set 𝝂 

and an edge set 𝜺. A heterogeneous graph is a graph, whose vertex type mapping function 𝜙: 𝝂 →

𝒜 and edge mapping function 𝜓: 𝜺 → ℛ, where |𝒜| + |ℛ| > 2. This notion origins from the graph 

data in recommendation algorithms, in which not all vertices or edges are defined in a same feature 

space. Apparently, the segments, arcs, and ellipses are depicted with different parameters, the 

proposed line graph representation of the floorplan CAD drawing conforms to the definition of the 

heterogeneous graph. With such data structure, more related neural networks designed for 

heterogeneous graph can be taken as reference in floorplan detection and generation tasks.  
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3.1.4.2 Graph construction for room layout diagram 

This section introduces the dual graph construction process tackling the room layout generation 

tasks with bubble diagrams describing the requirements of customers.  

Although some masterpiece architectures are designed with fashion floorplans containing 

complicated topology, most of the common architectures pursuing the efficient and reasonable use 

of room space have relatively simple topology. Also, automatic approaches exactly tackle replacing 

human labor in architectural design with simple topology and regular shapes. Thus, three rational 

assumptions are taken in this research to limit the range of the generated room layouts.  

⚫ The first assumption is the Manhattan assumption (Furukawa et al. 2009), which assumes all 

walls in the floorplan are orthogonal since most buildings are man-made structures with strong 

regularities, such as adjacency, parallelism, and orthogonality. 

⚫  The second one assumes that each room is a simply connected polygon.  

⚫ The last one is that each partition wall of two adjacent rooms is a nonself-crossing 𝐶0 

continuous polyline. 

The first assumption restricts the shape of the generated room layouts. The last two assumptions 

restrict the topology of targeting room layouts. Based on these three assumptions, the duality 

between the given bubble diagram and the target room layout diagram is introduced, as well as the 

dual graph construction process. 

The author first gives the definition of a bubble diagram. As is shown in (a) of Figure 10, customers 

or designers usually use a bubble diagram to depict the expected room layouts with sketches, which 

illustrated the numbers, types, and relative positions of rooms. This research uses planar graph  𝒢ℬ =

(𝒱ℬ, ℰℬ , ℱℬ)  to represent the given bubble diagram, illustrated as (d) in Figure 20, in which 𝒱ℬ 

represents the vertex set of all rooms, ℰℬ represents the edge set of all rooms adjacency, and ℱℬ are 

face set of the planar graph without any specific semantic meanings, just for completing the planar 

graph definition.  
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Figure 20 The dual graph construction of the given bubble diagram with the notion of the planar graph 

and the dual graph. (a) The wall graph of the target floorplan. (b) Edge collapses of the wall graph. (c) 

Wall graph’s dual graph. (d) The given bubble digram. (e) The target room layout diagram. 

With the above bubble diagram graph, the author keeps constructing the duality between the bubble 

diagram and the target room layout diagram. 𝒢ℒ = (𝒱ℒ , ℰℒ , ℱℒ) is used to represent the target room 

layout with planar graph definition as previously mentioned, in which 𝒱ℒ  are endpoints of wall 

segments, ℰℒ represent walls, and ℱℒ represent all rooms in the target room layout. To complete the 

planar graph definition, the infinity face 𝑓∞  is added to ℱℒ . Since the orientation of  𝒢ℒ  has no 

special semantic meaning, the author just takes counterclockwise as the positive direction of 𝒢ℒ.  

The duality construction process starts from the room layout 𝒢ℒ.  The author first collapse edges 

(Garland and Heckbert 1997) until no edges whose endpoints are 2-degree vertices. 𝒢𝒟 is used to 

represent the graph after edge collapse, shown as (b) in Figure 20.  Then, the dual graph of the 𝒢𝒟 

is defined with dual graph definition in section 0 , and 𝒢𝒫 represents the dual graph, shown as (c) in 

Figure 20. It is easy to construct an injective function ψ: 𝒢ℬ ↦ 𝒢𝒫 by mapping the room vertices of 

bubble diagram to the dual vertices of the faces in the room layout diagram. Since 𝜓 is injective, 𝒢ℬ 

and 𝜓(𝒢ℬ) are isomorphism. Also, it is obvious that ψ(𝒢ℬ)  equals to 𝒢𝒫 ∖ {𝑣∞}. 

Based on the upper duality construction process, the notion is given that generating room layout 

diagrams with given bubble diagrams, is exactly the inverse direction of the duality construction. 

Further details are illustrated in the following sections.  

3.1.5 Summary  

This section primarily outlines the theoretical contributions about data representation of this 

research. Starting from an analysis of the geometric and topological characteristics of floorplan 

CAD drawing data, it further employs more specialized graph structures to describe CAD drawings. 

The specific points of innovation are as follows: 

⚫ Geometric and topological features of floorplan CAD drawings are decoupled and inducted 

separately. 

⚫ Line graph and planar graph can more specifically describe floorplan drawings with their 
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features in detection and generation tasks. 

⚫ The geometric features between geometrical primitives are utilized to construct line graphs, 

thereby adding regularization terms. 

⚫ The topology property, i.e., duality relationship between bubble diagrams and floorplans, is 

utilized to establish the initial topology for generation. 

3.2 Corresponding backbone structures  

With the consideration of the line graph and the planar graph, two network structures are proposed 

to embed the features defined on different feature spaces. Both two network structures are the 

improvement with the features of floorplan CAD drawings. Classic graph neural networks are 

usually designed the tasks (Wu et al. 2020), e.g., vertex prediction or link prediction, which are 

especially tackling vertex space or edge space only. In the floorplan detection and generation tasks, 

the expected networks should be able to process the vertex and edge tasks at the same time. 

The convolution formulation defined on graph data is introduced in this subsection. Unlike the 

spatial definition of convolution kernel on raster images, the convolution defined on graphs is a little 

bit abstracted. Here, the author briefly introduces the graph convolution definition from the 

perspective of matrix spectral decomposition. 

The core idea of the graph convolution definition is to approximate the continuous Laplacian 

operator on graphs.  

The continuously convolution of two function 𝑓 and 𝑔 is defined as: 

(f ⋆ 𝑔)(x) = ∫𝑓(𝑦)𝑔(𝑥 − 𝑦)𝑑𝑦, 

Meanwhile, there is also a conclusion in Fourier transformation: 

(𝑓 ⋆ 𝑔)(𝑥) = ℱ−1 (ℱ(𝑓(𝑥)) ∘ ℱ(𝑔(𝑥))) . 

Therefore, with the Fourier transformation defined on graphs, the convolution can be defined on 

graphs. Here the definition of continuous Laplacian operator is defined as: 

Δ𝑓(𝑥) =
∂2𝑓

∂𝑥2
 . 

Discrete Laplacian is exactly the sum of the difference between the vertex and its 1-ring neighbors. 

The discrete Laplacian operator 𝐿 on graph is defined as: 



44 

 

𝐿 = 𝐷 − 𝐴 , 

where  𝐷 is the degree matrix and 𝐴 is the adjacency matrix of the graph. Usually, to keep magnitude 

at a consistent level, the symmetric normalized Laplacian operator 𝐿𝑁 is used for graph convolution, 

which is shown as: 

𝐿𝑁 = 𝐼 − 𝐷
−
1

2𝐴𝐷−
1

2 . 

Since the bases of Fourier transformation are exactly the eigenvectors of the Laplacian operator:  

Δ𝑒2π𝑖𝑥⋅𝑣 = λ𝑒2π𝑖𝑥⋅𝑣 , 

the Laplacian operator 𝐿𝑁 on graph can has an eigen decomposition like: 

𝐿𝑁 = 𝑈λ𝑈
𝑇, 

where 𝑈 and 𝜆 are eigen vectors and eigen values of the Laplacian matrix respectively. Thus, the 

Fourier transformation on graphs can be defined as: 

ℱ𝒢(𝑥) = 𝑈
𝑇𝑥. 

The inverse Fourier transformation on graph can be defined in the same way: 

ℱ𝒢
−1(𝑥) = 𝑈x. 

Further the convolution on graph can be written as: 

𝑓 ⋆ 𝑔 = 𝑈(𝑈𝑇𝑓 ∘ 𝑈𝑇𝑔) . 

To eliminate the high computation complexity of eigen decomposition of the Laplacian. The 

convolution kernel is approximated with Chebyshev polynomial: 

𝑓𝑘𝑒𝑟𝑛𝑒𝑙 ⋆ 𝑔 ≈ 𝜃 (I + 𝐷
−
1
2𝐴𝐷−

1
2) g 

               = 𝜃 (�̃�−
1

2�̃��̃�−
1

2) g , 

where: 

�̃� = 𝐴 + 𝐼, �̃�𝑖𝑖 = ∑ �̃�𝑖𝑗𝑗 , θ are coefficients. 

With the nonlinear activation function σ  in the neurons of the neural networks, the final 
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mathematical expression of one graph convolution layer is: 

𝐻𝑙+1 = σ(�̃�−
1

2�̃��̃�−
1

2𝐻𝑙θ𝑙). 

From the perspective of the interpolation and the spectral decomposition, in the vanilla version of 

the graph convolution approximate the target function with the Fourier basis of the graph. The 

weights in each layer of graph convolution could be considered as the coefficients of the basis 

function, which would be optimized during the training process. Meanwhile, the first-order 

approximation of the Laplacian decomposition is used in real applications, the structure of the 

vanilla version of graph convolution could also be regarded as a variation of the message passing 

neural network (Gilmer et al. 2017), from the spatial perspective.  More details about the formula 

derivation of graph convolution can be found in (Kipf et al. 2016). 

The proposed following improvement on neural network structures for detection and generation 

tasks attempts other suitable approximations of the decomposition of the Laplacians in the spectral 

perspective and alternative ways to aggregate the features in the spatial perspective so that the 

features defined on different spaces could be fused during convolution and solve the prediction tasks 

on vertices and edges in one network. 

3.2.1 Attention structure for line graphs 

The main issue of conducting network structures for the line graph of as-built floorplan CAD 

drawings is to design a proper convolution formulation considering the features of geometric 

primitives and the geometric constraints.  

In general graphs, weights on edges are equivalent, such that the discrete Laplacian operator 𝐿 can 

be written as 𝐿 = 𝐷 − 𝐴. However, as is mentioned in section 3.1.4.1, the line graph built from 

floorplan CAD drawings is a heterogeneous graph, in which weighs on edges have different types. 

Since different relative position relationships among primitives represented with geometry 

constraints defined on edges of the line graph imply semantic information of CAD drawings, it is 

intuitive to align different edges with different weights. In this research, a network is designed in 

which the discrete Laplacian operator 𝐿 is approximated with a learnable nonlinear function based 

on the multi-head attention layer in the vanilla transformer network structure. 
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Figure 21 Illustration of the single-head attention layer. 

The vanilla transformer is a fashion neural network structure (Vaswani et al. 2017). Once it was 

proposed, the multi-head attention layer in the transformer shows great power in natural language 

processing and computer vision tasks. As is shown in Figure 21, the structure of the single-head 

attention layer is illustrated. The vertex features are first mapped to three different feature spaces, 

namely query, key, and value spaces, with three linear layers respectively. The attention matrix with 

masks approximates the weight on the edges with the product of the query and key. To keep the 

output feature in a consistent magnitude, the attention matrix is normalized with the SoftMax 

function: 

𝜎(𝑧)𝑗 =
𝑒
𝑧𝑗

∑ 𝑒𝑧𝑘𝐾
𝑘=1

 . 

The mathematical expression of one single-head attention layer is shown as: 

Vl+1  = softmax (
QKT

√dk
)Vl . 

The parameter dk  is the dimension of the vertex features. The dimension of each entry in the 

attention matrix is the number of the head. Therefore, the multi-head attention layer is improved 

from the single-head attention layer by splitting 𝑄 and 𝐾 and calculating the attention matrix with 

more than one dimension.  
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Figure 22 A novel network structure for the line graph of the as-built floorplan CAD drawings in floorplan 

detection, which is improved from the vanilla transformer structure. 

The proposed insight is to integrate the edge features to vertex features based on the structure of the 

multi-head attention layer to approximate the discrete Laplacian operator on the heterogeneous 

graph. The main structure of the proposed network is shown in Figure 22. As is shown in the blue 

arrows in  Figure 22, the edge features are mapped to a feature space with the same dimension as 

the number of the attention heads and then added these edge features with the attention matrix in 

the multi-head attention layer. The attention matrix is passed as edge features of the next convolution 

layer, shown as the yellow arrow in Figure 22. The mathematical expression of the proposed 

improved graph convolution layer based on multi-head attention is shown as: 

𝑉𝑙+1  = (softmax (
𝑄𝐾𝑇

√𝑑𝑘
) + 𝐸𝑙)𝑉𝑙 . 

The theory support of the proposed improved attention-based network structure comes from several 

aspects.  

Firstly, adding edge features with the attention matrix is reasonable. Since the edge feature and 

attention score are one-to-one corresponding to describe the relationship between two vertices, 

adding or concatenation is an effective operation to combine these two features.  

Secondly, from the perspective of graph convolution, the proposed improvement does not break the 

mechanism of graph convolution. During calculating the attention matrix, a mask is added such that 

one vertex only focuses on its 1-ring neighbors on the line graph. In one layer, neighbor features are 

aggregated to the center vertex. With the number of layers going deeper, the receptive field of the 

convolution gets larger, so that the context at both local and global levels is embedded with the 

proposed attention layers.  

Thirdly, from the perspective of the transformer network, the mask designed according to the 

adjacent matrix is very reasonable. Although the vertices in the proposed line graph are not a 

sequence with a certain order or stable relative positions, the location information is already 
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embedded in the vertex features. Since the structure of the transformer is permutation invariance, 

the proposed vertex features can be analogy of the line graph with the long text sequence after 

adding positional embeddings. According to facts in related research on the transformer structure 

used for long sequences (Dai et al. 2017, Beltagy et al. 2020, Zaheer et al. 2020), the normalized 

attention matrix is usually a diagonally dominant matrix. In other words, compared with vertices 

from a large distance, a vertex would more likely focus on its nearby vertices. Thus, theoretically 

speaking, masking vertices excepting the 1-ring neighbors does not harm the performance of the 

multi-head attention structures. 

3.2.2 Feature fusion module for planar graphs 

Compared with the feature definition in the line graph, the definition of the features in the planar 

graph is more complicated. Line graph only has feature defined on the edges and vertices, the faces 

in planar graphs also contain semantic information. In the room layout diagram generation task, the 

main issue is how to aggregate the features defined as vertex, edge, and face space. To solve this 

problem, the author designs a novel basic network structure with the notions from the discrete 

differential geometry.  

Before presenting the proposed network, the author first briefly introduces the notions and some 

operators in discrete differential geometry. In mathematics, a simplicial complex in 𝑅2  called a 

chain is a set composed of points, line segments and triangles. In an oriented 2d manifold, a k-

dimensional simplicial complex is a vector with {0, 1, -1} in the k-dimensional space, namely chain 

space. The boundary operator is a function mapping a k-dimensional simplicial complex to its 

boundary, which is a (k-1)-dimensional simplicial complex. Since vertex, edge, and face spaces are 

linear spaces, the boundary operator can be written as a boundary matrix 𝜕𝑘 = ([𝜎𝑖
𝑘−1, 𝜎𝑗

𝑘]), where: 

[𝜎𝑖
𝑘−1, 𝜎𝑗

𝑘] = {

+1    + 𝜎𝑖
𝑘−1 ∈ 𝜕𝑘𝜎𝑗

𝑘

−1    − 𝜎𝑖
𝑘−1 ∈ 𝜕𝑘𝜎𝑗

𝑘

0           𝜎𝑖
𝑘−1 ∉ 𝜕𝑘𝜎𝑗

𝑘

 

The k-chains and their boundary operators are illustrated in Figure 23. 
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Figure 23 A illustration of 0,1,2,3-chain, and the responding boundary operators. 

Also, the co-chain spaces of the vertex, edge, and face spaces are the functions defined on these 

chains. These co-chain spaces of the planar graph are also called a k-form. A coboundary operator 

or k-differential form is defined as: 

𝛿𝑘𝜔 ≔ 𝜔 ∘ 𝜕𝑘+1, 𝜔 ∈ 𝐶
𝑘(Σ, 𝑍) 

 a function mapping a k-form to its coboundary, which is a (k+1)-form. In the same way, the 

coboundary operators also can be written as matrixes. The illustration of 1-cochain is shown in 

Figure 24. 

 

Figure 24 A illustration of a 1-cochain, which is a function defined on edge space. 

Besides boundary and coboundary operators, Hodge starts operators are also linear operators that 

convert the feature spaces. Let ℳbe a n-dimensional Riemannian manifold. We can locally find 

oriented orthonormal basis {
𝜕

𝜕𝑥𝑖
|𝑖  =  1,2,… , 𝑛} of vector fields and let {𝑑𝑥𝑖|𝑖  =  1,2,… , 𝑛} be the 
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dual 1-form basis. A Hodge star operator ⋆≔ Ω𝑘(𝑀) ↦ Ω𝑛−𝑘(𝑀) is a linear operator mapping k-

form to its dual spaces with n-k dimensions is defined as: 

⋆ (𝑑𝑥𝑖1 ∧ 𝑑𝑥𝑖2 ∧ . . .∧ 𝑑𝑥𝑖𝑘) = (−1)
𝜎𝑑𝑥𝑖𝑘+1 ∧ 𝑑𝑥𝑖𝑘+2 ∧ . . .∧ 𝑑𝑥𝑖𝑛, 

where 𝜎 = (𝑖1, 𝑖2, . . . , 𝑖𝑛) is a permutation of the dual 1-form basis. 

With the above three operators in discrete differential geometry, the author proposed a novel graph 

convolution network structure for the planar graph and its dual graph in the room layout diagram 

generation task.  

Considering the predicted topology and geometry information in the bubble diagram and the room 

layout diagram, the author proposes a diagram composed of the different chain spaces and the 

related operators to illustration the conversion process, which is shown in Figure 25. In the proposed 

formulation of the room diagram generation task, the task needs to classify the dual edges and 

predict the locations of dual vertices. Thus, these two chains need to be transferred so that the 

features defined in their spaces can be aggregated. As is shown in Figure 25, boundary operator 𝜕 

maps the prime face to the prime edges in the bubble diagram and the dual edge are one-to-one 

corresponded to the dual edges in its dual graph according to the duality construction in the section 

0. Meanwhile the boundary operator of dual edges is exactly the transpose of the 𝜕.  

 

Figure 25 A brief illustation of the operators mapping the features difined on different spaces of the 

bubble diagram graph and its dual graph. 

Since the features on the vertex, edge, and face spaces of a graph can be considered as the functions 

defined on such spaces, the features also could be considered as the cochains of the planar graph. 

Based on the upper chain conversions diagram, this process could conduct the conversions of the 

cochains respectively. As is shown in Figure 26,  the dual vertex features 𝑉𝑙 are mapped to the dual 

edge space, add it with the dual edge features 𝐸𝑙: 

𝐸′ = 𝐸𝑙 + 𝑑𝑉𝑙, 

and finally, map the features back to dual vertex space 𝑉𝑙+1: 

𝑉𝑙+1 = σ0(𝑑
𝑇σ1(𝐸

′𝑊1
𝑙)𝑊0

𝑙) , 
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in which 𝑑 ∈ {−1,0,1}|𝐸|×|𝑉| is the combinatorial differential matrix of the dual graph, mapping 

features on the dual vertex space to the dual edge space: 

𝑑𝑖,𝑗 = {

   −1    𝑖𝑓 𝑣𝑗 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑡𝑎𝑟𝑡𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑒𝑖 ,

+1    𝑖𝑓 𝑣𝑗  𝑖𝑠 𝑡ℎ𝑒 𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑒𝑖 ,

0                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

Coboundary matrix 𝑑 is exactly equal to 𝜕𝑇, and ⋆0
−1 and ⋆1 are two learnable Hodge star operators 

mapping prime faces and dual edges to them dual spaces.   

The proposed insight of the network structure is replacing the symmetric normalized Laplacian 

operator 𝐿𝑁  in vanilla graph convolution structure, with a Laplacian decomposition in discrete 

differential geometry (Smirnov and Solomon 2021, Desbrun et al. 2005): 

ℒ =⋆0
−1 𝑑𝑇 ⋆1 𝑑. 

 

Figure 26 A novel structure for feature fusion in the floorplan generation problem.  

3.2.3 Summary  

This section primarily explains how to derive the convolution definition for graphs in the upper 

section, from the general graph convolution definition. Due to varying weights on the edges in line 

graphs and plane graphs, distinct network structures are designed to learn these weights, resulting 

in a better approximation of the decomposition of the Laplacian matrix. The specific points of 

innovation are as follows: 

⚫ Transformer structure concatenated with regular terms are used to as the learnable weights 

matrix for line graph for vertices aggregation. 
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⚫ Boundary operators are used for topology embedding for planar graphs, inspired by the 

definition of discrete exterior differential operators.  

3.3 Floorplan detection  

Computer-aided design (CAD) is the use of computers to generate digital 2D or 3D illustrations of 

a product, aiding the creation, modification, analysis, or optimization process during designing and 

manufacturing. This technology has been widely used in modern architecture, engineering, and 

construction (AEC) industries. The CAD drawings usually convey accurate geometry, rich 

semantics, and domain-specific knowledge of a product design, with basic geometric primitives, 

such as segments, arcs, circles, and ellipses. 

Spotting and recognizing symbols from CAD drawings is the first step towards understanding their 

content, which is crucial to many real-world industrial applications. For example, building modeling 

with semantic has a growing demand in various architecture engineering areas such as pipe 

arrangement, construction inspection, and equipment maintenance. A floor plan usually contains 

complete details of a store in an orthogonal top-down view.  

Traditional symbol spotting usually deals with instance symbols representing countable things, like 

tables, sofas, and beds. Following the idea by Kirillov et al. (2019), Fan et al. (2021) extended the 

definition by recognizing the semantic of uncountable stuff and named it panoptic symbol spotting. 

Therefore, all components in a CAD drawing are covered in one task altogether. For example, the 

wall represented by a group of parallel lines was properly handled by Fan et al. (2021), which 

however was treated as background. 

Large-scale dataset of high-quality annotations is the fundamental ingredient to recent advances in 

supervised methods with deep learning, e.g., ImageNet for image classification, COCO for image 

detection, and ShapeNet for 3D shape analysis. Existing datasets for symbol spotting on floorplans, 

i.e., SESYD and FPLAN-POLY, are either synthetic, or inaccurate, both with only a few hundred 

samples. Fan built the first large-scale real-world FloorPlanCAD dataset of over 10,000 floorplans 

in the form of vector graphics and provided line-grained panoptic annotations. 

CAD drawings are composed of domain-specific items, which are usually represented by abstract 

symbols. Human perception of CAD drawings is usually a multi-modal cross-context reference 

process requiring strong domain-related knowledge. Meanwhile, the large intra-class variance and 

small inter-class dissimilarity of symbols make it a more challenging task for computers. 

Representing a CAD drawing as a graph of primitives is an intuitive way to retain the property of 

vector graphics and has been proven effective for the semantic symbol spotting task. In this work, 

the author presents a novel graph attention network GAT-CADNet to solve the panoptic symbol 

spotting problem. The network achieved state-of-the-art performance and the proposed main 

contributions to this research are: 
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⚫ The author formulates the instance symbol spotting task as a subgraph detection problem and 

solve it by predicting the adjacency matrix. 

⚫ The author explicitly encodes the relative relationship among vertices, using a relative spatial 

encoding (RSE) module, to enhance the vertex attention. 

⚫ The author treats the vertex attention as edge encoding for predicting the adjacency matrix and 

design a cascaded edge encoding (CEE) module to aggregate vertex attentions from multiple 

GAT stages. 

3.3.1 Problem definition 

In this subsection, the author borrows the notions from the related work in the field of computer 

vision and give a clear definition of the floorplan detection problem. 

As mentioned in section 1.3.1, the requirements of floorplan detection in real applications are to 

predict the labels for each geometric primitive in an as-built floorplan CAD drawing and to cluster 

the primitives by the architectural elements. As the annotations and the layer structures in CAD 

drawing contains a lot of semantic information, floorplan detection is a multi-modal task.  

Theoretically, all semantic and instance information is well-stored in a perfect CAD drawing. 

However, the problem is more complicated. The data from the proposed partner company are not in 

ideal condition. Firstly, in some samples, all annotations are hidden for protecting privacy. Secondly, 

since the architectural drawing review process in China only focuses on the architecture project 

itself, there is no clear standard naming method to normalize the CAD drawing files in real projects. 

Projects designed by different companies may have different naming methods. Some projects are 

subcontracted several times which may have chaos in the naming process. Further, instead of using 

full names, the annotations are sometimes replaced with meaningless code names in practice.  

On the other hand, some projects with lower standards or built-in early time may only have the CAD 

drawings conversed from papery floorplan drawings. Thus, the information used as input is only the 

geometric primitives in the CAD drawings. 

In the field of computer vision, classification usually refers to the task of predicting a proper label 

for a given sample. Further, semantic segmentation is the task that predicts labels for all pixels in 

an input sample. Instance segmentation is a detection task, which predicts the clusters of each 

countable instance in a sample and predicts the label of each instance. None of these three popular 

tasks fit the proposed floorplan detection task. 

Here, the author introduces the notion from the field of optical character recognition (OCR), namely 

panoptic symbol spotting (Fan et al. 2022), which not only predicts the labels but also the instance 

IDs. As is shown in Figure 27, the recognition targets in panoptic symbol spotting (c) are composed 

of two parts, the countable instances (a) and the uncountable stuff (b). In the context of the floorplan 

detection task, the countable instances refer to recurring architectural elements, which could be 
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separated individually, such as windows, doors, and furniture. And the uncountable stuff usually 

refers to the architectural elements that cannot be separated into independent parts, such as walls 

and handrails. 

 

Figure 27 The author borrows the defination of panoptic symbol spotting problem (c) in the field of 

computer vision, which detects not only the countable instance (a) but also the uncountable stuff (b).  

With the above panoptic symbol spotting problem definition and the demands in practice, a clear 

definition of the floorplan detection problem is given. The floorplan detection problem is defined 

as: given an as-built floorplan CAD drawing, taking the geometric primitives as input, predicting 

all labels of the primitives, and clustering the countable architectural elements. 

3.3.2 Graph construction and feature definition 

Due to the reasons from various aspects, the raw CAD drawings cannot be directly fed to the neural 

networks, this section introduces the data pre-processing step before the training step.  

Firstly, the sizes of floorplans vary in a large range with the different types of architecture. Usually, 

the floorplan of a public architecture, i.e., a shopping mall or gallery, may be much larger than the 

floorplans of a residual building. Meanwhile, the number of geometric primitives is a positive 

correlation with the size of the floorplan. The floorplans in the dataset should be split to unify the 

size of the samples. 

In this task, the author uses the heterogeneous line graph to represent the as-built floorplan CAD 

drawing samples, and the graph is constructed following the method in section 3.1.4.1. Then the 

definitions are provided for the initial features of the vertex and edge spaces.  

Vertex features. As is mentioned in Figure 11, all geometric primitives are linear, i.e., line segments, 

arcs, and ellipses. However, it is not proper to directly use the endpoints as the initial vertex features. 

Since the directions of these linear primitives, the polarity of the features should be eliminated. In 

other words, the polarity that comes with the order of the endpoints should be eliminated. A 

commonly used approach, in which both directions are used as input and eliminates the polarity 
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with symmetric operations, such as addition, is not suitable for this task, since this approach will 

double the size of the vertices features spaces, which may exceed the memory. Thus, the author 

proposes another approach to define the linear primitives without directions. 

  

Figure 28 The initial feature defination of the line graph of the floorplan before detection. 

Since the circle could be considered as the special case of an ellipse, all primitives in CAD drawings 

are classified with three type vertices. For the line segments, segments are embedded as: 

𝒗𝒔𝒆𝒈 = [𝑐𝑜𝑠(2𝜃𝑖), 𝑠𝑖𝑛(2𝜃𝑖), 𝑙𝑖], 

where 𝜃𝑖 ∈ [0, 𝜋) is the clockwise angle from the x positive axis to 𝒗𝒔𝒆𝒈 , and 𝑙𝑖 measures the length 

of 𝒗𝒔𝒆𝒈. The proposed direction features are continuous when 𝜃 jumps between 0 and 𝜋. Here we 

double the angle 𝜃 to eliminate the direction of the line segment. The intrinsic feature of segments 

is taken, i.e., length, for feature embedding.  

By referring the representation of arcs in SVG format, arcs are described as: 

𝒗𝒂𝒓𝒄 = [𝑐𝑜𝑠(2𝜃𝑖), 𝑠𝑖𝑛(2𝜃𝑖), 𝑙𝑖 , 𝑟𝑥 , 𝑓𝑙𝑎𝑔𝑙𝑎𝑟𝑔𝑒 , 𝑓𝑙𝑎𝑔𝑠𝑤𝑒𝑒𝑝], 

where 𝜃𝑖 ∈ [0, 𝜋) is the clockwise angle from the x positive axis to the chord of 𝒗𝒂𝒓𝒄, 𝑙𝑖  measures 

the length of the chord of 𝑣𝑎𝑟𝑐. Because an arc is part of an ellipse, we use 𝑟𝑥 to measure the angle 

between the long axis and the x positive axis. Following the standard format of SVG files,  

𝑓𝑙𝑎𝑔𝑙𝑎𝑟𝑔𝑒 and 𝑓𝑙𝑎𝑔𝑠𝑤𝑒𝑒𝑝 are used for determining arcs in four possible cases, i.e., the combination 

of superior arc and inferior arc, the clockwise and counterclockwise direction.  

For ellipses and circles, we use: 

𝒗𝒆𝒍𝒍𝒊 = [𝑐𝑜𝑠(2𝜃𝑖), 𝑠𝑖𝑛(2𝜃𝑖), 𝑟𝑙𝑜𝑛𝑔 , 𝑟𝑠ℎ𝑜𝑟𝑡], 
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where 𝜃𝑖 ∈ [0, 𝜋) is the clockwise angle from the x positive axis to the long axis of 𝒗𝒆𝒍𝒍𝒊, 𝑟𝑙𝑜𝑛𝑔 and 

𝑟𝑠ℎ𝑜𝑟𝑡 refer to the length of the long axis and the short axis respectively. And circles are considered 

as the degradation of ellipse, in which the 𝜃𝑖 is set as 0, and  𝑟𝑙𝑜𝑛𝑔 is set equally to  𝑟𝑠ℎ𝑜𝑟𝑡. Overall, 

the proposed approaches could precisely define each geometric primitive. The vertex features are 

continuously defined in three different feature space. Also, the absolute coordinate of segment center 

is not used for positional embedding since they do not have the translation invariant. 

Edge features. The edge features 𝒆𝒊𝒋 is defined as: 

𝒆𝒊𝒋 = [𝜹𝒊𝒋, ψ𝑖𝑗 , 𝑟𝑖𝑗 , ∥𝑖𝑗 , ⊥𝑖𝑗 , ¬𝑖𝑗 , 𝑇𝑖𝑗]. 

The feature of one edge describing the relationship of two geometric primitives is composed of two 

parts, relative positional relations, and regularity geometric constraints.  

In the first part, parameter  𝛿𝑖𝑗  refers to the coordinate difference of two centers of primitives. 

Parameter ψ𝑖𝑗  is the angle formed by two adjacent primitives in the graph. Parameter 𝑟𝑖𝑗  is the 

length ratio between 𝑣𝑖 and 𝑣𝑗. These three parameters describe the relative positional relations of 

two adjacent primitives. 

The second part of the edge feature represents the regular geometry constraints with the rest of the 

parameters. As is mentioned in section 3.1.2, during architectural CAD drawings production, 

topology constraints, e.g., coincidence and orthogonality, play an important role as well as the 

geometric primitives. As these constraints are usually the relationship between two primitives, 

undirected graphs are used to describe the CAD drawings and the edge features to embed the 

relationship between every two primitives. With the consideration of instances are usually drawn 

with strong regularity in CAD drawings, we add ∥𝑖𝑗,⊥𝑖𝑗, ¬𝑖𝑗, 𝑇𝑖𝑗 as extra features to enhance the 

edge feature. These four parameters are set as 0 or 1 to indicate parallelism, orthogonality, 

coincidence, and tangentially. Most other complicated regular geometry constraints can be 

represented with the combination of such indicator parameters. 

Although this relationship could be inferred, only with the node feature, the neural network module 

could just reach an approximation of the transition function. Usually, feeding the network with 

explicit regularity terms on edge feature space would make network reach better convergence. 

3.3.3 Architecture of the CAD-GAT network 

In this section, the formulation of the proposed solution to the floorplan detection problem are 

introduced as well as the architecture of the structure of the proposed CAD-GAT network.  

Problem formulation. In the panoptic symbol spotting problem, the label prediction part could be 

considered as a vertex prediction task to classify all vertices in the line graph of the floorplan CAD 

drawings. However, there is no proper task defined on graphs to cluster the countable architectural 

elements. An intuitive idea is predicting an offset vector for each primitive vertex in the CAD 

drawings, and figuring out the instance information with classic cluster algorithms. A naïve 
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approach to offset vector supervision is using the vector from the center of the primitive to the center 

of the instance (Fan et al. 2022). However, the shortage is obvious, since some instances may have 

closed centers which may cause errors in the clustering process.  

In this research, the clustering problem is formulated as a subgraph detection problem. In the 

proposed graph-based representation, the architectural elements are exactly the subgraphs of the 

whole line graph of the complete floorplan CAD drawing sample. Both the countable instances and 

the uncountable stuff could be formulated as the subgraphs of the line graph. Further, the target 

instance segmentation results could be considered as the union set of all subgraphs corresponding 

to the instances and stuff. This union set is also a graph, in which all instance clusters are not 

connected. Thus, to figure out all instances in the floorplan, we only have to predict the adjacent 

matrix of the set graph mentioned above.  

So far, the subgraph detection problem is formulated as an adjacent matrix prediction problem. 

Although the adjacent matrix is composed of 0 and 1, the adjacent matrix prediction problem is 

converted as a 0-1 classification problem. With the predicted adjacent matrix, all instances and stuff 

can be figured out by finding all unconnected subgraphs.  

This approach perfectly solves the shortage in the method using classic cluster algorithms, since the 

formulation of the instance segmentation is based on the adjacent matrix, which is purely a topology 

method and does not need to consider the parameters for clustering algorithms. 

 

Figure 29 The network architecture of the CAD-GATnet for floorplan detection. 

Overall architecture. Based on the above formulation, novel method is proposed, namely CAD-

GATnet, which can solve the panoptic symbol spotting the problem in one neural network. As is 

shown in Figure 30, the overall architecture of the CAD-GATnet has a main trunk which is 

composed of several graph attention (GAT) layers in section 45 and Figure 22 as the backbone and 

two branch modules namely relative spatial encoding (RSE) module and cascaded edge encoding 

(CEE) module.  

The raw floorplan CAD drawing data are processed into the line graph 𝒢 with the initial vertex 

feature 𝑉 and the edge feature 𝐸 with the method in section 3.1.4.1 and section 0 respectively.  



58 

 

The three different feature spaces in the initial vertex feature 𝑉 are firstly mapped into the same 

space 𝑅𝟙𝟚𝟠  with three different shared Multi-Layer Perceptron (MLP) layers. Meanwhile, the initial 

edge feature 𝐸 are also be mapped into 𝑅𝟙𝟚𝟠 with another MLP layer. The RSE module embeds the 

edge feature and feeds them into each GAT layer and the CEE module collected the attention scores 

in each GAT layer for adjacent matrix prediction.  The operations of the vertex feature and edge 

feature are illustrated in section 45. The embedded vertex features are fed to a semantic classification 

head to predict the labels for each primitive, which contains a fully connected layer mapping 128-

dimensional vertex to the 𝑅𝑐𝑙𝑎𝑠𝑠 , and a Softmax layer: 

𝜎(𝑧)𝑗 =
𝑒𝑧𝑗

∑ 𝑒𝑧𝑘𝐾
𝑘=1

 

 to normalize the probability distribution of the label predictions. Meanwhile the edge features from 

the CEE module are also fed into another 0-1 instance classification head mapping the edge features 

into 𝑅1, and a Sigmoid layer: 

𝑆(𝑥) =
1

1+𝑒−𝑥
=

𝑒𝑥

𝑒𝑥+1
= 1− 𝑆(−𝑥). 

mapping the results to [0,1]. A post-process stage is added to obtain the final panoptic prediction 

results, which is composed of two parts. The first part is a sample method traversing the graph of 

the predicted adjacent matrix to figure out all unconnected subgraphs, which are the instances in the 

line graph. The second part combines the labels predictions, and the instance segmentation results 

to obtain the results.  

The loss functions in the upper two heads are Cross Entropy, which is frequently used loss function 

in classification problems. The Cross Entropy expression of 0-1 classification in the instance head 

is shown as:  

𝐿𝑜𝑠𝑠 =
1

𝑁
∑ 𝐿𝑖𝑖 =

1

𝑁
∑ −[𝑦𝑖 ⋅ 𝑙𝑜𝑔(𝑝𝑖) + (1 − 𝑦𝑖) ⋅ 𝑙𝑜𝑔(1 − 𝑝𝑖)]𝑖 , 

where 𝑦𝑖 represents the label of the primitive 𝑖, 1 for positive and 0 for negative, and 𝑝𝑖 represents 

the predicted probability of the primitive 𝑖. 

And the expression of multi-tag classification is shown as: 

𝑳𝒐𝒔𝒔 =
𝟏

𝑵
∑ 𝑳𝒊𝒊 = −

𝟏

𝑵
∑ ∑ 𝒚𝒊𝒄

𝑴
𝒄=𝟏 𝑙𝑜𝑔(𝒑𝒊𝒄)𝒊 , 

where 𝑀 is the constant number of the classes and 𝑦𝑖𝑐 represents the label of the primitive 𝑖 of class 

𝑐, 1 for positive and 0 for negative, and 𝑝𝑖𝑐 represents the predicted probability of the primitive 𝑖 of 

class 𝑐. 
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It is worth mentioning that the cases of the entries in the predicted adjacent matrix can be classified 

into four types, according to the semantics labels and the instance relationship of two primitives. In 

the first case, two primitives belong to the same instance and have the same semantic label, whose 

entry should be 1.  In the second case, two primitives belong to different instances and have different 

semantic labels, whose entry should be 0. In the third case, two primitives belong to different 

instances but have the same semantic label, whose entry should also be 0. In the last cases, two 

primitives belong to the same instance but have different semantic labels, which do not exist in real 

floorplan CAD drawings. 

The distribution of the above three cases has a big difference in quantitative. Especially, the third 

cases have the least number but affect the results of the instance segmentation a lot. Thus, different 

weights are aligned for the upper three cases in this loss calculation. As is shown in Table 1, the 

weights for the first cases are set as 1, since they are the most seen cases in the dataset. The weights 

for the second cases are set as 2, which are less than the first cases. The weights for the third cases 

are set as 20, which are least cases in the dataset.  

Weights Same instance Different instance 

Same semantic label 1 20 

Different semantic label  2 

Table 1. Weights for different cases of the entries in the predicted adjacent matrix. 

RSE module. When processing point cloud (Zhao et al. 2021) or natural language (Vaswani et al. 

2017), researchers often enhance the vertex features with positional embedding to make the network 

invariant to translation and aware of the distance. According to the positional features and the 

embedding way, there are four common ways to obtain the positional embedding.  

Positional features are classified into two types, the absolute positional embedding, and the relative 

positional embedding. The absolute positional embedding uses the absolute positions of each vertex 

which is frequently used in cases whose vertices’ positions are fixed globally. The Relative 

positional embedding uses the relative positions of each vertex, which is usually used in cases whose 

vertices’ positions are relatively fixed locally. Unlike the absolute positions, the relative positions 

encode the relationship between two vertices which is defined on edge spaces. Compared with 

absolute positional embedding, relative positional embedding is translation invariance which is 

more suitable for larger sequences and graphs with lots of vertices, since in these cases the attention 

mechanism usually focuses on local context.   

Embedding ways also have two types, sinusoidal functions embedding and learnable functions 

embedding. The sinusoidal functions embedding alternating the value of a sine function and a cosine 

function, in which the dot product of the two positional embeddings is undirected and only relies on 

the offset distance. The learnable function embedding usually uses the learnable nonlinear functions 

encoding the initial position features. According to the related experiments, the sinusoidal functions 

embedding is suitable for 1-d sequences in natural language processing tasks, while the learnable 
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functions embedding shows better performance for 2-d domains in computer vision tasks. 

Considering the cases in the line graph of the floorplan CAD drawing, we choose the suitable 

positional embedding method in the floorplan detection task. Since the context of the primitives in 

the floorplan CAD drawing is usually local, the relative positional embedding is used in the 

proposed network. As the primitives are drawn in a 2-d canvas, the learnable functions are used to 

encode the relative positions.  

After adding the position embedding, the initial edge features are passes through another MLP layer 

to encode the relative spatial relations among vertices: 

𝑅 = 𝑀𝐿𝑃(𝐸) 

where 𝐸 ∈ 𝑅𝑁×𝑁×𝟟 is the edge features by expanding |𝐸| edges to 𝑁 ×𝑁.  As the GAT layers go 

deeper, the kernel function has a larger receptive field and filters the more global context. Compared 

with the global context, the local context may be more important in the prediction. Thus, the RSE 

encoding 𝑅 ∈ 𝑅𝑁×𝑁×𝐻  is then fed to every stage of the main GAT branch to enhance the local 

features, where 𝐻 is the number of heads in the GAT layers. 

CEE module. Recall that vertex attentions 𝐴𝑠 can be viewed as relational intensity among vertices, 

which is a good choice for predicting the adjacency matrix. By imitating the pyramid structure in 

image processing, the author combines the attention scores from local to global for adjacent matrix 

prediction. Therefore, attention scores are cascaded from all GAT stages {𝐴𝑠}  as implicit edge 

encoding to capture local and global vertex connectivity: 

𝐶 =∑𝐴𝑠
𝑆

𝑠=1

. 

Each valid edge encoding 𝑐𝑖𝑗 in 𝐶 ∈ 𝑅𝑁×𝑁×𝐻 is then concatenated with vertex features of its two 

endpoints from the last GAT stage to form the final edge feature: 

�̃�𝒊𝒋 = Concat(𝒄𝒊𝒋, 𝒗𝒊
𝑺, 𝒗𝒋

𝑺). 

3.3.4 Summary  

Different from raster images, CAD drawings are vector graphics consisting of geometric primitives 

such as segments, arcs, and circles. By treating each CAD drawing as a graph, the author proposes 

a novel graph attention network GAT-CADNet to solve the panoptic symbol spotting problem: 

vertex features derived from the GAT branch are mapped to semantic labels, while their attention 

scores are cascaded and mapped to instance prediction. The proposed key contributions are three-

fold: 

⚫ The instance symbol spotting task is formulated as a subgraph detection problem and solved 

by predicting the adjacency matrix. 



61 

 

⚫  A relative spatial encoding (RSE) module explicitly encodes the relative positional and 

geometric relation among vertices to enhance vertex attention. 

⚫ A cascaded edge encoding (CEE) module extracts vertex attentions from multiple stages of 

GAT and treats them as edge encoding to predict the adjacency matrix. 

The proposed GAT-CADNet is intuitive yet effective and manages to solve the panoptic symbol 

spotting the problem in one consolidated network. In this work, the author presents an intuitive, yet 

effective architecture named GAT-CADNet for panoptic symbol spotting on CAD drawings. It 

formulates the instance symbol spotting task as an adjacency matrix prediction problem. The relative 

spatial encoding module explicitly encodes the relative relationships among vertices to enhance 

their attention. The cascaded edge encoding module extracts vertex attentions from multiple GAT 

stages capturing both local and global connectivity information. With the help of the RSE and CEE 

modules, the proposed GAT-CADNet surpasses other approaches by a large margin. 

3.4 Floorplan generation  

Artificial intelligence generated content (AIGC) techniques have rapidly developed in recent years. 

Using AI to create content has many applications, such as floorplan generation in architectural 

design and video game scene synthesizing (Liggett 2000). In the architecture industry, this 

technology can be used in floorplan design, which is usually a time-consuming iterative process in 

traditional architectural design. To efficiently obtain a satisfactory room layout, architects must have 

professional skills and a deep understanding of customers' intentions. Due to the cost, only a small 

fraction of buildings whose floorplans are customized for customers. 

This task can be divided into room layout prediction and other downstream tasks, e.g., windows 

prediction, and doors prediction. In architecture design, the bubble diagram is a frequently used 

constraint to describe the customer's requirements (Merrell et al. 2010), which illustrates the 

numbers and types of rooms, as well as their adjacency relationships. In addition to the topology 

information, the relative room locations are also illustrated with the vertex positions in the bubble 

diagram. 

A floorplan that fails customers' requirements may be unacceptable in practice. Missing rooms or 

the wrong room types would cause the incomplete function of the house. The wrong topology may 

lead to confusion about room accessibility. A generated floorplan with wrong room adjacency may 

lead to unreachable rooms, which is unreasonable. Thus, the consistent floorplan topology 

constrained by the given bubble diagram is a vital key to generating feasible floorplans. In some 

cases, like renovation, the fixed house boundary is also a strict constraint. The floorplan generation 

tackling the bubble diagram and boundary constraints is studied in this research. 

Approaches to solving this task originate from iterative optimization in early time. With the recent 

breakthrough in natural image generation, deep learning methods, i.e., generative adversarial 

networks (GANs) and variational autoencoders (VAEs) are naturally used on floorplan generation 

and get realistic results. According to different formulations of the problem, approaches can be 
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roughly classified into two categories. One approach represents floorplan as images and predicts 

room masks at pixel level. An alternate approach predicts the location and size of room boxes by 

treating floorplans as graphs. Most of the methods generating floorplans at the pixel level miss some 

topology requirements in the bubble diagram. Besides, the generative networks may lack 

supervision on topology. 

To tackle the above issues, the author proposes a novel framework, namely DualGraph2Plan, which 

has three modules, i.e., topology subdivision, geometry optimization, and boundary registration. To 

begin with, a dual graph is constructed from the given bubble diagram. In the topology subdivision 

module, a novel graph neural network is proposed to predict the topology by classifying the dual 

edges of the given bubble diagram according to the number of subdivisions. In the geometry 

optimization module, a network sharing the same feature fusion backbone is used to predict and 

optimize the coordinates of the dual vertices to obtain the target floorplan. In the boundary 

registration module, the outer loop of the dual graph is registered with the given house boundary. 

The proposed networks are trained and tested with the RPLAN dataset (Wu et al. 2019[99]).  A chart 

of the proposed results and other methods is set in the experiment section to illustrate the quality 

comparison. Results in both quantity metrics and subjective study show that the proposed 

framework surpasses state-of-the-art methods. The proposed main contributions are highlighted as 

follows:  

⚫ The author decouples the constrained floorplan generation task into topology prediction and 

geometry optimization problems and solve them on the dual graph separately. 

⚫ The author proposes an effective feature fusion backbone between vertices and edges for the 

planar graphs embedded in the 2D Euclidean space. 

⚫ The author proposes a novel hybrid orthogonal optimization module to predict the shape of the 

room layout and optimize the shape fully satisfy the topology constraints. 

⚫ The author proposes a boundary registration module for the extra house boundary constraints. 

3.4.1 Problem definition 

In this section, the author proposes a clear definition and formulation for the floorplan generation 

task.  

Usually, floorplan design is not a free-generation task. As is mentioned in the background, most 

traditional architectural floorplan generation starts with the ideas of designers or the requirements 

of customers. Thus, the input information is the bubble diagrams describing the room types, room 

positions, and room adjacency of the ideas and the requirements of the expected room layout 

diagrams. Besides the bubble diagram, in some cases, other fixed conditions also constrain the room 

layout generation. As is shown in (a) of Figure 30, in this research, the generation task is treated as 

bubble diagram constrained generation problem (left) and the bubble diagram and boundary 
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constrained problem (right). The first form is the basic problem in architectural floorplan design, 

while the second form depicts the commonly seen scene of house renovation in which the boundary 

is also a fixed constraint. 

The most essential step in floorplan design is concreting the input ideas and requirements to a room 

layout diagram with clear boundaries, in which the room functions, room sizes, space relations, and 

use flow are roughly determined. So, the output results of this task are the generated room layout 

diagrams. As is shown in (b) of Figure 30, the topology and boundary walls should be strictly 

satisfied during the generation. 

 

Figure 30 The definition of the floorplan generation in this research. 

As is introduced in section 0, most current deep learning methods formulate the room layout 

generation problem as a raster image generation problem with a vectorization optimization to obtain 

the target room layout. However, this formulation is inappropriate since the raster image generated 

with the decoder structure of the image generative network lacks supervision on topology. Therefore, 

the target room layout diagram is represented as a graph with 2-d orthogonal embeddings, whose 

vertices, edges, and faces are the wall corners, wall segments, and rooms respectively. 

In summary, the floorplan generation task is formed as: given a bubble diagram 𝒢ℬ and the fixed 

house boundary ℬ, generate the room layout diagram 𝒢ℒ. The visualized results of  𝒢ℒ should not 

only have the realized shapes as the real floorplans, but also have the same room types, room 

numbers, and room adjacency as described in 𝒢ℬ. 

3.4.1.1 Problem formulation 

There are many graph-based deep learning methods, including box-level generation methods (Hu 
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et al. 2020) and breadth-first graph traverse generation methods (Sun et al. 2022), which generate 

the topology and the geometry of the target room layout graph at the same time. These methods 

usually have limitations on satisfying the strict constraints. Box-level generation methods may 

generate room layouts in which rooms are outside the fixed boundary in the bubble diagram and 

boundary-constrained floorplan generation. And the breadth-first graph traverse generation methods 

lack supervision on the topology, which generates a vertex with coordinates and updates its 

adjacency at one time in the sequence of the breadth-first traverse tree of the room layout graph.  

Tackling the current issues, the author proposes a novel method for floorplan generation. Noticing 

that the topology is implied in the input diagram, based on the duality mentioned in section 0, the 

topology prediction and the geometry prediction of the target room layout diagram are decoupled. 

Topology prediction. Based on the upper constructed duality, a subdivision graph neural network 

is designed to predict the topology of the room layout. The idea in the section is to take the reverse 

direction of the duality construction in the upper section. A vertex representing 𝑓∞ is added into 

vertex set 𝒱𝒷 of the bubble diagram ℬ and add edges connecting this vertex with all vertices on the 

boundary of the infinity face in the edge set ℰℬ of ℬ to obtain the 𝒢𝓅 (c in Figure 20). This operation 

keeps the planar property of graphs. The dual graph of 𝒢𝓅 is converted to the complete dual graph 

𝒢𝒹  ( b in Figure 20). The topology of the room layout can be figured out by taking the inverse 

operation of edge collapse, i.e., subdivision.  

 

Figure 31 An illustation of the notion of the graph subdivision. 

The notion of subdivision refers to an expansion of a graph resulting from the subdivision of its 

edges. As is shown in Figure 31, one subdivision of an edge with endpoints {𝑢, 𝑣} yields a graph 

containing one new vertex 𝑤, and with an edge set replacing the original edge by two new edges, 

{𝑢, 𝑤} and {𝑤, 𝑣} (Trudeau 2013).  

In the proposed research, the topology is predicted by classifying each edge in 𝒢𝓅 with the number 

of subdivisions. Since taking dual graphs and subdivisions of a planar graph do not destroy planar 

property, the proposed predicted topology will always be planar graphs. 

Geometry prediction. In the geometry prediction, the 2-d embedding of graph is approximated 

with the predicted topology. Since all walls are assumed to be line segments, the author only predicts 

the 2-d coordinates of the vertices on the canvas and connect them according to the predicted 

topology of the dual graph.  

For the training set, all coordinates are normalized into (0,1) by zooming the floorplan to the unite 
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square. Thus, the geometry prediction is formed as a regression problem. Although the networks in 

the proposed decoupling method show better performance on the topology consistently, it still lacks 

efficient supervision on the geometry prediction. So, the author compliments an orthogonal 

optimization step to make the final generated room layout fully satisfy the strict constraints.  

Pipeline. As is shown in Figure 32, the pipeline of the proposed DualGraph2Plan generates a room 

layout from a given bubble diagram. The orange branch represents the topology prediction process. 

The bubble diagram is first converted to the complete bubble diagram. The dual of the complete 

bubble diagram is used for predicting the subdivision.  

The green branch represents the geometry prediction process. The 2-d coordinates are predicted 

with the dual graph updated with the predicted subdivision. The orthogonal optimization is 

composed of an orthogonal representation further optimizing the topology, a rectangular separation 

converting the orthogonal representation to convex units, an integral optimization to obtain the 

compact layout, and quadratic programming to optimize the predicted coordinates to satisfy the 

topology constraints. The final room layout is visualized with a simple rendering process. 

 

Figure 32 The pipeline of the floorplan generation with the given bubble diagram as constraints. 

3.4.1.2 Feature definition 

Before the subdivision prediction, the initial features on the vertex space and the edge space of 𝒢𝓅 

are defined through the constructed duality. The vertex feature 𝒱𝒹 is naturally defined, 𝑣𝑑
𝑖 ∈ 𝑅𝟙𝟜 as: 

𝑣𝑑
𝑖 = [𝑥, 𝑦, 𝑡], 

where 𝑥, 𝑦 are coordinates of room locations and 𝑡 is a 12-dimensional one-hot vector indicating 
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room type. A constant point (0,0) is used to represent the location of 𝑣𝑑
∞,. In order to encode the 

combinatorial embedding of the oriented manifold, the author uses the half-edge structure to 

describe the given bubble diagram. The direction of each half-edge is determined with the 

counterclockwise orientation of the faces in the bubble diagram. Since the edge 𝑒𝑑
𝑖  and its dual edge 

𝑒𝑝
𝑖  is one-to-one corresponding, with the definition on 𝒱𝒹, the initial edge feature can be defined on 

ℰ𝓅. 𝑒𝑝
𝑖 ∈ 𝑅𝟛𝟘 is defined as: 

𝒆𝒑
𝒊 = 𝒆𝒅

𝒊 = [𝒗𝒅
𝒋
, 𝒗𝒅
𝒌 , 𝑘], 

where 𝑣𝑑
𝑖 , 𝑣𝑑

𝑗
 are vertex features of the starting and ending vertices of 𝑒𝑑

𝑖 , 𝑒𝑝
𝑖  and 𝑒𝑑

𝑖  are dual-prime 

relations and k is a 2-dimensional one-hot vector that indicates whether the dual edge is on the 

boundary. Since the degrees of the dual vertices imply the shape of the wall corners, the initial 

features on dual vertex space, 𝒗𝒑
𝒊 ∈ 𝑅𝟛 , is defined as: 

𝒗𝒑
𝒊 = [𝑑, 𝑘], 

where d is the degree of 𝑣𝑝
𝑖  and k is a 2-dimensional one-hot vector indicating the boundary vertex 

or the inner vertex.  

By taking the two above feature spaces as inputs, a novel graph neural network, namely Subdivision 

GNN, is used to predict the topology of the room layout. Unlike pixel-based or box-based deep 

learning methods, Subdivision GNN explicitly integrates the topology of the bubble diagram with 

the network structure.  

3.4.2 Overall architecture 

 

Figure 33 The network structure of the Dualgraph2Plan for floorplan generaion, which is composed with 

three modules, Topology subdivision (yellow branch), Geometry Optimization (green branch), and 

Boundary registration(blue branch).  
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Based on the formulation of the constrained floorplan generation task, the author introduces the 

overall architecture of the DualGraph2Plan in this section. As illustrated in Figure 33, the overall 

architecture of the DualGraph2Plan is composed of three modules, a topology subdivision module 

(the yellow branch), a geometry optimization module (the green branch), and a boundary 

registration module (the blue branch).  

The bubble diagram constrained floorplan generation task can be solved with the first two modules. 

The topology subdivision module and the geometry optimization module share the same backbone 

structure composed of several feature fusion layers, which is introduced in detail in section 0. These 

two modules have different head structures. After embedding all features with the backbone, the 

vertex and edge features of the dual graph are separately fed to the classification head and the 

regression head in the topology subdivision module and the geometry optimization module 

respectively.  

The bubble diagram and boundary constrained floorplan generation task can be solved in the upper 

two basic modules with an additional boundary registration module, in which the outer loop of the 

dual graph is registered to the given boundary with a vanilla transformer structure.   

3.4.3 Subdivision GNN 

Based on the duality constructed in section 0, the author designs a subdivision graph neural network 

(Subdivision GNN) to predict the topology of the room layout. The idea is to take the reverse 

direction of the duality construction method.  

The architecture of the proposed Subdivision GNN is shown in Figure 33 (orange branch). Two 

different shared Multilayer Perceptron Layers (MLP) embed the vertex and edge features of 𝒢𝓅 into 

𝑅𝟙𝟚𝟠. The backbone module is composed of several feature fusion blocks, which are designed for 

coupling the features defined on two different spaces. By taking the two above feature spaces as 

inputs, a novel graph neural network, namely Subdivision GNN, is used to predict the topology of 

the room layout. 

Unlike pixel-based or box-based deep learning methods, Subdivision GNN explicitly integrates the 

topology of the bubble diagram with the network structure.  The architecture of the proposed 

Subdivision GNN is shown in the orange branch of Figure 33. Two different shared Multilayer 

Perceptron Layers (MLP) embed the vertex and edge features of the dual graph 𝒢𝒹 into 𝑅𝟙𝟚𝟠.  

The backbone module is composed of several feature fusion blocks, which are designed for coupling 

the features defined on two different spaces. The structure of one feature fusion block is shown in 

Figure 26. Inspired by Smirnov and Solomon (2021) and Desbrun et al. (2005), the symmetrically 

normalized Laplacian in the vanilla GCN structure is replaced with a factorization of the Laplacian 

in discrete exterior calculus in the proposed neural network for feature fusion: 

ℒ =⋆0
−1 𝑑𝑇 ⋆1 𝑑, 
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In this factorization, 𝑑 ∈ {−1,0,1}|𝐸𝑝|×|𝑉𝑝|  is the combinatorial differential matrix mapping features 

on the 𝒱𝓅  to ℰ𝓅. 

𝑑 and 𝑑𝑇 are exactly equal to the boundary operator of ℱ𝒹 and ℰ𝓅, which contain the topology. ⋆0
−1 

and ⋆1 are two learnable Hodge star operators mapping ℱ𝒹 and ℰ𝓅 to their dual spaces 𝒱𝓅 and ℰ𝒹 .  

In one feature fusion block, the features 𝑉𝑙 on 𝒱𝓅 are mapped to ℰ𝓅, add it with the edge features 

𝐸𝑙 , and finally map the features back to the next layer feature 𝑉𝑙+1  defined on 𝒱𝓅 . For better 

convergence, skip connections and feed-forward layers are added in the feature fusion blocks. 

At last, a classification head is set to predict the subdivisions of each dual edge. The cross entropy 

is taken as the loss for subdivision prediction.  

𝐿𝑜𝑠𝑠𝑠𝑢𝑏 =
1

𝑁
∑𝐿𝑖
𝑖

= −
1

𝑁
∑∑𝑦𝑖𝑐

𝑀

𝑐=1

𝑙𝑜𝑔(𝑝𝑖𝑐)

𝑖

 

Compared with other deep learning methods, the results of the proposed network have two good 

properties. Firstly, as is mentioned in duality construction, the topology of predicted graphs is planar. 

Secondly, since the faces in the proposed results one-to-one correspond to the vertices in the bubble 

diagram, the topology in the proposed room layout keeps consistent with the one in the given bubble 

diagram. 

3.4.4 Orthogonal and planar optimization 

With the above neural network, the topology of the room layout is obtained. For convenience,  �̅�  is 

used to represent 𝒢𝓅 updated with the predicted topology. Drawing the room layout on the canvas 

still requires knowing the 2D embedding (Hocking and Young 2004) 𝜑: �̅� ↦ 𝑅𝟚. According to the 

proposed three assumptions in room layout diagram generation, this mapping needs to satisfy two 

constraints. One is the planar constraints in which 𝜑  is an injective continuous map, and �̅�  is a 

homeomorphism onto 𝜑(�̅�). Another is orthogonal constraints, in which all embedded edges of �̅� 

are either vertical or horizontal. Although the correct combinatorial embedding is known, 

constructing a certain 𝜑 with realistic room layout results is still a non-trivial problem. 

Before construction, the author first demonstrates the existence of the mapping 𝜑. Clearly, if a graph 

has an orthogonal drawing, then its maximum degree Δ is less equal than four.  Every planar graph 

with Δ ≤ 4 has an orthogonal drawing but may need bends, in Chap.8 of Planar graph drawing (Vol. 

12) (Nishizeki and Rahman 2004). A constructive proof can be found in a frequently used algorithm 

in very-large-scale integration (VLSI) applications. Tamassia (1987, 1997) presented this algorithm 

that finds an orthogonal drawing of a given plane graph with the minimum number of bends in time 

𝒪(𝑛2 log 𝑛) and 𝒪 (𝑛7/4√log𝑛) respectively. 

These algorithms could generate topology-consistent room layouts. However, the shortage is also 

obvious. This method can only generate the topological equivalence class of the ground truth. On 
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the other hand, the neural network could approximate the mapping restricted on vertex space 

𝜑|�̅�: �̅� ↦ 𝑅𝟚 , which generates more realistic shapes but may violate the orthogonal and planar 

constraints, see Figure 34 for illustration. 

 

Figure 34 Limitations of vaious floorplan generation methods.  

In this research, the author proposed the proposed hybrid method, combining the advantages of a 

coordinate prediction neural network and the bend-optimal drawing algorithm, which takes the 

combinatorial embedding and the bubble diagram as input and outputs realistic room layouts 

satisfying all constraints. To the proposed knowledge, the proposed method is the first to achieve 

such goals. 

The architecture of the coordinate’s prediction neural network in the proposed method is illustrated 

in Figure 33 (green branch). In this network, the dual graph is updated with the predicted topology 

in Subdivision GNN. The initial features definition and backbone structure are the same as the ones 

in subdivision GNN. The encoded vertex features of �̅� are fed to a regression head to predict the 

coordinates. All predicted coordinates are restricted from 0 to 1. The loss in this network is Mean 

Squared Error: 

𝐿𝑜𝑠𝑠𝑟𝑒𝑔 =
1

𝑛
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑛
𝑖=1 , 

in which 𝑛 is the number of the coordinates, 𝑦𝑖 is the ground truth coordinates and 𝑦�̂� is the predicted 

coordinates. 

The pipeline of the proposed improved bend-optimal drawing algorithm is shown in Figure 35. The 

proposed method starts with the predicted coordinates and topology in the upper neural networks. 

The first step is to obtain the representation of the predicted results by rounding all angles to 

{90∘, 180∘, 270∘} . After that, the author adds bends and add adjust the corners so that the 

representation is an orthogonal representation. With the orthogonal representation, a flow network 

is built to get the permutations of horizontal and vertical coordinates which satisfy the planar 

constraints. Finally, the permutations as well as the orthogonal representation are taken as 

constraints to minimize the sum of the Euclidean distance between the prediction coordinates and 

target coordinates. The final room layout is obtained after rendering. The details of the steps are 

illustrated in the following part of this subsection. 
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Figure 35 A detail workflow of the post-process step in the Dualgrapg2Plan. The innovation steps are 

highlighted in the diagram.  

3.4.4.1 Orthogonal representation 

 

Figure 36 A diagram illustrating the half-edge structure for planar graphs. 

Before the optimization, the notion of the orthogonal representation is briefly introduced adhere. In 

the orthogonal representation, the half-edge structure (Figure 36)  is used to describe an oriented 

planar graph. All faces have the same direction and are represented as lists of their adjacent half-

edges. An angle formed by adjacent half-edges incident to a vertex is called a vertex-angle. Clearly, 

in orthogonal drawing, all vertex-angles belong to{90∘, 180∘, 270∘} . The following two facts is 

obvious: 

∑ 𝐴𝑖𝑖∈𝑉𝑛 = 360 , 

∑ 𝐶𝑖
𝑖∈𝐹𝑚

= {
180 ∗ (𝑝 − 2)  𝑖𝑓 𝐹𝑚 𝑖𝑠 𝑎 𝑟𝑜𝑜𝑚 ,

180 ∗ (𝑝 + 2)            𝑖𝑓 𝐹𝑚 𝑖𝑠 𝑓
∞.
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in which, 𝐴𝑖 are all vertex-angles around a same vertex 𝑣𝑛, 𝐶𝑖 are all vertex-angles belong to a same 

Faces 𝐹𝑚, and p is the number of the half-edges of the Faces 𝐹𝑚. In other words, the sum of all 

angles around each vertex equals 360∘ and the sum of all angles of each room should be 180*(p-2) 

(or 180*(p+2) if the face is the outer area). An orthogonal representation ℋ of a graph is a set of 

circularly ordered lists for each face. Each element r of a list is a triple (𝑒, 𝑠, 𝑎), in which 𝑒 is an 

edge, 𝑠 ∈ {1,3}𝑛 is a bit string implies a bend sequence (bit 1 is 90∘ bend, bit 3 indicates a 270∘ 

bend), and 𝑎 ∈ {1,2,3} indicates the degree  ∈ {90∘, 180∘, 270∘} of vertex-angle formed by 𝑒𝑖  and 

𝑒𝑖+1 . In the following context, integer {1,2,3}  are used to indicate the degrees instead of 

{90∘, 180∘, 270∘}. More details about orthogonal representation can be found in Chapter 8.2.1 of 

the book by Nishizeki and Rahman (2004). 

The predicted results of neural networks are transformed to the same form of the orthogonal 

representation, by rounding all angles and setting all bit strings as empty sets. The author judges 

whether a representation is an orthogonal representation or not by the conditions. If the 

representation violates upper conditions, the workflow goes to the horizontal branch to optimize the 

representation to orthogonal. 

3.4.4.2 Orthogonal optimization 

The basic idea of orthogonal optimization is converting the optimization to a minimal cost flow 

problem. The author first builds a new graph and define a flow on it. As is shown in Figure 37, 

vertices and faces are taken as nodes in this new graph. The edges in this new graph consist of two 

parts. One is 𝑒𝑣𝑓 connecting every vertex to its face, the black edges in the left part of Figure 37. 

Another is 𝑒𝑓𝑓 connecting every two adjacent faces, the orange edges in the left part of Figure 37. 

Both two types of edges in the new graph are bi-directional. As is shown in the right part of Figure 

37, the flow defined on 𝑒𝑣𝑓  indicates the increase (𝑒1, 𝑒3, 𝑒5)  and decrease (𝑒2, 𝑒4, 𝑒6)  of vertex-

angles, according to the edge direction of 𝑒𝑣𝑓. 

 

Figure 37 An illustraion of the flow network construction in the orthogonal representation optimization 

step. The method (left) builds graph for orthogonal representation optimization. The local graph (right) 
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of a vertex. 

The upper bound of the flow on 𝑒𝑣𝑓 must ensure the changed angle in {1,2,3}. The right part of 

Figure 37 is taken as an example for illustrating the ranges on 𝑒𝑣𝑓: 

{
 
 

 
 

𝑒1 ∈ {0,1,2}

𝑒3 ∈ {0,1}
𝑒4 ∈ {0,1}

𝑒5 ∈ {0,1,2}
𝑒2 = 𝑒6 = 0

1 + 2 + 1 + (𝑒1 + 𝑒3 + 𝑒5) − (𝑒2 + 𝑒4 + 𝑒6) = 4

. 

And the flow defined on 𝑒𝑓𝑓 is a non-negative integer, indicating the number of 90∘ bends on each 

edge: 

𝑒𝑓𝑓 ∈ 𝑁 . 

With the proposed defined network on the graph, the orthogonal optimization is converted to a 

minimal cost flow problem. All flows are non-negative integers and the orthogonal representation 

conditions are used to set the supplies of each node. Compared with the algorithms by Tamassia 

(1987,1997), the author creatively sets 𝑒𝑣𝑓  as bidirectional to approximate the angle in the 

prediction of the coordinate neural network. 

In the proposed method, weights on 𝑒𝑣𝑓  and 𝑒𝑓𝑓  are two hyper-parameters used for manually 

balancing the approximation to coordinates and minimal bends. 

3.4.4.3 Rectangular division 

So far, the orthogonal representation ℋ  of the room layout is obtained as well as the predicted 

coordinates for shape reference. The orthogonal constraints for coordinates can be obtained from 

the orthogonal representation. Since all predicted coordinates are restricted in (0,1)2, the upper left 

corner vertex with minimal distance to the origin must have the pattern as (a) in Figure 38. It could 

be easily proven with contradiction. Based on the upper conclusion, the horizontal and vertical 

positions of each edge could be figured out with optimizations. It is difficult to enumerate all 

possible permutations of coordinates in both vertical and horizontal directions to satisfy the planar 

constraints. The author creatively separates all concave rooms into rectangles to obtain the target 

permutations. This task is also not easy. On one hand, separation with only orthogonal representation 

may have a larger deviation from the predicted coordinates. On the other hand, separation with only 

predicted coordinates may cause errors because the coordinate neural network may not satisfy the 

planar constraints, see (b) and (c) in Figure 38. 
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Figure 38 (a)The way to obtained the horizontal direction of the orthogonal representation with the 

orientation of the dual graph. (b) and (c) have same orthogonal representation but different 2D embedding. 

In this research, the author tackles this problem with a novel algorithm to separate the concave 

orthogonal shapes into rectangles based on both the orthogonal representation and the predicted 

coordinates. As is shown in Figure 39, one dummy point (hollow points in Figure 39) separates a 

concave shape into two fragments. Dummy points are added with the proposed algorithm until all 

fragments are convex shapes. 

 

Figure 39 The diagram illustrated the rectangle separetion process. 

The algorithm of how to add one dummy point is illustrated as follows: 

Algorithm: Add one dummy point. 

Require: Orthogonal representation ℋ, predicted coordinates. 

Select one concave face 𝐹0 in ℋ. 

Label all {1,2,3} vertex-angles with {1,0,−1}. 
Select any vertex in 𝐹0 with a label -1 as the start point. 

1. Go alone in the orientation order (orange in Figure 39). 

For 𝑣𝑗 , 𝑗 in {𝑖, 𝑖 + 1,… ,0,… , 𝑖 − 1} do 

If Σ𝑖
𝑗
𝑙𝑎𝑏𝑒𝑙𝑠 == 1 then 

               Append the edge [𝑣𝑗 , 𝑣𝑗+1]  as one candidate edge in the orange set for the dummy 

point. 

           End if 

       End for 
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2. Go alone in the reverse direction order (blue in Figure 39). 

For 𝑣𝑗 , 𝑗 in {𝑖, 𝑖 − 1,… ,0,… , 𝑖 + 1} do 

If Σ𝑖
𝑗
𝑙𝑎𝑏𝑒𝑙𝑠 == 1 then 

               Append the edge [𝑣𝑗 , 𝑣𝑗 − 1]  as one candidate edge in the orange set for the dummy 

point. 

           End if 

       End for 

Calculate the intersection 𝐷𝑘 of the edge [𝑣𝑖−1, 𝑣𝑖] and [𝑣𝑖+1, 𝑣𝑖]  with all candidate edges in 

the orange and blue set respectively. 

Calculate the distance 𝑑1  of 𝐷𝑘  and 𝑣𝑖  and the distance 𝑑2  of 𝐷𝑘  and the corresponding 

candidate edge. 

The 𝐷𝑘 with minimal 𝑑1 + 𝜆 ∗ 𝑑2  will be the dummy point. 

Use this dummy point to separate 𝐹0 and update ℋ. 

Since a considerable proportion of room layouts whose boundaries are not rectangles, the author 

adds an external rectangular frame and separate the outer area shown in Figure 40. The author copies 

the upper left corner vertex 𝑠 and add a dummy point 𝑡 on the upper edge of the external frame to 

cut the ring into a disc. Then the ring separation problem is transformed into a solved problem. 

Finally, 𝑠, 𝑡 are glued with 𝑠′, 𝑡′ respectively. Until now all rooms are split into rectangles. 

 

Figure 40 The trick used to convert boundary to a rectangle.  

3.4.4.4 Coordinates optimization 

In order to figure out the permutation of the coordinates, we make use of the rectangular orthogonal 

representation to calculate a compact room layout. As is shown in Figure 41, the length of every 

edge is minimized also by solving a minimal-cost flow problem, such that orthogonal and planar 

constraints are satisfied. Since the vertical and horizontal are independent, the length of two 

directions can be parallel solved. Vertical edges are taken as examples for illustration. First, a graph 

is built, whose nodes are each rectangle plus a left source node and a right sink node. Second, two 

nodes are connected if two rectangles are horizontally adjacent, and the direction is from left to right. 

Finally, an additional edge is added from the sink node to the source node. The flow defined on 

edges is non-negative integers whose lower bounds are 1 and upper bounds are infinity. Every edge 

has the same weight. The minimized cost and the compact layouts are illustrated in the right part of 

Figure 41. With the compact layout, all constraints can be obtained and feed the following 
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coordinate optimization. 

With the upper information, the approximate coordinates that satisfy orthogonal and planar 

constraints can be figured out. The final coordinates can be figured out with such following 

quadratic-program problem: 

 min
𝑥𝑖
   ∑‖‖𝒄𝒊 − 𝒙𝒊‖

2  

𝑠. 𝑡.  𝑂𝐶  𝑎𝑛𝑑 𝑃𝐶  𝑎𝑟𝑒 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑. 

where 𝑐𝑖  is the predicted coordinate, 𝑥𝑖  is the target coordinate, 𝑂𝐶  and 𝑃𝐶  are orthogonal 

constraints and planar constraints.  This coordinates optimization can be solved with the least 

squares method. Other optional constraints, such as the requirements of room sizes or specific 

locations of walls, can be added to the coordinate’s optimization at this step. So far, the final 

generated room layout is obtained, whose bubble diagram is 100 percent isomorphism to the given 

bubble diagram. 

 

Figure 41 The flow network (left) defined to obtained the compact layout of the orthogonal representation 

(right). 

3.4.5 Boundary constrained generation 

Apart from the bubble diagram, the boundary of a house is another common and strict constraint 

that needs to be complied with in most practical applications. Since the author decoupled the 

topology and geometry in previous sections, the proposed framework can handle these extra 

constraints easily. The author only needs to register the outer loop of the dual graph to the fixed 

boundary and predict the inner part without breaking the room topology. The given boundary and 
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outer loop of the dual graph are aligned in the boundary registration module. The structure of the 

registration network is illustrated in Figure 33. 

The bubble diagram and boundary-constrained floorplan generation task are similar to the previous 

problem with an additional fixed boundary constraint. Correspondingly, the boundary registration 

module in the DualGraph2Plan is introduced to satisfy the boundary constraint.  

The given boundary of the building is a circle which is a homeomorphism onto the boundary of the 

infinite face in the dual graph of the complete bubble diagram. Thus, the topology of the boundary 

is fixed, and the author only needs to determine the positions of the vertices on the boundary of the 

infinite face in the dual graph.  

Meanwhile, these positions are restricted on the given boundary. Unlike predicting the 2-d 

coordinates in the bubble diagram constrained generation, the given boundary is a 1-dimensional 

geometry primitive (closed polyline) whose topology is a homeomorphism onto 𝑆1. The position of 

the outer vertices in the dual graph can be located with the parameters of arc length parameterization 

of the given boundary.  

 

Figure 42 The represeation of the fixed house boundary constraints. 

In the boundary registration module, the author also uses the deep learning method to predict 

parameters of the outer vertices on the given boundary, which is a registration process of the given 

boundary and the boundary of the infinite face in the dual graph. The neural network used in the 

module is the transformer structure.  

As is shown in the left part of Figure 42, the input fixed boundary is represented by the vertices 

sequence in the clockwise order. The initial feature of the vertices in the sequence is defined as: 

𝑣𝑏 = [𝑥, 𝑦, 𝑝, 𝜏], 

in which 𝑥, 𝑦 are the 2-d coordinates of the vertices on the fixed boundary in the normalized square 

canvas, 𝑝 is the normalized arc length parameter of each vertex, and 𝜏 is the turning angle of each 

vertex. The last two features of 𝑣𝑏 is shown in the right part of Figure 42. To obtain the normalized 

arc length parameter of each vertex, the author splits the fixed boundary with the top left vertex and 
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map the boundary to [0,1). 

 

Figure 43 The vanilla tranformer network structure in the boundary registration module. 

The transformer structure is shown in Figure 43. The author mimics the decoder part in the vanilla 

transformer network to design the proposed arc length parameter prediction structure in the 

boundary registration module. The structure of the boundary registration module is shown as the 

blue branch in Figure 33. The vertex feature of the dual graph is first encoded with the feature fusion 

backbone. The embedding feature of the vertices on the boundary of the infinite face in the dual 

graph is selected as a sequence in the clockwise order and fed to the decoder layer of the transformer 

as the query. The initial feature of the vertices on the given boundary is mapped to 𝑅𝟙𝟚𝟠 and also 

fed to the transformer as the value and key. 

The prediction head in this module is a regression head. In this head, the decoded vertices on the 

boundary of the infinite face in the dual graph are mapped to a real number with a fully connected 

layer, which represents the arc lengths. Since the sum of normalized arc lengths of all segments of 

the boundary equals one, the output real numbers are normalized with a SoftMax layer:  

𝜎(𝑧)𝑗 =
𝑒𝑧𝑗

∑ 𝑒𝑧𝑘𝐾
𝑘=1

 

With the predicted parameters of the boundary vertices, the author only has to predict the topology 

and the geometry of the inner part of the floorplan, which can be solved with the topology 

subdivision module and the geometry optimization module respectively with a mask filtering outer 

vertices and edges. 
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3.4.6 Summary  

Using deep neural networks to assist floorplan generation has gained increasing interest in the 

community. In practice, a generated floorplan conflicting with customer preference may lead to 

room usage and accessibility being out of order. However, existing methods may produce floorplans 

that seem fine but do not fulfill customers' requirements or are even infeasible.  

In this research, by taking the dual graph of the input bubble diagram, the author directly generates 

floor plan drawings at the graph level, with a proposed novel method with three modules. By taking 

the dual graph of the given bubble diagram and a fixed boundary as input constraints, the author 

proposes a novel framework with three modules, which could generate floorplans with correct 

topology and realistic geometry. The proposed key contributions are listed as following: 

⚫ A novel generation pipeline, in which the topology and geometry are decoupled and predicted 

on the dual graph to ensure correct topology and realistic geometry. 

⚫ A novel feature fusion backbone is proposed using the combinatorial differential matrix of the 

dual graph to aggregate features defined on different graph entities effectively. 

⚫ An integral-programming based post process algorithm for orthogonality. 

⚫ A boundary registration module is proposed for the additional boundary constraints. 

The proposed results reach an equivalent realistic level as those generated with state-of-the-art 

techniques but with much higher topological similarity. The proposed dual graph-based approach 

surpasses current methods in the public dataset and subjective comparison. Besides, the proposed 

method also has good extensibility to the bubble diagram and boundary constraints. 
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4 Experiments 

4.1 Floorplan detection 

In this section, experiments are conducted to test the symbol recognition method and clean wall 

polygons baseline. This section contains two independent experiments to test the heterogeneous 

GNN network and the U-net-based baselines. 

4.1.1 Dataset and implementation 

Dataset. Although there are several floorplan CAD drawings datasets, few are close to the real 

situation in the industry. Dataset SESYD by Delalandre et al. (2010) and FPLAN-POLY by Rusinol 

et al. (2010) are vector graphic CAD drawings. But they are synthesis floorplan images and have a 

limited number of samples. RPLAN by Wu et al. (2019) and Lifull dataset have a large number of 

samples. However, their data are mainly the room layout diagram raster images of residential 

buildings. After the proposed investigation, the author finally determined to use the FloorplanCAD 

by Fan et al. (2021) dataset as the proposed train and test set in the floorplan detection task. 

In FloorplanCAD (Fan et al. 2021), there are over 15,000 as-built CAD drawings with line-grained 

annotations, covering various types of buildings, e.g., residential buildings, towers, schools, 

hospitals, shopping malls, and office buildings.  The distribution of the FloorplanCAD (Fan et al. 

2021) dataset is shown in Figure 44. There are a total of 31 classes of primitives in the dataset. Four 

uncountable stuff classes are parking, wall, curtain wall, and handrail. The rest classes are countable 

instance classes. According to the statistic of the different classes of primitives in FloorplanCAD 

(Fan et al. 2021), the primitives of wall and chairs has the most numbers, since the wall and chairs 

are the basic elements in architectural structure and furniture.  

In most cases, a CAD drawing of public architecture contains too many primitives for the memory 

of hardware. Therefore, all floorplan CAD drawings are split in the dataset into  10 𝑚 × 10 𝑚 

squares. Besides, the author also omits the other types of information except for geometric 

primitives. 
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Figure 44 The distribution of each class of primitives in FloorplanCAD dataset. 

Implementation. The author trains the proposed network with one 12 GB memory Nvidia GTX 

2080Ti GPU with 8 samples for each batch. The author chooses the ADAM optimizer (Kingm and 

Ba 2014) with β1 = 0.9 and β2 = 0.999 and lr = 0.0001. In order to avoid over-fitting and stabilization, 

a weight decay rate of 0.0005 and gamma with 0.7 for every 20 epochs are used in experiments. 

Other CNN-based wall polygon generation baseline networks are trained on the same devices with 

MMsegmentation developed by MMlab (Chen et al. 2019). 

4.1.2 Metrics 

Mimicking the metrics of the panoptic symbol spotting task on raster images, the metrics for this 

task on CAD drawings are introduced in this section.  

In this research, to compare different methods fairly, the author chooses the metrics which are most 

accepted in related research. Following the work by Fan et al. (2021), the author uses panoptic 

quality (PQ), recognition quality (RQ), and segmentation quality (SQ) to metric the performance of 

the networks on floorplan detection with CAD drawing data: 

 𝑃𝑄  = 𝑅𝑄  ×  𝑆𝑄 =
∑ 𝐼𝑜𝑈(𝑠𝑝,𝑠𝑔)∈𝑇𝑃

(𝑠𝑝,𝑠𝑔)

|𝑇𝑃|+
1

2
|𝐹𝑃|+

1

2
|𝐹𝑁|

 , 

𝑅𝑄 =
|𝑇𝑃|

|𝑇𝑃|+
1

2
|𝐹𝑃|+

1

2
|𝐹𝑁|

 , 

𝑆𝑄 =
∑ 𝐼𝑜𝑈(𝑠𝑝,𝑠𝑔)∈𝑇𝑃

(𝑠𝑝,𝑠𝑔)

|𝑇𝑃|
 , 

where RQ is the 𝐹1 score measuring the recognition quality. 

                              Truth Class 

Predicted Class 

Positive Negative 

True True Positive (TP) True Negative (TN) 

False False Positive (FP) False Negative (FN) 

Table 2 The illustration of the confusion matrix. 
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|𝑇𝑃|,  |𝐹𝑃|, |𝑇𝑁|, and |𝐹𝑁| are the entry numbers in the confusion matrix shown in Table 2. The 

𝐹1 score is a commonly used metric in multi-tag classification task: 

𝐹1 =
2𝑃𝑅

𝑃+𝑅
, 

𝑃 =
|𝑇𝑃|

|𝑇𝑃|+|𝐹𝑃|
, 

𝑅 =
|𝑇𝑃|

|𝑇𝑃|+|𝐹𝑁|
, 

where 𝑃 and 𝑅 are the precision and recall of the predicted results. SQ is the segmentation quality 

computed by averaging 𝐼𝑜𝑈 of matched symbols. 𝑠𝑝 and 𝑠𝑔 refer to the subgraph, i.e., the instance 

of architectural element, from prediction and ground truth. The 𝐼𝑜𝑈 is primitive-grained intersection 

rate over onion of instance segmentation, whose original form is shown as:  

𝐼𝑜𝑈 =
𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 ∩ 𝑡𝑟𝑢𝑒_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒

𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 ∪ 𝑡𝑟𝑢𝑒_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒
 

And its form on primitive level is shown as:  

𝐼𝑜𝑈 =
|𝑇𝑃𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒|

|𝑇𝑃𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒| + |𝐹𝑃𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒| + |𝐹𝑁𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒|
 

4.1.3 Evaluations 

4.1.3.1 Semantic segmentation 

To compare with existing image segmentation methods, the CAD drawings are rendered as images 

with a line width of 2 pixels. The semantic of a primitive in the line graph  𝒢 is then retrieved by 

sampling on the predicted mask with a majority voting strategy. 

PanCADNet (Fan et al. 2021) is a GCN architecture for semantic symbol spotting and relies on 

image features from a CNN backbone. Table 3 compares the results of popular segmentation 

methods by Chen et al.(2017) and Wang et al.(2020) with different configurations. 
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Figure 45 A qualitative comparison of DeepLabV3, HRNetV2, PanCADNet, and the proposed CAD-

GATnet on semantic segementation task. 

Qualitative comparison are shown in Figure 45, where DeepLabv3 (Cheng et al. 2018) and 

HRNetV2 (Wang et al. 2020) are with the W48 and R01 configuration in Table 3 respectively. 

While the proposed GAT-CADNet is built on the graph entirely and requires geometric features only, 

it manages to outperform other image-based methods. 

 

Table 3 The quantitative comparison of DeepLabV3, HRNetV2, PanCADNet, and the proposed CAD-

GATnet on semantic segementation task. 

4.1.3.2 Instance detection 

As reported by Fan et al.(2021, 2022), traditional symbol spotting algorithms (Nguyen et al. 

2008,2009, Rusinol et al. 2010) have lower generalization ability and are omitted in the comparison. 

By rendering CAD drawings into images, the proposed GAT-CADNet is compared with various 

image detection methods, including the two-stage Faster-RCNN (Ren et al.2015), the one-stage 

YOLOv3 (Redmon et al.2016), and the more recent FCOS (Tian et al. 2019). Note that the instance 

head in PanCADNet (Fan et al. 2021) is from Faster-RCNN and is not listed here. 
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Table 4 A quantitative comparison of Faster R-CNN, YOLOV2, FCOS, and the proposed CAD-GATnet 

on instance segmentation task. 

The image-based detection methods (Ren et al.2015) predict bounding boxes directly, while the 

author predicts instance labels for each geometric primitive. For a fair comparison, the bounding 

box of each instance symbol are calculated and averaged connection intensity are used as the 

confidence score. Quantitative comparisons are listed in Table 4 and the proposed GAT-CADNet 

surpasses other methods by a large margin. 

One thing noteworthy is that the proposed average precision (AP) does not drop dramatically when 

increasing the 𝐼𝑜𝑈 threshold and has a much higher 𝑚𝐴𝑃 score. Since CNNs rely on local patch 

texture for recognition and may ignore features at the border, it is not a surprise that their box 

predictions are less accurate due to the low texture in CAD drawings. Such a phenomenon can be 

observed in Figure 46, where the proposed primitive-level prediction has clearer bounding boxes. 

 

Figure 46 A quantitative comparison of Faster R-CNN, YOLOV2, FCOS, and the proposed CAD-

GATnet on instance segmentation task. 

4.1.3.3 Panoptic symbol spotting 

Converting CAD drawings into images and applying panoptic segmentation algorithms to them is 

a straightforward approach. However, as demonstrated in the aforementioned comparison sections, 

the image-based methods are less capable of recognizing abstract symbols at a geometric primitive 

level. 

PanCADNet (Fan et al.2021) provides a CNN-GCN architecture for panoptic symbol spotting. It 

constructs a graph on the CAD drawing first, then fetches CNN multi-layer features to each vertex 
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and uses a simple GCN structure for recognition. Since PanCADNet (Fan et al.2021) adopts Faster-

RCNN as its backbone and detection head, there is no surprise that it has a much lower recognition 

quality than the proposed model. In addition, it does not encode inter-vertex relation explicitly and 

even has lower recognition and segmentation than the proposed baseline model. 

 

Table 5 A quantitative results of the proposed CAD-GATnet on instance segmentation task of each classes. 

First three colunms are the results with different setting.  
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Figure 47 More visualization of the floorplan detection results with the proposed CAD-GATnet.  
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4.2 Floorplan generation  

Qualitative and quantitative evaluations of the proposed neural-guided method are conducted for 

the constrained room layout drawings generation on the public dataset. The author also compares 

the proposed method with former SOTA methods (Nauata et al. 2021, Hu et al. 2020, Sun et al. 

2022). 

4.2.1 Dataset and Implementation 

The author trains and tests the proposed method with the RPLAN dataset by Wu et al. (2019) which 

contains abundant residual buildings floor plans, including apartments and houses. 70\%-10\%-20\% 

of 80k samples in the dataset are set as training, validation, and testing split. Before training, the 

image samples in RPLAN are processed into graph-based data.  

In the following experiments, the proposed networks share the same backbone structure with 8 

coupling encoder blocks. The proposed graph-based models are light enough, so the author trains 

them on a single NVIDIA-RTX 3080 with 10 GB memory. The author uses the Adam optimizer 

with 𝛽1 = 0.9, 𝛽2 = 0.99, 𝑙𝑟 = 0.0001 and set the decay rate to 0.8 for every 20 epochs. The author 

trains the proposed networks for 100 epochs and take the best model on the validation split. All 

other open-source baselines are trained on the same device with default parameters in the released 

codes.  

In the optimization stage, the minimal cost flow problem and the quad-programming problem are 

solved with OR-Tools developed by Google Inc. and an open-source kit CVXOPT. 

4.2.2 Metrics 

Several quantitative metrics are introduced in (Hu et al. 2020, Para et al. 2021, He et al. 2022). But 

the suitable metrics for floor plans are still discussed in the community. In this research, the author 

takes the most frequently used metrics in related research Fréchet Inception Distance (FID) (Heusel 

et al. 2017): 

𝐹𝐼𝐷 = ‖𝜇𝑟 − 𝜇𝑔‖
2
+ 𝑇𝑟 (Σ𝑟 + Σ𝑔 − 2(Σ𝑟Σ𝑔)

1

2), 

commonly used in natural image generation to evaluate the shape similarity between generated 

results and the ground truths image, where 𝜇  is the empirical mean, Σ  is empirical covariance, 

subscripts 𝑟  and 𝑔  represent the real data and the generated data, and 𝑇𝑟  takes the trace of the 

covariance matrix.  

Another is Graph Editing Distance (GED) (Abu-Aisheh et al. 2015), the minimum number of 

inserting, deleting, and substituting operations to convert one graph to another, evaluating the 

topological similarity between the bubble diagram in the generated room layouts and the given 
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bubble diagram constraints.  

For a fair comparison, the results of all methods are rendered with same the color setting and line 

weight. Since the FID score is highly correlated to the example number, the author randomly selects 

sufficient samples in the test split during evaluation, to keep the FID in the same order of magnitude 

as previous work. 20 volunteers are recruited to conduct a subjective comparison as a 

complementary metric. 

4.2.3 Bubble diagram constrained generation 

The room layouts are generated with the bubble diagram constraints by the proposed method.  

During training, with a given bubble diagram, the author classifies all edges of the dual graph by 

the number of subdivisions with Subdivision GNN. And then the ground truth of subdivision is used 

for the coordinate network training. During reasoning, the predicted topology is used to update the 

dual graph. 

It is not a surprise that all the proposed generated room layouts have the same room topology as the 

input bubble diagrams. Some of the results are even better than the corresponding ground truth room 

layouts in the RPLAN dataset. As is shown in Figure 48, the author randomly selects several 

generated results with the bubble diagrams in the test split and illustrate them with a unified 

rendering setting. 

A qualitative comparison of the proposed method and two open-source SOTA methods, 

HouseGAN++ [4]) and WallPlan (Sun et al. 2022) is illustrated in Figure 48. Although WallPlan 

(Sun et al. 2022) could complete this task with tricks, it does not generate new boundaries outside 

the RPLAN dataset. As is shown in Figure 48, the results of HouseGAN++[4]) are not so satisfying. 

Since the position of each room is not used in HouseGAN++ [4]), some of the cases show an obvious 

discrepancy with the given bubble diagrams as well as the ground truths. The proposed methods 

show better results in generating both diverse room shapes and more plausible room layouts.  

In quantitative metrics shown in Table 6, HouseGAN++ [4]) has the worst FID score (52.37) in all 

methods, and the proposed FID (0.88) in this task surpasses HouseGAN++ [4] by a large margin. 

The WallPlan (Sun et al. 2022) retrievals existing boundaries from the dataset in this task, so its FID 

would be lower in theory. However, the FID of the proposed complete version method is still lower 

than WallPlan (Sun et al. 2022). Since the input bubble diagrams of HouseGAN++ [4])  are 

differently defined from other methods, its GED is significantly higher than other methods.  

In order to evaluate the performance of the networks only, the author adds a version without the 

proposed coordinate’s optimization in the post-processing stage. In this experiment, the predicted 

coordinates are only optimized with the orthogonal constraints, such that the performance of 

topology similarity only relies on the networks. As is shown in Table 6, even the proposed lite 

method surpasses other methods a lot on the GED score (0.167). Naturally, the GED of the proposed 

complete version method is exactly equal to 0 since the proposed generated room layouts have the 

exact same room topology as the input bubble diagrams. 
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Figure 48 Bubble diagram constrained floorplan generation. Rooms are colored by room type. The author 

compare the proposed framework with HouseGAN++[4]) and WallPlan (Sun et al. 2022). Topology 

errors (wrong rooms and wrong adjacency) are marked with red dash lines. 

 

Table 6 Quantitative evaluation. The author randomly picks 9k samples in the test split in RPLAN (Wu 

et al. 2019) to calculate the FID between generated results with ground truth. The author calculates the 

mean GED between generated results and the given bubble diagrams on the whole test split. 
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Figure 49 More generated room layout diagrams with the given bubble diagrams in the test split of 

RPLAN dataset. 

4.2.4 Bubble diagram and boundary-constrained generation 

In this section, the proposed framework is tested for floorplan generation with the bubble diagram 

constraints as well as the fixed house boundary constraints. Similar to the training strategy in the 

upper task, the author uses ground truth for the boundary registration and the geometry optimization 

module during training and use predicted results in relevant processes during reasoning. 

A qualitative comparison of the proposed framework, Graph2Plan (Hu et al.2020), and WallPlan 

(Sun et al. 2022) is illustrated in Figure 50.  Compared with the constraints in the upper task, the 
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boundary constraint in this task is stricter. 

As is shown in Figure 50, there is a slight difference between the visualization of all results.  At the 

topological level, ours performs best in all participant methods.  The author marks all topological 

errors with red dash lines in Figure 50. Both Graph2Plan (Hu et al.2020) and WallPlan (Sun et al. 

2022) have some errors in missing rooms and wrong room adjacency. In contrast, the proposed 

results have the least topological errors.  

In the FID comparison, all three methods show evenly matched scores. In the GED comparison, the 

proposed GED is significantly lower than the other two methods, see Table 6. Compared with FID, 

GED is a more direct metric reflecting the quality of the generated results under the bubble diagram 

constraints. Missing rooms and wrong room adjacency are the most common topology errors in 

other methods that lead to unaccepted floorplans. The proposed insight into decoupling topology 

and geometry prediction preserves the topology during the whole generation and ensures a much 

lower GED score. 

 

Figure 50 Bubble diagram and boundary constrained floorplan generation. Rooms are colored by type. 

The author compares the proposed framework with the other two baselines Graph2Plan (Hu et al.2020) 

and WallPlan (Sun et al. 2022). Although many results look acceptable, ours have a much more faithful 

topology to the input bubble diagram. All topology errors (wrong rooms and wrong adjacency) are 

marked with red dash lines.  
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Figure 51 More generated room layout diagrams with the given bubble diagrams and house boundary in 

the test split of RPLAN dataset. 
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5 Discussion  

5.1 Discussion of floorplan detection 

Various controlled experiments are conducted to verify specific design decisions in the proposed 

GAT-CADNet architecture. Discussion about initial geometric feature selection and the number of 

GAT stages are also included. 

5.1.1 Data augmentation and data unbalanced 

As shown in Figure 44, the number of primitives varies in different classes. The number of beds and 

walls surpasses other classes by a scale in an incongruous way. From the proposed observation, the 

complicated patterns lead to the rise of bed primitives, while the high number of walls is because 

walls are a basic element in floorplan CAD drawings. To figure out this long-tail data problem, a 

natural thought is adding weight to the losses of different classes. However, this method doesn't 

work well on the proposed data, the PQ, RQ, and SQ with weighted loss are still on the same level 

and distribution but require more epochs to converge. The proposed explanation is that classes with 

few samples rarely occur in CAD drawings and the patterns vary hugely from one project to another 

which may easily bring about over-fitting on the training set.  

Data augmentation is another commonly used method to overcome over-fitting. However, it is not 

easy to add data augmentation to CAD drawings. The reasons are threefold. Firstly, the rigid body 

transform on a primitive level is harmful, even if the noise is controlled in a small range, which may 

damage the geometric constraints in CAD drawings. Furthermore, it is also hard to add transform 

on the instance level and keep the context at the same time. Secondly, adding masks or random 

dropping on primitives sampling also has both advantages and disadvantages. For classes with 

complicated patterns, it would be helpful, but on the contrary cases, it is harmful. Third is that for 

some classes there are severe differences of distribution on the training set and testing set. For these 

cases, data augmentation helps little in coming up with the theory. 

5.1.2 Ablations for the RSE and CEE module 

The baseline architecture of the proposed model is the multi-stage GAT branch in the middle of 

Figure 29. Following the black arrows in Figure 29, it takes initial vertex and edge features and 

maps to the semantic and instance heads. The blue branch in Figure 29 is the RSE module that 

attaches relative spatial relation to the vertex attention in every GAT stage. Adding the RSE module 

to the baseline shows clear improvement in both recognition and segmentation quality by 4 and 5 

percentage points respectively, as shown in the third row in Table 7. 

It is evident that the explicitly encoded primitive spatial relations, e.g., parallelism and orthogonality, 

enhance vertex attention and thus yield better performance in panoptic recognition. The proposed 

CEE module is the orange branch in Figure 29, which views attention among vertices as affinity in 
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feature space and cascades them to predict the instance adjacency matrix. 

Adding the CEE module to the baseline boosts the RQ metric up to 6 percentage points as shown in 

the fifth row in Figure 29. It proves that the CEE module is able to gather connections between 

vertices effectively and assist in collecting primitives of the same instance. If the author adds both 

RSE and CEE modules to the baseline, the proposed method achieves state-of-the-art performance, 

which exceeds PanCADNet (Fan et al. 2021) in RQ, SQ, and PQ metrics by 14.7, 7.6, and 18.4 

percentage points respectively. 

To further verify the cascaded structure in CEE, the author takes attention scores from only one 

GAT stage and test their performance. Specifically, the attention in the 2nd, 4th, 6th, and 8th GAT 

stages are fed to the instance head separately. Statistics listed in Table 7 (sixth to eighth row) show 

steady improvement in the RQ metric, indicating that higher-level information is gathered from the 

deeper GAT stage. The proposed cascaded structure can merge multi-stage local and global features 

for instance symbol spotting. 

 

Table 7 Ablation study of different network configurations. Numbers in the CEE column represents the 

𝑛th GAT stage. 

5.1.3 Time complexity 

For large CAD drawings, the author splits them into fixed-size patches of 10𝑚 × 10𝑚 to fit into 

the network, following the practice in PanCADNet (Fan et al. 2021) to curb the computational 

complexity. 

Compared to the basic GAT (Velickovic et al. 2017) configuration, the author has two extra RSE 

and CEE modules. For an attention head in each stage, the time complexity of the linear mapping 

RSE module is 𝑂(|𝐸|𝐹), where |𝐸| is the number of edges in the graph and F is the length of input 

features. The CEE module accumulates attention scores from the previous stage and the time 

complexity is 𝑂(|𝐸|).The complexity of an attention head is 𝑂(|𝑉|𝐹𝐹 + |𝐸|𝐹) as described in GAT 

(Velickovic et al. 2017), where |𝑉| is the number of vertices in the graph. 

Therefore, the complexity of the proposed GAT stage is also 𝑂(|𝑉|𝐹𝐹 + |𝐸|𝐹). In the research, the 

dimension notation 𝑁 × 𝑁 is used to hide the implementation detail of the neighboring mask for 

simplicity and does not indicate 𝑂(𝑁2) complexity. Since at most 𝐾 edges are allowed for each 

vertex, |𝐸| ≤ 𝐾|𝑉| , the computational complexity grows linearly as the number of primitives 
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increases. 

5.1.4 Attention-based layer for regularity features 

Theoretically, the parallel and orthogonal indicators are redundant if the author has the angle 

between two vertices. However, if the author drops the regularity term in the initial edge features, 

the RQ, SQ, and PQ metrics decrease to 0.58, 0.85, and 0.49 respectively. This suggests that the 

regularities in CAD drawings are essential to recognizing symbols and the proposed extra geometric 

regularity properties help the network to find a better solution. 

The author also tests the effect on different numbers of GAT stages. The number of GAT stages is 

configured from 2 to 16 and the results are plotted in Figure 52. As the number of stages increases, 

the performance gets better. However, if the number of stages reaches 16, the proposed network 

does not benefit from it. 

 

Figure 52 A diagram of the perfomance with different numbers of attention blocks in CAD-CADnet. 

 

Figure 53 The metric of each classes with different attention layer numbers, and w/o the cascade attention. 
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Two more extra experiments are conducted to further prove the superiority of the proposed model. 

One is using a graph convolution network (GCN) as the baseline. Like GAT, GCN is also a widely 

used graph neural network. Thus, the author replaces GAT stages in the proposed model with GCN 

stages and take the normalized Laplacian matrix equivalently to one head attention score in the 

proposed RSE and CEE modules. Another is using vertices features only. Once the center 

coordinates are added to current vertices features, the spatial relationship can be figured out with 

any two given segments.  To verify the necessity of explicitly encoded edge features in the proposed 

model, the author conducts another experiment with only vertices features. As shown in Table 8, 

neither of the two extra experiments reaches the performance of the proposed baseline, let alone the 

proposed best model. 

 

Table 8 Extra experiments. GCN based model and GAT without edge features show inferior results. 

5.1.5 Limitations 

The proposed CAD-CATnet treats the instance symbol spotting as a subgraph detection problem, 

with proposed RSE and CEE modules, surpassing existing state-of-the-art methods by a large 

margin. There are still limitations. The author selects some failed cases and illustrate them in Figure 

54. In some cases, simple symbols could be missing or wrongly recognized with mistaken labels or 

larger variations in the graph, e.g., the proposed model misses all L shape tables (upper) and 

recognizes all windows as curtain walls (lower) by mistake. Future work would be focusing on 

failed cases and improving the robustness of the proposed model. 

In this subsection, the author provides several typical failed cases and classified them into two 

situations, i.e., overlapping, and local ambiguity, as is shown in Figure 54. When two instances 

overlapped (b), (d), and (i), the author found that the confidence score would be decreased acutely 

compared with the cases with clear boundaries. The author infers the reason is that it is hard to set 

a threshold to figure out ideal geometric constraints of primitives in overlapped areas and bring 

more noise to edge feature spaces. There is another possibility that during adjacency prediction in 

the instance head, the overlapping cases are too few to contribute a valid percentage in instance loss. 

For the first reason the author will try a more robust way to extract geometric constraints features, 

and for the second, the author will consider adding weight on loss or introducing feasible data 

augmentation.  

The local ambiguity cases refer to instances that have similar geometric patterns in the local field. 

There are several situations that may lead to ambiguity. Instances like tables, chairs, and sofas, are 

sometimes represented with very simple patterns (c), (j), and (k). There is little difference among 

some certain cases of the table and half-high closets (a) and (l). Also, the symbols are very similar 

between the curtain wall and handrail (f) and (g) as well as the situations of the air conditioner and 
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windows (e) and (h). Some patterns are even isomorphic on the graph, which requires a higher 

capacity for representation learning of the model. Part of the above cases could be distinguished 

when adding stronger priories by formulating architectural and civil construction knowledge. The 

author will also consider conducting networks with higher ability and make more use of global 

context in the scenes. 

 

Figure 54 Failed cases of CAD-GATnet. 

5.2 Discussion of floorplan generation 

In this section, an extensive ablation study is performed to validate the proposed structure of the 

proposed Subdivision GNN network. The author also analyzes the time complexity of each step in 

the proposed method. At last, the author illustrates the failed cases and discuss the limitation of the 

proposed methods. 

5.2.1 Perceptual study 

Besides FID and GED, the author also recruits 20 volunteers to conduct a subjective comparison as 

a complementary metric. The participants include professional architects and students studying 

architecture design at university. The author follows a similar experiment setting of the subjective 

comparison in HouseGAN++ (Nauata et al. 2021).  

The author randomly picks 200 samples from each method listed in Table 9, and the total 1200 

samples are evenly mixed. Each volunteer will be assigned 30 samples. The participants are asked 
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to choose the better floorplan between the generated results and the corresponding ground truth with 

given bubble diagrams. A method scores (+1) for a win, (-1) for a loss, and (0) for a tie. The author 

suggests the participants consider the level of user requirements satisfaction and the reasonableness 

of the floor plans during scoring. To reduce the irrelevant influence, method and ground truth labels 

are hidden from the participants. The author calculates the average score as the metric of realism to 

measure the similarity between the ground truth and the floorplans generated with different methods. 

As is shown in Table 9, ours is the only method with a positive score, which means the proposed 

results are slightly better than the ground truth in the subjective comparison. In the bubble diagram 

constrained generation task, the proposed score (0.08) surpasses HouseGAN++ (Nauata et al. 2021) 

(-0.66) by a great margin. The author deduces the reason that the proposed score could surpass the 

WallPlan (Sun et al. 2022[87]) (-0.10) is the proposed results can better satisfy the user requirements. 

 

Table 9 The author conducts a subjective comparison with 20 architects. 𝜎 is the standard deviation of 

each method. In the case of the similar realism scores, the lower the 𝜎 , the better the performance. 

Compared with other methods, the proposed results have the highest realism scores. 

5.2.2 Ablations for the feature fusion backbone 

In this section, the author conducts an ablation study to evaluate the efficiency of the proposed 

feature fusion backbone blocks as well as the generalization performance of the proposed method.  

The author takes the graph subdivision task for backbone architecture comparison, since the 

precision, recall, and 𝐹1  score could intuitively show the performance of each structure. In the 

comparison, the author chooses classic graph network structures Graph Convolutional Network 

(kipf et al. 2016) and Graph Attention Network (Velickovic et al. 2017) (GCN and GAT) as the 

proposed baselines. For GCN and GAT, the author takes dual edges as vertices and their intersecting 

relationship as edges to construct graphs. After feature encoding, the subdivisions are predicted with 

the same head module.  

As is shown in Table 10, the proposed module has the best scores. The author infers that the 

representation ability on the combinatorial embedding of oriented planar graphs is improved with 

the proposed module so that features defined on dual vertex space and dual edge space could be 

fused. 
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Table 10 Ablation study of different graph network architecture used in dual graph subdivision task. 

Networks with the proposed feature fusion module have the best performance on subdivision prediction. 

5.2.3 Generalization performance 

Meanwhile, the author also tests the generalization performance of the proposed method. The author 

conducts an experiment that uses bubble diagrams outside the RPLAN dataset. As is shown in 

Figure 56, the proposed method generates plausible room layouts and shows good performance on 

generalization. 

The author conducts experiments with manually designed constraints outside the RPLAN dataset 

(Wu et al. 2019). As is shown in Figure 56, (a) is the bubble diagram and GT of a randomly chosen 

sample in RPLAN (Wu et al. 2019). (b) has the same graph as the bubble diagram but with different 

2D embedding. Constraints in (c) are the given boundary and the differently embedded bubble 

diagram. In (d), the boundary is consistent, and the bubble diagram is a new one. The plausible 

generated floorplans in Figure 55  illustrate the generalization performance of the proposed 

framework. More generated results are shown in Figure 56. 

 

 

Figure 55 Ablation study of generalization performance. (a) constraints and GT. (b) same bubble diagram, 

different embedding. (c) same boundary, bubble diagram with different positions. (d) same boundary, 

bubble diagram with extra nodes and edges. 
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Figure 56 Generalization ability of Dualgraph2Plan. 

5.2.4 Time complexity 

In this section, the author analyzes the time complexity of operations in each step of the proposed 

neural-guided method and illustrate them in Table 11. 
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Table 11 Time complexity analysis of the DualGraph2Plan.  

In Table 11, |𝑉|, |𝐸|, and |𝐹| are the number of vertices, edges, and faces in the dual graph of the 

given bubble diagram, 𝑑 =  128 is the dimension of the feature space in the networks, and p is the 

edge number of one face in the dual graph. |𝐸𝑅|, |𝐹𝑅| are the number of edges and faces in the 

rectangular orthogonal representation of the dual graph and f is the flow in the defined network in 

the minimal cost flow problem. 

Since the flows in the orthogonal optimization and the compact layout drawing are usually far below 

128, the overall time complexity of the proposed method is 𝒪(2|𝐸||𝑉|𝑑 + |𝐸|𝑑2 + |𝑉|𝑑2), which 

keeps the same level with other classic graph neural network methods. 

5.2.5 Limitations 

In this section, the author proposes several types of room layouts, which theoretically cannot be 

generated with the proposed methods. At the same time, all generated results are browsed, and 

typical failed cases are extracted for illustration. 

According to the three assumptions the author adopted in the duality construction, the author 

constructs several infeasible situations which violate the assumptions. These situations are shown 

in Figure 57. Case (a) has slash line walls, which conflict with the Manhattan Assumption. Case (b) 

violates the second assumption, in which the living room has holes instead of a simply connected 

polygon. The bubble diagram of case (c) is not a connected graph, which may lead to errors in the 

proposed optimization step. In case (d), the isolation wall of two bedrooms is discontinuous, which 

violates the third assumption. Besides, since the author sets the maximal subdivision number as 15, 

cases like (e) having edges with more than 15 turns cannot be generated with the proposed 

Subdivision GNN. 

During browsing all generated room layouts in the test split, the author also finds limitations of the 

proposed method. The typical cases are extracted and illustrated in Figure 57. In (a), (b), (c), and 

(d), even though the topology is consistent, there are smaller rooms in the room layouts, which is 

unreasonable in architectural design. Besides, the boundaries of (e) and (f) are too complex, which 

may cause corner space in room layouts. Fortunately, this limitation could be solved by adding 

interactive steps to set more constraints during the coordinates’ optimization. 
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Figure 57 limitations and failed cases of Dualgraph2Plan. 
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6 Conclusions 

6.1 Summary 

In this dissertation, the author presents an intuitive yet effective method for floorplan CAD drawing 

representation. The corresponding network structures make full use of the geometry and topology 

information on the floorplan. The line graph successfully embeds the geometric primitives and the 

relationship among them, and the transformer-based structure can effectively extract semantic 

features. With further assumptions, the dual graph decouples the topology and geometry of the room 

layouts and predicts them with Subdivision GNN and neural-guided planar drawing method 

respectively. The feature fusion module could couple features on different spaces with the 

factorization of the Laplacian in discrete exterior calculus. The neural-guided drawing methods 

generate plausible orthogonal floor plan drawings with consistent topology. 

The significance of this research is twofold. On one hand, the proposed method provides a novel 

representation and network structure for CAD drawings and reaches better performance in both 

floorplan detection and room layout generation tasks. The representation method and the network 

structure are applied and tested with floorplan detection and generation tasks. In the detection task, 

the performance of the method surpasses other current image or graph-based deep learning method 

and reach the highest metric scores in the result comparison.  In the generation task, compared with 

other approaches, the proposed results achieve better FID levels with SOTA and reduce GED to 0. 

The method in this dissertation also achieves the best evaluation in subjective comparison.  

On the other hand, the definition and formulation of the two tasks are closer to the scenarios in 

architectural design. In floorplan detection, primitive-grained labels and instances better fit the input 

information used for 3D reconstruction. In floorplan generation, the deviation of the geometry 

prediction is inevitable due to the principle of the neural network, which may lead to topology errors 

in the generation. In practice, topology errors may cause confusion in architectural usage, which is 

unacceptable. The proposed hybrid optimization can ensure that the topology is completely correct. 

6.2 Future work 

Although the representation method is validated to be efficient with the results in the two 

applications, there are still issues that can be improved with further research. The representation 

method can cover most cases with the assumptions for graph definition, while floorplans with more 

complicated topology, strong global context, or curve primitives still need further improved 

representation methods.  

The improvement in the CAD drawing representation could be threefold. The first direction could 

be the capacity of the network scales since there are many public architectures, whose floorplans 

are complicated and have large areas. The larger and deeper the network is, the higher the 

representation ability the network would have for the oversized floorplans. Meanwhile, the 

corresponding network structure should be designed with good embedding performances on both 
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local geometric features and global context features.  

The ability to represent and generate curved floorplans could be the second possible direction. From 

the author’s perspective, the challenge of this direction could come from two aspects. Although 

curved floorplans sometimes are more flexible and have better quality than orthogonal floorplans, 

they are less common in the AEC industries. The limited number of curved floorplans may lead 

difficulty to establish a decent dataset with adequate samples. Another challenge is the option of the 

priories for the curves in floorplans. Whether using parametric or discretized expressions, there will 

be many problems.  

The third direction would be the details in applications. As mentioned in Chapters above, details 

when deploying on specific applications remain lots of issues, such as data augmentation, 

optimization, post-processing, and metric design. Although some issues are faced in other generic 

tasks, they still need rethinking in the context of AEC. More reasonable solutions, definitions, or 

improvements may be figured out by combining deep learning technology and the actual needs of 

the construction field.   

Besides the representation method, other deep learning-related tasks also have great potential in 

practice. In the proposed future work, the author would also attempt to integrate the subtasks to 

conduct end-to-end methods in detection, generation, and other CAD drawing-related tasks. 
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