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Introduction: Stroke survivors often compensate for the loss of motor function

in their distal joints by altered use of more proximal joints and body segments.

Since this can be detrimental to the rehabilitation process in the long-term, it is

imperative that such movements are indicated to the patients and their caregiver.

This is a di�cult task since compensation strategies are varied and multi-faceted.

Recent works that have focused on supervised machine learning methods for

compensation detection often require a large training dataset of motions with

compensation location annotations for each time-step of the recorded motion.

In contrast, this study proposed a novel approach that learned a linear classifier

from energy-based features to discriminate between healthy and compensatory

movements and identify the compensating joints without the need for dense and

explicit annotations.

Methods: Six healthy physiotherapists performed five di�erent tasks using healthy

movements and acted compensations. The resulting motion capture data was

transformed into joint kinematic and dynamic trajectories. Inspired by works in

bio-mechanics, energy-based features were extracted from this dataset. Support

vector machine (SVM) and logistic regression (LR) algorithms were then applied

for detection of compensatory movements. For compensating joint identification,

an additional condition enforcing the independence of the feature calculation for

each observable degree of freedom was imposed.

Results: Using leave-one-out cross validation, low values of mean brier score

(<0.15), mis-classification rate (<0.2) and false discovery rate (<0.2) were obtained

for both SVM and LR classifiers. These methods were found to outperform

deep learning classifiers that did not use energy-based features. Additionally,

online classification performance by our methods were also shown to outperform

deep learning baselines. Furthermore, qualitative results obtained from the

compensation joint identification experiment indicated that the method could

successfully identify compensating joints.
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Discussion: Results from this study indicated that including prior bio-mechanical

information in the form of energy based features can improve classification

performance even when linear classifiers are used, both for o	ine and online

classification. Furthermore, evaluation compensation joint identification algorithm

indicated that it could potentially provide a straightforward and interpretable way

of identifying compensating joints, as well as the degree of compensation being

performed.

KEYWORDS

compensation detection, stroke rehabilitation, machine learning, bio-mechanical

features, supervised classification

1. Introduction

Stroke is one of the leading causes for long-term disability

worldwide (Murray et al., 2012) and often results in upper-

extremity motor impairment in survivors (Kwakkel et al., 2003)

that can severely affect their quality of life and health (Franceschini

et al., 2010; Morris et al., 2013). Hence, regaining upper-

limb function post-stroke is vital for patient recuperation and

consequently, is a major target of rehabilitative-therapy. In

particular, repetitive and task specific training of the affected

limbs have been suggested to be one of the main drivers of

rehabilitation (Bütefisch et al., 1995; Dickstein et al., 1997).

Training has traditionally been conducted with assistance and

feedback from physiotherapists in a clinical setting. However, this

requires constant monitoring and guidance by the physiotherapist,

a task that becomes difficult with the increasing number of

patients (Pollock et al., 2000). While this can be addressed in

part by recommending exercises to the patient for in-home

rehabilitation at later stages of recovery (Turton and Fraser,

1990), adopting such an approach introduces novel challenges -

namely, providing appropriate feedback to the patient regarding

their performance.

Recently, efforts have been made to this end, as well as

to alleviate the physiotherapists’ workload in clinical settings

by introducing automation into the rehabilitation pipeline, for

instance via robot-assisted therapy (Aprile et al., 2020; Takebayashi

et al., 2022) and interactive game-based therapy (Laver et al.,

2017; Laffont et al., 2020). These techniques must be equipped

with evaluation mechanisms that can automatically assess the

quality and success of the ongoing rehabilitation exercise or task

performed by patients, ideally in an online manner, in order to

provide useful feedback for facilitating improvement in real-time.

However, such an automatic quantification of task performance can

be challenging. While the success of task or exercise completion is

relatively simple to track and quantify automatically—for example

by tracking the distance between the end-point of the impaired

limb and the goal position, it might not provide an adequate

picture of performance, especially with regards to the reappearance

of premorbid motor behavior (Cirstea and Levin, 2007). This

complication arises in part from the use of compensatory strategies

by the patient in the post-stroke period.

Stroke patients often compensate for the impairment caused

in one joint by overusing an unimpaired joint for the successful

accomplishment of rehabilitation exercises or activities of daily

living (Cirstea and Levin, 2000). Any redundant joint that is

relatively underused for a particular motion or task can be recruited

when the typically used joint is impaired to ensure successful

completion of the task. The degree of compensation provided

by the recruited joint can vary from mild to severe (Cirstea

and Levin, 2000). It has been noted that the long-term use of

compensatory strategies can interfere with rehabilitation goals

(Takeuchi and Izumi, 2012). Accurate and automatic identification

of compensatory strategies and deviation from healthy motion is

therefore an integral part of monitoring exercise/task performance

during a therapy session. Moreover, inclusion of this information

has been found to be helpful by the patients (Fruchter et al., 2022).

Most of the research toward automatic compensation detection

has been geared toward exploiting data-driven supervised learning

methods for the task. In general, such methods rely on the

availability or acquisition of a dataset of motions which are

labeled by experts to be either healthy or compensatory. The

acquired dataset of motions is used to train a machine learning

model, which can be used afterwards for classifying observed

motions at test time. Previous works have explored a variety of

machine-learning architectures and models for this task, ranging

from decision-trees (Sellmann et al., 2022) and non-parametric

methods, such as k-Nearest Neighbor classification (Cai et al.,

2019) and Support Vector Machine classifiers (Taati et al., 2012;

Zhi et al., 2017) to parametric deep learning methods, such as

a Multi-layer Perceptron (MLP) (Lin et al., 2021) or recurrent

neural networks with Long Short-TermMemory (LSTM networks)

(Zhi et al., 2017). A wide range of measurements including

kinematics (Taati et al., 2012; Zhi et al., 2017; Sellmann et al.,

2022), applied forces (Cai et al., 2019), and muscle activity (Ma

et al., 2019) have been used as an input for these data -driven

classifiers.

However, existing learning-based solutions fall short of fully

addressing one or more of several common challenges posed

by the task of automatic compensation detection. One major

challenge is the identification of compensating joints. By leveraging

multi-class classification techniques, many approachesare able

to detect three common types of compensations in reaching

motion—namely torso lean-forward, torso rotation and scapular

elevation (Zhi et al., 2017; Cai et al., 2019; Ma et al., 2019).

By design, such a classification method is geared toward

detecting only one type of compensation per input motion
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segment, which can be a shortcoming when the motion segment

contains multiple compensation strategies. Kashi et al. (2020)

uses multi-label classification to mitigate this issue. However,

like the preceding works, this approach relies on explicit

annotations of compensation locations. This requirement can

pose some limitations on the applicability of the compensation

detection mechanism since providing such a detailed descriptor

of the compensation strategy can be cumbersome and is

subject to labeling error by the expert annotator Hickey et al.

(2007). The latter can especially occur when indicators of

compensatory movements are subtle and beyond the visual

capabilities of physiotherapists (Abbott et al., 2022). This

indicates that it is hard to find an objective measure for

compensation magnitude and affected location, especially via

supervised classification methods that rely on detailed annotations

from experts.

Another challenge is discriminating between healthy and

compensatory motions in real-time. This is particularly desirable

since it can allow for the correction of a compensatory motion

as it is being performed either by the means of direct feedback

to the patient or through other methods such as alerting the

responsible physiotherapist in case of in-clinic rehabilitation.

The classification output could also be used by a robotic

system to promote more desirable kinematics by means of

a force feedback. However, many of the methods discussed

above either train their model with pre-segmented motions and

assume access to similarly segmented data during test-time (Kashi

et al., 2020) or use a sliding window of fixed size for online

classification (Zhi et al., 2017; Cai et al., 2019; Ma et al.,

2019) which may not be able to capture long-range temporal

correlations.

Lastly, most existing works for compensation detection

leverage datasets that are quite small in size due to the difficulty

of collecting data on a large scale from patients. For example,

many works (Zhi et al., 2017; Uy and Abu, 2020; Khoramdel

et al., 2021) learn from the Toronto Rehab Stroke Pose Dataset

(Dolatabadi et al., 2017) that collects kinematic data from a cohort

of 9 stroke survivors and 10 healthy patients, Cai et al. (2019)

perform their analysis on data from 8 stroke survivors, and Lin

et al. (2021) uses a dataset of motions from 10 stroke survivors.

Yet, many works use deep neural networks for learning a a model

for compensation detection (Zhi et al., 2017; Khoramdel et al.,

2021; Lin et al., 2021). This can be counter-productive since

deep learning-based architectures typically have a large number

of parameters that often outnumber the small training dataset

making the model susceptible to overfitting (Bishop and Nasrabadi,

2006) and reduced generalizability. Furthermore, owing to the large

parameter size, these models often take longer to train. Thus,

there is a growing need for data-driven methods for compensation

detection that can learn from small datasets with non-explicit

labels in order to decrease the reliance on manual annotation and

can be applied online for obtaining predictions in real-time from

streaming data.

In this work, we take a step toward closing these gaps by

proposing a novel approach that learns a linear classification model

that can not only discriminate between compensatory motions

and healthy ones, but also identify compensating upper-body

TABLE 1 Demographic information of the participants.

Characteristics Distribution

(Mean ± Std.)

Number of participants 6

Female 6

Age (years) 26± 2.5

Weight (kg) 59± 11.15

Height (cm) 167± 3.93

Right-hand dominance 6

joints without requiring explicit labels in the training data. To

learn an accurate classifier, selection of appropriate features is

of utmost importance. In this regard, we take inspiration from

bio-mechanical literature pertaining to natural motion generation

and design energy-based features that can be used to learn a

classifier. These features include joint jerk, power, torque rate

and effort, and they are often used as proxies for metabolic

energy expenditure which biomechanical models optimizes for

producing natural movements (Gauthier et al., 2010; Huang et al.,

2012). Thus, by including them as features, we propose that

they can inform the classifier regarding the degree of atypicality

of the motion. We calculate these features independently for

each observed degree of freedom (DoF). This allows us to

identify compensating joints in a given motion by exploiting the

product of its corresponding features and the weights of the

learned classifier.

We verify our approach using leave-one-out cross validation on

a dataset of healthy and acted compensatory motions by qualified

physiotherapists. The present study reports quantitative results that

demonstrate the efficacy of our approach toward identification of

compensatory motion and the degree to which the upper-body

joints are attributed to such motion. Furthermore, we demonstrate

that a linear classification model trained on energy-based features

shows competitive performance compared to deep learning-based

methods including MLP and LSTM that can automatically extract

relevant features from raw data (Shaheen et al., 2016) when

discriminating healthy motions from compensatory ones.

2. Materials and methods

2.1. Dataset

Six participants with no mobility impairments were recruited

for this study. All participants are trained physiotherapists.

Informed consent was gathered from all of the participants.

Table 1 summarizes the demographic information for all

the participants.

2.1.1. Motion primitives
We collected movement data for five different motion

primitives, each of which corresponds to a single goal-oriented
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motion trajectory. These include (i) a bimanual task where the

participant lifts a tray to their chest level with both arms, (ii) a

unimanual task to reach and grasp an object at the eye-level, (iii) a

unimanual task to reach and grasp an object at the chest-level, (iv)

a unimanual task to reach and grasp an object such that it includes

pronation and (v) supination. We illustrate these primitive motion

patterns in Figure 1.

Repetition of such motions is often part of rehabilitation

exercises (Thielman et al., 2004; Bayona et al., 2005; Rensink

et al., 2009) as they comprise major motions used for performing

activities of daily living. Each of these primitives display a wide

range of joint activity and joint interactions both for healthy and

atypical movements. The experimental setup for the bimanual tray

lifting task consists of cardboard tray with dimensions 35.5 cms ×

24.8 cms × 3 cms and weight 0.1 kgs. For the grasping tasks, we

use a height-adjustable tripod that is mounted with a cylindrical

rod of length 20 cms (the grasp object). We additionally place a

side table close to the participant’s dominant arm and adjust its

height such that they are able to place their elbow flexed naturally at

90 degrees. We controlled for reach length among the participants

by placing the tripod holding the grasp object such that it is

always within reach. This is done by adjusting the position of the

tripod such that its central column touches the participants’ wrist

when they extend their arm. At the beginning of the bimanual

motion, the tray is placed on the participant’s lap and grasped by its

sides. The starting point for the participant’s dominant arm during

the reaching motions is on the side-table. Figure 2 illustrates the

experimental setup for this work.

2.1.2. Compensation simulation
In addition to generating natural motions corresponding to

each of the 5 tasks, the participants also simulated different types

of compensatory movements simulating stroke patients for each

task. With regards to the latter, the participants, all of whom

were physiotherapists, were instructed to enact compensations that

were most commonly observed by them during their experience of

interacting with stroke patients using their dominant arm. No other

restrictions were placed on the type of the compensation strategies

the participants could simulate. However, all of the collected

motions (including the acted compensatorymovement trajectories)

begin with the participant sitting in a natural or “healthy” pose, with

no visible joint compensations.

Figure 1 illustrates the different motion primitives that

comprise the dataset and compares healthy and compensated

movement examples for each motion primitive. We additionally

plot the distribution of range of motion (RoM) observed

throughout the collected trajectories for each joint in Figure 3.

RoM has been widely used by physiotherapists to assess motion

health (Mortazavi and Nadian-Ghomsheh, 2019) along with other

criteria. The minimum average overlap between healthy and

compensatory motions was noted to be around 38 percent. This

can be attributed to the fact that RoM in compensatory motion

widely distributed according to the task and a person who

performed it, highlighting a challenge in identifying compensatory

movements using simple classification approaches, such as

thresholding on RoM.

2.1.3. Dataset size
We collected 5 repetitions of healthy movements and 5

repetitions of 3 acted compensatory movements for each of the 5

tasks (bimanual task, unimanual reaching to an eye level height,

unimanual reaching to a chest level height, unimanual reaching

with pronation, and unimanual reaching with supination) from 6

participants. This means that a total of 5 × (3 + 1) × 5 × 6 =

600 trajectories are collected, 100 trajectories for each individual

participant.

For ensuring the variability of the healthy motions in the

dataset, we calculated the width of 95% confidence intervals (C.I)

for peak motions of the different joints and compared them to the

95% CI’s width obtained by Gates et al. (2016) on a similar task

(unimanual reaching). We found these values to be comparable to

the previous work for most joints. Furthermore, for most joints,

the range of peak motions in compensatory movements was found

to be greater than 70% of the 95th percentile of peak motion

range across all movements (where this range is given by [0,

95th percentile of peak motion]), indicating high variability of the

motions in the acted compensations dataset. The 95th percentile of

peak motions is calculated from McGregor et al. (1995) for trunk

movements and from Gates et al. (2016) for other joints.

2.2. Data measurement

We used Qualisys Track Manager (Senior, 2004), a marker-

based motion capture system with fifteen cameras to capture

the movement data of the participants. A total of 31 markers

were placed on each participant. Of these, 10 markers were used

purely for scaling an OpenSim (Delp et al., 2007) upper-body

musculoskeletal model used for analysis (discussed below) to

the participant and were removed while tracking and recording

the actual motion of the participant. Figure 4 summarizes the

placement and purpose of the body markers. We collected the 3D

positions of the markers with respect to a common global reference

frame for each of the movement trajectories generated by the 6

participants at a rate of 100 Hz.

2.3. Automatic motion segmentation

In order to streamline the process of data collection, the healthy

repetitions of the distinct tasks by each physiotherapist are collected

as one contiguous motion. We adopt the same approach for

collecting the 3 different types of acted compensation movements

from the participants. Therefore, we essentially have 4 contiguous

mozion data per task per participant. From these trajectories,

we automatically extract the individual motions corresponding to

each of the 5 primitives with a simple approach similar to work

presented in Fod et al. (2002). The following steps are performed

for this purpose: (i) the marker trajectory is first smoothened with

a Savitsky-Golay filter (Savitzky and Golay, 1964) of a window

of length 200 milliseconds. Next, (ii) the velocity of the end-

effector markers (in our case, the markers on the participants’

wrists) is calculated by taking the first derivative of the marker

positions. Finally, (iii) zero-crossings vector for the marker velocity
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FIGURE 1

Representation of healthy and compensatory motions for the 5 primitives in our dataset.

trajectory are obtained. We pick the locations where velocity is

0 in all three axes. These yield the start and end locations of

each individual motion. We illustrate these steps in Figure 5.

We modify this approach for extracting non-segmentable motion

primitives during online classification at test time as described in

Section 2.9 Note that each trajectory consists of multiple repeated

motions that begin from the start position, execute the motion

primitive, which ends when a target configuration is reached (for

example, the tray is lifted to the chest level in the bimanual

task, and the cylindrical object is grasped in a particular manner

for the reaching task) and return back to the start position.

Since participants are not explicitly asked to follow any protocol

as they move back to the start position, after executing the

motion primitive, we exclude this portion of the trajectory from

our analysis.

2.4. Data processing

We used OpenSim (Delp et al., 2007), an open source software

package for modeling, simulation and analysis of human bio-

mechanical systems for processing the collected data. For our

analysis, we used an OpenSim biomechanical model of a human

skeleton with 17 DoFs. The first three of these 17 DoFs are (i)

torso flexion, which corresponds to leaning forward (ii) torso tilt,

a movement that corresponds to a sideways bend of the torso, and

(iii) torso rotation, which corresponds rotation of the torso about

its length. The rest of the 14 DoFs correspond to the left and right

arms of the participant and mirror each other. For brevity’s sake,

we list the DoFs for only one arm. These include (iv) elevation

plane, (v) elevation angle, (vi) shoulder rotation, (vii) elbow flexion,

(viii) forearm rotation, (ix) wrist flexion, and (x) wrist deviation.

For detailed descriptions of these DoFs, we refer the readers to

Holzbaur et al. (2005). The 3 DoFs corresponding to the torso along

with the 7 arm DoFs corresponding to the dominant arm of the

participants comprise the set that is used for our analysis.

We will now describe our data processing pipeline (illustrated

in Figure 6). First, a generic upper-body musculoskeletal model

with 17 DoFs was scaled and registered to each of the 6 participants.

Following this, the marker trajectories were processed using

OpenSim’s inverse kinematics tool to infer the corresponding

joint angle trajectories of the scaled models associated with each

participant. We represent the joint angle trajectories with {qt}
T
t=1,

where qt denotes the joint configuration of the musculoskeletal

system at the discretized time-step t and T denotes the length

of the motion trajectory. The joint configuration qt = {qit}
NJ

i=1

is essentially a vector of relative angles corresponding to the

NJ rotational DoFs in the musculoskeletal model of the upper

body that we are using for this study. We additionally obtain

trajectories of joint angle velocity {q̇t}
T
t=1 and acceleration

{q̈t}
T
t=1 via automatic differentiation. Finally, we used Opensim’s

inverse dynamics tool to derive the torques applied at each

joint at each time-step (represented in this work as the joint-

dynamic trajectory {τ t}
T
t=1) for producing the corresponding joint-

kinematic trajectory {qt , q̇t , q̈t}
T
t=1. All collected trajectories are

smoothened by using a low-pass filter with a cut off frequency of

6 Hz.

2.5. Feature extraction

Given the kinematic and dynamic trajectories of the motion,

we obtain several metrics commonly used for analysis of human

motion generation in biomechanics literature. This includes (i)
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FIGURE 2

Setup for each of the 5 motion primitives. A tray is used for the bimanual lifting task. A cylindrical rod fixed at the top of a tripod is used to mark the

target position for the reaching tasks. The participants were asked to grasp the cylindrical rod during the reaching tasks. For reaching to an eye-level

and chest-level heights, the rod is aligned vertically. For pronation and supination tasks, the rod was rotated 90 degrees such that it was horizontal.

FIGURE 3

Histogram plotting the Range of Motion observed for di�erent joints for healthy and compensatory motions.

angular jerk (q̈it), an indicator of the degree of movement

smoothness in the joint space, maximization of which has been

correlated to natural arm movement generation (Wada et al.,

2001), (ii) power (|q̇it · τ it |), (iii) effort (|τ̈ it |), and (iv) torque

rate (|τ̇ it |). The weighted sum of the last three metrics have

been proposed by several previous works to be an indicator

of metabolic cost (Zhou et al., 2017; Wong et al., 2021),

minimization of which is theorized as one of the biomechanical

principles for human motion (Gauthier et al., 2010; Huang et al.,

2012).
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FIGURE 4

Marker placement on participants’ dominant side. The placement of

the upper shoulder marker, the elbow inside and outside marker, the

wrist in and out markers, and the pelvis marker are mirrored on the

non-dominant side of the participant, but are used only for scaling

the OpenSim model.

We create an input feature matrix φt corresponding to

each time-step t of the trajectory. This is done in two steps.

First, we calculate the 4 aforementioned metrics for 10 DoFs

in the musculoskeletal model separately at each time-step t of

the movement trajectory. Next, we update each feature at time-

step t by replacing it with cumulative averaging of all the

features seen until t to obtain the Cumulative Averaged Energy

(CAE) features. This attempts to encode temporal information in

the features.

2.5.1. Input normalization
Lastly, all features are normalized using min-max scaling

between the values of 0 and 1 across the training dataset in order

to remove any bias arising from numerically higher feature values

(Singh and Singh, 2020). At test time, the feature values are scaled

using themin-max values extracted from the training dataset. Since,

we use leave-one-out cross-validation, feature normalization is

done independently for each fold of evaluation. The resulting CAE

feature matrix (see Figure 7) denoted by φ = {φd}
40
d=1

containing

40 scalar features forms one of the inputs to the classifier discussed

in the Section 2.7.

2.6. Generation of the training dataset

For online classification, we generate the training dataset Dtr

by calculating the feature matrix for each time-step of each of

the NMtr movement trajectories. This corresponds to the input

feature vector φt,m comprising a single datapoint along with a

ground-truth label. The latter is required by supervised learning

methods. Since we have access to only sparse binary labels which we

denote as ym corresponding to the fullm-th trajectory, we generate

ground-truth labels for the intermediate steps of the trajectory by

replicating the label corresponding to the full trajectory for all

the frames, thus obtaining a label yt,m for the t-th frame of the

m-th motion trajectory. Assuming that the m-th trajectory has a

length of Tm, the full dataset D has a total of
∑NMtr

m=1 Tm data-

points. We can therefore succinctly represent our training dataset

Dtr as follows:

Dtr = {φm,tm , ym,tm ; ∀tm ∈ {1, . . . ,Tm}, ∀m ∈ {1, . . . ,NMtr }} (1)

2.7. Classification algorithm

We train a linear classification model (Bishop and Nasrabadi,

2006) using supervised learning for discriminating between healthy

and compensatory motions. More concretely, our goal is to learn a

linear hyperplane w · φ + b = 0, where the learnable parameters w

and b are learnt such that the following conditions:

w · φ + b < 0 H⇒ Compensation

w · φ + b ≥ 0 H⇒ No Compensation
(2)

are maximally satisfied over the training datasetDtr .

Many different methods for learning the parameters w, b

have been described in the literature. We employ two popular

approaches, namely linear Support Vector Machine (SVM)

classification and Logistic Regression (LR) for learning these

parameters. We describe these methods in the following

subsections.

2.7.1. Logistic regression
LR (Bishop and Nasrabadi, 2006) learns the parameters

w, b by minimizing the regularized cross-entropy loss on the

training dataset.

L(w, b|D) = −
∑NDtr

i=1 [yi log σ (w · φi + b)

+(1− yi) log(1− σ (w · φi)+ b)+ λ||w||22] (3)

where σ (a) = 1
1+exp(−a)

denotes the sigmoid function, || · ||

denotes the Euclidean norm, λ is the regularization constant, and

NDtr demotes the size of the training dataset.

This loss has its basis in Maximum Likelihood Estimation

(Bishop and Nasrabadi, 2006) which maximizes the probability

p(φ) = σ (w · φ + b) of the input φ that belongs to the

true class over the dataset Dtr . Once the classification model has

been trained, the output of function p(.) can be interpreted as

an indicator of the classification confidence. Thus, a probability

value of 0.5 indicates that the classification model is uncertain
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FIGURE 5

An illustration of the steps followed for automatic motion segmentation. In step 3., the green region corresponds to the execution of the motion

primitives and are analyzed. The gray region corresponds to the participant moving back to their start positions and are not analyzed.

FIGURE 6

Data processing pipeline. We obtain marker-based kinematic data and process it using OpenSim to compute joint kinematic and dynamic

trajectories. This is followed by extraction of energy-based features.

regarding its prediction, while values closer to 0 or 1 indicate high

model confidence.

2.7.2. Support vector machine with a linear kernel
SVMs learn a linear classification hyperplane that can separate

the positive and the negative class such that the margin for

separating these two classes has the maximum distance. While

SVM is a non-parametric method and typically remaps the input

feature space to an infinite dimensional latent space when using

complex kernels (Bishop and Nasrabadi, 2006), in this work, we

use a linear kernel, that effectively translates to learning the model

parameters w, b by minimizing the Hinge Loss, that is given

as follows:

L(w, b|D) =

NDtr
∑

i=1

yi
1

2
wTw + α

NDtr
∑

i=1

max(0, 1− yi(w · φ + b)) (4)

where α is a regularization parameter.
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FIGURE 7

The CAE feature matrix. The rows depict the 10 DoFs and the

columns depict the feature types. Each cell in the matrix

corresponds to a feature.

2.7.3. Training hyper-parameters
Our proposed models with energy based features are both

trained for 5, 000 iterations. The SVM model is trained with a

squared-hinge loss and L2 penalty, while the LR model is trained

with an LBFGS optimizer that minimizes the L2 -penalized cross-

entropy loss described in Equation 4.

2.8. Identification of compensating joint

We propose to identify the compensating DoFs by exploiting

a feature vector corresponding to each DoF independently. Given

the parameters of the Ridge Regression model {w, b}, where w =

{wd}
40
d=1

is the set of weights with a one-to-one correspondence

with the elements of the feature matrix φ, we sort the list of 10 DoFs

based on the corresponding weight-feature product given by:

ψj = wj,Jerkφj,Jerk + wj,Powφj,Pow + wj,Effφj,Eff + wj,TRφj,TR (5)

for the j-th DoF. If the class predicted by a trained model

is “Compensated”, the DoF corresponding to the most negative

weight-feature product contributes the most to that classification.

This can be seen in Equation 2 which shows the linear combination

of the weights and features per DoF determines the classification

prediction by the model.

2.9. Online feature extraction and
classification

For online classification, we must calculate the CAE

features in an online manner from the input stream of

joint kinematic and dynamic data. As noted in Section 2.5,

creation of CAE features includes an aggregation process that

presupposes the availability of segmented motion primitives.

Therefore, similar to Section 2.3, we employ automated

motion segmentation using zero-crossings of the end-effector

velocity to extract goal-directed motion primitives from the

trajectory. However, since for online classification, data is

processed as a stream, and the full trajectory is revealed to

us frame-by-frame, automatic segmentation is reapplied at

regular intervals to update motion-primitive locations. The

procedure for online segmentation is given as follows: (i)

Maintain a history of Thist previous observations of joint

kinematics and dynamics, i.e {qt , q̇t , q̈t , τ t}
Thist
t=1 as well as marker

positions {mt}
Thist
t=1 . (ii) At regular intervals, recalculate the

zero-crossing points from the marker history as well as

update the observation history. (iii) Use the last observed

zero-crossing point as the beginning of a motion primitive for

calculating CAE features at time step t as described in Section

2.5.

2.10. Baseline models for comparison

We compare our approach of training the SVM and LR

linear classifiers with energy-based features against 2 other baseline

models. The first is an MLP with 2 hidden layers and 10 neurons

in each layer. The second baseline is an LSTM with 2 hidden

layers with 50 neurons each. Both architectures were employed

in recent works for classification of compensatory motion (Zhi

et al., 2017; Lin et al., 2021) and have served as baselines for

other works that use deep learning architectures for analysing

human motion data (Azmi and Sulaiman, 2017; Rustam et al.,

2020; Wan et al., 2020; Ahad et al., 2021; Yao et al., 2021;

Yu et al., 2021). LSTM, in particular has been considered to

be suitable for modeling temporal processes, both in context

of compensation detection as well as other domains. Since our

objective is to demonstrate that exploiting prior bio-mechanical

knowledge via energy-based features has competent performance

to automatic feature extraction via deep neural networks, the input

to our deep neural network baselines are joint-kinematic and

dynamic trajectories [similar to Zhi et al. (2017)]. We use a sliding

window of size s and an overlap of s − 1 frames to create input

vector at time-step t of size s × 4 × NJ . This is aligned with

previous approaches which also look at a fixed-length window of

data that slides along the trajectory, both for generating training

datapoints and at test-time, for online classification (Zhi et al.,

2017; Lin et al., 2021). Window length s was determined to be 100,

corresponding to 1.0 seconds for MLP and 20, corresponding to

0.2 seconds for LSTM using grid-based hyper-parameter search.

Further, the number of neurons in each layer of MLP and

LSTM was also determined by using grid-based hyper-parameter

search.

2.10.1. Input normalization
Similar to the CAE features, before the input is accepted by

either of the classification models, it is normalized using min-

max scaling. Normalization is done independently for each fold of

evaluation similar to the feature normalization for our proposed

approach (Section 2.5.1).
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2.11. Evaluation criteria

2.11.1. Evaluation metrics and cross-validation
We evaluate our proposed approach against other approaches

with three performance metrics - mean brier score, mean miss-

classification rate and mean false discovery rate. Brier Score (BS) is

used to measure the quality of uncertainty estimation of the model

and can be formulated as BS = 1
N

∑N
i=1 yi − p(φi) where N is the

size of the set over which BS is being calculated. A small value for

BS indicates that the classification model is well calibrated. Miss-

classification rate (MCR) measures the proportion of true class

examples miss-classified as the other class. Note that MCR = 1 −

recall, which is another popularmetric for quantifying classification

performance. Finally, false discovery rate (FDR) is calculated as the

proportion of true class predictions that are incorrectly classified.

We note that FDR = 1 − precision. Smaller values for each of

these metrics (BS, MCR, FDR) is indicative of good classification

performance.

All performance metrics are calculated for samples belonging

to each class separately and take the mean. This is done to

counterbalance the class-imbalance in the dataset which occurs

since more acted compensation trajectories are collected than

healthy trajectories.

Cross-validation for all evaluations is performed with leave-

one-out approach (LOOCV), in order to ensure that we do not

overfit to the test dataset (Cawley and Talbot, 2003).

2.11.2. Significance testing
We additionally report the significance of classification

performance among different methods. While it is common to

use McNemar’s test for this purpose, we cannot directly apply

it on our test datapoints since they constitute different time-

steps of the same trajectory and can be highly correlated, thus

violating the independent samples assumption of the test. As

a result, we instead use voting to aggregate the predictions at

trajectory level where possible (model comparison and ablation

study) and apply the Bonferroni-Holm correction to adjust

the p-values whenever we conduct multiple comparisons. We

deem the results to be statistically significant if p < 0.05. For

each of the comparisons, we report statistics in the following

format, χ2(degrees-of-freedom,N = number of samples) =

value of statistic, p < 0.05 or p > 0.05.

Unfortunately, when assessing online classification

performance, the test outputs always correspond to fractions

of the same trajectory since the purpose of the experiment is

to test the model performance on streaming data. This violates

the independence assumption of McNemar’s test. Consequently,

significance testing with McNemar’s test could not be conducted

for this experiment.

TABLE 2 Comparison of model performance using three metrics whose

mean and standard deviation over all the test-folds generated using

LOOCV are reported.

Model Brier score Mis-
classification

rate

False
discovery

rate

MLP 0.191± 0.05 0.332± 0.092 0.221± 0.094

LSTM 0.230± 0.109 0.270± 0.122 0.281± 0.169

SVM 0.119± 0.093 0.151± 0.124 0.177± 0.103

LR 0.119± 0.060 0.137± 0.072 0.194± 0.089

The bold entries indicate the smallest mean and corresponding standard deviation in

the column.

3. Results

3.1. Model comparison

We compare the performance of our linear classifiers

(SVM and LR) trained with energy-based features on the

baseline deep learning models MLP and LSTM trained on raw

observations (See Section 2.10 for a detailed description of the

baseline models).

As indicated in Section 2.11.2, we use voting to aggregate the

predictions at trajectory level to calculate the average performance

metrics (Table 2). LR achieves the lowest mean mean BS (0.119)

and MCR (0.137) amongst all the models. SVM has the lowest

FDR (0.177). The highest mean BS (0.230) and FDR (0.281)

is obtained by LSTM and the highest mean MCR (0.332) is

obtained by MLP.

Furthermore, we conduct McNemar’s test to assess the

significance of model performances. LR significantly outperforms

MLP, χ2(1,Nk = 600) = 8.51, p < 0.05, as well as LSTM,

χ2(1,Nk = 600) = 5.78, p < 0.05. No significant differences

were found between the classification performance of SVM and LR,

χ2(1,N = 600) = 5.54, p > 0.05. SVM significantly outperforms

MLP, χ2(1,N = 600) = 23.36, p < 0.05, and LSTM, χ2(1,N =

600) = 17.69, p < 0.05. Finally, the classification performance of

MLP was not found to be significantly different from that of LSTM,

χ2(1,N = 600) = 0.653, p > 0.05.

We additionally report averaged balanced accuracy (i.e the

mean of “Healthy” and “Compensation” classification accuracies)

separately for each temporal inter-quartile-range of the trajectory

where the temporal-quartiles describe the fraction of the trajectory

covered. These results are categorized by type of motion primitive

and illustrated in Figure 8. Balance accuracy (BA) for each bin B

with NBheal healthy datapoints and NBcomp compensatory datapoints

is calculated as:

BA =
1

2

(

∑NBheal
i=1 |φ

Bheal
i classified as “Healthy”

NBheal

+

∑NBcomp

i=1 |φ
Bcomp

i classified as “Compensatory”

NBcomp

)

3.1.1. Online classification results
We validate our proposed method for online feature extraction

and classification in this section. Our test data for each
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FIGURE 8

Balanced accuracy computed via LOOCV for various models as one progresses along the trajectory horizon for various pre-segmented motion

primitives. The color gradient of the bars indicate the average model confidence at the corresponding time-step of the trajectory.

TABLE 3 Comparative performance of di�erent models on online classification tasks.

Brier score Misclassification rate False discovery rate

MLP 0.199± 0.047 0.298± 0.066 0.299± 0.065

LSTM 0.217± 0.059 0.328± 0.080 0.342± 0.068

SVM (fixed-seg) 0.188± 0.036 0.233± 0.072 0.313± 0.036

LR (fixed-seg) 0.169± 0.056 0.223± 0.075 0.302± 0.039

SVM (auto-seg) 0.154± 0.05 0.171± 0.085 0.237± 0.048

LR (auto-seg) 0.134± 0.075 0.168± 0.085 0.228± 0.051

The mean and standard deviation of three evaluation metrics over the folds of LOOCV are reported here. The bold entries indicate the smallest mean and corresponding standard deviation in

the column.

fold from LOOCV comprises of the continuous trajectories of

repeated motions (healthy or compensatory) collected from the

corresponding “Left Out” participant before the data-processing

step of automatic segmentation. We process the whole continous

trajectory frame-by-frame at the rate of 100 Hz for both our

energy-based linear classifiers, as well as the baseline methods

(MLP and LSTM). Thus at each time-step t, we have access

to only the first t frames. We use the method proposed in

Section 2.9 for automatic segmentation and online extraction

of the CAE features. We contrast the method proposed for

online feature extraction in Section 2.9 with a simple method

that assumes that all the non-segmentable motion primitive have

a length of 1 second and are contiguous. In the case of the

deep learning baselines MLP and LSTM, we use a First In First

Out (FIFO) buffer for obtaining the windowed input. These

buffers have the same length as the sliding windows used for

training the models. Thus, s = 100 (corresponding to 1.0

seconds) for MLP and s = 20 (corresponding to 0.2 seconds)

for LSTM.

Thus, for all the approaches, we obtain a predicted class

for each time-step of the trajectory. However, during the

calculation of evaluation metrics, we exclude test datapoints

that correspond to the portion of the trajectory where the

participant is returning to the start position after executing

the motion primitive since participants are not explicitly

asked to follow any protocol during this portion of the

motion. We report our results in Table 3. Our experiment

shows that when automatic segmentation employed, our

method (LR (auto-seg) achieves the lowest mean BS (0.134),

MCR (0.168), and FDR (0.228). The highest mean BS

(0.217), MCR (0.328), and FDR (0.342) is achieved by

LSTM.
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3.1.2. Uncertainty estimation comparison
In addition to model accuracy, the quality of uncertainty

estimation is also an important factor for measuring the

performance of classification models. As discussed previously, BS

is one approach toward quantifying model uncertainty estimation

performance and has been reported for various models in

Tables 2, 3. We additionally provide qualitative results in the

Figure 9 in the form of calibration plots. We note that while

none of the models are perfectly calibrated, SVM and LR,

both of which use CAE features, are the closest to the ideal

classifier.

3.2. Compensating joint identification

In this section, we show qualitative results for the identification

of compensating joints in Figure 10. All the sample trajectories

shown in the Figure belong to the “Compensated” class and were

randomly sampled from the same class. However, note that despite

this, some of the early frames of the motion are classified as

“Healthy”. Since all our test trajectories begin with a healthy pose,

this result is in accordance with our expectations. We note that the

weight-feature product also potentially provides an interpretable

way of identifying the compensating joints as well as the relative

degree of compensation. The more negative the weight-feature

product corresponding to a DoF, the more likely it is that the DoF

is contributing to a compensation classification.

3.3. Ablation study of feature aggregation

Lastly, we conduct an ablation study of the feature aggregation

step (Section 2.5) for LR models to evaluate the benefit of

aggregating the trajectory features until current time step t with

an averaging function. We compare our proposed aggregation

mechanism against other feature aggregation mechanisms,

including no aggregation, where no feature aggregation is

performed, and windowed aggregation, where instead of

calculating the cumulative average, the final feature at each

time step t is calculated as the average of the feature values over a

window of size s ∈ {20, 100} centered at time step t, corresponding

to 0.2 and 1.0 seconds respectively.

Similar to Section 3.1, we use voting to aggregate the

predictions at trajectory level to calculate the average performance

metrics (Table 4). Using CAE features yields the lowest mean MCR

(0.137) and lowest mean FDR (0.194). The lowest mean BS (0.110)

is achieved by using features averaged over a 1 second long window

i.e, “Windowed Avg Feature (1s)”. Models that donot use any

feature aggregation yield the highest mean BS (0.168), highest mean

MCR (0.229), and highest mean FDR (0.286).

Statistical testing with McNemar’s test reveals that models

trained with CAE features significantly outperform models that do

not use feature aggregation, i.e., “Without Feature Aggregation”,

χ2(1,N = 600) = 65.29, p < 0.05, as well as models using features

averaged over a 0.2 seconds long window i.e, “Windowed Avg

Feature (0.2s)”, χ2(1,N = 600) = 65.29, p < 0.05. However, the

McNemar’s test is unable to show a significant difference between

the classification performances of models using CAE features and

models with features averaged over a 1 second long window i.e,

“Windowed Avg Feature (1s)”, χ2(1,N = 600) = 0.02, p > 0.05.

Among other comparisons, models with “Windowed Avg Feature

(1.0s)” significantly outperformmodels trained on “Windowed Avg

Feature (0.2s)”, χ2(1,N = 600) = 34.68, p < 0.05, as well

models trained without feature aggregation, χ2(1,N = 600) =

69.89, p < 0.05. Finally, models with “Windowed Avg Feature

(0.2s)” significantly outperform models trained without feature

aggregation, χ2(1,N = 600) = 30.04, p < 0.05.

4. Discussion

The aim of this work was to validate a novel approach for

automatically detecting compensation strategies with an analytical

capability from the kinematic and dynamic trajectory of a motion.

For this purpose, we trained a linear classifier on energy-based

features. In order to identify the individual joints contributing

to compensation, these features were calculated independently

for each observable DoF in the distinct segments of the upper

body. Temporal information was encoded by aggregating the

energy-based features along the input trajectory using cumulative

averaging. Two typical methods for learning the linear classifier,

namely SVM and LR were investigated.

Our proposed method was validated on a dataset of 5

motion primitives collected from 6 physiotherapists with healthy

movements as well as acted compensations. This allowed us to

collect a larger variety of compensatory behavior as observed by

experienced physiotherapists in contrast to simulating just three

types of compensatory behaviors (Zhi et al., 2017). Furthermore,

previous approaches (Zhi et al., 2017; Cai et al., 2019; Ma et al.,

2019) only collected a dataset for uni-manual reaching tasks. In

contrast, we record the motions for a bi-manual task (lifting a tray),

as well as tasks requiring pronation and supination.

We compared our method against two deep learning baselines

MLP and LSTM (Section 2.10) that can perform automatic

feature extraction, and have been used in previous approaches for

compensation detection (Zhi et al., 2017; Khoramdel et al., 2021;

Lin et al., 2021).

Comparison of evaluation metrics (Table 2) and statistical

testing with McNemar’s test (Section 3.1) showed our methods

(LR and SVM) significantly outperformed deep learning baselines,

namely MLP and LSTM. In contrast, in Zhi et al. (2017),

classification performance of LSTM was noted to be similar for

healthy participants and better for stroke patients compared to

SVM (without energy-based features). Our results thus indicate

that including prior biomechanical information in the form

of energy-based features can allow for superior classification

performance compared to deep learning approaches, even when

simple linear classification methods are used. These results are very

promising since both baseline models that exploit deep learning

have a larger number of trainable parameters by design and are

therefore susceptible to overfitting to the training data (Bishop and

Nasrabadi, 2006).

We additionally validated our proposed online classification

mechanism. Table 3 showed that our proposed methods, LR and

SVM models yielded lower values of mean BS, MCR and FDR
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FIGURE 9

Calibration plots demonstrating the quality of uncertainty quantification by various models for the 5 di�erent movement primitives. The closer the

plot is to the ideal classifier, the better the uncertainty estimation quality of the model.

FIGURE 10

Examples of compensating joint identification using the LR classification model for various tasks with acted compensations are shown. The model’s

classification prediction is indicated along with the model confidence score. The joints that contribute to the classification “Compensatory” in last

frame of the sequence are shown in the last column along with their corresponding weight-feature product. The more negative the value for this

product is, the greater the possibility that the corresponding joint is being used for compensation. Positive values of this product indicate that the

corresponding joint is used in typical movements.
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TABLE 4 Results from the ablation study for determining the best aggregation over features.

Feature aggregation mode Brier score Mis-classification rate False discovery rate

Without Feature Aggregation 0.168± 0.034 0.229± 0.059 0.286± 0.03

Windowed Avg Feature (0.2s) 0.140± 0.039 0.188± 0.048 0.260± 0.038

Windowed Avg Feature (1s) 0.110± 0.051 0.138± 0.079 0.202± 0.091

Cumulative Avg Feature 0.119± 0.060 0.137± 0.072 0.194± 0.089

The mean and standard deviation of all three metric values are calculated over LOOCV folds. The bold entries indicate the smallest mean and corresponding standard deviation in the column.

compared to LSTM. Furthermore, these models yielded lower

values of mean BS and MCR; and lower or similar values

of FDR compared to MLP. In practice, lower values of these

metrics corresponds to better classification performance. This

indicates that, equipped with energy-based features, models with

less trainable parameters such as LR and SVM can perform

online classification for compensation detection as well as deep

learning-based models that have considerably more parameters.

Since training time scales with the size of the model, and can

consequently impact online classification computation time in

cases where model retraining is needed (such as continual learning

Hadsell et al., 2020), this is a promising result.

Within the context of online classification, we studied two

different methods for online segmentation of motion primitives

for calculating CAE features. Our preferred method, automated

motion-primitive segmentation using zero-crossing of velocities

(Section 2.3) achieved lower values of BC, MCR, and FDR

compared to a method that assumes the full motion to be

composed of contiguous segments, each with a fixed length of

one second. However, the method that we use for automated

motion-primitive segmentation can be limited in its applicability

since it strongly depends on how cleanly the movement data

is separable into primitives by instances of zero velocity, which

is not always possible in real scenarios. In a real-world setting,

natural human movements may contain hesitation and noise,

and therefore multiple points of zero-crossing velocities can be

observed, despite not corresponding to the actual beginning

or end of a motion primitive. In such situations, assuming a

fixed segmentation-length for the calculation of CAE features

can still give acceptable results. Many additional methods exist

for primitive motion segmentation in literature. For instance,

Barbič et al. (2004) uses probabilistic principal component

analysis to track changes in the motion distribution and find

segmentation points; Beaudoin et al. (2008) uses k-Nearest

Neighbors to cluster individual motion frames, associate different

clusters with a unique symbol and subsequently partition the

complete movement based on identification of different cluster

sub-sequences; Kulić et al. (2012) uses clustering and hidden

markov models (HMM) for online segmentation; and Zhou et al.

(2022) uses transfer learning to learn a segmentation model from

related motion data that already has segmentation labels. We

leave the investigation and validation of these methods and their

robustness to real-world noisy data for compensation detection to

future works.

Our proposed approach for compensation joint identification

(Section 2.8 and Figure 10), potentially provides a straightforward

and interpretable way of identifying compensating joints, as well

as the degree of compensation being performed without having

to rely on detailed-annotations of compensation locations as

opposed to previous approaches (Zhi et al., 2017; Cai et al., 2019;

Ma et al., 2019; Kashi et al., 2020). Visual verification of the

randomly sampled trajectories in the figure indicates the method

can successfully identify the compensating joints. However, this

result is only a qualitative observation since the ground truth

labels for loci of true compensation were not a part of the dataset

annotation. Full validation of this technique via collection of

annotations for a validation set and comparison of the prediction

results with the same is left to future work.

We additionally investigated the impact of trajectory progress

toward the final kinematic pose on classification accuracy and

model confidence. Our analysis in Figure 10 indicates that model

confidence tends to increase as the time step t of the trajectory

progresses. This is more clearly observed in Figure 8 at a

macro level, where both the model confidence and accuracy

tends to increase as the trajectory progresses for all the model

architectures we studied. However, we also noted that for most

cases, model accuracy reached higher magnitudes earlier for

linear classification models (LR and SVM) compared to the deep

learning baselines (MLP and LSTM). We believe that this is

owed to including prior biomechanical information in the linear

classifiers inputs in form of energy-based features, which, as we

have already shown in Section 3.1, outperform baseline deep

learning methods.

Regarding model performance across various tasks, the analysis

presented in Figure 8 indicates that classification accuracy is

relatively lower for bimanual tray lifting compared to other

tasks. This suggests that the difference between healthy and

compensatory behavior in terms of joint kinematics and dynamics

during bimanual motions is inherently dissimilar to that during

uni-manual motions. If that is the case, ensemble-based models,

where each model is trained to identify compensations for

individual task types can be used. However, additional data

and analysis is required for a thorough investigation of this

dissimilarity.

We also studied model confidence more closely in calibration

plots shown in Figure 9. Both a qualitative review of these results

along with the BS reported in Tables 2, 3 show that LR and SVC

models are better calibrated than the deep learning-based MLP and

LSTM models. This implies that the uncertainty values estimated

by our linear classification models is more reliable than those

predicted by the deep learning baselines. This result is consistent

with previous literature which link overfitting (more commonly

observed in deep neural networks) to uncertainty calibration (Guo

et al., 2017; Mukhoti et al., 2020).
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Lastly, we conducted an ablation study to determine the best

mode of feature aggregation. We found that models trained with

CAE features significantly outperform models trained without

feature aggregation or with features averaged over a sliding window

of size 0.2 seconds. We speculate that the success of CAE features

can be attributed cumulative averaging of the features over the seen

trajectory, which helps encode the trajectory history in the feature

and leads to better classification. We note however, that averaging

features over a larger window (with length 1 second) does not lead

to a significantly different classification performance than using

CAE features. A possible reason could be that a window of length 1

second is able to capture enough temporal information for accurate

classification. However, the window size is still an additional hyper-

parameter to be optimized when the mode of feature aggregation

is chosen to be averaging over a fixed length window. In contrast,

using CAE features does not require any such hyper-parameter

optimization.

While this study proposes a novel method for compensation

detection and compensating joint identification from sparse

labels, which, to our knowledge has not been explored

before in literature, it also has a few limitations that

must be considered during application of this approach,

and can be improved upon in future extensions of this

work.

Even though all of our participants, being experienced

physiotherapists, are familiar with common compensation

strategies and drew from experience while simulating compensated

motions, variability of compensation strategies in patients

can be higher since multiple factors, such the stroke severity

(Levin et al., 2016) and fatigue (Zhi et al., 2017) and their

combinations can affect the type and degree of compensation

employed in different ways. Compensations arising from

milder impairments may be only slightly discernible and

consequently harder to classify (Zhi et al., 2017). Future

work will therefore explore the robustness of the methods

established in this approach on motion data collected from

patients.

Furthermore, this study comprised of analysing 5 motion

primitives, most daily living tasks are much more complex and

are composed of different primitive motions. We will therefore

verify the robustness of this approach on a dataset of more complex

motions in the future.

Additionally, this work strictly imposes the condition of

calculating features that are independent for each observable

DoF in order to infer compensating joints. However, low

coordination between 2 or more DoFs has also been noted to

be an indicator of compensation (de Los Reyes-Guzmán et al.,

2017). Thus, incorporating features measuring joint-coordination

such as movement correlation (de Los Reyes-Guzmán et al.,

2017) can be a promising line of investigation for subsequent

studies.

Finally, the problem of compensation detection from

kinematic data is closely related to other applications for

human motion classification such as human activity recognition

Vrigkas et al. (2015) and gait analysis Yao et al. (2021). Many

of these works therefore deal with similar challenges, such as

processing temporal data, online classification and multilabel

classification. Consequently, future works can also investigate

novel solutions from these works for compensation detection.

For instance, Chamroukhi et al. (2013) proposed a method for

automated motion segmentation for human activity recognition

using expectation-maximization and HMM which can also be

investigated for online classification using our approach; and Yao

et al. (2021) combined different temporal features such as time-

domain, frequency-domain and wavelet-domain based features for

gait analysis which can also be used to extend the CAE feature set

proposed in this work for compensation detection.

5. Conclusion

Reliable identification of compensatory strategies in post-

stroke patients is crucial for the long-term recovery of the

patient. Current methods rely on densely annotated training

datasets that can be cumbersome to acquire. To mitigate

this, we propose to train a linear classifier with energy-

based features that can automatically classify disjointed

motion primitives as healthy or compensatory in addition

to identifying the compensating joints from sparsely labeled

training data. We acquired a dataset of 5 motion primitives

including bimanual lifting and uni-manual reaching tasks

executed by 5 healthy physiotherapists multiple times, both

with and without simulated compensations. The methods

proposed in this were validated on the aforementioned dataset

using leave-one-out cross validation and outperformed deep

learning-based methods that are parameter heavy and are

more difficult to train. Future studies will verify the methods

proposed in this work on data collected from actual stroke

patients.
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