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Abstract: Complex casting parts rely on sand cores that are both high-strength and can be easily
decored after casting. Previous works have shown the need to understand the influences on the
decoring behavior of inorganically bound sand cores. This work uses black box and explainable
machine learning methods to determine the significant influences on the decoring behavior of
inorganically bound sand cores based on experimental data. The methods comprise artificial neural
networks (ANN), extreme gradient boosting (XGBoost), and SHapley Additive exPlanations (SHAP).
The work formulates five hypotheses, for which the available data were split and preprocessed
accordingly. The hypotheses were evaluated by comparing the model scores of the various sub-
datasets and the overall model performance. One sand-binder system was chosen as a validation
system, which was not included in the training. Robust models were successfully trained to predict
the decoring behavior for the given sand-binder systems of the test system but only partially for the
validation system. Conclusions on which parameters are the main influences on the model behavior
were drawn and compared to phenomenological–heuristical models of previous works.

Keywords: casting technology; inorganically bound sand cores; decoring behavior; artificial neural
networks; XGBoost; SHAP

1. Introduction
1.1. Motivation and Context

Complex cast parts require lost cores to form undercuts and cavities. Filigree cores
need high strength to withstand the casting process and make them dimensionally stable.
However, they have to be removable after casting. Inorganically bound sand cores have
environmental advantages compared to organically bound sand cores [1]. However, unlike
organically bound cores, inorganically bound cores cannot be completely rinsed out or
burned out. They need to be broken up by a mechanical impulse on the surrounding cast
part and thus are significantly harder to decore than organically bound sand cores [1].
Additionally, if the cores are too strong, the forces required to break them up deform the
cast part. These issues can be addressed by changing the sand-binder systems’ chemical
composition and manufacturing process. The acting influences on the decoring properties of
inorganically bound sand cores must be understood to achieve these changes systematically.
Ettemeyer [2] investigated these influences for the decoring behavior, collecting extensive
experimental data. These data were used to capture cause–effect relations and to validate
aspects of a formulated theory for the decoring behavior. This theory claims that the
decoring behavior can be predicted by various key parameters of the sand-binder system
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of which the core consists and of the decoring process. Ettemeyer used heuristical and
phenomenological methods for the prediction of decoring behavior. This work uses purely
data-based machine learning models to predict the decoring behavior based on the same
experimental data of the mentioned work. Additionally, the importance of various features
for the machine learning model prediction of the decoring behavior is evaluated. This
evaluation is achieved by varying the data composition for model training and using
interpretable machine learning techniques. The importance of the features according to the
machine learning models is then compared to the mentioned theory.

1.2. Decoring of Inorganically Bound Sandcores

Casting technology relies on sand cores to achieve complex, hollow structures with
undercuts and cavities [3]. The cores are used individually or are assembled into sand-
core packages. They are inserted into the mold. They must be held in position by core
holders in the surrounding permanent or sand mold. The sand core stands out of these
holding positions after casting and forms a connection to the cavity. This connection is
used to extract the sand from the formed cast part, which is the decoring process step. The
sand-binder system of the sand core determines which methods can be used to decore it.
Sand cores are classified into organically and inorganically bound sand cores [1]. Organic
sand-binder systems are based on hydrocarbons and can easily be burnt off. Most of the
decoring process is achieved during the casting process due to the heat of the melt. It cracks
the sand cores, burns parts of the binder, and allows shaking of the remaining sand out
of the openings. The downsides are environmental considerations of the toxic waste and
fumes produced during the burnup. Inorganic sand-binder systems use sodium-silicate to
harden sand cores. It lacks hydrocarbons and, with it, the downsides of toxicity. However,
it cannot be burnt off, and additionally, it hardens even more on the surface, which is in
contact with the melt [1]. The decoring of inorganically bound sand cores is their main
disadvantage. There are multiple approaches to change the properties, for example, adding
additives or changing the ratio of binder to sand [4].

At the same time, research focuses on understanding the decoring behavior of inor-
ganically bound sand cores [5]. Ettemeyer [2] describes the essential parameters to predict
the decoring behavior of a sand-binder system and builds a matching theory. According
to this theory, the flexural and compressive strength of the sand-binder mixture are the
main parameters. Another factor for predicting the decoring behavior is the hydrostatic
pressure on the sand core [6]. The cast part shrinks onto the sand core after casting, creating
pressure on the sand core. This pressure influences the force needed to fracture the sand
core. Starting from an initial fracture area, the decoring proceeds. The Drucker–Prager
failure model describes this theory, as shown in Figure 1.
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The failure straight is determined from a three-point bending test and a uniaxial com-
pression test. The cohesion and the internal friction angle phi describe the experimentally
calculated failure straight. If the von Mises equivalent stress for a prevailing hydrostatic
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pressure is above the failure straight, a fracture occurs in the sand core. The composition
of sand and binder defines the parameters of cohesion and phi. If these parameters of
a sand-binder system and the hydrostatic pressure state are known, the force needed to
fracture can be predicted. The following bullet points summarize our findings:

• The assumption of a pressure-dependent material model to describe sand-binder
systems is valid. It can be seen as essential for an accurate characterization of the
mechanical behavior of decoring.

• The decoring behavior of inorganically bound sand-binder systems is significantly
influenced by the molding material and the binder system used. The molding material
dominates the influence on the decoring behavior.

• Larger binder quantities can lead to higher residual strengths and correspondingly
poorer decoring behavior for the same molding material.

• Assuming constant decoring energy, the angle phi and the cohesion of the remain-
ing residual strength after casting are the two main influencing variables for the
decoring behavior.

1.3. Machine Learning Models

This work uses machine learning methods to model cause–effect relationships in the
context of decoring inorganically bound sand cores. There are various examples of gaining
insights from data in many technology areas, for example, material analysis [7], laser
beam welding [8], or injection molding [9]. The basic idea is to train machine learning
models using annotated data. The trained machine learning models are then evaluated
using statistical approaches or explainable model architectures. This work follows the
approach shown in [10,11] to use models such as extreme gradient boosting (XGB) with
the evaluation and visualization tool SHapley Additive exPlanations (SHAP) to interpret
datasets. Additionally, artificial neural networks (ANN), which are black box models, are
trained and evaluated using their achieved model scores. These are evaluated based on
their model scores. Both models—ANN and XGB—are trained for all datasets.

ANNs are well-suited for complex datasets. Due to their non-linear calculations, they
can abstract non-linear links between input and label. With multiple layers of neurons,
they can compute intermediate features from input data, performing a type of model-based
feature engineering, an example of which can be found in [12]. Their broad abilities render
them a standard tool in machine learning tasks. This advantage and their frequent use in
machine learning publications are why they are used in this work as well, making it easier
to compare the results to other works.

XGB models generate their predictions from ensembles of decision trees with low
depth. Decision trees are transparent, as it is possible to read out each node and its
decision. All decisions can be summarized and evaluated, for example, how often a feature
is used in the model for a decision in all trees or how much the loss is reduced by these
splits [13]. XGB has further advantages that make it a popular choice for machine learning
tasks [14], for example, as it is an ensemble method that can be parallelized, thus speeding
up calculations on multi-processer units, and can avoid overfitting by using different types
of regularization [15].

SHAP allows generating even more information from machine learning models such as
XGB. It uses game theory to calculate the average marginal contribution of each feature [16].
The general approach of SHAP is to leave one feature out of the model calculation and to
determine the remaining model error, which is repeated for every feature in the dataset used
by the investigated model. Lundberg and Lee developed the corresponding algorithm [17].
It allows the generation of various figures. This work uses its bee plot, which shows each
feature vertically in descending order of its contribution to the model. All datapoints are
depicted individually on a horizontal scale for each feature to illustrate the influence of
each feature on each datapoint. This allows for a dense overview of feature importance,
the identification of outliers, and an interpretation of the direction the features push at
each datapoint.
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1.4. Aim of This Work

Models can be categorized depending on the approach and the methods used. Figure 2
depicts a possible categorization of models [18]. Ettemeyer [2] used heuristical and phe-
nomenological approaches to build his theory of important parameters for decoring behav-
ior and predict new sand-binder systems’ decoring behavior. He collected an extensive
amount of experimental data during the progress. This work aims to replicate these re-
sults with a purely statistical approach using machine learning methods and the collected
experimental data. The new approach is evaluated by comparing which parameters are
important to predict decoring behavior according to the machine learning models and
according to Ettemeyer [2]. This results in three corresponding research questions:

• Is it possible to train robust machine learning models to predict the decoring behavior
of sand-binder systems using the given data?

• Which features are important for the decoring behavior according to the machine
learning models, and are those the same as described in the previous work?

• Is it possible to extract further, possibly new insights from the data using machine
learning models?
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All three questions are tested by a forwards–backward approach, as shown in Figure 3.
Machine learning models are trained and optimized using the whole experimental data or
subsets thereof. Depending on the resulting quality and behavior of the trained models, a
conclusion is drawn whether the used subset of data includes the necessary parameters or
not. A similar approach was used in [19], where insights into the main parameters of an
industrial hydrocyclone were determined.
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By optimizing the models, the likeliness increases that the differences in the model
quality of the prediction for different feature sets result from the different feature sets
and not from randomly better- or worse-fitting models. The second question formu-
lates a general comparison. To be able to answer it, it is transformed into five testable
specific hypotheses:

• Categorical features such as the name of the experimental series contain information
beyond the collected data, for example, a different room temperature level during the
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decoring process or slight but systematical differences in the clamping of the specimen.
Including these features in the model training will improve the model quality but
reduce the interpretability due to the aggregation of information into a single variable.

• The acceleration data contain important information for predicting the decoring be-
havior. Including it in the model training will improve the model quality.

• Different processing methods of the acceleration data are differently suited for machine
learning models.

• Including all features in the model training will reduce the model quality due to a
high data complexity without more information than in a reduced dataset. Reducing
the data complexity in multiple steps using a feature selection method will improve
the model quality for each dataset. At a given threshold, the model quality will drop
significantly and abruptly. All features included at that threshold can be considered
significantly important for the decoring behavior.

1.5. Approach and Big Picture

The following approach is used to achieve the described aim and test the hypotheses.
The basic idea is to use the behavior and quality of trained models to evaluate the feature
sets used. The models will predict the decoring behavior with some degree of deviation.
Varying the features selected from all the experimental data to train the model will result
in varying deviations in the model prediction. This variation can be used to compare
different feature sets for their information content. A feature set yielding a model with a
comparatively low deviation can be seen as containing more relevant information than a
feature set resulting in a higher error. By using a transparent machine learning model such
as XGB, further indications of the importance of features can be generated. Hypotheses
of which feature sets are more or less important to decoring behavior are formulated, and
datasets are composed accordingly. In all cases, the model quality has to be ensured by
optimizing the models and evaluating their robustness. Otherwise, an insufficiently trained
or non-optimized model is just as likely as an insufficient feature set.

The specific approach is summarized in Figure 4. First, the target feature has to be
defined. The possible alternatives are the measured decored mass after each interval and
the measured difference in the decored distance from both open sides of the rectangular
tube after each interval. Being easier to understand and easier to measure consistently,
the decored mass is defined as the target feature for the model training. Thus, the trained
models will predict the decored mass after each interval.

In step two, the ram-impact acceleration curves recorded with the laser vibrometer are
converted into scalar features. Three approaches are used for this: Fast Fourier transforms
(FFTs), mel frequency cepstral coefficients (mfcc), and a statistical evaluation of the signals
in the time domain. All three are typical approaches to translating signal curves into
features for machine learning methods. These characteristics are calculated individually
for all ram impacts and summarized for the respective interval. Section 3.1 explains the
exact calculations.

In step three, the division into datasets takes place. The original dataset with all
features is split according to the previously described hypotheses. The main reason for
this division of the data into feature sets is that the features in the data overlap in their
information content. For example, the sand-binder system’s name indirectly contains the
sand’s name, the binder’s name, the binder, the weight content of the binder in the mixture,
and their specific properties. It makes evaluating specific features more complicated. The
division into sub-datasets can reduce this effect but only negate it partially. The second
reason is the number of datapoints. Using all features simultaneously results in a dataset
with about as many or more features as datapoints. These kinds of sparse data can lead to
more overfitting during training. It can also obstruct the model training if the input vector
is overly large compared to the number of datapoints. The detailed data composition is
explained in Section 3.2.
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Step four is the first round of model calculations. As mentioned before, ANN and
XGB models are used. The used programming libraries are listed in Used programming
libraries of Appendix A. It is essential to try different model parameter sets and optimize
the models for each dataset. Without this step, the achievable model quality may depend
significantly on the chosen model parameters. Even with dataset-specific optimization,
this is always the case to some degree and must be considered in the interpretation. The
likelihood of overfitting is reduced by calculating each parameter set ten times with random
initializations. The average of these ten calculations is used as the final model score for a
given parameter set. The model quality metrics and their interpretation are explained in
Section 2.2. The meta code and further details of the calculations can be found in Section 2.3.

In step five, a data complexity reduction is performed. As mentioned, the ratio of
features to datapoints can be a crucial influence on model quality. Reducing the number
of features can lead to better-performing models despite losing some of the information.
There are multiple ways to reduce data complexity to achieve a high performance boost
without losing too much information. One way is to keep all features but reduce the
dimensionality by transforming the features into a new set of features, for example, using
principle component analysis. Another way is to select features based on calculated metrics,
for instance, feature importance values of a decision tree algorithm. This work uses feature
selection based on the feature importance values of the XGB models. For each dataset, the
XGB model with the lowest root mean square error (RMSE) is defined as the best-fitting
XGB model. The feature importance values of this model are used to select the features. The
percentage of features kept is called filter fraction (ff). A filter fraction of 100% is equal to
all features used to train a model. Twelve filter fractions are used, with 10% steps between
100% and 10%. Smaller steps are used between 10% and 1%. The final number of features
is rounded up to the next integer. Twelve datasets and twelve filter fractions result in 144
datasets used to train the models. Step six is to train and optimize ANN and XGB models
for the reduced datasets in the same way as in step four.

It is essential to test whether the differences in the results of the datasets are significant.
Other works used a two-sided Welch’s t-test to compare different models [20] and different
datasets [21]. Therefore, this work applies a two-sided Welch’s t-test with a 0.5 significance
level to test whether the results are significant. The test is performed for each dataset. The
overall best dataset is used as a comparison set. This work focuses on obtaining insights by
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comparing model results for different datasets, which is why the Welch’s t-test is performed
for the datasets and not explicitly between the ANN and XGBoost models.

Finally, the results of the two rounds of computation are visualized and discussed. The
corresponding hypothesis is evaluated based on the model quality that can be achieved in
each case. Plots of the model scores for varying filter fractions and selected parameters are
discussed to assess the robustness of the models and the likelihood that the model score is
a result of the feature selection and not of the model parameters.

2. Materials and Methods
2.1. Data Origin

The work of Ettemeyer [2] delivers the experimental basis of this work and the theory
for the comparison. Ettemeyer investigated seventeen sand-binder systems. The sand, the
binder, and the binder quantity varied for each system. A sequence of experiments was
carried out for each system. Figure 5 depicts the tested specimen. It represents a rectangular
bar of an inorganically bound sand core cast in a rectangular aluminum tube. It has two
open sides, with some of the sand core extending out of the surrounding aluminum tube.
The twelve specimens were carefully cut off from the casting system. The sand core was
not damaged significantly, and the shape was preserved in most cases. This work focuses
only on those kinds of specimens with undamaged or only slightly damaged specimens.
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Figure 6 explains the experimental process. The selected sand was molded into a sand
core with the selected binder amount and tempered. A varying share of the cores was tested
in this raw state, determining their raw flexural strength and raw compressive strength.
These tests were conducted at 25 ◦C, at 400 ◦C, at 600 ◦C, and at 750 ◦C. After a storage
period, twelve sand cores were placed in one circular mold in each casting session, with the
metal inflow located in the middle of the mold. The casting temperature of the aluminum
melt was 750 ◦C. The number of casting sessions and, thus, the number of specimens varied
for the various sand-binder systems. After an additional storage time, the specimens were
cut off from the casting system and were tested. Three kinds of tests were conducted. The
first test determined the sand cores’ residual flexural and compressive strength after casting.
To make the test possible, some specimens were cut open in a very low-impact way to
extract the undamaged sand core. These were destructively tested to measure the strengths
after casting. The second test yielded the residual stress configuration of the aluminum
tubes using strain gauges and cutting the cast part open near the strain gauges. These two
tests were only conducted for some sand-binder systems and are referred to as extended
features. The third test was the main decoring test. Figure 7 shows the decoring process.
The decoring was achieved by a ram impacting the specimen. A laser vibrometer measured
the velocity at a specific point of the specimen during each impact. The resulting velocity
curve was translated into an acceleration curve. The ram impacted the specimen until it
was fully decored. Figure 8 explains the division of the decoring process in intervals of ram
impacts. After each interval, the mass and the decored distance on both open ends of the
cast part were measured.
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Figure 8. Sequence of decoring and measurements of decoring progress.

The cohesion and the internal friction angle phi were calculated for all experimentally
determined compressive and flexural strengths and form part of the data input for the
machine learning models.

In summary, the data collected represents a dataset with over 400 intervals measured
and over 100 bars tested. The publication [2] describes the calculation of data, the quality
of the collected data, and the considerations underlying its selection in greater detail.

2.2. Used Model Quality Criteria and Their Interpretation

Three different model scores describe the model quality in this work. The mean
absolute error (MAE) is easily interpreted since it contains no non-linear transformation. It
scores how well a model predicts the target feature on average. Being a linear calculation,
it does not punish outliers in the prediction as the average levels them. Though always
calculated with scaled values, the MAE is always shown rescaled in its corresponding unit
in the Section 3). The root mean squared error (RMSE) is a double non-linear model score.
Its unit is the same as the target feature, but the scale shifts due to the non-linear calculation.
It loses interpretability, but generally, a low RMSE represents a more robust model than a
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low MAE since outliners are heavily punished. It is the main score for comparing models
in the presented work. In this work, a lower RMSE means a better model. All models
described as the best model of a series of calculations have the lowest RMSE for the test
data of these models. The third model score is the coefficient of determination (R2). It
measures how well a model fits the variation of the data. If the data are predicted perfectly,
R2 equals 1. If the resulting error of the prediction is the same as when using the mean of
the data, R2 equals 0. If the resulting error is worse than simply using the mean of the data,
R2 can become negative. Formulas 1 to 3 show the calculation of the scores, in which yi
represents the true value of a datapoint, ŷi the corresponding predicted value, and n the
number of datapoints:

MAE =
∑n

i |yi − ŷi|
n

(1)

RMSE =

√
∑n

i (yi − ŷi)
2

n
(2)

R2 = 1− ∑n
i (yi − ŷi)

2

∑n
i

(
yi − 1

n ∑n
i yi

)2 (3)

In the case of multiple randomly initialized calculation runs, the metrics are mean
values over all runs. Therefore, mean MAE and mean RMSE refer to these metrics averaged
over all runs. If a metric relates only to a single run, an additional marker is added, for
example, best RMSE.

Although the MAE is calculated with scaled parameters, it can be rescaled to its
original unit. Particularly meaningful is the relative MAE, which puts the MAE in relation
to the mean target value, in this case, the decored mass. Its formal calculation is depicted in
Formula 4. The results will show a mean, relative MAE, which is the MAE averaged over
all ten randomized runs of the calculation relative to the mean target value:

relative MAE =
MAE
1
n ∑n

i yi
(4)

2.3. Model Training Sequence

Figure 9 shows the training procedure as a pseudo-code. For both types of models,
hyperparameter optimization is performed for each dataset and filter fraction. Each pa-
rameter combination is computed with a different random seed ten times to avoid local
overfitting. This random seed influences the generation of the train–test splits and the
model initialization. The mean values of the ten calculations are used as comparison
values to determine the best parameter combination. The results of the best model of each
parameter combination are recorded as well.

Following the hold-out method, system D is kept from all model training and serves
as a validation set. These validation data provide a second check to see whether over-
fitting has occurred. System D is chosen as a validation system because it represents a
good tradeoff between having enough datapoints and a composition between the other
sand-binder systems.

Scaling is always fitted to the training set and applied to all three datasets. Min–max
scaling is chosen as the scaling method. Table A4 in Appendix A shows the filter fractions
and model parameters used. If multiple values are listed for a parameter, this parameter is
varied over these values as part of the hyperparameter optimization. For the XGB models,
the parameters eta, alpha, max depth, and parallel trees are varied. For the NN models, the
number of layers, the number of neurons per layer, and alpha are varied. This approach is
inspired by [22].
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Figure 9. Pseudo-code of the model training approach.

In the end, the results of 60,840 models were calculated for this work. This num-
ber does not include the number of models trained and evaluated to estimate the fixed
hyperparameters.

3. Results
3.1. Generated Experimental Database and Time-Series Processing

In this sub-chapter, the exact features are shown and explained in as much detail
as required for the scope of this work. For further details, the work of Ettemeyer [2]
can be consulted. Following this work, the data are structured into sand-binder systems,
specimen, and decoring intervals. System characteristics were determined for each sand-
binder system. Each specimen was decored after a finite number of intervals. Each interval
comprises between 10 and 80 ram impacts. It is fundamental for the discussion of the
feature importance to understand the relation between the different kinds of features and
the composition of the sand-binder systems.

This paper uses 8 of the 17 sand-binder systems investigated in work [2] for model
training. Nine are discarded due to an insufficient number of datapoints. Table 1 shows the
sand-binder systems used for model training and their compositions. R refers to “reference
binder”, and R_low to a binder with a lower modulus. The number of intervals and the
number of specimens in each system are listed as well. In the last row, it is marked whether
the previously mentioned extended features such as strain or temperature- depended
strengths were recorded for this system.

Figure 10 summarizes the data used to train the models. Corresponding to the ex-
perimental design described in Section 2.1, the parameters are grouped into six sources.
Tables A1–A3 in Appendix A give a complete overview of all the parameters used in the
training process. Additionally, they show their abbreviated names used in the SHAP plots.
The target value predicted by the models is the decored mass in a single decoring interval,
abbreviated as DM.
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Table 1. Sand-binder systems used in the presented work.

Sand-Binder Systems
Feature A B D L M N P Q

binder name R R_low R R R_low R_low R_low R
binder content 1.9 1.5 2.25 1.9 1.9 1.9 1.9 2.25

sand name H32 H32 F34 F34 H32 W65 F34 H32
number of

specimens tested 17 12 2 16 12 6 5 5

total number of
intervals

conducted
64 17 23 48 54 8 36 53

extended features yes yes yes no no no no no
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Figure 10. Summary of the available input data for the model training and its sources.

The original system features include 3 categorical, 73 scalar quantities, and 1 time
series. The categorical quantities describe the name of the sand used, the name of the binder
used, and the name of the sand-binder system in the experimental setup. Two different
binders and three different sands were used in the data used for model training. By using
different binder percentages, eleven systems were combined from these components. These
four features describe the composition of a sand-binder system and are therefore aggregated
features. They are referred to as “composition features” as the measured physical features
directly result from this composition. Of the scalar features, 41 are not used because they
represent the standard deviation or the number of measurements for a measurement such
as flexural strength. Five scalar features are not used because they represent an evaluation
of the target feature. They correlate linearly to the target feature. Six other variables have
only been measured for individual sand-binder systems and are discarded. Twenty-one
scalar features remain and are used to train the models, seven of which are available for all
sand-binder systems that are summarized as “basic features” and another fourteen that are
referred to as “extended features”.

This division leads to two basic datasets. The first dataset contains a maximum number
of datapoints and thus does not use the extended features. The second dataset uses the
maximum number of features with all extended features but not all datapoints. Using
both extremes makes it possible to evaluate the extended features without leaving the
large number of datapoints available for the basic features unused. Further parameters
were measured at the beginning of the interval in terms of mass distribution and decoring
progress. They describe the initial state of the decoring interval. The value range and
variation of the target value are essential to put the resulting model scores into context.
Figure 11 shows the evaluation of the target feature for the two base datasets.
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Figure 11. Box plots of the target value, separated for Dataset 1 and Dataset 2. Dataset 1 uses all
datapoints but less features and Dataset 2 uses all features but less datapoints. It lists the number of
datapoints (n) and the standard deviation (stdv) of each dataset. All numbers except the mean are
integer values, so no decimals are given.

The mentioned time series represents the acceleration at a defined point on the sur-
face of a specimen. The acceleration of the specimen is influenced by deviations in the
experimental setup, by variations of physical quantities such as rigidity, weight, shape,
and Young’s modulus of the specimen. The signal curves thus describe the sequence of
the decoring process in an aggregated manner. Three processing paths are carried out to
provide the information content for the models as well as possible in scalar characteristics:
Fast Fourier transforms (FFT), mel cepstral coefficient analysis (mfcc), and a time domain
evaluation. The first two are standard methods of transforming audio or vibration data
into scalar features. Analyzing the maxima and minima of the signal in the time domain
results in additional, easily interpretable features.

A trigger signal was recorded for the acceleration process, as shown in Figure 7. This
trigger signal is used to read out the number and duration of the impacts in the interval.
With this information, the signal was split into individual impacts. The length of the impact
signals was globally set to 200 ms by superpositioning all impacts. Figure 12 shows this
superposition of 10,988 impact signals. With the selected signal length, the signal is cut off
after the first post-oscillation. A constant signal duration and a constant sampling rate for
all ram impacts allow the summarization of the calculated FFT and mfcc values over the
impacts of an interval and to compare the resulting features between all intervals.

Table A3 in Appendix A summarizes the resulting features. The FFT calculated
4800 bins of 4 Hz width between 0 and 16,800 Hz. Each container is a feature used for
model training. The mfcc analysis was performed for five coefficients. Each coefficient was
summed over all time windows of the mfcc analysis to produce five quantities: Maximum,
minimum, mean, median, and standard deviation. The signal processing in the time
domains summarizes the maximum positive and negative accelerations of each hammer
blow. The maximum positive and maximum negative acceleration in an entire interval, the
sum and the mean value of the maximum positive acceleration of each hammer blow in
an interval, the sum and the mean value of the maximum negative acceleration of each
hammer blow in the interval, and the common absolute sum of all positive and negative
maximum accelerations in the interval were stored as features.
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3.2. Data Composition of the Twelve Datasets

As described above, using several datasets with different characteristics aims to
improve the interpretability of the results and test the defined hypotheses. For this purpose,
six subsets are formed for each of the two described base datasets. The first distinction
concerns the composition features. The second distinction involves the processing of the
signal data. The two base datasets contain all three processing methods. In addition, six
other datasets combine one of the two base datasets and one of the processing methods
each. These are intended to provide information about which of the signal-processing
methods is most useful for model building. Two additional datasets are created using
the base datasets with all signal features simultaneously. Table 2 lists all datasets and
their composition.

Table 2. All datasets with their composition, feature, and data count. “X” means these features are
included in the dataset.

Datasets Base
Features

Extended
Features

Aggregated
Composition

Features

Signal
Features

No. of
Features

Number of
Datapoints

DS 1 X none 10 280
DS 2 X X none 24 81

DS 3 X X none 24 280
DS 4 X X X none 32 81

DS 5 X all 4842 280
DS 6 X X all 4856 81

DS 7 X FFT 4810 280
DS 8 X X FFT 4824 81

DS 9 X mfcc 35 280
DS 10 X X mfcc 49 81

DS 11 X time-based 17 280
DS 12 X X time-based 31 81

3.3. Basic Model Scores for Unfiltered and Filtered Datasets

This chapter summarizes the model scores for all datasets, randomly initialized runs,
and validation data. All shown ranks are calculated according to the mean RMSE over
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the ten random initializations of one parameter set. The values are calculated based on
that dataset’s randomly selected 10% test data or the fixed-selected validation data. A filter
fraction of less than 100% means that a reduced feature set achieved the lowest RMSE for
that dataset. Due to the volume of results, the tabular overview can be found in Appendix A
in Tables A6 and A7.

As a point graph, Figure 13 shows the results for the three core metrics, mean RMSE,
mean MAE rescaled, and relative mean MAE. A linear connection line was added to
indicate the trend and connection of the points. The datasets are sorted by the achieved
mean RMSE of their best model in ascending order meaning the overall best model is on
the very left and the overall worst model on the very right. The integrated table depicts the
composition of each dataset. It also includes the filter fraction and model type of the best
model for each dataset.
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Figure 13. Main results of the model training by showing the best model of each dataset (DS). The
datasets are sorted by the achieved mean RMSE of their best model in ascending order meaning the
overall best model is on the very left and the overall worst model on the very right. The integrated
table depicts the composition of each dataset. “X” means these features are included in the dataset. It
also includes the filter fraction and model type of the best model for each dataset. The graph shows
the main model metric, the mean RMSE (circle). Additionally, it shows the best RMSE achieved for
the same parameter (triangle) and the best RMSE over all parameter sets and randomly initialized
runs (square). Furthermore, it shows the mean MAE (circle), rescaled and relative, as well as the
corresponding best-achieved value in the ten randomly initialized runs (triangle). All values are
calculated using the test data.
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The range of the mean MAE is between 5.9 g and 10 g, corresponding to a relative mean
MAE of 19% to 33%. The difference between the mean MAE and the best-achieved MAE
of the model depicts the variation and range of the MAE for the ten runs of a parameter
set. For the best-ranking models, this variation diminishes, which can be interpreted as a
parameter set resulting in a robust model.

The figure also includes the best run value for all three core metrics. The best run
out of the ten randomly initialized runs is defined as the one with the lowest RMSE.
Furthermore, for each dataset, the lowest achieved RMSE overall runs of all models was
added to illustrate the absolute minimum achieved for all datasets. An evident diminishing
variation for the best-ranking models can be seen. Additionally, it depicts the less robust
behavior of models for datasets with fewer datapoints, DS 2, 4, 6, 8, 10, and 12. Therefore,
some models achieved lower RMSE with the extended features of these datasets than the
best-ranking models according to the mean RMSE. However, the high difference to the
mean value indicates a high variation in the randomly initialized model runs and, therefore,
a less robust model. All four datasets that include FFT features yield the worst scores
for both kinds of datasets. All datasets except DS 3 profited from the reduction in data
complexity. No significant difference can be seen in the use of composition features for
both kinds of datasets.

Two more values extend the view of the model performance. The first one is the
mean MAE divided by the standard deviation of DM in the corresponding dataset, which
allows comparing the model performance to the variation of the target value. The standard
deviation and statistical evaluation of DM are depicted in Figure 11. The second one is the
coefficient of determination R2, which estimates the models’ level of abstraction regarding
the cause–effect correlations toward the target value. Figure 14 summarizes these metrics
for all twelve models shown in Figure 13 and adds the highest achieved R2-value by any
model for each dataset. DS 9 reaches the best R2-score for the models that performed best
on average, which is also the closest to its highest-performing model. This low deviation
between the best model on average and the best model overall indicates a robust parameter
set. DS 11, which uses time-based features, achieves the overall highest R2-score. However,
the difference between its mean best and overall best models is far higher than for DS 9. The
highest achieved R2-score for any model is above 0.75, contrary to the diminishing scores
shown in Figure 13. The increasing difference can be interpreted as less robust models.
The mean MAE of the models depicted in Figure 13 divided by the target value’s standard
deviation ranges between 0.34 and 0.57. All model prediction errors variate far less than
the target value in the datasets.
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Figure 14. Evaluation of R2 and the mean MAE compared to the standard deviation (stdv) of the true
values of DM. All values refer to the model predictions for the test data.
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Figure 15 illustrates the results for the validation data. Two sets of models are included.
The yellow, full line datapoints represent the same models as in Figure 13. The green,
separated line datapoints depict the model that achieved the lowest mean RMSE for each
dataset for the validation data. These are different models than those in Figure 13. The best
achieved RMSE of the ten random initialized runs is also included for both sets of models.
An extreme variation in the results can be seen for DS 4, where the difference between the
mean and best value is significant compared to the other datapoints. The same datasets
achieve the lowest mean RMSE as for the test data, only with slight differences. However,
all models perform far worse for the validation data than for the test data. They still show
that the same models performing best for the training data also achieved the best values
for the validation data. This fact indicates that these robust models can predict some of
the outcomes of the validation dataset. However, it can be suspected that they are missing
relevant information unique about sand-binder system D in the training process. On the
other hand, other models resulted in better predictions for the validation data. These
models were less accurate for the test data than the previously discussed models but have
generalized more information that allows for better prediction values of the validation data.
However, even these models are still significantly worse than the mean model scores for
the train data. In summary, the trained models are partially suited for the validation data.
Still, not all relevant influences on system D were included in the other systems used to
train the models.
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Figure 15. Main results for the validation data. The yellow, full line datapoints represent the same
models as in Figure 13. The green, separated line datapoints depict for each dataset the model that
achieved the lowest mean RMSE for the validation data. These are different models than in Figure 13.

Table 3 evaluates the results statistically, as described in the approach chapter. It lists
the average, the standard deviation, and the p-value obtained by the two-sided Welch’s
t-test for each dataset. DS 9 was used to evaluate the other datasets since it yielded the
best mean RMSE. The first test on the left of Table 3 was performed for the mean RMSE
calculated over the ten randomly initialized runs of all 507 parameter sets of each dataset.
A second Welch’s t-test was applied to gather more insight into the model behavior for the
optimized parameter sets by using only the mean RMSE of each dataset’s best 20 parameter
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sets. The resulting averages show a similar ranking as Figure 13 with only slight changes,
like for DS 3 and 11. All obtained p-values are far smaller than the threshold of 5%, with
the highest p-value of 6.63 × 10−4 for DS 3. Thus, the different results of the datasets are
statistically significant.

Table 3. Statistical evaluation of the twelve parameter sets. The p-value of a two-tailed Welch’s
t-test with a 0.05 significance level was calculated between each dataset and DS 9, which yielded
the overall best RMSE. The first three columns represent the evaluation of the mean RMSE of all 507
parameter sets of each dataset. The last three columns show the evaluation of the mean RMSE of the
best 20 parameter sets, which scored the best mean RMSE for each dataset.

All 507 Parameter Sets 20 Best Parameter Sets of Each Dataset
(According to Mean RMSE)

Datasets Average Standard
Deviation p-Value Average Standard

Deviation p-Value

DS 9 0.128 6.07 × 10−4 - 0.096 1.24 × 10−6 -
DS 1 0.138 6.12 × 10−4 3.08 × 10−10 0.100 2.76 × 10−7 1.97 × 10−14

DS 11 0.138 9.57 × 10−4 1.82 × 10−8 0.101 4.98 × 10−7 4.31 × 10−18

DS 3 0.134 8.85 × 10−4 6.63 × 10−4 0.100 1.49 × 10−7 2.15 × 10−14

DS 7 0.161 5.84 × 10−4 2.43 × 10−86 0.117 1.68 × 10−6 1.43 × 10−37

DS 5 0.161 5.50 × 10−4 1.67 × 10−84 0.119 1.23 × 10−6 7.83 × 10−41

DS 12 0.174 8.28 × 10−4 9.63 × 10−123 0.132 8.68 × 10−6 3.11 × 10−26

DS 10 0.179 6.70 × 10−4 2.97 × 10−157 0.137 5.05 × 10−6 8.84 × 10−34

DS 4 0.176 6.40 × 10−4 4.81 × 10−147 0.147 6.46 × 10−6 5.84 × 10−33

DS 2 0.177 5.92 × 10−4 3.43 × 10−152 0.148 3.77 × 10−6 2.65 × 10−40

DS 8 0.218 1.73 × 10−3 2.57 × 10−206 0.152 1.20 × 10−5 3.85 × 10−28

DS 6 0.220 1.56 × 10−3 1.61 × 10−222 0.156 3.29 × 10−6 6.30 × 10−45

3.4. Feature Importance Values

Figure 16 shows SHAP plots of the best XGB model for six datasets. The meaning
of the shortened feature names can be found in Tables A1–A3 in Appendix A. DS 1 in
Figure 16a contains only the base features. DS 3 Figure 16b contains the aggregated features
describing the composition of the sand-binder system. DS 7 in Figure 16c comprises the
base data and FFT features. DS 9 in Figure 16d uses the mfcc features, and DS 11 in
Figure 16e uses only the time-based signal features.

Interestingly, the XGB model for DS 11 achieving the lowest mean RMSE filters all
signal features and equals DS 1, which explains the same model scores for both datasets a
shown in Figure 13. The sieving percentage of the used sand is the most important feature
in all four plots. The sand mass, absolute and relative at the beginning of the interval, is
also an important factor. The flexural strength, cohesion, phi, and compressive strength are
also influential for all four models. The dataset using the mfcc features scores the lowest
mean RMSE. Accordingly, 5 of the 25 mfcc features are listed in the most important feature
plot. Figure 16b includes the sand-binder system names. In most cases, these aggregated
composition features influence only its corresponding datapoints. For example, feature
“system_N” has nearly no effect except on the datapoints belonging to system N, colored
red in the plot.
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line resulting in no change of the model output. The color of the dot represents the original feature
value for this datapoint relative to all datapoints: red equals high values; blue equals low values.
When many points are at the same SHAP value, they are stacked, making the horizontal line wider at
this value.

A further aspect is whether the most important features change with varying the filter
fraction, which is investigated by comparing DS 1, DS 3, and DS 9. The best model of DS 3
in Figure 16b has a filter fraction of 100%, meaning no filtering occurred. It is identical to
DS 1 in Figure 16a except for including the composition features. DS 1 has a filter fraction of
90%, meaning that nearly no feature reduction was performed. DS 9 in Figure 16e has the
overall best model score and a much lower filtering fraction of 40%. It contains the same
features as DS 1 and the mfcc signal features. For all three datasets, the resulting feature
importance is very similar. Even more so, the results for the models of DS 1 and DS 9
are identical. The complexity reduction does not affect the resulting feature importance.
DS 7 in Figure 16c seems to contradict this statement. However, aside from the many
FFT features, five of the same features as before are listed in the top influences. As DS 7
performed significantly worse than the other three datasets, it can be assumed that even at
4% filter fraction, the multitude of remaining FFT features led to a high content of noise in
its dataset, and the main information came from the same features as before.

3.5. Model Scores for Varying ANN Complexity

The number of neurons in total and the number of layers in an ANN influence its ability
to interpret complex data. The downside is that a larger ANN requires more datapoints;
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otherwise, overfitting becomes more likely. The RMSEs in Figures 17–20 are the mean over
all ten random runs for the best parameter set. Twenty-seven different ANN structures
were calculated for each parameter set. The layer sets can be grouped into three groups.
The first group consists of two layers, where both layers have the same number of neurons.
The second group also has two layers, with the second layer having half as many neurons.
The third group has three layers; the first two have the same number of neurons, and the
third has half as many. Figure 17 shows the absolute number of neurons in the ANNs,
which varied between values of 15 and 2000. Depending on the datasets, the RMSE of the
ANN models decreases with an increasing number of neurons until a threshold between 40
and 90 total neurons. After this threshold, the model quality variates too much to identify
whether the model quality is decreasing slightly or varying along a plateau. Figures 18–20
depict the same behavior as Figure 17 showing a threshold after which the RMSE does
not decrease significantly. All models trained with DS 5 and DS 7, which contain the FFT
features, systematically have a higher mean RMSE. The high number of features introduces
disturbance or noise than information. The points of the graphs resemble the best model,
using unfiltered and filtered data. Therefore, filtering did not reduce the noise enough to
achieve a benefit, even for more complex ANNs.
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Figure 17. Mean RMSE of best ANN parameter set vs. total number of neurons in the ANN.
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Figure 18. Mean RMSE of the best ANN parameter set. Number of neurons in layer 1 equals number
of neurons in layer 2.
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Figure 19. Mean RMSE of best ANN parameter set. Number of neurons in layer 1 is twice the number
of neurons in layer 2.
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Figure 20. Mean RMSE of best ANN parameter set. Layer 1 equals layer 2. Both are twice that of
layer 3.

3.6. Comparing ANN and XGB over Varying Filter Fractions

As mentioned in the explanation of the approach to this work, two different models
are used to predict the decored mass. Figure 13 already gives a first hint about their
corresponding performance. The XGB models achieved the lowest RMSE and generated
the best models for all except two datasets. Figures 21 and 22 allow a second perspective as
they show the mean RMSE plotted over the filter fractions for both kinds of models. The
values at 100% filter fraction can be used to compare the results of both models. The XGB
models demonstrate less variation in the model scores than the ANN models. Furthermore,
they indicate a clear preference for the light-colored datasets without extended features.
The ANN models achieve the best performance with the datasets without the extended
features but show less preference. ANN models demonstrate exceptionally high RMSE for
all datasets containing FFT features, especially compared to the XGB models. These score
worse values for the FFT features as well but less strongly than the ANN. With increasing
feature reduction, the ANN score improves more than the XGB scores. With increasing
feature reduction, the ANN score improves more than the XGB scores.
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Figure 21. ANN mean RMSE plotted over varying filter fractions. Light line colors represent datasets
without extended features; dark line colors represent datasets with extended features.
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Figure 22. XGB mean RMSE plotted over varying filter fractions. Light line colors represent datasets
without extended features; dark line colors represent datasets with extended features.

In summary, the best models of each type perform similarly. Nevertheless, the ANN
models have more difficulty handling the data and profit more from the complexity re-
duction. DS 6 and DS 8 profit the most from the data complexity reduction. Both datasets
contain a high number of FFT features. Interestingly, DS 5 and DS 7 do not show this
behavior to such a high degree. The explanation is the ratio of features to datapoints. DS 6
and 8 are extended-feature datasets with significantly fewer datapoints than DS 5 and DS 7.
Reducing the complexity allowed for a similar mean RMSE for all four datasets, despite
the difference in the number of datapoints. All models show a stagnating or decreasing
RMSE for reducing data complexity up to a given threshold. Going below this filter frac-
tion leads to a significantly higher mean RMSE. The features of the given dataset at this
filter threshold are important for predicting the decoring behavior. Dropping them from
the dataset reduces the model quality. Figure 16 shows the features in descending order
of importance. The features on top are, thus, the last to be dropped when reducing the



Appl. Sci. 2023, 13, 7948 23 of 31

filter fraction further. The number of features is always an integer and is rounded up as
appropriate. Especially for the datasets with few features, only a single feature remains
below single-digit filter fractions.

4. Discussion
4.1. Global Model Results

Figure 13 describes the datasets in descending order of their global rank. First, using
the rank and the ratio of the mean MAE to the mean target feature value, the five hypotheses
described in Section 1.4 are evaluated.

The first hypothesis claims that aggregated features improve the model quality due
to their hidden information about the conduction of experiments. DS 1 and DS 2 versus
DS 3 and DS 4 differ in the use of the aggregated composition features. DS 1 scores a lower
mean RMSE than DS 3, but DS 4 scores better than DS 2. Looking at the exact values, the
use of the extended features is far more significant than the use of the aggregated features.
They have no significant effect on the model quality, refuting the hypothesis.

The second hypothesis claims that using the acceleration data improve the model
quality. The best dataset (DS 9) uses the mfcc features calculated from the acceleration data.
The relative difference in mean RMSE is 5.1% to the base dataset (DS 1), which scores rank 2.
As seen in Figure 16e, DS 11 scores best when the time-based signals are dropped. DS 5, 6,
7, and 8 contain the FFT features and are reliably the worst for both base datasets. The high
number of features was too complex for the number of datapoints, even after complexity
reduction. Figure 16e shows the SHAP plot for the best model using FFT features at a
4% filter fraction, which still results in 193 remaining features. It contains the flexural
and compressive strengths and the relative masses at the start of the interval. The other
listed features are FFT bins without a recognizable pattern. For the datasets containing the
extended features, DS 12 scores best using the time-based signal data. Figure 16f shows its
most important features, which comprise the base features and two evaluation features of
the maximum negative acceleration. In summary, the signal data contain, in the best case,
some information and, in the worst case, mostly noise. Once again, this can be explained
with constant experimental processes during data collection. Without significant variation,
those features contain mostly noise. The 5.1% improvement for DS 9 is too low to be sure
whether the improvement comes from more information or model training.

The third hypothesis claims varying model qualities for different signal-processing
approaches. As just explained, the differences between the mfcc and time-based features
are small. The FFT features yield worse models due to their high count and complexity.

The fourth hypothesis states that including all features will reduce the model quality
despite the use of complexity reduction. This statement is true. DS 5 and DS 6 yield for both
base datasets the worst model quality. More features without more information merely
introduce noise to the data.

The fifth hypothesis states that lower data complexity results in a better model score.
This hypothesis can be confirmed. Only DS 3 achieved its lowest mean RMSE with a 100%
filter fraction. All other datasets used filter fractions between 1 and 90%. The results and
filter fractions in Figure 13 show that all datasets containing extended features profited
from a lower filter fraction than those only containing the base features. The remaining
most important features for the extended datasets are only the base features. Only the
strengths at 400 ◦C are used in three out of six datasets, but these are in the lower third of
important features in all cases. The datasets using the FFT features profited significantly
from the data complexity reduction, as seen in Figure 21. The datasets containing the
extended features yielded worse models than the less complex datasets. However, the
number of datapoints in this last comparison is not constant.

The number of datapoints in the datasets with the extended features was too small
to achieve a low mean RMSE. The best model using extended features is DS 12, with 30%
filter fraction, and achieves a mean RMSE of 0.127 and a mean MAE of 8.41 g. This is a 37%
higher RMSE than the best dataset not using the extended features.
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4.2. Comparison to Decoring Theory

The best models achieved a mean MAE of 16 to 20% of the dataset’s mean decored
mass. With only a handful of datapoints for each sand-binder system, this can be adjudged
a very good fit. The containing features in the data are suited to predict the target feature.
The remaining important features after complexity reduction shown in Figure 16 are
the flexural strength, compressive strength, phi, and cohesion, all at room temperature,
combined with the absolute and relative mass at the start of the decoring process. This
collection supports the claim of the previous work that these features describe the decoring
behavior of sand-binder systems.

The signal data have no major influence, as discussed above. The theory of decoring
explained in [2] suggests that the way of impact is a significant influence. Therefore, the
signal data should have a beneficial effect on model scores. This effect cannot be seen,
which leads to the explanations already given in the context of the second hypothesis,
or that the signal data were processed in a way that is not suitable for extracting the
relevant information. Another explanation is that the unintentional variations during the
decoring experiments were insignificant for the decoring behavior, which indicates a robust
experimental setup of the previous work.

According to the decoring theory described in [2], cohesion and phi are calculated
using the measured flexural and compressive strengths. The best models use all four
features and deem them equally important. If both sets contain the same information,
at least one of the four should be filtered during the complexity reduction. All four are
still deemed valuable for the modeling, which leads to two possible explanations. First,
the models divided the information equally between the two sets, and they are still the
most important compared to other features. Second, the sets are related, but each contains
information not transported by the other.

The extended features, such as the strengths of the sand core after casting, were
deemed insignificant by the models. A low effect of the extended features contradicts the
conclusions of the previous work. These strengths are a major indication of the decoring
behavior in the latter. None of the best models used these features. Instead, some of the
models used the strengths at 400 ◦C. Two explanations are possible. First, the strengths
at 400 ◦C already describe the behavior of inorganically bound sand cores for higher
temperatures and during casting in a more direct way than the strengths after casting.
Second, the low number of datapoints for the extended features did not allow the models
to learn the additional information contained in the extended features.

4.3. Discussion of the Model Training and Model Behavior

Each parameter set was calculated with ten different random initializations. The scores
are the mean of these ten calculations. The best runs of each parameter set yield 36% lower
RMSE on average than the corresponding mean over all ten runs. All models are far less
suited for the validation sand-binder system D. Interestingly, models that do not achieve
the best RMSE for the test data have better scores for the validation data. This difference
suggests that despite the ten randomly initialized runs, there was some overfitting toward
the test data. Figure 15 summarizes this behavior. Despite the lower prediction quality, this
graph shows a clear learning process by the models. The best models score a mean RMSE
for the validation data of 0.166. This is 78% higher than the best model score for the test
data. Nevertheless, they score a similar mean RMSE for both test (0.148) and validation
data (0.167), suggesting that these models are less suited for the test data but are similar
and partially valid for other sand-binder systems.

The models abstracted some information suitable to predict the validation system
D. However, they lacked relevant parameters during the training phase to gain similar
prediction values as they gained for the test data. Figures 17–22 show robust behavior
for the test data without significant outliners. The models can be summarized as robust
and usable, but only for sand-binder systems known through the training data. New



Appl. Sci. 2023, 13, 7948 25 of 31

sand-binder systems can contain variations in the features not modeled during the training,
which might change by including more sand-binder systems in future works.

Figure 14 summarizes R2 for the models shown in Figure 13. The R2-scores support
the previously derived model behavior. DS 9 shows the most reliable scores of all datasets
with a low difference between the highest achieved score and the best mean model. All
datasets were able to score R2 values above 0.75, indicating that models could learn a
significant part of the cause–effect correlations between the input data and the target
value DM. Furthermore, it shows the mean MAE achieved by the models in Figure 13
divided by the standard deviation of the target value. The mean MAE is 34% to 57% of the
standard deviation of DM. Thus, the prediction is below the datasets’ variations, indicating
functioning models.

Interestingly, the XGB models yielded better scores than the ANN in most cases, which
can be explained by the features contained in the dataset. These can be used directly for
predicting the target features. No complex model building or meta-feature calculations are
needed, which is confirmed by Figures 17–20. Only the very low number of neurons have
slightly worse scores than the more complex ones. Starting with 20 neurons in each layer,
the mean RMSE does not improve significantly with more neurons.

5. Conclusions

In summary, experimental data were used to predict the decoring behavior of various
sand-binder systems. Robust models were achieved, yielding a mean MAE between 16%
and 37% of the mean of the predicted feature and a mean MAE to standard deviation of
34% to 57%. The chosen forward–backward approach using machine learning models to
learn about experimental data and physical relations was successful. Varying the data
composition demonstrated the relative importance of various feature sets in predicting the
decoring behavior. The acceleration data of the decoring process, which was suspected of
having a significant influence, was not used significantly by the models for the prediction.
The authors conclude that a constant experimental setup led to the reduced importance
of the acceleration signal. The same explanation is used for the low importance of the
aggregated composition features. One sand-binder system was used as a validation system
to test whether the models could describe the decoring behavior for unknown sand-binder
systems. The prediction scores are significantly worse for the validation system. However,
the models indicate that some generalized correlations were learned that are also valid for
the validation system. The authors suspect that the validation system variates in some
parameters in ways unique to it. It is suspected that some overfitting occurred in the models
that achieved the lowest mean RMSE for the test data, despite averaging over ten runs
of randomized initializations. The best models for the validation system scored similar
values for the test data and indicated no overfitting. This work focuses on a specific case
of decoring for one sample geometry. The machine learning models calculated in this do
not claim to predict the decoring behavior for other geometries. However, the behavior of
the models and the identified relevant parameters can be interpreted in a generalized way.
Determining which features in this dataset are particularly relevant for ML model training
is, therefore, a first step towards a more generally valid ML model. This work provided
helpful indications as to which data should be ascribed higher priority in future decoring
experiments.
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Appendix A

The Appendix contains the results for the best models for all datasets, before and
after using complexity reduction. The complete results of all models can be obtained by
contacting the author.

Used Programming Libraries

The code was written in Python 3.9 [23]. For the XGB and ANN model creation, the
scikit-learn library [24] was used. This library uses the original library for the implemen-
tation of the XGBoost models [13]. For data processing, pandas was used [25]. For the
visual representation of the XGB model results, SHapley Additive exPlanations, (SHAP)
was used [17,26] in combination with Matplotlib [27]. The librosa library was used to create
the mfcc evaluations [28]. For the FFT evaluations and many smaller calculations, numpy
was used [29].

Table A1. Features for each sand-binder system used for model training. “X” means these features
are included in the dataset. _name_ refers to the individual name of binder, sand, or system.

System Feature Name Unit Composition
Feature

Extended
Feature Abbreviated Name

binder name - X binder_name_he
sand name - X sand_name_he

binder content %wt X binder_wt
sand-binder system name - X system_name_he

sieving percentage % sieving_pct
mean grain diameter µm X mean_grain_d_microm

flexural strength according to the
manufacturer MPa flex_manuf

flexural strength at 25 ◦C MPa flex_raw
compressive strength at 25 ◦C MPa comp_raw

phi at 25 ◦C ◦ phi_raw_grad
cohesion at 25 ◦C - cohesion_raw

flexural strength at 400 ◦C MPa X flex_400_grC
compressive strength at 400 ◦C MPa X comp_400_grC

phi at 400 ◦C ◦ X phi_400_grC_grad
cohesion at 400 ◦C - X cohesion_400_grC

flexural strength after casting MPa X flex_casted
compressive strength after casting MPa X comp_casted

phi after casting ◦ X phi_casted_grad
cohesion after casting - X cohesion_casted

tension in the middle, perpendicular MPa X tension_pp_middle
tension in the middle, lengthwise MPa X tension_lw_middle
tension near inflow, perpendicular MPa X tension_pp_inflow

relative flexural strength after casting,
according to the manufacturer % X flex_residual_pct

flexural strength after casting,
according to the manufacturer MPa X flex_residual

relative drop of flexural strength after
casting, according to the manufacturer % X flex_residual_drop_pct

https://github.com/FDdiss/PredicitingDecoringBehavior
https://github.com/FDdiss/PredicitingDecoringBehavior


Appl. Sci. 2023, 13, 7948 27 of 31

Table A2. Features available for each interval.

Interval Feature Name Interval Phase Unit Abbreviated Name

decored mass
target feature “DM” end g 06_i_m_progress

mass of specimen start g 00_i_s_m_total
already decored distance start cm 01_i_s_d_progress
sand mass of specimen start g 02_i_s_m_sand
already decored mass start g 03_i_s_m_progress

ratio of sand mass to metal mass start - 04_i_s_m_sand_r_metall
ratio of sand mass to total mass start - 05_i_s_m_sand_r_total

number of impacts during the interval 20_i_n_hammerblows

Table A3. Signal-processing methods and resulting features.

Preprocessing No. of
Features Names

Fast Fourier Transformation
4800 bins of 4 Hz each 4800 fft_00004_Hz to fft_19200_hz

Mel Frequency Cepstral Coefficient Analysis
mean, median, stdev, max, and min

for five coefficients
25

mean_mfcc01 . . . 05
median_mfcc01 . . . 05
stdev_mfcc01 . . . 05
max_mfcc01 . . . 05
min_mfcc01 . . . 05

Time-Based Analysis
a: absolute acceleration

sum: sum over interval (i) or bar (b),
max: maximum; pos: positive; neg: negative

Example: 21_i_a_sum_max_posneg means “feature 21,
absolute sum over all positive and negative maxima

over all hammer blows of the examined interval”

7

21_i_a_sum_max_posneg
22_i_a_sum_max_pos
23_i_a_sum_max_neg

24_i_a_max_pos
25_i_a_max_pos

26_i_i_a_mean_max_pos
27_i_a_mean_max_neg

Table A4. Filter fractions and model parameters with values in the model calculations.

Filter Fractions in Percent: 100, 90, 80, 70, 60, 50, 40, 30, 20, 10, 7, 4, 1

XGB-parameter value(s)

n_estimators 2000
early_stopping_rounds 50
eta 0.1
parallel tree 1, 3, 5, 7
max depth 2, 4, 6
min child weight 1
subsample 0.6
colsample_bytree 0.7
colsample_bylevel 0.7
colsample_bynode 0.7
alpha 0.0001
lambda 1
gamma 0
random seed 3
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Table A4. Cont.

ANN-parameter value(s)

max iter 2000
n iter no change 50

layers

(10, 10), (20, 20), (30, 30), (40, 40), (50, 50),
(100, 100), (200, 200), (400, 400), (800, 800),
(10, 5), (20, 10), (30, 15), (40, 20), (50, 25),
(100, 50), (200, 100), (400, 200), (800, 400),
(10, 10, 5), (20, 20, 10), (30, 30, 15), (40, 40, 20), (50, 50, 25),
(100, 100, 50), (200, 200, 100), (400, 400, 200), (800, 800, 400)

alpha 0.0001
batch size 30
learning_rate_init 0.0001
tol 1 × 10−6

validation fraction 0.1
activation relu
beta 1 0.9
beta 2 0.999
epsilon 1 × 10−8

max fun 15,000
learning rate constant
shuffle true
random state 3

Table A5. Global rank of all datasets and mean scores of the best corresponding model according to
the RMSE for the test data; also listed are the corresponding filter fraction and the composition of the
dataset.

Dataset DS 9 DS 1 DS 11 DS 3 DS 7 DS 5 DS 12 DS 10 DS 4 DS 2 DS 8 DS 6
Global Rank 1 2 3 4 5 6 7 8 9 10 11 12

mean RMSE (-) 0.093 0.098 0.098 0.099 0.114 0.117 0.127 0.133 0.138 0.142 0.147 0.153

best RMSE (-) 0.069 0.070 0.070 0.073 0.081 0.090 0.080 0.077 0.079 0.080 0.122 0.126

mean MAE (g) 5.78 5.83 5.83 5.85 7.26 7.44 8.41 9.07 9.23 9.59 9.25 10.1

best MAE (g) 4.90 4.39 4.39 4.84 5.35 5.74 5.66 6.06 5.77 5.75 8.12 6.73

mean DM (g)
(of 10% test data) 24.7 24.7 24.7 24.8 24.8 24.8 28.8 28.1 29.0 29.0 29.8 30.2

mean MAE,
relative (%) 23 24 24 30 30 29 32 32 32 33 31 34

best MAE,
relative (%) 19 18 18 20 22 23 21 22 21 21 26 25

filter fraction (%) 40 90 50 100 7 4 30 30 30 30 4 1

extended features x x x x x x

composition
features x x

signal processing mfcc none time-
based none FFT all time-

based mfcc none none FFT all
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Table A6. Mean scores for all best models for all datasets.

Target Feature: Decored Mass in Interval (DM)

Test
Dataset

Best XGBoost Best ANN

R2

(-)
RMSE

(-)
MAE

(g) Rank R2

(-)
RMSE

(-)
MAE

(g) Rank

DS 1 0.75 0.099 5.79 1/2 0.73 0.105 6.30 1
DS 2 0.56 0.145 10.2 8 0.57 0.148 9.98 6
DS 3 0.75 0.099 5.85 1/2 0.71 0.108 6.38 2
DS 4 0.53 0.149 10.4 9 0.55 0.146 9.60 5
DS 5 0.61 0.127 7.85 5/6 0.27 0.172 10.9 9
DS 6 0.32 0.179 11.3 12 −0.25 0.248 16.1 12
DS 7 0.61 0.127 7.91 5/6 0.27 0.173 10.9 10
DS 8 0.35 0.174 11.3 11 −0.12 0.229 14.6 11
DS 9 0.73 0.105 6.74 3 0.66 0.118 7.51 4
DS 10 0.52 0.151 10.0 10 0.48 0.160 10.6 8
DS 11 0.70 0.110 6.60 4 0.68 0.113 6.85 3
DS 12 0.62 0.138 9.29 7 0.54 0.149 9.81 7

Val
Dataset

Same XGB Model as Above Same ANN Model as Above

R2

(-)
RMSE

(-)
MAE

(g) Rank R2

(-)
RMSE

(-)
MAE

(g) Rank

DS 1 −1.47 0.261 25.0 4 −2.47 0.31 28.8 5
DS 2 −2.54 0.330 33.4 7 −1380 6.12 100,409 12
DS 3 −1.54 0.266 25.4 5 −2.83 0.33 30.4 6
DS 4 −3.50 0.371 36.8 9 −894 4.16 100,239 11
DS 5 −0.90 0.230 22.3 1/2 −1.52 0.26 25.1 3
DS 6 −4.54 0.411 40.0 12 −7.54 0.47 44.5 7
DS 7 −0.90 0.230 22.3 1/2 −1.19 0.25 23.7 2
DS 8 −4.17 0.397 38.8 10 −29.7 0.82 71.2 8
DS 9 −1.21 0.247 23.8 3 −0.64 0.21 20.9 1
DS 10 −4.34 0.403 39.4 11 −1188 5.33 427 9
DS 11 −1.59 0.269 25.6 6 −1.80 0.28 26.2 4
DS 12 −2.66 0.335 33.8 8 −2803 7.51 400,179 10

Table A7. Using filtered data, mean scores for all best models for all datasets.

Target Feature: Decored Mass

Test
Dataset

Best XGBoost Best ANN

R2 (-)
RMSE

(-)
MAE

(g)
Filter

Fraction (%) Rank R2 (-)
RMSE

(-)
MAE

(g)
Filter

Fraction (%) Rank

DS 1 0.76 0.098 5.83 90 2/3 0.73 0.105 6.30 100 3/4
DS 2 0.56 0.145 10.2 100 9 0.59 0.142 9.59 30 9
DS 3 0.75 0.099 5.85 100 4 0.73 0.104 6.05 60 2
DS 4 0.55 0.146 10.2 90 10 0.61 0.138 9.23 30 5
DS 5 0.67 0.117 7.44 4 6 0.54 0.137 8.78 4 6
DS 6 0.47 0.153 10.1 1 12 0.42 0.157 10.4 4 11
DS 7 0.68 0.114 7.26 7 5 0.51 0.141 9.03 4 8
DS 8 0.50 0.147 9.25 4 11 0.43 0.161 10.7 4 12
DS 9 0.78 0.093 5.78 40 1 0.75 0.100 6.19 20 1

DS 10 0.64 0.133 9.07 30 8 0.56 0.143 9.47 30 10
DS 11 0.76 0.098 5.83 50 2/3 0.73 0.105 6.37 50 3/4
DS 12 0.67 0.127 8.41 30 7 0.62 0.139 9.19 70 7
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Table A7. Cont.

Val.
Dataset

Same XGB Model as Above Same ANN Model as Above

R2 (-) RMSE (-) MAE
(g)

Filter
Fraction (%) Rank R2 (-) RMSE (-) MAE

(g)
Filter

Fraction (%) Rank

DS 1 −1.51 0.264 25.2 90 4/5 −2.5 0.308 28.8 100 6
DS 2 −2.54 0.330 33.4 100 8 −3.8 0.382 37.5 30 7
DS 3 −1.54 0.266 25.4 100 6 −2.0 0.288 27.2 60 5
DS 4 −3.33 0.364 36.2 90 10 −54 0.932 79.1 30 10
DS 5 −1.00 0.236 22.9 4 1 −0.6 0.213 20.9 4 3
DS 6 −5.01 0.428 41.3 1 12 −5.1 0.429 41.4 4 9
DS 7 −1.12 0.243 23.4 7 2 −1.0 0.236 22.9 4 4
DS 8 −3.94 0.388 38.1 4 11 −4.4 0.404 39.4 4 8
DS 9 −1.15 0.245 23.6 40 3 −0.3 0.190 19.0 20 1
DS 10 −2.66 0.335 33.8 30 9 −44 1.002 87.0 30 11
DS 11 −1.51 0.264 25.2 50 4/5 −0.5 0.205 20.3 50 2

DS 12 −2.40 0.322 32.8 30 7 −1260 5309 2.00 ×
105 70 12
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