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Alzheimer’s disease (AD) is the leading cause of dementia, and its prevalence is 
increasing and is expected to continue to increase over the next few decades. 
Because of this, there is an urgent requirement to determine a way to diagnose the 
disease, and to target interventions to delay and ideally stop the onset of symptoms, 
specifically those impacting cognition and daily livelihood. The pupillary light 
response (PLR) is controlled by the sympathetic and parasympathetic branches of 
the autonomic nervous system, and impairments to the pupillary light response 
(PLR) have been related to AD. However, most of these studies that assess the 
PLR occur in patients who have already been diagnosed with AD, rather than 
those who are at a higher risk for the disease but without a diagnosis. Determining 
whether the PLR is similarly impaired in subjects before an AD diagnosis is made 
and before cognitive symptoms of the disease begin, is an important step before 
using the PLR as a diagnostic tool. Specifically, identifying whether the PLR is 
impaired in specific at-risk groups, considering both genetic and non-genetic risk 
factors, is imperative. It is possible that the PLR may be impaired in association 
with some risk factors but not others, potentially indicating different pathways to 
neurodegeneration that could be distinguished using PLR. In this work, we review 
the most common genetic and lifestyle-based risk factors for AD and identify 
established relationships between these risk factors and the PLR. The evidence 
here shows that many AD risk factors, including traumatic brain injury, ocular and 
intracranial hypertension, alcohol consumption, depression, and diabetes, are 
directly related to changes in the PLR. Other risk factors currently lack sufficient 
literature to make any conclusions relating directly to the PLR but have shown 
links to impairments in the parasympathetic nervous system; further research 
should be conducted in these risk factors and their relation to the PLR.
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1. Introduction

1.1. Alzheimer’s disease

With an ageing global population, the number of people living 
with dementia is increasing, and is projected to continue to increase 
over the next few decades, especially in those living in low- and 
middle-income countries (Livingston et al., 2017).

Importantly, Alzheimer’s disease (AD), which is the most 
common cause of dementia (Livingston et al., 2017), is believed to 
occur at least 20 years before symptoms of the disease arise 
(Association, 2019). It takes years of changes occurring in the brain 
before individuals with AD experience noticeable symptoms including 
memory loss and language problems (Association, 2019). As such, 
preventing Alzheimer’s depends primarily on understanding early 
steps in the disease’s pathogenesis, including an investigation into 
genetic factors and potential biomarkers that could be identified in its 
pre-symptomatic phase (Selkoe, 2012).

1.2. Alzheimer’s disease and the eye

Along with symptoms that affect cognition, patients who have 
been diagnosed with AD often display other biological characteristics, 
which can, to varying extents, be used in disease monitoring and 
potentially in diagnosis. One category of biological characteristics 
includes changes to the eye that occur in the early stages and during 
the progression of the disease, which will be  explored further in 
this section.

1.2.1. State of the art
Research into the eye and its relation to cognitive decline, 

including in both preclinical and onset AD, has been the focus of 
several recent studies and reviews. Many such reviews investigate 
changes and degeneration in the retina, and how this can relate to 
neurodegeneration (London et al., 2013; Cheung et al., 2017; den 
Haan et al., 2017; Alber et al., 2020; Ashok et al., 2020; Gupta et al., 
2021; Snyder et al., 2021; Wang and Mao, 2021). These reviews discuss 
the role of amyloid-beta (Aβ), a biomarker for AD, in the retina and 
in patients with glaucoma (London et al., 2013; Ashok et al., 2020; 
Gupta et al., 2021; Snyder et al., 2021; Wang and Mao, 2021), and 
confounding factors in the eye such as retinal nerve fiber layer 
thickness thinning that can be  observed in some cases of 
neurodegeneration (London et al., 2013; den Haan et al., 2017; Alber 
et al., 2020; Snyder et al., 2021). Other studies involving the retina also 
discuss accumulation of phosphorylated tau in the brain, another 
biomarker of AD, and how this often relates to an accumulation of 
tauopathy in the retina in cases of AD (London et al., 2013; Chiasseu 
et al., 2017; Ashok et al., 2020; Hart de Ruyter et al., 2023). In AD, 
tau-related changes cause retinal neuron dysfunction and subsequent 
death, which contributes to visual deficits in AD (Chiasseu et al., 
2017). In cases of AD, tau related changes in the retina may be more 
consistent than amyloid beta changes in the retina, suggesting that 
phosphorylated tau in the retina may be a promising biomarker for 
AD (den Haan et al., 2018).

Despite its prevalence in current research, analyzing changes in 
the retina has established limitations as a diagnostic tool for AD and 

dementia because of the comorbidity with AD risk factors such as 
hypertension, diabetes, and retinopathy (Baker et al., 2007; Cheung 
et al., 2017; Bista Karki et al., 2020). As such, it can be difficult to 
differentiate damage done to the retina from these diseases from 
damage done due to potential neurodegeneration. Additionally, tests 
such as measuring the retinal nerve fiber thickness can lack sufficient 
specificity and sensitivity for broader clinical applications (Ashok 
et al., 2020).

Some studies have suggested that tracking eye movement 
abnormalities is an indicator of cognitive decline that can be used as 
a diagnostic tool for assessing the progression of AD (Boucart et al., 
2014; Fernández et  al., 2016). Others have analyzed the effects of 
tropicamide on the pupil dilation response, showing that the pupil 
dilation is altered in Alzheimer’s patients compared to healthy people 
(Robles et al., 1999); however, there have been other studies that have 
not shown this to be consistently statistically significant and so has 
limitations as a diagnostic aid (Kurz et al., 1997).

Further studies involving pupillometry applied to cognitive 
decline include identifying changes in the velocity and acceleration of 
pupil constriction in those with cognitive deficits (Stergiou et  al., 
2009). Pupillary changes have also been used to assess subject response 
to varying cognitive loads and the ability for those with and without 
cognitive impairment to adapt cognitive effort (Granholm et al., 2017).

1.2.2. Pupillometry
The study of pupillometry has been around for many years. 

Granholm claims that changes in pupillary motility have been 
observed and used as indicators of medical state and emotional 
arousal for over two millennia (Granholm and Steinhauer, 2004). 
Loewenfeld cites Fontana’s work in 1765 as the earliest documentation 
of what was then known as “paradoxical pupil dilation”, or pupil 
dilation without changes in illumination (Loewenfeld, 1958). The 
work by Lowenstein and Loewenfeld was essential to the field of 
pupillometry, and their influential work is summarized in their 
textbook from 1999, The Pupil, which has been a standard reference 
on the pupil (Thompson, 2005).

Of note, the study of pupillometry has become increasingly more 
popular since the 1980s (Zandi et al., 2021). With this, there have been 
more studies that have looked at how various visual stimuli can 
be used to evoke a pupil response, and in turn what this response may 
be related to. For researchers in preventative medicine, pupillometry 
has been a valuable and inexpensive tool for screening for diseases 
such as diabetes and cardiac autonomic neuropathy (Lerner et al., 
2015; Bista Karki et al., 2020).

The activity of human photoreceptors can control pupil size, 
which has best been shown by studies examining pupil size using the 
method of silent substitution - where pairs of lights are alternated to 
only stimulate one photoreceptor class at a time (Spitschan, 2019). 
These photoreceptors, consisting of melanopsin, rods, and cones, 
contribute to the control of the pupil in different ways, and in different 
temporal regimes (Spitschan, 2019). Between 1 and 10s from the onset 
of light exposure, cones and rods account for pupil constriction; 
melanopsin largely controls pupil size at 100 s, with some contribution 
from the rods (McDougal and Gamlin, 2010; Spitschan, 2019). 
Further, rods are not expected to contribute to pupil control at 
photopic light levels due to rod saturation (Aguilar and Stiles, 1954; 
Spitschan, 2019), while cone receptors and melanopsin-containing 
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intrinsically photosensitive retinal ganglion cells (ipRGCs) are active 
during daylight and contribute to the constriction of the pupil 
(Spitschan et al., 2014).

When assessing potential pupillary changes in neurodegeneration, 
it is important to consider how these various psychological and 
physiological aspects may impact a response, and to account for these 
in a potential protocol.

1.2.2.1. Pupillary light response
Outside of research assessing the retina’s role in neurodegeneration 

and general eye-tracking, there are other potential biomarkers 
involving the eyes that are important in AD research. Pupillometry at 
large has been applied extensively in the study of cognition (Eckstein 
et al., 2017).

Of particular interest to this review are the studies that have 
investigated changes in the pupillary light response (PLR) in subjects 
with cognitive impairment, which assesses how the pupil dilates and 
constricts in different light conditions (Lerner et al., 2015; Bista Karki 
et al., 2020). Although some studies have failed to show a relationship 
between an impaired PLR and cognitive impairment (Stergiou et al., 
2009), there have been several studies that have suggested that changes 
to the PLR may occur in patients with AD (Fotiou et al., 2000), and 
even in patients in the preclinical phase of AD (Frost et al., 2017). 
These studies also suggest that dynamic pupillometry, and assessment 
of the PLR, could be useful tools in medical research to monitor the 
progression of cognitive decline, in addition to being used as a 
non-invasive, cost-effective screening tool for AD (Fotiou et al., 2000, 
2008; Frost et al., 2017).

Most of the studies that assess the PLR occur in patients who have 
already been diagnosed with AD, rather than those who are at a higher 
risk for the disease due to genetic or non-genetic risk factors but who 
are not currently diagnosed with the disease. Because of this, it is 
difficult to determine whether the PLR is impaired because of the 
disease, or if an impaired PLR can indicate an elevated risk for later 
development of the disease. It would, therefore, be useful to know if 
the PLR is similarly impaired in subjects before an AD diagnosis is 
made and before cognitive symptoms of the disease begin. Specifically, 
it would be helpful to know whether the PLR is impaired in specific 
at-risk groups, considering both genetic and non-genetic risk factors. 
It is possible that the PLR may be impaired in association with some 
risk factors but not others, potentially indicating different pathways to 
neurodegeneration that could be distinguished using the PLR. If the 
PLR is impaired in individuals in specific risk groups for AD before 
symptoms of AD progress to a diagnosis, the PLR could then provide 
a quantitative measure to assist in predicting a person’s risk for 
developing AD in conjunction with a genetic, life event, and lifestyle 
analysis, and thus be  used to identify potential patient-specific 
early interventions.

This review aims to bridge the gap in current literature that 
focuses on the impairment in AD patients, and to expand this to 
include the analysis of the PLR in groups displaying individual risk 
factors for the disease before a diagnosis is made. The aim is to 
investigate how these risk factors relate to one another, in addition to 
analyzing their relation to an altered PLR, if any, to determine whether 
the PLR is impaired in any at-risk groups for AD prior to diagnosing 
the disease. With the prevalence of pupillometry in current research, 
and the demand for a means of diagnosing preclinical AD with an 
inexpensive and accurate tool, analyzing the PLR of subjects who may 

be susceptible to developing the disease later in life could be a valuable 
area of research which, if successful, could lead to further 
advancements in the prevention of AD.

1.3. Goals

The specific objectives of this review are to provide an overview 
of the most prevalent AD risk factors (genetic and non-genetic), 
discuss pupillometry and the PLR, and investigate the relationship 
between AD risk factors and PLR.

In particular, this review focuses on research that has been done 
relating the PLR to specific lifestyle factors that have been linked to 
AD risk.

2. Alzheimer’s disease risk factors

There are many risk factors for AD and dementia, which can 
be  split broadly into two categories: genetic risk factors, and 
non-genetic risk factors.

2.1. Genetic risk factors

Intrinsically, AD, specifically early onset AD, is often caused by 
mutations in one of three genes: amyloid precursor protein, presenilin 
1, and presenilin 2 (van der Flier et al., 2011; Tzekov and Mullan, 
2014). Late onset AD is not necessarily as predictable but can 
be indicated by inheritance of the ɛ4 allele of the APOE gene (Liu 
et al., 2013; Tzekov and Mullan, 2014). The inheritance of the APOE 
ɛ4 allele is the strongest genetic risk factor for AD – although only 
about 20–25% of the population carries one or more ɛ4 alleles, 
50–65% of people diagnosed with AD carry the allele (van der Flier 
et al., 2011).

The inheritance of one or more ɛ4 alleles has implications on the 
age of onset of AD. Having at least one ɛ4 allele is associated with a 
reduced onset age for AD, and people with two ɛ4 alleles can develop 
AD up to 10 years earlier than those without the allele (van der Flier 
et al., 2011). Despite being associated with the age of onset of AD, it is 
not clear whether carrying the ɛ4 allele is also a risk factor for a faster 
progression of the disease once dementia has been reached. Contrary 
to the ɛ4 allele, the presence of the ɛ2 allele can help to reduce the risk 
of developing AD (van der Flier et al., 2011).

Using functional MRI, studies have shown that the ɛ4 allele 
moderates brain function (Suri et al., 2015). This moderation of brain 
function includes changes in white matter integrity and brain 
connectivity, and may make the brain more susceptible to 
age-associated pathological mechanisms such as amyloid beta 
accumulation (Reinvang et  al., 2013). Further, this moderation is 
evident in young adults decades before any potential cognitive decline 
(Suri et al., 2015). However, other functional MRI studies using blood-
oxygenation-level-dependent (BOLD) contrast have reported similar 
BOLD activity in both ɛ4 and ɛ2 carriers, despite the expectation that 
the high-risk ɛ4 carriers would have an opposite activation to low risk 
ɛ2 carriers; it is thus necessary to consider more than the functional 
MRI signal to determine the relationship between APOE, AD risk, 
and brain function (Suri et al., 2015).
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2.2. Non-genetic risk factors

There are several extrinsic, life-event, or lifestyle-based, risk 
factors for AD that have been identified. Historically, dementia was 
not considered to be preventable or treatable; within recent years 
progress has been made to identify non-genetic risk factors for the 
disease and to collect information on preventing and managing the 
disease (Livingston et al., 2017). Although the underlying symptoms 
and illnesses with dementia may not be  curable, the current 
understanding is that the progression and handling of the disease can 
be manageable when considering these non-genetic, lifestyle-based 
risk factors and factors that are considered to be protective against the 
disease, including aspects of diet, physical activity, and levels of 
cognitive reserve (Livingston et al., 2017; Silva et al., 2019).

Dementia is most common among adults aged 65 years or older, 
which is incidentally when age-related physical health problems and 
dementia co-occurring is common (Livingston et  al., 2017). 
Additionally, these physical health problems often overlap with the 
lifestyle-based risk factors that increase the risk of dementia; an 
impaired mental and physical function may interfere with a person’s 
regular scheduling of things such as exercise and social interactions, 
all of which can further contribute to dementia risk (Livingston et al., 
2017). Further, ethno-racial and socioeconomic factors can have an 
important impact on a person’s lifestyle, and so these factors must 
be  considered as well and research conducted into dementia risk 
factors within individual populations cannot be considered adequate 
to apply to all people (Babulal et al., 2019; Livingston et al., 2020). As 
such, when considering some lifestyle-based risk factors and their 
specific contributions to dementia risk, it is necessary to consider the 
comorbidity of individual genetic, lifestyle, social, cultural, and 
economic risk factors, in dementia cases.

In 2017, The Lancet Commission published an in-depth analysis 
of the main, potentially modifiable, risk factors for AD (Livingston 
et al., 2017); this list was updated in 2020 with three additional factors 
identified (Livingston et al., 2020). This analysis sought to estimate the 
Population Attributable Factor (PAF), defined as the percentage 
reduction in new dementia cases over a given time if a specific risk 
factor were eliminated completely, for known modifiable risk factors 
for dementia (Livingston et  al., 2017). The risk factors that were 
included in the PAF calculations were chosen by identifying risk 
factors listed in the UK National Institute of Health and Care 
Excellence (NICE) and US National Institute of Health (NIH) 
guidelines. Specifically, The Lancet Commission has identified 12 
main categories for modifiable risk factors, through a systematic 
review and meta-analysis (Livingston et al., 2020). As will be shown 
throughout this review, these risk factors appear in a notable number 
of recent studies, and so these were taken to be  the basis of this 
review’s focus. These risk factors, and their relative weightings in 
terms of the percentage of AD cases they cause, are categorized into 
early life (age < 45 years), midlife (age 45–65 years), and late life 
(age > 65 years; Livingston et al., 2020). These risk factors are shown in 
Table 1.

Although there are potentially other risk factors for dementia, 
these 12 main lifestyle/life event risk categories can be used to form a 
basis of factors to analyze the comorbidity of risk factors and to assess 
their relation to other biomarkers of AD. It is important to 
acknowledge however, that the evidence that has been collected by 
Livingston et al. about these AD risk factors is from high income 

countries, and thus these risks could differ in other countries and 
corresponding interventions may require modifications in specific 
environments (Livingston et  al., 2020). In this review, we  will 
be  assessing these 12 lifestyle and life event categories with their 
relation to the parasympathetic/sympathetic pathways and to the 
pupillary light response, if any.

3. Pupillometry and parasympathetic/
sympathetic pathways

3.1. Pupillary stimuli and measurements

Pupillometry has been established as a promising means for 
assessing cognitive function, among other cerebral and bodily 
functions. Ultimately, the size and responsiveness of pupils in humans 
is controlled by the two main branches of the autonomic nervous 
system: the sympathetic and parasympathetic nervous systems, which 
control the dilator and sphincter muscles in the iris, respectively 
(Winn et al., 1994; Wang et al., 2016). Figure 1 shows the sphincter 
and dilator muscles on a constricted and dilated pupil. Further, 
pupillary constriction, accommodation, and vergence make up the 
near triad visual response, which enables a focused image, increased 
depth of focus, and binocular vision (Schor, 1992; Feil et al., 2017). To 
maximize the impact of using pupillometry to assess specific 
functions, namely parasympathetic and sympathetic functions, it is 
necessary to stimulate the pupil and measure concomitant pupil size 
changes with a measurement system that is best suited to measure 
these changes.

3.1.1. Pupillary measurement systems
One concern when using pupillometry as a diagnostic tool is 

ensuring consistency of measurement across different individuals with 
different eye sizes, and these individual differences must be accounted 
for. Usually, these differences are accounted for by expressing values 

TABLE 1 Potentially modifiable risk factors for AD and their PAF, as 
calculated by Livingston et al. (2020).

Category Risk factor PAF

Early life, potentially 

modifiable

Less education 7%

Mid-life, potentially 

modifiable

Hearing loss 8%

Traumatic brain injury 3%

Hypertension 2%

Alcohol consumption (greater 

than 21 units/week)

1%

Obesity 1%

Later life, potentially 

modifiable

Smoking 5%

Depression 4%

Social isolation 4%

Physical inactivity 2%

Air pollution 2%

Diabetes 1%

Risk unknown 60%
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relative to a baseline. Many pupillary measurement systems assess 
relative changes in either the pupil size or the ratios between the pupil 
and iris. One measurement method to correct for differences in eye 
sizes between subjects, as described by Fotiou et al., is to use the ratios 
between the current pupil radius (P), the baseline pupil radius (B), and 
the iris radius (I) at each measurement point in time (Fotiou et al., 
2000). Fotiou et al. tested the use of the pupil-to-baseline pupil ratio 
(P/B) to determine which would be most suitable to produce the most 
reliable results, and the result of their study was that the pupil-to-iris 
method was preferred as the baseline pupil size is difficult to keep 
consistent even within the same individual, whereas the iris size is a 
stable anatomical marker (Fotiou et al., 2000). The pupil-to-iris (P/I) 
ratio is a popular method that has been used by multiple researchers 
(Sacks and Smith, 1989; Lanting et al., 1990; Fotiou et al., 2000).

When making pupillary measurements, it is also important to 
identify an appropriate time and sampling frame for measurements. 
The pupil is constantly changing size due to small oscillations of the 
pupil, known as hippus (Winn et al., 1994). Due to these continuous 
changes, it is not reliable to take a single measurement of the pupil 
size. For the most accurate measurements, the pupil size should 
be sampled frequently over a suitable time period to obtain reliable 
measurements that can account for these minor oscillations (Winn 
et al., 1994).

One way in which continuous measurements can be made is by 
using automated measurements through deep learning techniques. 
One web app that uses deep learning for translational and real-time 
pupillometry is MEYE, developed by Mazziotti et al. (2021). To make 
the pupillometry measurements, they applied random rotation, 
cropping, horizontal and vertical flipping of images, in addition to 
random brightness, contrast, and sharpness changes to train the 
model (Mazziotti et al., 2021).

3.1.2. Pupillary stimuli
There are many ways to stimulate pupillary changes – each of 

which has different diagnostic purposes. Pupillometry studies vary 
widely in their stimuli, and without a standard methodology used 
across all pupillometry-related studies, there is a challenge presented 
in comparing the results of these studies (Kelbsch et al., 2019). Despite 
this, studies using similar methods can still be compared.

Many studies have shown how cognitive processes can cause 
pupillary changes – specifically, emotional arousal, interest, and task 
difficulty (Hess and Polt, 1960; Hess, 1965; de Winter et al., 2021). 
When the cognitive task demand is increased over time, the pupil 

dilates following this stimulus, and then constricts when the subject 
has less difficulty with the cognitive task at hand (Siegle et al., 2003; 
Steinhauer et  al., 2004). Further, when performance is sustained 
during a difficult task, this is modulated by the cortical inhibition of 
the parasympathetic pathway located at the oculomotor nucleus 
(Steinhauer et al., 2004).

Another stimulant that has been used in pupillometry studies, 
specifically when assessing potential neurodegeneration, is a dilute 
solution of tropicamide. Administering tropicamide can block the 
parasympathetic sphincter muscle, which impacts the pupillary 
reaction (Steinhauer et al., 2004). Scinto et al. show that AD patients, 
or probable AD patients who have not yet been diagnosed with AD, 
have a more pronounced pupillary reaction and hypersensitivity to a 
dilute solution of tropicamide when compared to normal controls, 
suggesting that their parasympathetic sphincter muscle works 
abnormally when compared to normal controls (Scinto et al., 1994). 
Further, Higuchi et al. show that subjects with the APOE ɛ4 allele have 
a more hypersensitive response to tropicamide (Higuchi et al., 1997). 
However, not all studies agree on the effects of tropicamide on 
pupillary reactions in AD patients – Granholm et al. found that AD 
patients did not differ significantly in pupillary responses to 
tropicamide when compared with cognitively normal controls 
(Granholm et al., 2003). Although Granholm et al. attempted to use 
similar methods to Scinto et al., including a 0.01% dilute solution of 
tropicamide, there may have been variability between the subject 
groups of the studies that could account for different results. 
Granholm et al. note that ethnicity, eye color, age, and background 
luminance may be important factors that could impact the pupillary 
response to tropicamide, and so their study tested both light and dark 
conditions and had subjects similar in age, gender, eye color, and 
ethnicity (Granholm et al., 2003); in contrast, Scinto et al. did not 
report ethnicity, eye color, or background luminance in their methods, 
which could explain their conflicting results with Granholm et al. 
(Scinto et al., 1994). Additionally, neither Scinto et al. nor Granholm 
et al. reported on genetic features of their subjects, and since those 
with the APOE ɛ4 allele have a hypersensitive response to tropicamide, 
not accounting for this could also explain differences in results. The 
pupillary response to different light conditions is also an important 
area of study. The pupillary darkness reflex, and the recovery time for 
the pupillary light response, are controlled primarily by sympathetic 
activation, whereas the amplitude and latency of the pupillary light 
response is controlled by parasympathetic activity (Prettyman et al., 
1997). As such, assessing the pupillary light and darkness responses, 
which can be done by changing light conditions, is a useful method 
for stimulating the pupillary changes (Ellis, 1981; Prettyman et al., 
1997; Steinhauer et al., 2004).

Different light sources can be used to measure and assess the PLR, 
and the response can be  influenced by the duration, spectral 
composition, and intensity of the light used as a stimulus (Hall and 
Chilcott, 2018). The differences in stimuli determine which 
photoreceptor classes are activated - the rod responses, cone responses, 
or melanopsin-driven ipRGCs (Kelbsch et  al., 2019). Infrared 
pupillometry, for example, is a method that is particularly useful when 
assessing the PLR, which involves stimulating the pupil with an 
infrared light source and then observing the response on an infrared 
sensor (Ellis, 1981). Automated infrared pupillometry can also provide 
a measurement of the PLR that is more reliable than using a manual 
flashlight to examine the PLR (Romagnosi et al., 2020). Additionally, 

FIGURE 1

The eye, with the sphincter and dilator muscles labelled. Left: the eye 
with the pupil constricted. Right: the eye with the pupil dilated. This 
figure was created by SS using BioRender.com.
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chromatic pupillometry, which involves protocols using light stimuli 
at different wavelengths to isolate the contributions of single 
photoreceptors, is a method used to characterize melanopsin retinal 
ganglion cells which are photoreceptive and are most sensitive to blue 
light at 480 nm (Romagnoli et al., 2020).

4. Comorbidity of factors affecting 
pupillary response and risk to 
Alzheimer’s disease

The following subsection will review the prevalent risk factors for 
AD and their relation, if any, to an impaired pupillary response. The 
comorbidity of these risk factors will also be assessed to evaluate the 
individual impact on the pupillary response from the individual and 
combined risk factors, and confounding factors will be  identified 
and reviewed.

4.1. Overview of impaired pupillary 
responses in Alzheimer’s disease

Before assessing the pupillary responses in cases involving specific 
risk factors to AD, it is important to assess the pupillary responses in 
AD patients. Much of the research into pupillary responses in AD 
does not assess specific risk factors and considers the impact of 
dementia on the PLR in general, and so this section aims to review 
some of this broader research before assessing individual risk factors.

There is precedence for the study of impaired pupillary responses 
in various physical and mental conditions including AD, to study 
disturbances in the parasympathetic responses relating to the pupil 
(Fotiou et al., 2008). In patients with AD, changes relating to vision 
are some of the first symptoms that impact patients (Chang et al., 
2014). Potential ocular biomarkers for AD include visual acuity, 
contrast sensitivity, pupil reaction, color vision, visual field, motion 
perception, ocular motor function, and stereopsis (Chang et al., 2014; 
Beltrán et al., 2018). When assessing the pupil reaction in AD, Chang 
et al. suggest that changes are expected in the pupillary light and dark 
reflexes (Chang et al., 2014), the former of which will be reviewed in 
the following section.

A summary of AD risk factors and their impact on the PLR is 
shown in Table 2, which indicates whether an impact was identified 
or not, and which section each risk factor is discussed in.

4.1.1. Pupillary light response in Alzheimer’s 
disease

There are a multitude of studies that investigate the pupillary light 
response in AD, each of which use specific combinations of stimuli 
and measurement systems. Figure 2 shows some of the commonly 
used features of the PLR that are assessed in AD studies. One area of 
study involves assessing the resting pupil size of AD patients and 
comparing this to cognitively normal controls. When comparing the 
two groups, Kawasaki et al. found that the baseline pupil size in room 
light was significantly smaller in the AD group (Kawasaki et al., 2020). 
Frost et al. found similar results, finding a smaller resting (after a 
2-min dark adaptation) and minimum pupil size after stimulus in the 
AD group (Frost S. et al., 2013). Finally, Prettyman et al. found a 
smaller resting pupil size in the AD group compared to the control 

group, which they hypothesize could be  caused by a sympathetic 
deficit caused by the loss of neurons in the locus coeruleus in AD 
(Prettyman et al., 1997).

However, not all studies have replicated the studies led by 
Kawasaki and Prettyman. Fotiou et al. found no significant difference 
in baseline pupil size between the AD group and cognitively normal 
controls (Fotiou et al., 2007b). Additionally, Ferrario et al. found that 
the baseline pupil size was notably higher in the AD group than in the 
control group (Ferrario et  al., 1998). These discrepancies could 
potentially be due to different root causes of AD, which may determine 
whether the PLR parameters such as baseline pupil size are impacted. 
As such, more research is required into an analysis of baseline pupil 
size in AD to obtain an accurate and reliable conclusion.

Another area of research is an analysis of the velocity and 
acceleration of pupil constriction or dilation in AD patients compared 
against cognitively normal groups. Generally, most studies of 
pupillometry have found a reduced maximum constriction velocity 
(MCV) and maximum constriction acceleration (MCA) in AD cohort 
when compared to healthy controls, consistent with a hypothesized 
parasympathetic deficiency, and have been proposed as the most 
accurate pupillometric parameter for differentiating AD groups from 
healthy controls (Chougule et  al., 2019). Fotiou et  al. observed 
significantly lower values for both MCV and MCA in the AD group 
when compared to the controls and noted that MCA was the best 
parameter to separate AD patients from healthy controls, with MCV 
in a close second (Fotiou et al., 2007b). Frost et al. similarly found 
reduced values for MCV and MCA in AD groups but found that MCV 

TABLE 2 Summary of AD risk factors and their impact on the PLR.

Risk factor

Impact on the PLR 
(note: + indicates 
authors identified 
an impact on the 
PLR; − indicates 
authors did not 

identify an impact 
on the PLR; ? 

indicates authors 
identified a 

potential, but 
unconfirmed, 

impact on the PLR.)

Section 
discussed in

Genetics ? 4.2.1

Level of education − 4.2.2

Hearing loss ? 4.2.3

Traumatic brain injury + 4.2.4

Hypertension + (intracranial and ocular 

hypertension)

? (general hypertension)

4.2.5

Alcohol consumption + 4.2.6

Obesity − 4.2.7

Smoking ? 4.2.8

Depression + 4.2.9

Social isolation − 4.2.9

Diabetes + 4.2.10

Physical inactivity − 4.2.11
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was the best method for classifying AD groups from controls (Frost 
et  al., 2017). Other studies by Fotiou et  al. and Frost et  al. have 
reported reduced MCV and MCA in AD groups (Frost S. et al., 2013; 
Fotiou et al., 2015).

Prettyman et  al. found that patients in the AD group had a 
reduced recovery time when compared to the control group, however 
they caution that this response, in conjunction with a reduced 
amplitude of the response, could be due to a saturation effect at the 
response floor, which could make it difficult to draw conclusions 
about how much the parasympathetic innervation of the iris plays a 
role in AD (Prettyman et al., 1997).

In contrast to most studies, Ferrario et al. found that the average 
values for MCA were higher in the AD group than in the control 
group and did not find a statistical difference between the MCV of the 
AD and control groups (Ferrario et al., 1998). Although most studies 
agree that MCV and MCA are reliable pupillometric markers to 
differentiate AD patients from healthy controls, this is not always the 
case – this could be due to different risk factors for AD resulting in 
different disease endotypes.

Other pupillometric parameters that are used in pupillometry 
studies involving AD are the pupil constriction and pupil dilation 
amplitudes. Most studies have found that AD groups have a decreased 
pupil constriction amplitude (PCA) when compared to healthy 
controls, including those led by Fotiou et al. (2007b), Frost S. et al. 
(2013), Frost et al. (2017), and Chougule et al. (2019). Prettyman et al. 
found a reduced PCA in the AD group, but caution that just as with 
the reduced recovery time, that this could be due to a “floor effect” 
which makes it difficult to conclude that a parasympathetic 
innervation of the iris in AD causes these effects (Prettyman et al., 
1997). Granholm et al. found that the peak PCA was significantly 

reduced in AD groups when compared to healthy controls but was 
also reduced in Parkinson’s disease patients and that there was not a 
significant difference between the AD and Parkinson’s disease groups, 
which they suggest means that this test is sensitive to AD but does not 
have adequate specificity (Granholm et al., 2003).

As with the other pupillometry parameters, not all studies have 
found a decreased PCA in AD patients. Ferrario et al. did not find a 
significant difference between the PCA of AD and control groups 
(Ferrario et  al., 1998). Similarly, Kawasaki et  al. did not find any 
significant difference in PCA when subject to various intensities of 
colored light in the AD group (Kawasaki et al., 2020). Van Stavern 
et al. did not find any significant difference between a preclinical AD 
group and the PCA (Van Stavern et al., 2019). As such, more research 
should be done to assess the validity of the PCA as a pupillometric 
indicator for AD.

There have been some significant relationships found between AD 
patients and their pupillary light responses, including their resting 
pupil diameters, their MCV and MCA, and their PCA. However, not 
all these relationships show the same reproducibility as shown by 
some contradictory studies. Additionally, some of these relationships 
are also seen in other neurodegenerative diseases, which reduces the 
specificity of only using these PLR metrics to separate AD patients 
from others. Many of these differences may be  due to notable 
differences in the inclusion and exclusion criteria of subjects across 
studies, including ethnicity, sex, genetics, comorbidities and other 
demographics and disease endotypes. More information, including 
any underlying health conditions or other risk factors, should 
be collected from patients to be able to separate the pupillary response 
impacts of AD alone from the impacts from other factors, and to 
account for any comorbidities that may impact the response.

FIGURE 2

Pupillary light response plot, with commonly extracted features labelled. This figure was created by SS using BioRender.com.
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4.2. Risk factors and pupillary light 
response impairments

The pupillary light response appears to be  impacted in AD 
patients; however, this measure alone lacks the required specificity to 
separate AD patients from healthy controls or those with other 
diseases. This section will review the prominent risk factors for AD 
and their impacts, if any, on the PLR. The aim will be to separate the 
individual impacts on the PLR in AD patients who may have these 
underlying conditions or risk factors, and to assess the comorbidity of 
these conditions in relation to the PLR.

4.2.1. Genetics
Before investigating the impact of various lifestyle and preventable 

risk factors for AD on the PLR, genetic risk factors will be explored 
– specifically, the APOE ɛ4 allele, and genetic factors involved in 
autosomal dominant AD (ADAD). There have been several studies 
investigating changes in the pupillary responses in subjects with 
genetic susceptibilities to AD – specifically when assessing the 
pupillary responses to light and to tropicamide.

ADAD is a rare form of AD that affects carriers with specific gene 
mutations, which can occur in people as young as 30 years old. The 
gene mutations involved in this genetic disorder primarily involve 
amyloid precursor protein (AβPP), presenilin 1 and presenilin 2, and 
mutation carriers progress to AD with 100% certainty (Frost 
S. M. et al., 2013). Frost et al. investigated the pupil flash responses in 
mutation carriers (specifically in the APP 693 mutation at position 22 
of the amyloid-beta fragment, APPGlu693Gln) and compared them 
to non-carriers, all within a single family. They found that the 75% 
recovery time was larger in the mutation carrier group and the 
percentage recovery 3.5 s post-stimulus was smaller in the mutation 
carrier group – both parameters were found to provide perfect 
classification of mutation carriers against non-carriers in the cohort, 
showing that the pupil flash response can be used in AD cases outside 
of the sporadic AD classification (Frost S. M. et al., 2013).

The pupillary response to tropicamide has been investigated in 
several studies relating to AD. A study by Higuchi et al. found that 
cognitively normal subjects with the APOE ɛ4 allele had a greater 
increase in pupil size after tropicamide-induced changes, which they 
suggest shows that this hypersensitivity can be  seen in APOE ɛ4 
carriers before the onset of AD (Higuchi et al., 1997). These findings 
agree with a study by Turana et al., which found that subjects with the 
APOE ɛ4 allele had the highest pupillary hypersensitivity response 
when a drop of 0.01% tropicamide was put on their eye, when 
compared to the other subjects, and suggested that a combination of 
biological and clinical markers is required to increase the positive 
predictive value towards amnestic mild cognitive impairment cases 
(Turana et al., 2014).

It is evident that there are some genetic factors that are associated 
with different pupillary responses. However, more research should 
be  done on the PLR in APOE ɛ4 carriers and carriers of specific 
genetic mutations to make any conclusions about how these factors 
influence the PLR.

4.2.2. Level of education
A lower cognitive reserve leads to vulnerability to cognitive 

decline (Valenzuela and Sachdev, 2006), as cognitive reserve assists in 
maintaining brain function (Valenzuela, 2008). Individuals with a 

higher cognitive reserve have a later onset of cognitive functions being 
impacted by AD or age-related pathology, as their higher cognitive 
reserve can tolerate more pathology (Stern, 2012). Thus, increasing a 
person’s cognitive reserve can assist in preventing dementia. The level 
of education that a person receives, and their occupational status, are 
both factors that contribute to increasing the brain’s cognitive reserve 
(Valenzuela and Sachdev, 2006). Cognitive ability increases with 
education before plateauing in late adolescence with few further 
improvements with education after an age of 20 years (Kremen et al., 
2019) – thus, cognitive stimulation is especially important in early life 
to assist in building cognitive reserve. Stern et al. also found that 
participants in low occupational levels throughout their lifetimes, 
based on the United States census categories, have a greater risk of 
developing dementia (Stern, 2012). Other cognitive activities in 
adulthood, including reading, playing games, playing music and 
creating art, speaking multiple languages, and participating in leisure 
activities also assist in maintaining cognition (Valenzuela and Sachdev, 
2006; Stern, 2012).

To the authors’ knowledge, no study has published any results that 
directly link the subject’s level of education or cognitive reserve with 
their pupillary responses, either to light or another stimulus. Research 
should be  done to consider the direct impacts of education and 
cognitive reserve on the PLR both dependent and independent of AD 
to potentially aid in diagnosis, given that an increase in cognitive 
reserve can delay the onset of symptoms of AD and make a diagnosis 
more challenging (Stern, 2012).

4.2.3. Hearing loss
Hearing loss at any scale, including mild hearing loss, increases 

the long-term risk of cognitive decline and dementia (Lin et  al., 
2011a,b; Gallacher et al., 2012; Kiely et al., 2012; Gurgel et al., 2014; 
Amieva et al., 2015; Deal et al., 2015, 2017; Fritze et al., 2016). In many 
cases, hearing loss can predate and predict a clinical diagnosis of 
dementia (Bowl and Dawson, 2019), and auditory scene processing 
deficits could be considered a functional marker for AD pathology 
(Johnson et al., 2021). According to Livingston et al., hearing loss had 
the highest population attributable fraction of potentially modifiable 
risk factors for dementia, and with every 10 dB of reduction in hearing 
a decrease in cognition is found, potentially due to reduced cognitive 
stimulation (Livingston et al., 2020). However, these findings are only 
consistent with people who do not use hearing aids – hearing aid use 
is one of the largest factors that can protect against the onset of 
dementia (Livingston et al., 2020).

Previous functional MRI (fMRI) studies conducted at resting state 
have shown a reduction in spontaneous neural activity in hearing loss 
patients which correlated with a reduction in cognitive performance 
(Ponticorvo et al., 2019). There are several possible mechanisms to 
explain the relationship between hearing loss and dementia, which are 
defined by Griffiths et al. as: common pathology affecting the cochlea 
and ascending pathway (causing hearing loss) and the cortex (causing 
dementia); impoverished environment causing decreased cognitive 
reserve; a requirement for increased cognitive resources for listening; 
the interaction between brain activity related to auditory cognition 
and dementia pathology (Griffiths et al., 2020).

General pupillary responses arising from an increase in mental or 
cognitive effort have been investigated in hearing loss subjects 
(Kramer et al., 1997; Zekveld et al., 2011, 2020). However, in their 
2016 systematic review, Wang et al. did not identify any results for 
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studies directly linking the pupil light reflex and hearing impairment 
(Wang et al., 2016). However, they did investigate hearing impairment 
and its associations with the parasympathetic response, which has 
been shown to be linked to the PLR (Wang et al., 2016). Hasson et al. 
found a negative correlation between hearing problems and 
parasympathetic activity and associated an increase in hearing 
problems with a decreased ability to “unwind” or recover from the 
stress due to diminished parasympathetic activity (Hasson et  al., 
2009). Mackersie et  al. found that subjects with hearing loss had 
greater stress-related autonomic nervous system activation and noted 
that an important aspect of a stress response could include activation 
of the sympathetic branch and suppression of the parasympathetic 
branch (Mackersie et al., 2015).

No direct relation between the PLR and hearing ability or loss was 
found in the search conducted, and minimal evidence was shown to 
link a decreased parasympathetic response to hearing loss. Despite 
this, as the PLR is governed by sympathetic and parasympathetic 
activity, this potential link between hearing loss and a decrease in 
parasympathetic activity should be explored in further research, using 
the PLR as a metric.

4.2.4. Traumatic brain injury
Traumatic brain injury (TBI), including mild and severe injuries, 

is a known risk factor for AD (Perry et al., 2016; Fann et al., 2018). In 
particular, a single, severe, TBI is associated with widespread 
hyperphosphorylated tau pathology in both humans and mouse 
models (Zanier et al., 2018). The risk of developing AD due to TBI 
increases with both the severity of the injury and the number of 
injuries sustained, and the risk of dementia is stronger closer to the 
time that the injury occurs which can lead to early-onset AD in some 
people (Fann et al., 2018). Notably, those with a higher occupational 
risk for head and brain injuries are more likely to develop AD as a 
result of their increased likelihood of these injuries (Barnes et al., 
2018; Mackay et al., 2019; Yaffe et al., 2019). Many athletes including 
boxers, American football players, ice hockey players, soccer players, 
rugby players, and wrestlers, in addition to military veterans, have had 
associations with chronic traumatic encephalopathy (CTE), a 
progressive neurodegenerative disease which is associated with 
repetitive TBI experienced in sports and military activity and is a risk 
factor for dementia (Stein et al., 2014).

There have been several studies investigating the PLR in TBI 
subjects, through several different methods of classifying TBI. A 
common consequence of TBI is an increase in intracranial pressure 
(ICP), which is one such parameter used to characterize TBI (Noble, 
2010). Chen et al. used an algorithm to characterize the pupillary 
response relating to ICP, called the Neurological Pupil index (NPi), 
which takes in common parameters of the PLR including the pupil’s 
minimum and maximum sizes, constriction percentage and velocity, 
and dilation velocity (Chen et al., 2011). They found that subjects who 
had decreased PLRs had higher peaks of intracranial pressure, using 
the NPi to characterize the pupillary responses (Chen et al., 2011). 
Another means of assessing TBI is through the Glasgow Coma Scale 
(GCS), which can be used to measure the neurologic status of patients, 
with more severe brain injuries being classified as 8 or less on this 
scale, and mild to moderate brain injuries being classified as 9 or more 
(Park et  al., 2015). Park et  al. found that diminished PLRs were 
associated with a lower GCS score and found that the initial NPi value 
of the group of subjects receiving a “poor” prognosis was lower than 

the group with a “favorable” prognosis, demonstrating the potential 
for the PLR to be used in diagnosing and classifying TBI severity (Park 
et al., 2015).

Several other studies have shown direct links between TBI and the 
PLR, showing that multiple parameters of the PLR are reduced in 
magnitude after TBI, particularly when using monocular test 
measurements (Truong and Ciuffreda, 2016; Oshorov et al., 2021). 
Most studies assess the PLR in the short term after TBI occurrence 
and do not follow-up on long term PLR changes, although Truong 
et al. found PLR impairments in mild TBI patients in the chronic 
recovery phase (greater than 45 days post-injury) when compared to 
normal controls (Truong and Ciuffreda, 2016). As such, there is 
sufficient evidence to show that TBI is associated with noticeable 
changes in the PLR, at least in the short term. More research should 
be done to investigate how these changes are affected in the long term.

4.2.5. Hypertension
Hypertension, specifically persistent hypertension in midlife, is 

associated with an increased risk for dementia in later life. An elevated 
systolic blood pressure in midlife has been shown to increase dementia 
risk, with the risk increasing if this hypertension continues later in life 
(McGrath et al., 2017). A potential mechanism for how this contributes 
to dementia risk is through alterations of regulatory mechanisms of 
the cerebral circulation, which compromise the blood supply to the 
brain (Faraco and Iadecola, 2013). Additionally, midlife hypertension 
is associated with reduced brain volumes and an increased white 
matter hyperintensity volume (Lane et al., 2019). However, this risk 
can be reduced when anti-hypertensive medications are taken (Ding 
et al., 2020).

Hypertension has been linked to an altered PLR in several studies, 
however most studies focus on either intracranial hypertension or 
ocular hypertension. Grozdanic et al. have found, in separate studies, 
that the PLR is reduced in rats after acute elevation of intraocular 
pressure (Grozdanic et al., 2003, 2004). In human subjects, reduced 
amplitudes of the PLR have been associated with increased intracranial 
pressure and in intracranial hypertension including idiopathic 
intracranial hypertension and is often used to monitor neurocritical 
care patients (Taylor et al., 2003; Chen et al., 2011; Park et al., 2016; 
Jahns et al., 2019; Romagnosi et al., 2020).

Importantly, hypertension can affect the autonomic nervous 
system, which is characterized by sympathetic and parasympathetic 
activity. Multiple studies have shown that patients with borderline 
hypertension display an increase of sympathetic activity (Julius et al., 
1971, 1991; Anderson et al., 1989; Mancia and Grassi, 2014), and a 
decrease of parasympathetic activity (Julius et al., 1971; Mancia and 
Grassi, 2014). Although not many studies have directly evaluated the 
effects of general hypertension on the PLR, its link to the sympathetic 
and parasympathetic activity shows that further research should 
be conducted in this area to investigate a link between the PLR and 
general hypertension.

4.2.6. Alcohol consumption
Heavy drinking has been associated with cognitive impairment 

and dementia (Rehm et  al., 2019), however due to its complex 
entanglement with sociocultural and health-related factors, it is 
challenging to fully understand how alcohol alone contributes to 
dementia risk (Livingston et al., 2020). Venkataraman et al. suggest 
that alcohol misuse, such as binge drinking or chronic alcohol use, 
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could lead to neuroinflammation and neuronal cell death, which 
could be a mechanism for how alcohol consumption increases AD 
risk (Venkataraman et  al., 2017). Additionally, higher alcohol 
consumption has been associated with an increased risk of 
hippocampal atrophy, which is considered a specific marker of AD 
(Topiwala et  al., 2017). Regardless of the mechanisms involved, 
moderating or reducing alcohol intake can reduce the risk of AD 
(Rehm et al., 2019).

The parasympathetic response may be impaired in alcoholics, due 
to lesions in the parasympathetic supply (Tan et al., 1984). This has 
been shown to manifest as an impaired PLR when comparing 
alcoholics to non-alcoholics (Rubin, 1980; Chida et al., 1998). Rubin 
also compared alcoholics who abstained from drinking 1 month prior 
to the study to alcoholics who did not abstain and found that both 
groups had an equally defective rate of pupillary contraction, but the 
alcoholic drinkers had a slower rate and amplitude of dilation, 
showing that alcoholics demonstrate an impaired parasympathetic 
outflow regardless of their drinking activity, but that the sympathetic 
deficiency is dependent on whether the alcoholic abstains from 
drinking for an extended period of time (Rubin, 1980).

Changes in the PLR are not only observed due to consistent 
alcohol consumption over an extended period but are observed during 
the act of consuming alcohol or while a person is actively drunk. Short 
term alcohol consumption leads to dilated pupils and slower pupillary 
reactions (Dhingra et al., 2019). Studies have shown that the PLR may 
be a good measure to classify a person’s current inability to work or 
drive due to alcohol consumption or sleep deprivation (Jindou et al., 
2010; Kaifie et  al., 2021). As such, it is important to separate the 
instantaneous impacts of alcohol consumption from the more 
prolonged impacts from alcoholism or heavy drinking on the PLR, 
and more research should be done to separate the two.

4.2.7. Obesity
An increased body-mass index (BMI), specifically in the obesity-

defined range, is associated with an increased risk of dementia 
(Albanese et al., 2017). Additionally, increased adiposity is related to 
AD, potentially due to increased vascular stress, however the exact 
mechanisms for this are still unknown (Luchsinger and Gustafson, 
2009). Further, the risk of dementia has been shown to vary with the 
age of onset of obesity, with a higher risk associated with younger 
adults with obesity when compared to adults who only develop the 
condition later in life (Wotton and Goldacre, 2014). While there is 
data that supports the claim that weight loss in obese and overweight 
adults is associated with improvements in performance across 
multiple cognitive domains (Veronese et  al., 2017), according to 
Livingston et al., there is no data specific to the long-term effects of 
weight loss in overweight and obese adults in lowering dementia risk 
(Livingston et al., 2020).

There is limited research that assesses the links between obesity 
and the PLR, and the limited research presents conflicting results. 
Baum et al. found a decreased PLR with an increased BMI in children 
and adolescents (Baum et al., 2013). Blüher et al. assessed changes in 
the PLR of obese children, after exercise and lifestyle interventions 
were made to decrease BMI and found that reductions in BMI were 
associated with a higher dilation velocity, higher relative light reflex 
amplitude, and higher constriction velocity (Blüher et  al., 2015). 
Within a group of healthy adults with a range of BMIs ranging from 

normal to obese, Segal et al. found that those with a higher BMI also 
had a higher average dilation velocity post-stimulus and concluded 
that BMI levels positively correlate with sympathetic activity (Segal 
et  al., 2022). When investigating sets of identical twins who had 
different BMIs (obese and non-obese classifications), Piha et al. did 
not find significant differences in heart rate, blood pressure, or 
pupillary responses between the obese and non-obese twins and 
concluded that neither sympathetic nor parasympathetic 
responsiveness is significantly affected by obesity and instead is 
affected significantly by genetic factors (Piha et  al., 1994). These 
differences may be due to the different subject selection for these 
studies, including variability in age and genetics. Additionally, these 
changes could be due to other risk factors or comorbidities that may 
accompany obesity, such as physical activity levels and other 
lifestyle aspects.

No other significant study comparing obesity, BMI, or other 
weight-related factors to the PLR was found in the search. The studies 
that have been published to date used different age and genetic groups 
and have all presented different results, and so no conclusion can 
be made. Further research should be done with broad ranges of age 
and genetic groups to investigate any potential relationship between 
obesity and the PLR.

4.2.8. Smoking
Smokers are at a higher risk of developing dementia when 

compared to non-smokers (Ott et al., 1998; Anstey et al., 2007; Cataldo 
et al., 2010; Rusanen et al., 2011). However, smokers have a higher risk 
of premature death which could occur before their age of dementia 
onset, so these competing risks may introduce biases and discrepancies 
in the association between smoking and dementia risk (Debanne 
et al., 2007; Chang et al., 2012). Regardless, not smoking can increase 
life expectancy and health, and stopping smoking can reduce the 
dementia risk (Choi et al., 2018). Exposure to smoke through second-
hand smoke is also associated with more memory deterioration (Pan 
et al., 2018), although limited literature exists in this specific area 
(Livingston et al., 2020).

To the authors’ knowledge, no study has published any results that 
directly link long-term nicotine smoking to an impaired 
PLR. However, there have been studies that have investigated the 
relationship between nicotine and smooth muscle function. Studies 
have shown that nicotine may act on vascular smooth muscle and 
induce vascular relaxation in rats (Xu et  al., 2015) or vascular 
contraction or relaxation in humans (Hanna, 2006). Further, nicotine 
may alter vascular smooth muscle cell phenotypes (Yoshiyama et al., 
2014; Wang et al., 2019). Because the function of vascular smooth 
muscle cells may be a biomarker for AD, and these vascular smooth 
muscle cells may undergo phenotypic transitions in AD (Hayes et al., 
2022), this supports the need for further research in this area.

Additionally, there have been studies linking smoking and 
intraocular pressure. Mansouri et al. found that chronic long-term 
smokers had a higher mean intraocular pressure than non-smokers 
(Mansouri et al., 2015). Similarly, Lee et al. found that current smokers 
had a slightly higher mean intraocular pressure than the non-smokers 
in their study (Lee et al., 2003). Although not directly linked to the 
PLR, this change in intraocular pressure should be investigated further 
to determine whether it, in turn, causes a change in the PLR 
in smokers.
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4.2.9. Depression
Having depression is associated with an increased risk of dementia 

and AD (Caraci et al., 2010; Dotson et al., 2010). Depression is also 
part of the dementia prodrome and can be seen in the early stages of 
the disease, and thus there has been debate as to whether depression 
is only a symptom of dementia, or if it is an independent risk factor 
for dementia (Dotson et  al., 2010). The mechanisms involving 
depression and AD are likely to be multifactorial and may include 
vascular and neuropathological mechanisms (Chi et al., 2014). Some 
molecular mechanisms, such as chronic inflammation, are common 
in the pathogenesis of both major depression and AD (Caraci et al., 
2010). Livingston et al. have not found conclusive evidence for the 
difference between treated and untreated depression regarding the risk 
of dementia (Livingston et  al., 2020); however, the use of 
antidepressants has been shown to improve amyloid beta clearance 
(Sheline et al., 2014).

Some studies have investigated the PLR in subjects with 
depression, in various capacities. The PLR has been shown to 
be altered in patients with major depressive disorder (MDD) when 
compared to controls (Miller et al., 2021). Mestanikova et al. found 
that the PLR was diminished in the left eye of adolescent girls with 
depression, but not in the right eye (Mestanikova et al., 2017). Berman 
et al. found that the PLRs were diminished in depressed patients both 
with and without a seasonal pattern, when compared to healthy 
controls (Berman et al., 2018). Further, Fountoulakis et al. found that 
subjects with depression had a shorter latency for pupil constriction 
post-illumination, when compared to healthy controls, which suggests 
a norepinephrine hypoactivity in melancholic depression 
(Fountoulakis et al., 1999).

Some researchers have assessed how the PLR can be impacted 
by the conditions that the depressed subjects are under. Bar et al. 
found that the PLR was impacted by antidepressant use – they 
found that acutely depressed patients who had not taken 
antidepressants did not differ significantly in PLR parameters, 
other than relative amplitude, compared to healthy controls, 
although those taking antidepressants had significant changes in 
their parasympathetic function (Bär et  al., 2004). Feigl et  al. 
investigated how the mean daylight exposure could impact the PLR 
in subjects with mild and moderate non-seasonal MDD but found 
no significant differences between the MDD subjects and healthy 
controls regardless of the daily and hourly light exposure including 
recommended light therapy that is recommended for MDD 
patients (Feigl et al., 2018). However, Laurenzo et al. found that in 
addition to the PLR being impacted in MDD subjects when 
compared to healthy controls, MDD subjects displayed reductions 
in the post-illumination pupil response to high-intensity blue light, 
which was less pronounced in months with fewer daylight hours 
(Laurenzo et  al., 2016). This may be  due to the difference in 
methods and stimuli used or due to other differences in subject 
inclusion criteria, More research should be  done to investigate 
impaired PLRs in depressed subjects of various ages and under 
various conditions.

Although considered to be a separate risk factor from depression, 
aspects of social isolation have several similarities with depression. 
However, to the authors’ knowledge, no study has published any 
results that link the subject’s level of social engagement with their 
pupillary responses, either to light or another stimulus, and thus the 
social isolation risk factor has not been further explored in 
this review.

4.2.10. Diabetes
Having diabetes is a significant risk factor for dementia and AD 

(Baglietto-Vargas et al., 2016). It is thought that diabetes, specifically 
type 2, could increase the risk through insulin resistance, impairing 
glucose metabolism in the brain (Liu et al., 2009). Dementia risk is 
higher with increased duration and severity of diabetes, but the effects 
of diabetic medications on dementia outcomes or cognition are 
unclear (Livingston et al., 2020). It is generally agreed that type 2 
diabetes is a risk factor for the future development of dementia, 
however specific treatment for diabetic control has not been shown to 
decrease dementia risk (Areosa Sastre et al., 2017).

There are extensive studies that have assessed the relation between 
diabetes and the eye, including several aspects of the PLR. Lanting 
et al. found that overall, the diabetic patient groups studied had a 
higher PLR latency when compared to healthy controls and normal 
values and claims that this represents parasympathetic dysfunction 
(Lanting et al., 1990, 1991). A study by Bista Karki et al. also supported 
the concept of parasympathetic dysfunction in diabetic patients, with 
results that showed that the diabetic subjects had a lower maximum 
and mean constriction velocity, lower constriction amplitude, and a 
lower relative reflex amplitude when compared to the healthy controls 
(Bista Karki et  al., 2020). Ishibashi et  al. subjected diabetics and 
healthy controls to both red and blue light, and found that with both 
light colors, the pupil constriction was slower and less pronounced in 
the diabetic group when compared to the healthy control group 
(Ishibashi et al., 2017). Karavanaki et al. compared diabetic children 
with healthy children and found that the diabetic group had impaired 
pupillary adaptation in the darkness (Karavanaki et al., 1994). Several 
studies that found a reduced PLR in diabetic patients when compared 
to healthy subjects, with further reductions when comparing diabetics 
with autonomic neuropathy and without, suggested that pupillometry 
could help to identify diabetic autonomic neuropathy (Yang et al., 
2006; Ferrari et al., 2007; Feigl et al., 2012).

Not all studies support the claim that the PLR is significantly 
different between diabetic and non-diabetic subjects. Lerner et al. 
noted that although there were some differences in pupillometry 
values, that most had poor accuracy as a screening tool due to 
inadequate specificity and sensitivity (Lerner et al., 2015). Hreidarsson 
and Gundersen found that in type 1 diabetics who had a normal or 
near-normal sensory pathway, there was no significant difference in 
latency or other PLR parameters when compared to healthy controls 
with the same pupil size, and only a minor reduction in response 
amplitude (Hreidarsson and Gundersen, 1985).

Overall, there are multiple studies that show a reduction in the 
PLR among diabetic subjects when compared to healthy controls. 
Pupillometry has been suggested as a diagnostic tool for the 
monitoring of diabetes progression, specifically when assessing the 
development of certain side effects including autonomic neuropathy. 
However, there is a potential confound with diabetic retinopathy, 
where pupillary abnormalities may precede a diabetic retinopathy 
diagnosis (Bista Karki et al., 2020), and thus it is difficult to know 
whether any impairments to the PLR are due to the retina or due to 
nervous system defects. Additionally, there could be confounding 
effects with comorbidities that may exist with diabetes, which could 
also be different in type 1 and type 2 diabetes cases.

4.2.11. Physical inactivity
Physical inactivity is a risk factor for dementia, and older adults 

who exercise regularly have a better chance of maintaining cognition 
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(De la Rosa et  al., 2020). Being physically active is considered a 
protective factor against cognitive decline (Sofi et al., 2011; Hersi et al., 
2017). Livingston et al. highlight that although physical inactivity is 
considered a separate risk factor for dementia, there are several 
overlaps between physical activity and other risk factors such as 
obesity and diabetes, and confounding factors exist with age, sex, 
social class, and cultures (Livingston et al., 2020). To the authors’ 
knowledge, no study has published any results that link the subject’s 
level of physical activity with their pupillary responses, either to light 
or another stimulus, and thus this risk factor will not be explored 
further in this review.

4.3. Confounding factors

As was highlighted earlier, pupillary responses can be evoked due 
to a variety of factors and stimuli. Outside of the non-genetic and 
lifestyle-related risk factors for AD outlined by Livingston et al., there 
are other factors that can impact AD risk and the PLR. Additionally, 
some of the AD risk factors have a comorbidity with one another, 
which could confound potential relationships between the individual 
risk factors, AD, and the PLR. Some of the prevalent confounding 
factors will be outlined in this section.

4.3.1. Changes to the eye and AD
When assessing the PLR, it is evident that changes to the eye itself 

may impact the response, including retinal changes. There are many 
studies that have related vision changes to AD, as the eye is closely 
related to the brain – the retina shares important pathways, both 
structural and pathogenic, with the central nervous system (Cabrera 
DeBuc et  al., 2018). AD may impact visual function early in the 
disease progression, and losses in visual function correlate with 
cognitive losses (Valenti, 2010). Rogers and Langa found that 
generally, poor vision that is left untreated is associated with cognitive 
decline and AD (Rogers and Langa, 2010).

There are also associations when considering, more specifically, 
changes to the retina and AD. Amyloid-beta and phosphorylated tau 
can accumulate in the retinas in early-stage cases of AD, which could 
be used as an early biomarker for AD (Koronyo et al., 2017; Gupta 
et al., 2021). The retinal nerve fiber layer thickness has been found to 
be smaller among AD patients when compared to healthy controls 
(Kirbas et al., 2013; Asanad et al., 2019; Gupta et al., 2021), as has the 
retinal ganglion cell layer, inner nuclear layer, and outer nuclear layer 
(Asanad et  al., 2019). Cabrera DeBuc et  al. suggest that retinal 
geometric vascular and functional parameters could be associated 
with retinal changes due to cognitive decline and could serve as a 
useful clinical marker of cognitive decline (Cabrera DeBuc et al., 2018).

It may be difficult to separate these changes in the eye associated 
with AD, from independent changes to the parasympathetic or 
sympathetic response resulting in an impaired PLR. It could 
be claimed that retinal degeneration and other retinal and optic nerve 
changes in AD could be, at least partially, responsible for the reduced 
PLR observed in AD; however, this is not supported by clinical 
observations of AD patients in a neuro-ophthalmological 
examination (Chang et al., 2014). Further research should be done to 
separate ocular and retinal changes to the PLR from direct 
AD-related changes.

4.3.2. Population demographics and PLR
There are several demographics of a population that can influence 

the PLR. The specific factors that will be highlighted are age, sex, and 
living environments.

4.3.2.1. Age
There are pupillary changes that occur with age in otherwise 

healthy adults. Many studies have shown that after growing until 
adolescence, the size of the pupil decreases with age (Feinberg et al., 
1965; Winn et al., 1994; Bitsios et al., 1996; Fotiou et al., 2007a; Sharma 
et al., 2016; Eckstein et al., 2017). In terms of the PLR, Sharma et al. 
found that the amplitude of the PLR to blue light was reduced with age 
(Sharma et al., 2016). Bitsios et al., using green light, and Fotiou et al., 
using white light, similarly found a reduction, among older subjects, 
in the PLR, but did not find a difference in the latency (Bitsios et al., 
1996; Fotiou et al., 2007a). This contradicts Feinberg and Podolak’s 
conclusion that pupillary latency increases with age (Feinberg et al., 
1965). Although there are disputes as to whether pupillary latency 
changes with age, the finding that pupil size decreases with age is an 
important factor to consider when assessing the amplitudes of 
the PLR.

4.3.2.2. Sex and gender
Sex and gender differences have been identified in AD prevalence, 

clinical manifestation, and prognosis (Kim et al., 2015). Women have 
a higher lifetime risk of developing AD compared to men (Farrer 
et al., 1997; Seshadri et al., 1997), however men have a shorter lifespan 
after diagnosis (Podcasy and Epperson, 2016).

Fan and Yao found that females have a higher parasympathetic 
activity and lower sympathetic activity when compared to males, 
consistent with findings presented in other cardiovascular studies (Fan 
and Yao, 2011). Van Stavern et al. found that there is a potential effect 
from an individual’s sex that could influence the PLR – an example 
provided is that males with a biomarker showed a reduced constriction 
percentage when compared to males without biomarkers, although it 
was not found to be statistically significant (Van Stavern et al., 2019). 
Further studies should be  conducted to assess sex and gender 
difference in AD risk factors and the PLR, to draw 
adequate conclusions.

4.3.2.3. Living environment
An individual’s living environment can also affect AD risk, in 

addition to the PLR. Livingston et al. identified air pollution as a risk 
factor for AD, likely due to vascular mechanisms (Livingston et al., 
2020). Carey et al. investigated both air and noise pollution and found 
that higher levels of air and noise pollution correspond with higher 
risks of dementia (Carey et al., 2018). Interestingly, Paciência et al. 
found that the walkability of school neighborhoods was negatively 
associated with the pupillary response, specifically with the pupil 
constriction amplitude and redilation time, which they suggest is due 
to the school environments affecting the lung function of students, an 
effect which may be partially mediated by the autonomic nervous 
system (Paciência et al., 2019). As shown, there are several aspects of 
an individual’s living environment that can increase risk for AD and 
can impact the health of residents, however more research should 
be done to assess other living environment parameters with AD risk 
and the pupillary light response, while controlling for other factors.
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4.3.3. Comorbidity between Alzheimer’s disease 
risk factors

This review aimed to distinguish individual risk factors and their 
specific contributions, if any, to an impaired PLR. However, many of 
these risk factors have comorbidities, and as such it can be difficult to 
distinguish individual impacts. Some of the prevalent comorbidities 
will be discussed here.

There are several diseases and conditions that share risk factors 
with dementia, and conditions that may be side effects of dementia. 
Those living with dementia may not remember to tell family members 
or health professionals their symptoms, or may struggle to follow 
health and nutrition plans, which could increase infections (Livingston 
et al., 2020). A reverse causation between dementia and depression 
can also exist, where depressive symptoms may result from dementia 
neuropathology (Livingston et al., 2020). Prodromal dementia may 
also stop people from exercising, and so physical inactivity, like 
depression, may either be  a consequence or cause of dementia 
(Livingston et  al., 2020). Additionally, many of the risk factors of 
dementia are also risk factors for cardiovascular diseases including 
hypertension, obesity, and diabetes (Kivipelto et al., 2006), all of which 
are individual risk factors for the disease itself and have been shown, 
to varying extents, to have some impact on the PLR.

In terms of the relationship between risk factors, there are many. 
Several studies suggest that hearing impairment is associated with 
psychosocial problems, including depression or loneliness (Strawbridge 
et al., 2000; Nachtegaal et al., 2009; Pronk et al., 2011; Wang et al., 
2016). Considering that depression and social isolation are additional 
risk factors for AD, this indicates a significant comorbidity. The ability 
to communicate with people depends significantly on hearing ability, 
and so hearing impairment can have a significant impact on social life, 
leading to social isolation and then, subsequently, to depression, 
cognitive decline, and dementia (Bowl and Dawson, 2019; Ralli et al., 
2019). Further, the prevalence of hearing impairment is more common 
in diabetics than in non-diabetics, and Bainbridge et al. suggest that 
hearing impairment may be  an under-recognized complication of 
diabetes (Bainbridge et al., 2008).

Diabetes and obesity are closely linked. Both conditions have a 
pathophysiology that is attributed to insulin resistance and insulin 
deficiency (Verma and Hussain, 2017). Obesity is associated with an 
increased risk of diabetes and is also associated with other health 
conditions including high blood pressure, high cholesterol levels, 
arthritis, and asthma (Mokdad et al., 2003). Physical activity is shown 
to be an important method of combating both diabetes and obesity, 
which further relates these risk factors (Verma and Hussain, 2017). 
Additionally, Mokdad et al. found that adults with less than a high 
school education had the highest rate of diabetes among all 
educational levels (Mokdad et al., 2003).

Education, understandably, can inform an individual’s social and 
lifestyle habits. Helliwell and Putnam state that education is usually the 
most important predictor of social engagement (Helliwell and Putnam, 
1999). It is thus important to consider how education may be related to 
risk factors related to social engagement and, by extension, depression.

5. Concluding remarks

AD is rapidly increasing around the world, and the current aim is 
to prevent the onset of the disease. The pupillary light response has 

been shown to be impaired in current AD subjects, but it is currently 
unknown if it could be used as a tool in at-risk groups to predict AD 
risk. This review outlined prevalent AD risk factors and assessed the 
pupillary light responses evoked in AD subjects and those belonging 
to AD risk factor groups.

Traumatic brain injury, ocular and intracranial hypertension, 
alcohol consumption, depression, and diabetes are all AD risk 
factors that have demonstrated changes in the PLR, in varying time 
frames. Hearing loss, smoking, and genetic factors have had 
associations with changes to the parasympathetic activity, which 
could indicate an impaired PLR, however further research should 
be  done to confirm this hypothesis. Genetic risk factors have 
additionally had limited direct associations with the PLR, and 
more research should be done to investigate this relationship. No 
conclusions could be  drawn between level of education, social 
isolation, obesity, and physical inactivity and the PLR, mainly due 
to a lack of literature, so more research should be  done to 
investigate any potential relationships. Further, there is a 
comorbidity between some AD risk factors, therefore further 
research is necessary to separate the individual impacts of these 
risk factors on the PLR.

With these findings, the PLR has clearly been shown to 
be impaired in current AD patients and in certain at-risk groups. 
Currently, pupillometry using the PLR has value as a confirmatory 
measure of AD. In the future, the PLR has the potential to be used 
as an early diagnostic tool for AD and could be used, in conjunction 
with a lifestyle, life-event, genetics, and physiological assessment, to 
identify when preventative measures should be taken for AD. To 
enable this, future research in this area should consider the impacts 
of individual lifestyle, genetic, life-event and physiological risk 
factors for AD and how these relate, if at all, to the PLR. Further, 
these future studies should ensure that a standard methodology for 
pupillometry measurements, as was proposed by Kelbsch et  al. 
(2019), should be  used to ensure that these studies can 
be easily compared.
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